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Let E/F be an elliptic curve over a number field F' with complex
multiplication by the ring of integers in an imaginary quadratic
field K. We give a complete proof of the conjecture of Birch and
Swinnerton-Dyer for E/F, as well as its equivariant refinement
formulated by Gross [39], under the assumption that L(E/F,1) # 0
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Let E/F be an elliptic curve over a number field F' with complex multipli-
cation by the ring of integers in an imaginary quadratic field K and such
that F'(Eyrs)/ K is abelian. It is well known that the conjecture of Birch and
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Swinnerton-Dyer for this class of elliptic curves, as well as its K-equivariant
refinement formulated by Gross [39], is amenable to the Iwasawa theory of
the field K. Indeed, this principle has its origin in the seminal work of Coates
and Wiles [18] which led to the finiteness of E(F') if L(E/F,1) # 0. About a
decade later Rubin [66] showed the finiteness of III(E/F) if L(E/F,1) # 0.
This remarkable work, partly motivated by the ideas of Thaine [81], gave
the very first proof of finiteness of the Tate-Shafarevich group of an abelian
variety over a number field. Subsequently, as a consequence of his proof of
the Iwasawa main conjecture for K, Rubin [68] proved the p-primary part
of Gross’ conjecture assuming F' = K, L(E/F,1) # 0 and p { |O%|. He also
indicated that for general F' his arguments give a proof of the p-primary part
of Gross’ conjecture if L(E/F,1) # 0 and

p1IOK] - [F : K] - disc(F/K).

The purpose of this paper is to eliminate these restrictions on the prime
ideal p of Ok and give a complete proof of Gross’ conjecture if L(E/F,1) #
0. The main result is Theorem 1.1 below. Our approach is based on the
principle of the equivariant Tamagawa number conjecture: zeta elements
generate equivariant determinants of certain étale cohomology groups. The
key ingredients of the proof are the two variable Iwasawa main conjecture
for K due to Johnson-Leung and Kings [44] (based on the Euler system
of elliptic units) and Kato’s reciprocity law [48, Prop. 15.9] (we use Kato’s
formulation but the case we need goes back to Wiles [86] and Coates/Wiles
[19]). Our arguments also give the L-equivariant Birch and Swinnerton-Dyer
conjecture for abelian varieties A/K with complex multiplication by a CM
field L if L(A/K,1) # 0 which we record in Theorem 1.2. In particular this
proves a conjecture of Buhler and Gross [3, Conj. 12.3].

We first introduce some notation. For archimedean places v of ' we have
the K-bilinear integration pairings

(1) H1\(E(F,),Q) x H'(E,Qp/r) ®p Fy = Fy;  (v,w) — /w

which jointly induce a Kpg-linear period isomorphism

(2) [1 #:(E(F,), Q)r = Homp(H(E, Qpp), F)g.

v]oo

For each v | oo the period lattice Hy(E(F},),Z) is an invertible Og-module.
If £/Op denotes the Néron model of E then H(E,Q¢ )0, ) is an invert-
ible Op-module and a projective Og-module of rank d = [F' : K], hence
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so is Homo, (H°(€,9Q¢/0,.), Or). 1t follows that there is an invertible Og-
submodule a C Kp so that

Q) Hi(E(F,),Z) = a- deto, Homo, (H*(£,Q¢/0,.), OF)

v|oo
under the determinant over K of the isomorphism (2). We may write
a=Q-a(Q)

for some period

Qe Kg=C
and fractional Og-ideal a(€2) C K. Denote the order ideal of a finite O-
module A by |A|x and the cardinality of a finite abelian group A by |A|. Let
®, be the component group of the Néron model of E/F at the prime v.

Theorem 1.1. Let E/F be an elliptic curve over a number field F with
CM by Ok for an imaginary quadratic field K and such that F(Eyors)/ K is
abelian. Let v : A}, /F* — C* be the Hecke character associated to E/F and
assume that L(1,1) # 0. Then E(F) and ILI(E/F) are finite Ok -modules,

L(y, 1)

KX
Q S

and
LG _ ) 11
o = K 1Dy 5

in the group of fractional OK—zdeals.

Remark 1. As pointed out by Gross, not only the ideal |E(F')| but also
the ideal |III(E/F)|x is generated by a rational integer |39, Prop. 3.7]. The
ideals |®,|x are equal to either (1), (2) or p with p? = (2) or p? = (3) [39,
Prop. 4.5].

Restricting scalars from Kr to R in the period isomorphism (2) and
taking determinants over Z of the natural lattices in both sides, we find that
there exists Q(E) € R* such that

Q) detzHy(E(F,), Z) = Q(E) - detz Homo, (H*(£, Q¢ 0, ), OF).
v]oo

Moreover, we have

(3) Q(E) - Z = Nk ga = at = QQ - a(Q)a(Q).
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Corollary 1 (BSD for E/F). Under the assumptions of Theorem 1.1 the
groups E(F) and ILI(E/F) are finite and

L(E/F1) |IH E/F

Proof. This follows from the identity |73, Thm. 7.42]

L(E/F,s) = L(¢, s)L(t, s) = L(¥, s) L(¢), 5)
the fact that Nk q(|A|x) = |A| for any finite Ox-module A, and (3). O

Any elliptic curve E/K with CM by Ok for which L(E/K,1) # 0 sat-
isfies the assumptions of Theorem 1.1 and Corollary 1. In this case the class
number of K is 1. More generally, for primes ¢ =3 mod 4 and K = Q(1/—¢q)
the class number of K is odd and elliptic curves F/H where F' = H is the
Hilbert class field have been much studied in, for example [37, 63, 58, 3.
One finds in these references many examples which satisfy the assumption
L(E/H,1) # 0 of Theorem 1.1 (see also Corollary 4).

Remark 2. For elements w € HO(E,Qg/@F) and v, € Hi(E(F,),Z) we may
define periods

Qy = Qyw,w) ;:/ w

in terms of which © and Q(F) can be expressed as follows. First, there are
fractional Ok-ideals a(y,) and a(w) such that

Hi(E(F,),Z) = a(v0) -

and
deto, HY(E, Qe/0,) = a(w) - deto, (OF - w).

The trace map Op LN Ok induces an isomorphism
Homo, (H"(€,9¢/0,), OF) = Homo, (H"(€, Qs/0,) @0, Dgjx, Ok)

where DF K is the inverse different, an invertible Op-module. Assume for

simplicity that D;}K is a free O-module and let Sy, ..., B4 be a basis. Then

if we define
Q = det (/ w®ﬁk>
Yo v,k
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we have

a(2) = aw) - [T a(m).

v|oo

Let e, be the indecomposable idempotents in

Dy} @0k Kr = Or @0, Ke = [[ F,

v]oo

and express the (i as a linear combination of the e,. Then the base change

matrix has determinant
-1
det(ﬁk,v)v,k = (\/ DF/K)

where D i € Ok generates the relative discriminant ideal of the extension
F/K (and depends on the choice of 85 by a factor in (O3)? so that the
Of-ideal generated by /D, is well defined). So we find

0= (/i) e ([ woe) = (o) I

Denoting by Dy g € Z the discriminant of a number field L we have

v’

Dol = NkjoDryk - |DK/Q|[F:K] = Dp/kDp/x - |DK/Q|[F:K]
and therefore

2-(8) = a(w)a@ - (\/NajeDi) - [[ 2% - ar)atr)
= a(w)a(w) - (

v|oo

D) TT /Pl - 200 - al)al,)

v]oo

_ % . (M)_l ] ol (E(F))

v]oo

where
L, == (a(w)a(w)) ! = [H(E,9¢/0,) : Op -w] € Z

and the Haar measure on E(F)) is induced by the volume form

2dx N dy =idz N\ dZ
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after identifying the cotangent space of E/F, with F, ~ C via the basis
w. This last form of the period term Q(FE) in the conjecture of Birch and
Swinnerton-Dyer for abelian varieties over number fields can be found, for
example, in |28, L3, Ex. 6.4] (see also [34, Lemma 18]) and continues to hold
without our assumption of the existence of a basis (3;. However, in the above
computation there will then be yet another corrective fractional Og-ideal
a(3;) contributing to a(Q).

Corollary 2 (BSD for E/F™T). Under the assumptions of Theorem 1.1 as-
sume in addition that E is defined over a subfield F* C F which is the fized

field of an involution of F inducing complex conjugation on K. Then the
groups E(F*) and IU(E/F™) are finite and

L(E/F*+,1) |II(E/F*
(Q(/E+) )_||E F/+ - H|‘I’+|

where @ is the component group of the Néron model of E/F™ at the prime v.

Proof. If F/F* is a quadratic extension of number fields and E/F* an
elliptic curve then there is an isogeny of abelian surfaces over F'*

A := Resh (E/F) ~ E x E,

where E, is the twist of F by the quadratic character € attached to F/F™T.
In our case E. is isogenous to E (see |56, Thm. 3]), hence an isogeny

A~ FEXxE.

We have isomorphisms III(E/F) ~ II(A/F*), E(F) ~ A(F*) and the BSD
formula for E/F is equivalent to the BSD formula for A/F* [56, Thm. 1].
By isogeny invariance of BSD we deduce the BSD formula for (E x E)/F*
(as well as finiteness of II((E x E)/F*) and (E x E)(F7)). Since all terms
in the BSD formula for (E x E)/F* are simply the squares of the corre-
sponding terms in the BSD formula for E/F* we deduce the BSD formula
for E/F* by taking square roots (see also [56, Cor. to Thm. 3| for this entire
argument). O

Any CM elliptic curve E/Q with L(E/Q, 1) # 0 satisfies the assumptions
of Corollary 2. In particular we obtain the following.

Corollary 3. The Birch and Swinnerton-Dyer conjecture is true for con-
gruent number elliptic curves

EM™ ngy? =2~z
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for a density one subset of positive square-free integers n = 1,2,3 mod 8.

Proof. By (9] we have L(E™ /Q,1) # 0 for a density one subset of positive
square-free integers n = 1,2,3 mod 8 (see also [§]). O

Remark 3. Let E/Q be a CM elliptic curve and {E(M}, the family of
its quadratic twists over Q. Then Corollary 2 in combination with [60,
Thm. 3] implies that the distribution of orders of Tate-Shafarevich groups
{III(E™ /Q)},, in the quadratic twist subfamily with analytic rank zero is
as in [60, Thm. 3.

The following application was suggested to us by B. Gross, to whom we
are grateful.

Corollary 4. Let p =7 mod 8 be a prime, K = Q(y/—p) and h the class
number of K. Let F = K(j) denote the Hilbert class field of K for

J=3((1+v=p)/2)

and F* = Q(j). Let A(p)/F* be the elliptic curve with CM by Ok over F
with Weierstrass equation

where m and n are unique real numbers such that
3 _ 2 . 2
m® =j, —n“p=j— 1728 and sgn(n) = ().
p

Then

; ON(C)\ 2
[II(A(p)/F*)| = <2h11 : H%Cl;hi::;mg(g() )E( ))

where Clg denotes the character group of Clg and t the modular function
as in [62, p. 562].

Proof. By 63| we have L(A(p)/F*,1) # 0. So the assertion follows from
Corollary 2 and 62, Thm. 8.2]. O

Remark 4. The elliptic curves A(p) were introduced by Gross in the late 70’s
[37, 38, 39, 40] which continue to be instrumental.
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Corollary 5. Let E/F’ be an elliptic curve as in either Corollary 1 or Corol-
lary 2 so that F' is either F or FT. Let X/F' be a principal homogeneous
space of E/F" and X — Spec(Op+) a proper reqular model of X. Then Br(X)
is finite and the special value conjecture [33, Conj. 5.12] for ((X,s) at s =1
holds true. More precisely, if the Zeta function ((X,s) is factored as in [3,

Eq. (4)]
Cr (8)Cr (s — 1)
C(H,s)

((X,8) =

then

ords—; ((H', s) = rankg Pic’(X)
and
# Br(X) - 8- Q(X) - R(X) #(I)v
(#(Pic®(X)sor/ Pic(Op)))2
where Pic®(X) is the kernel of the degree map on Pic(X), R(X) is the regu-
lator of the Arakelov intersection pairing on Pic®(X), Q(X) is the determi-

nant of the period isomorphism between the finitely generated abelian groups
HY(X(C),27i - 7)%* and H'(X,0x) and

Br(X) = ker <Br(X) - &P Br(XFé)> :

v real

C*(Hlv 1) =

v real

The integer § is the index of X, i.e. the g.c.d. of the degrees of all closed
points, ®, = E(F!)/E(F!)? is the group of components, and 6, is the index
of Xp: over F.

Proof. By [34, Thm. 6.1] the BSD formula for E/F’ is equivalent to the
special value conjecture [34, Eq. (6)] for ¢*(H!,1). Since E has genus 1 the
equality 4/ = §, of period and index for real v in [34, Eq. (6)] follows from
the proof of [34, Lemma 9. O

Remark 5. In the situation of Corollary 2 the extension F/Q is Galois
since Aut(F') contains the involution ¢ in addition to Gal(F/K) so that
# Aut(F) = [F : Q]. The number r; of real places of F* is the number of
fixed points of the action of o on the set of archimedean places of F'. If one
chooses 0 € Aut(F) as the restriction of complex conjugation with respect
to a particular complex embedding there is at least one fixed point, and the
total number of fixed points of ¢ coincides with the number of fixed points
of the conjugation action of Gal(K/Q) on Gal(F/K). Hence the signature
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(r1,72) of the field F* in Corollary 2 either satisfies 71 = 0 or 71 | 2r5. One
can construct examples of fields F* for any (r1,72) with r1 | 2rg: choose

Gal(F/K) ~Z/r\Z x Z)((r1 + 2r2) /1) Z

with Gal(K/Q) acting trivially on the first factor and by —1 on the second.
Here 7“/1 =y if r1 is odd and r'l =r1/2 if r1 is even. To construct examples
of Corollaries 2 and 5 one may take E/F with j(F) € Q but one also needs
non-vanishing results for L(1,1).

Theorem 1.2. Let A/K be a CM abelian variety with Endg(A) ~ Of, for
some CM field L with [L : Q] = 2dim(A). Let ¢ be its Serre-Tate character

and assume

L(5,1) £ 0.
Let Q € Ly and a(2) be the period and fractional Or-ideal defined in Def. 1
in Section 2. Then III(A/K) and A(K) are finite, L(% e L and

Lo MG,
= d, a(2
0 @Ay, el

in the group of fractional ideals of L.

Apart from being a special case of the equivariant Tamagawa number
conjecture [5] this L-equivariant Birch and Swinnerton-Dyer conjecture was
also formulated by Buhler and Gross |3, Conj. 12.3] in the special case where
A = Resy /g E for E/H a CM elliptic curve over the Hilbert class field and
[H : K] odd. We will explicate the connection to |3, Conj. 12.3] in Prop. 4.2
in Section 4.4.

Corollary 6 (BSD for A/K). Under the assumptions of Thm. 1.2 we have

L(A/K,l) |III A/K
0(A) A Ll

where the period Q(A) is defined for example in [34, Lemma 18].

Proof. This follows by taking the norm from L to Q of the identity in
Thm. 1.2. O

Corollary 7 (BSD for A/Q). In the situation of Thm. 1.2 assume in addi-
tion that A is defined over Q. Then we have

LA/QY A/ 1r s
aan ~ 1A g 112
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where the period Q(A™) is the period of [34, Lemma 18] for A/Q.
Proof. This follows as in the proof of Cor. 2. O

Corollary 8. Let f be an elliptic newform of weight 2, level N and arbi-
trary character, and let Ay be the isogeny factor of the Jacobian of X1(N)
associated to f by Eichler-Shimura. If f has CM and L(Ay,1) # 0 then the
Birch and Swinnerton-Dyer conjecture holds for Ay.

Proof. Let K be the CM field of f and Ly := Endg(A¢)qg the field generated
by the Hecke eigenvalues of f [61, Cor. 4.2]. Then the base change Ay g of
Ay to K is either simple with Endg (Af x)g ~ L := LoK or A g ~ Ay X As
with Endg (A;)g ~ L := Lg. By isogeny invariance of BSD we can assume
that Ay x has multiplications by the maximal order in either case. Then
BSD holds for Ay i by Cor. 6 and follows for A; as in Cor. 2. O

Remarks on the proof. The proof of Theorem 1.1 is naturally situated in the
framework of the equivariant Tamagawa number conjecture. Let p be a prime
ideal of Ok and p the rational prime below. The proof begins with a reduction
of Theorem 1.1 to the existence of an equivariant zeta element for E/F, i.e.
a basis z of the Og-equivariant determinant of the p-adic étale cohomology
of E/F which also encodes the L-value L(E/F,1) (Prop. 2.3). By a descent
of the Iwasawa main conjecture for K [44], such a basis z is constructed via
elliptic units (Subsections 4.3 and 4.5) whose link to L(FE/F, 1) is given by an
explicit reciprocity law (Subsection 3.4). The main conjecture [44] expresses
the determinant of Iwasawa cohomology of K in terms of elliptic units as
pioneered by Kato [46, 47|. Our descent of the main conjecture is formulated
in terms of perfect complexes and is uniform for any prime p. It first leads
to the finiteness of E(F') and III(E/F)y~ (offering another proof of results
of [18, 66]) and then to z.

The above approach to the p-primary part of Gross’ conjecture and the
BSD formula differs from that of Rubin [68]. The calculus of determinants
of perfect complexes does not appear in [68]. The descent [68, §11] involves
classical Iwasawa modules and is more involved for primes p non-split in K
[68, pp. 61-66].

Remarks on the related work. The CM elliptic curve Xy(49) has analytic
rank 0 and it was the first elliptic curve for which the full BSD conjecture
was proved [37, 66, §22]. (See also the discussion in [40, p. 17].) Since Rubin’s
fundamental work [68], the p-primary part of the BSD formula for CM elliptic
curves with analytic rank 0 and primes p such that

p||OK] - [F : K] - disc(F/K)
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has been much studied, especially the case of CM elliptic curves over Q and
the prime p = 2. This includes the extensive work of Coates |20, 21, 24, 26,
17, 25, 23], Kezuka [49, 50, 53, 51, 52|, Tian [55, 82, 83, 12, 13, 84], Tian-
Yuan-Zhang (85|, Zhao [89, 90, 91, 92|, as well as [69, 36, 59, 32, 10, 16,
43, 87, 64, 11, 74]. The prior work was the original impetus for our study.
Note that Coates-Kezuka-Li-Tian [23| prove the 2-part of the BSD formula
for CM elliptic curves with ordinary reduction at 2. Some of the prior work
concerns specific families of CM curves, for instance Tian [83] and Tian-
Yuan-Zhang [85] prove seminal results for congruent number elliptic curves
(which led to Smith’s work [77, 78, 79, 80]). The proofs employ various tools
such as the Euler system of elliptic units, explicit Waldspurger formula and
congruences between modular forms. Yet, prior to Corollary 2, the p-part
of the BSD formula for CM elliptic curves over Q with analytic rank 0 and
p||Oj| remained open in general.

For some complementary results towards the BSD conjecture over the
last decade the reader may refer to [76, 75, 45, 88, 7, 6].

Our approach to the BSD formula seems amenable to other situations. In
future work we plan to consider the case of CM elliptic curves with analytic
rank 1.

2. Preliminary reductions

In this section we reduce the proof of Thm. 1.1, resp. Thm. 1.2, to the
existence of a basis of the determinant of global Galois cohomology of the
Tate module with certain properties, see Prop. 2.3, resp. Prop. 2.2. Such
a basis will then be provided by the combination of Kato’s reciprocity law
with the Iwasawa main conjecture in the next section. We present the initial
reduction step in the slightly more general context of an abelian variety
which is not necessarily CM. This initial reduction step is in principle well
known [47, Ch. I. 2.3] and has an analogue for any motive over a number
field (see for example [4, p. 85/86]).

Let A/F be an abelian variety over a number field F' with dual abelian
variety ‘A/F and denote by A/OpF, resp. ‘A/Op, the Néron model of A,
resp. ‘A. Let L be a number field so that there is given an embedding

Or — EndF(A)

This induces an embedding Oy — Endp(*A) by functoriality. We fix a prime
number p and define

Ly=LagQ~[[Ly Or,=0L0:2Z,~]]0u,
plp plp
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and
T :=Ty('A) ~ H' (Ap,Z,(1)); V :=V,(*A) := T,(*A) @z, Q,

where T,,(*A) is the p-adic Tate module of ‘A. Let S be a finite set of places
of F' containing all archimedean places, all places above p and all places of
bad reduction. Then we may view T" as a smooth sheaf of O -modules on
Spec(OF,s)et and we denote by RI'(Opg,T) its étale cohomology. For each
prime v | p of F let

HY(F,, V) =25 DSR(V) =~ HY(AF,,Qa, /r,)

be the dual exponential map of the Gal(F, /F,) -representation V [47, Ch. II,
Thm. 1.4.1]. For any prime v of F' denote by

P,('A/F,t) = dety, (1 — Fr; L t|H (A5, Q)) € Ot

the Euler factor of the L-equivariant Hasse-Weil L-function of ‘A/F (which is
independent of the auxiliary prime v 1 [) and let ®,, be the component group
of A at v. Denote by |[M|z, the part of the order ideal of a finite Oz-module
M supported in {p | p}.

Proposition 2.1. With the notation just introduced the following hold.
a) If A(F') and II(A/F)p~ are finite then the composite map

HY(Ops,V) = [[H' (Fo, V) 22225 T HO(Ar,, O, 1)

vlp v[p

is an isomorphism, and H'(Opg,V) = 0 for i # 1. We obtain an
duced isomorphism

v:det ' RT(Ops, V) = detr, H' (Ors, V) = detr, H* (A, Q4 p)20Q,.

b) Assume in addition that F' has no real embedding or that p > 2. Then
RI'(OFs,T) is a perfect complex of Or, -modules and

. (detap RF(OF,S,T))

[II(A/F)|z,

_ t y
" AP, 'A(F)] L Jl1@olz, - [] P.CA/F.Nov7Y -1,
' P veS
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where Ty : =T ®o, Or_,

T := deto, (HO(A, Qa/0,) 0 DE/I@)

and D7t

Fio the inverse different of the extension F/Q.

Proof. Consider the following diagram of complexes of Op -modules with
exact rows and columns

RFC(OFﬁ,T) —_— RFf(F,T) —_— @RPf(FU,T)
veES

| l J/@vav

(4) FBle(Ops,T) —— RI(Ops,T) —— @ RU(F,T)

veS
s |
@ R p(Fy, T) —— @ RU4(F, T).
veS vES

Here, following |2] we define

AF)M-1] vtoo

RD(F,,T) =
£(F T) {TSlRF(FU,T) v 0o

where for any abelian group M we denote by

(5) M" = lim M /p"

its (underived) p-adic completion. Since H°(F,,T) = 0 for v { oo there is a
map of complexes

ay AR =1 &% HY(F,, T)[-1] = RI(F,, T)
where &, is the inverse limit of the connecting homomorphisms
"A(F,)/p” — H'(F,, Ap)

induced by the Kummer sequence. The complex RI'/;(F,,T) is defined as
the mapping cone of «, and the complex RI'y(F,T) as the mapping fibre

of 5.
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Lemma 1. We have

tA(F)/\ i1
t A A o
H}(F7 T) ~ HI(*A/F) @/\HOIDZP(A(F) L) Z _9
Homg, (A(F)},., Qp/Zy) i—3
" i#1,2,3

Proof. First note that RT',¢(F,,T') is concentrated in degrees 1,2 for v { oo
and there is an isomorphism

H'(Ops,T)~ @ H'(F,,T) ~ @ Hj(F,,T)

v real v real

for i« > 3 by [57, Prop. 11.2.9, Thm. 1.4.10]. It follows that RI'¢(F,T) is
concentrated in degrees 0 < ¢ < 3. The long exact sequence associated to
the middle column in (4) gives

H)}(F,T) = H°(Ops,T) =0

and

H}(F,T):ker( (Ops,T —>EB )

veSs
Recall that the classical Selmer group Sel(F,'A,) can be defined as

HY( Fv, A,
Sel(F, ‘A, ) = ker (Hl(OFS, ) — @ )>

vES

since the image of 'A(F,)/p” in H'(F,,'A,~) coincides with the unramified
classes for v ¢ S. Taking the inverse limit over v in the short exact sequence

0 — 'A(F)/p” — Sel(F,'A,r) — ('A/F) — 0
and using finiteness of II(*A/F)y= we find
A(F)" =~ lim Sel(F, 'Ay) ~ H}(F,T).

The long exact sequence associated to the top row in (4) gives an exact
sequence

P Hj(F,, T) —» H(Ops,T) — H} (F,T) = 0
veS
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and an isomorphism
H}(Ops,T) ~ H}(F,T).
Using Artin-Verdier duality [57, Cor. I1.3.3] and the fact that our RI'. agrees

with that of loc. cit. (formed with Tate cohomology at the infinite places) in
degrees > 2 we find an exact sequence

Y(Fy, Ap)
2 1 vy
0— H}(F,T)" — H'(Ops, Ay —>€BA 5 0./Z)

and an isomorphism
H}(F,T)" ~ H(Ops, Ap~).
Here we use the definition
M* := Homgz, (M,Q,/Zy),
the isomorphism of 71 (Spec(OF, g))-modules
(6) T*(1) >~ Ap

and the fact that the orthogonal complement of !A(F,)" under the perfect
pairing

H'(Fy, T) x H'(Fy, Ap) = H*(Fo, Qp/Zy(1)) = Qp/Zy
is A(F,)®Qyp/Zy |57, Cor. 1.3.4, Rem. 1.3.5]. Hence we obtain an isomorphism
H}(F,T)* ~ Sel(F, Ap~).
Dualizing again we find an exact sequence
0= II(A/F)}w — HF(F,T) = (A(F)" ®z, Qp/Zp)* — 0

and an isomorphism

H}(F,T) ~ (A(F)},)*.

tor

By [57, Thm. 1.6.13] if IIT(A/F)p~ is finite there is a non-degenerate pairing

LI('A/F)" x T(A/F)y — Qy/Z,
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and for any Z,-module M there is an isomorphism

(7) HOHIZP (M ®Zp QP/ZP7 QP/ZP)
~Homg, (M, Homgz,, (Qp/Zp, Qp/Zy))
~Homg, (M, Zy).

Hence we find an exact sequence
0 — II(*A/F)" — H}(F,T) — Homg, (A(F)",Z,) — 0

concluding the proof of Lemma 1. O

Lemma 2. We have

Homgz, (A(F,)", Zy) i=1luv|p

H;f(FU,T) _ H(?mZp(A(Fv)é\ome/Zp) Z = 271}*00
H'(F,,T) i>3,v |00
0 else.

In particular, for v { oo there is a quasi-isomorphism of compleves of O, -
modules

(8) RT¢(F,,T)[1] ~ RHomg, (A(F,)", Zyp).
Proof. The Kummer sequence
0= "A(F)" = H'(F,,T) — lim H'(F,,"A)p» — 0

together with duality for abelian varieties over local fields [57, Cor. 1.3.4]
and (7)

lim H' (Fy, 'A)ye (hg A(F,) /pV> ~ Homg, (A(F,)", Z,)

give the Lemma for i« = 1. Note that these groups vanish unless v | p. The
statement for ¢ = 2 follows from (6) and Tate local duality [57, Cor. 1.2.3]

H}((F,,T) = H*(F,, T) =~ H(Fy, Ap)* = (A(Fy)f0,) " -

tor

The statement for 7 > 3 is just the definition of RT',¢(F,,T'). Note here that
H(F,,T)=0fori=2and v | co and for i > 3 and v { co. The isomorphism
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(8) can be proved either via a version of Tate duality in the derived category,
or by direct inspection since Homg, (A(F,)f,,., Qp/Zy) ~ Exty, (A(F,)", Zy),
and since any bounded complex of Op -modules is quasi-isomorphic to the
sum of its cohomology groups (placed in their respective degrees). O

For v | p the dual exponential map
(9) H/((Fy, Vp('A)) == H'(Ar,, Q4,,/r,)
is an isomorphism since its dual [47, Ch. II, Thm. 1.4.1]
Lie(Ar,) — H}(F,, Vp(A)) = A(F,)" ®z, Q,

is an isomorphism. This is because the inverse log, of exp, (the formal group
logarithm) induces an isomorphism

(10) log, : A(m?) = mI'Lie(Ao,, )
for large enough n and
(myLie(Ao,,)) ®z, Qp = Lie(Ar,); A(m}) @z, Qp = A(F,)" ®z, Q.

Here m, is the maximal ideal of Op, and A is the formal completion of
Ao, at the identity section. If now A(F) and III(A/F),~ are both finite
then so are ‘A(F) and II(*A/F)y~ and it follows from Lemmas 1 and 2
that

H}! (F,,V)[-1
RT4(F,V) = 0; Rr/f(FmV):{O/f( )[-1] vllp
else.

The middle vertical exact triangle in (4) then implies part a) of Prop. 2.1.

Lemma 3. For v | p let v, be the isomorphism
Ly : det 'RT 4 (Fy, V) = dety H) ¢ (F,, V) = det, H'(AF,, Qa, /F,)
induced by the dual exponential map (9). For v { poo let
v s detRT5(Fy, V) = Ly

be the isomorphism arising from acyclicity of Rl“/f(Fv, V). Then



374 Ashay Burungale and Matthias Flach

(11) Ly (det(;ipRP/f(Fv,T)) = ['®,|r, - P,("A/F,Nv™') - T,
where

0 -1
,rv — {detOLp (H (AOFU ) Q'AOF,,, /OF”U) ®OF,U DFU/QP) v ‘ p
OLp vip

and D}_,vl/Qp is the inverse different of the extension Fy,/Qy.

Proof. Let A°/Op be the open sub-group scheme of A/Op so that A? is the
connected component of the identity of A, for each residue field k, of Op.
We have a filtration of the group A(F,) = A(OF,) given by exact sequences
of Or-modules

0— A%Op) = A(F,) = &, = 0
and

0— A(my,) = A°(Op,) — A%(ky) — 0.

Since all these groups have bounded p-primary torsion, the p-adic completion
functor (5) is exact and we obtain exact sequences of O, -modules

(12) 0— A%Op)" = A(F)N = @) =0
and
(13) 0— A(my,)" = A0 )" = A%k,)" — 0.

Lemma 4. For any finite place v of F' and any prime p there is an identity
of fractional Or,, -ideals

0 A
AL, g N,

(1) TielAn ) L,

Proof. The smooth, connected commutative group scheme Agu over the per-
fect field k, has a filtration, preserved by any endomorphism,

(15) 0U—A) -B—0

where U is unipotent (and smooth and connected) and B is semiabelian
(combine Chevalley’s theorem [27] with [41, XVII Thm. 7.2.1]). We claim
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that

U(k50) L,
(o) TDie(@) s, ~ -

The group scheme U has a filtration with successive quotients G, [41, XVII,
Prop. 4.1.1]. The Lie algebra functor being exact for smooth group schemes,
there is a corresponding filtration of Lie(U). Since HY(Gy,,U’) = 0 for
any connected group scheme U’/k, there is also a corresponding filtration
of U(ky) with successive quotients G,(k,) = ky. So for v 1 p we have
U(ky)" = Lie(U)" = 0 and (16) holds. Since p annihilates G, for v | p
some power p* annihilates U, and the action of Op on U factors through
the finite semilocal ring Or,/p”. The indecomposable idempotents eq, ..., e,
of Or/p” act by algebraic endomorphisms on U, so have closed image e;U
and

U~elUx---xeU.

To prove (16) it suffices to show

length, o, /v (€iU(ky)) = length, o, /,» (Lie(e;U))

for ¢ = 1,...,r. This follows from the fact that e;U is itself unipotent,
smooth, connected, hence has a filtration with subquotients G, and G, (k) =~
Ky =~ Lie(Gy).

By similar reasoning the filtration (15) induces corresponding filtrations
on Lie(A? ) ~ Lie(Ay,) and on A%(k,). It therefore suffices to show

‘B(”v)A‘LP . t oL
(17) 4‘ Lie(B)"1, = P,("A/F,Nv™").

For v t p we have

Py("A/F,Nv™') = dety, (1 — Fr, ' -No [ H' ('Ap, Q,)")
— detr, (1 - Fry ! [HY (A, Qy(1)")
:detLpu—Fr*llV( )")
=detp, (1 —Fr;! |Vp(B))

p

I4

where the last identity is [42, IX, Prop. 2.2.5]. Moreover Lie(B)" = 0 and
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Fr, acts invertibly on T),(B). The exact sequence' of Oy, -modules

Fr, —1

0 — T,(B) T,(B) = B(ky,)" =0

then shows that
|B(#v)" |2, = detr, (Fr, —1[V,(B)) ~oy detr, (1 Fr, ' [V,(B))

verifying (17).
For v | p let D(B) be the covariant Dieudonné module of the p-divisible

group B[p*°] associated to B/k, [15, Thm. 4.33|. This is a free W (£, )-module
so that

P,(*A/F,Nv™1)
=dety, gw(s,) (1 — Fr; " [D(B)g)
=detr, g (x,)(Fro —1|D(B)g) - detr, gw (s,) (Fro [D(B)g) ™
ZdetLP@)W(m)(V[K“:FP] —1|D(B)q) - detL,)@W(m)(V[K”:FP]’D(B)Q)_l

where V' denotes the Verschicbung on D(B) and the last identity is [15,
Rem. 10.25].

Lemma 5. There is an evact sequence of Or, @ W (k,)-modules

0 — D(B) L D(B) — Blry) @z, W(rs) — 0

Tt arises as follows. The snake lemma, applied to

0 — B(k,) — B(Fy) —==% B(%,) —— 0

(18) ip” lp" lp"

0 — B(k,) —— B(%,) —==% B(®,) —— 0

gives an exact sequence of finite O, -modules

Fr, —1
_—

0= B(ro)[p"] = B(Fo)[p"] B(F)[p"] = B(ko)/p" = 0

to which one applies the projective limit over n (an exact functor in this case).
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Proof. The kernel of the isogeny B[p™] molp [p>°] of p-divisible groups

over K, is the constant finite flat group scheme over k., associated to the fi-
nite abelian p-group B(ky)[p™] =~ B(ky)". The covariant Dieudonné module
D(B(kv)") =~ B(ky)" @z, W(ky) of B(k,)" sits in an exact sequence

0 — B(ky)" @z, W(ky) = D(B) © Q,/Z, 2= D(B) © Q,/Z, — 0

by [15, Prop. 4.53 (ii)]. Multiplication by p™ gives a diagram analogous to
(18) and one proceeds as in the case v { p. The identity Fr, = VIl ig
again [15, Rem. 10.25]. O

Lemma 5 shows that

det, gy (s,) (VI — 1| D(B)q)
:‘B("iv)/\ Qz, W(RU)|0LP®W(I€U) = ’B(K/’U)/\’OLP‘

Similarly, the exact sequence of O, -modules [15, Thm. 4.33 (3)]

0— D(B) % D(B) — Lie(B) — 0

shows
det 1, ow () (VI 1| D(B)g) ~(0,, ew ()~ detr, (VID(B)g) = |Lie(B)|o,,

proving (17). O

For a perfect complex of Z,-modules put
M' := RHomg, (M, Z,).
If M is a finite O, -module we have
deto, (M') = deto, (M*[-1]) = [M*|y, - Of, C dety, (0) = L.
For v | p the isomorphism (10) together with the isomorphisms
A(m}) JA(mi) = miLie(Ao,, ) /myt Lie(Ao,, )
fori=1,...,n— 1 give an equality

(19) 1 (detoLP (/l(mv)))
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= 1, (deto,, (m,Lie(4o,, )
= 1, (deto,, (Lie(Ao,,))) - [Lie(Aoy,) B0y, olz!
—0, (detoLp (Lie(Ao,, ))) | Lie(Ay, )|

14
(:) Ly <det(9Lp (Lie(AOF,U))> . ‘AO(,‘%)/\’Z: . Pv(tA/F7 Nvfl).
For vt p we have A(m,)" = 0. Hence

o (detg! R p(F,,T))

D, (deto,, (AF)™))

B, (deto,, (A°0r)™) - 2071,

]-3 N * *
=y (deto,, (A(m) M) 1A (m) - [957]1,

19) [1u (deto,, (Lie(Aoy,)1)) - Po(CA/F, N0 - [1@ulz, v [p

- {Pv(tA/F, No=1)- 1@, [, otp.
Here we have used the perfect perfect pairing of finite groups [42, IX, 1.3.1]
(20) o, x &, — Q/Z.
The proof of Lemma 3 is now completed by the following isomorphisms

Lie(Ao,, ) ~Homg, (Lie(Ao,.) ®o,. OF,,Zp)
~Homp,, (Lie(Ao,, ), Homz, (OF,,Z;,))

~Homoy,, (Lie(Aoy, ), OF,) ®or, Dp g,

ZHO(AOFvungFU /OFU) ®OFU Dg'vl/(@p' -

We complete the proof of part b) of Prop. 2.1. The middle vertical exact
triangle in (4) and Lemmas 1 and 3 give

: (detap RI(Ors, T))

= <detoi RT§(F,T) @ (X) dety,! RF/f(Fv,T)>
veES
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S LT

veES

using the isomorphism

H°(A,Q 4/0,) ®0, Dyjg ®2 Ly [[H (A Q40,) 0. Dyq ®0, OF,
v|p

= H HO( AOF/,, ’ QAOFU /OF.U) ®OF DFl/Q
vlp

Since II(*A/F) and III(A/F), resp. ‘@, and ®,, are dual finite abelian

groups with dual Op-action we have in fact
[UI('A/F)|r, = [II(A/F)|L,;  ["®ulz, = |Pulz,

concluding the proof of b). O

For an abelian variety A/F with multiplications by Or, — Endr(A) and
each place v | oo of F' consider the Q-bilinear L-balanced integration pairing

tre, /R

H(A(F,),Q) x HO(A,QA/F) QF Fy > F, —=R;  (v,w) Htro/R/w
Y

which induces Lg-linear isomorphisms
per, : H'(A,Q4/r) ®p F, = Homg(H1(A(F,),Q),R) = H'(A(F,),R).

These isomorphisms combine to give a Lg-linear (Deligne) period isomor-
phism

(21) pery : H(A, Qq p)r ~ [[ H'(A(F,), R).

v|oo

Definition 1. For the invertible O -module
T := deto, (HO(A,QA/OF) ROp DI:/lQ)

introduced in Prop. 2.1 choose a period @ € Ly and a fractional Or-ideal
a(2) C L so that

(22) det, (per4)(Y) = Q- a(Q) - deto, | [[ H'(A(F), Z)

v]oo
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under the determinant of the period isomorphism (21).

Let A/F be a CM abelian variety together with an isomorphism
w:Op ~FEndp(A)

for a CM field L with [L : Q] = 2dim(A). To the CM abelian variety A/F
is attached a Serre-Tate character 71, Thm. 10]

@: A5 = LX, olpe=F* 5L L%

from which a Hecke character

)

(23) op A% X =), P T o

is deduced for each 7 € Hom(L, C). Here po is the projection to F' and ¢ is

an algebraic homomorphism determined by the CM-type of A/F. We have
the Lc-valued L-function

L(p,s) = (L(pr,9), € [[ € = Lc

which takes values in Li for real s. If
/L, : OL ~ EndF(tA)

denotes the isomorphism functorially induced by p then a polarization p :
A — 'A induces an isomorphism

(A, pop) = (A, 1)
of abelian varieties with CM by L (up to isogeny). Here p denotes the Rosati

involution associated to p. Since p induces complex conjugation on L the
Serre-Tate character of (*A, ') is .

Proposition 2.2. Let A/F be a CM abelian variety so that
OL 1) EndF(A)
for a CM field L with [L : Q] = 2dim(A) and assume

L(,1) # 0.
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Let p be any prime number, T = T,(*A), V =T @z, Qp and S a finite set
of places of F' containing {v | poo} and all places of bad reduction. Assume
that HI(A/F)pe and A(F) are finite and let

v: det ' RU(OFs, V) ~ detr, H' (Ops, V) = detr,, H(A,Qa/r) @0 Q,
be the isomorphism of Prop. 2.1. Assume there exists
z € detLpﬂl((’)F,s, V)

and a fractional Op-ideal a(z) prime to p with the following properties
a) O, -z = detap RT'(Ops,T)
b) 1(z) € det, H(A, QA/F) C dety, (HO(A, QA/F) ®qQ Qp)
c) O -detr,(pery)(u(z)) = Ls(p,1) - a(z) - detp, < I Hl(A(Fv),Z)>

v]oo

Then 221 ¢ 1% and

L(g,1) _ |[M(A/F)|z, |
Q JAF) L, AP, [T1®olz, -a(®)

v

in the group of fractional Or-ideals supported in {p | p}.
Proof. First note that
P,(*A/F,t) = dety, (1 — Frt t|H (*Az, Q)!)
= dety, (1 — Fry #|Vi("4)y,)
=1—wp(v)-t

and the L-equivariant L-function of ‘A/F agrees with L(g, s). Also note that
F is totally imaginary (since the action of O, is defined over F') and hence
Prop. 2.1 applies for all primes p. By Prop. 2.1 and a) we have

Or, - 1(z) =1 (det(_o1 RF(OFS,T))
_ ’H—[(A/F |L t 1
= A, Ll LAA/ENTD T,
_ |[HI(A/F)|z, o)
- A 2, [A(F)] 1:[@ oL, - H(l— NU>.TP

vES
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and by the definition (22) of 2 and a(2) we have

_|H(A/F)L, e(v)
O, - detus (pern) ((3)) = gy oy, - LI ke 11 (1 L )
Q- a(Q) - deto, | [[ H'(A(F),Z)
v]oo
Comparing this identity with c¢) we find
.y |HI(A/F) !L o(v)
L2 = iy, ey, Ll Q( i N”>'Q'a(m

up to a fractional Op-ideal a(z) prime to p. This is the statement of Propo-
sition 2.2. O

Let now E/F be an elliptic curve over a number field F' with complex
multiplication by Ok for an imaginary quadratic field K. The period Q € Ky
and the fractional ideal a(2) C K defined in the introduction satisfy

@ H|(E =Q-a(Q) - deto, Homo, (H(£,9¢/0,.), OF)

v]oo

under the determinant over Ky of the isomorphism

1 Hi(E(F,),Q)r = Homp(H*(E, Qp/r), F)r
v]oo
which is the R-dual of pery defined in (21). Since
Homy(HY(E(F,),7),Z) ~H\(E(F,),Z)
Homz(HY(£, %/0,) ®0, Dfly.Z) ~ Homo, (H'(€, %%)0,). Or)

the quantities  and a(£2) defined in the introduction coincide with the period
and ideal defined in Def. 1.

Proposition 2.3. Let E/F be an elliptic curve with CM by Ok and asso-
ciated Serre-Tate character ¢ : AY, — K*. Assume that

L(,1) # 0.
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Let p be any prime number, T = T,(*E), V =T ®z, Q, and S a finite set
of places of F' containing {v | poo} and all places of bad reduction. Assume
that III(E/F)p~ and E(F) are finite and let

L det[_(iRF(OEs', V) ~ dethHl(OEs', V) ~ deth(HO(E, QE/F) (20) Qp)
be the isomorphism of Prop. 2.1. Assume there exists
z € detg, H'(Ops,V)

and a fractional Ok -ideal a(z) prime to p with the following properties
a) Ok, -z = det(_gi RI'(Opg,T)
b) 1(2) € dety HO(E, Q) C dete, (H(E, Qp/r) @6 Qp)
¢) Ok - detig, (per) (1(2)) = Ls(th,1) - a(2) - deto, ([T H(E(F,),Z))

v|oo

Then ( L) ¢ K% qnd

L(zé,n _ \IH E/F %, H“I’ . -

in the group of fractional Ok -ideals supported in {p | p}.

Proof. This is the special case of Prop. 2.2 where A/F = E/F is an elliptic
curve and L = K, noting that

|E(F)|i - ["E(F)|x = |E(F)|k - |[E(F)|g = |E(F)|. O
3. Kato’s reciprocity law
In this section we recall some definitions and results of [48, §15] for which we
need to introduce quite a bit of notation. Let K be an imaginary quadratic
field and fix an embedding K C C. We identify K = Q with the algebraic
closure of K in C.
3.1. Iwasawa modules

For any ideal  of O we denote by

K({f)C K
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the ray class field of conductor f. For any prime number p and ideal § of O
we set

K@) =JEW" ) Gper = Gal(K (p™))/K).
Then ’
(24) Gpes 2T x Ay T'>Zp xZy
where A := G2, is a finite abelian group. Put
A = Z,[[Gal(K (577)/K)]] = Z,[Al[[Ti, To)),

Consider the complex of A-modules
. 1
RLpe<(Zp(1)) := lim RT Ok [517 Zp(1))
K/

where K’ runs through the finite extensions of K contained in K (pf).
According to [48, 15.6] the cohomology groups of H;xf(Zp(l)) are finitely
generated A-modules and vanish for i # 1, 2.

3.2. Elliptic units
In [48, 15.5] there is defined an elliptic unit
(25) azi € Ok [1/§]"

for ideals a,f such that O — (Og/f)* is injective and (a,6f) = 1. If §
is not a power of a prime ideal then z2; € Ofxf(f)' The units 425 are norm
compatible; in particular for any prime number p, any n > 1 and any nonzero
ideal f (such that O — (O /p™f)* is injective) one has

Nicrj)/w s (azpm i) = azpe-

Denoting by (a, F/K) € Gal(F/K) the Artin symbol, we have in particular
an element

oq = (a, K(p™°f)/K) € Gpees C A
Define

2o 1= (Na — 00) " (azpf)n>1
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€ (l%n OK/[%]X ®z Zp> ®n Q(A) = Hyw(Zy(1)) @4 Q(A)

which is independent of a.
3.3. Hecke characters

Let

p: Al — L~
be an algebraic Hecke character of K with values in the number field L and
of infinity type (—1,0). Following [48, 15.8] we recall the definition of the
motivic structure associated to . This consists of rank one L-vector spaces

VL(p) and S(¢p), a continuous Ly-linear Gal(Q/K )-representation Vi, (¢) for
each place p | p of L together with a (Deligne) period isomorphism

per, : S(p) ®r C = Vi(p) @, C
for each embedding 7 : L — C and comparison isomorphisms

(26) VL () = Vi(p) @1 Lp

as well as p-adic (Deligne) period isomorphisms
(27) Dr(Kp. Vi, (9)) = S(¢) @1 Ly

for each p | p.

Let f be a multiple of the conductor of ¢ such that O — (O /f)* is
injective, and let E' = (E, «) be the canonical CM-pair over K (f) in the sense
of [48, (15.3.1)], i.e. E/K(f) is an elliptic curve with CM by Ok and o €
E(K(f)) is a torsion point with annihilator f. As explained in [48, (15.3.3)] if
a is an ideal prime to f with Artin symbol o = (a, K(f)/K) € Gal(K(f)/K)
there is a canonical isomorphism

Na : (E/E[a],« mod Ela]) ~ (E),o(a)).

We denote by n; the map induced on cohomology by the composite isogeny
E — E/E[a] 2% E@). We then define

Vi(y) = H'(B(C),Q) ®x L
S(p) = (H(E, Q) @k L)FHED/E)
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where 0 € Gal(K (f)/K) acts as the composite

H(E. Qp/x(p) © L 75 H(B®), Qpo ) © L
% HO(E,QE/K(f)) % L.

For each place p | p of L we define a Gal(Q/K)-representation

VLp((p) = Helt(E ®K(f) @7 Qp) ®Kp Lp

where o € Gal(Q/K) acts via
Vi, (¢) = HY(E @k Q,Qp) @ Ly & HY(E @k Q,Qp) ® Ly
Pl T, Vi, ().

Here a an ideal such that o[k = (a, K(f)/K). The isomorphism (27) is
induced by the p-adic period isomorphism for E/K(f) [48, (15.8.1)] and the
isomorphism per, is induced by the period isomorphism (21) for E/K ().
Remark 6. In the construction of the motivic structure the role of a torsion
point o € E(K (f)) is to fix the isomorphism 74 : E/E[a] ~ E). It induces
the isogeny E — E/E[a] 2% E(@) which is the only way 7, enters into the
construction. Note that the isogeny E — E(=) is uniquely determined.

3.4. The reciprocity law

We state Kato’s reciprocity law and then deduce its consequences for an
elliptic curve E/F as in Thm. 1.1.

Proposition 3.1. Let ¢ be an algebraic Hecke character of K with values in
the number field L and of infinity type (—1,0). For an embedding 7 : L — C
let

or A /KX — C~
be the Hecke character deduced from ¢ as in (23). Let p | p be any prime

ideal of Or, f a multiple of the conductor of ¢ and v € Vp(¢). Then the
image zpeos(Y) of zpees under

Hpei(Z,

—~

1)) 5 Hpe(Zp(1)) @ Vi, () = Hpooi (VE, (0)(1)

exp*

—H'(Ok[-], Vi, () (1)) = Dap(Kp, VL, (9)) = S(v) ®r Ly

"=
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is an element of S(p). Moreover

perT<zP°°f(7)/) = Lpf(@ﬂ'a 1) -
Proof. This is the special case of [48, Prop. 15.9] where ¢ has infinity type
(—1,0) and where K’ = K. O

Remark 7. Prop. 3.1 includes Deligne’s period conjecture [29] for the alge-
braic Hecke character ¢. If b is an L-basis of S(¢) and

0= Q(b,7) = () € L
is such per_(b) = Q. - vy for all 7 then

Lps(#,1)

LC L.
q Ch=ir

In particular, if Ly;(@7,,1) # 0 for one 79 then

Lpf(([_)’r, 1) 7& 0

for all 7 € Hom(L, C). Deligne’s period conjecture in the situation of Prop. 3.1
was proven in [35] and is known for all algebraic Hecke characters of all num-
ber fields (see [70, Ch. II, Thm. 2.1] and references therein. The proof for
non-CM base fields was recently completed in [54]).

Recall the following proposition from [35, Thm. 4.1]
Proposition 3.2. Let E/F be an elliptic curve over a number field F with

complex multiplication by the ring of integers in an imaginary quadratic
field K. Then K C F and the following are equivalent

a) F(Eiors)/K is an abelian extension of K.
b) The abelian variety B := Resp/ i E has complex multiplication over K
in the sense that

L:=FEndg(B)®@ Q~ 1Ly x--- X L,

where L1, ..., L. are CM fields containing K such that

[L:K]=>) [Li: K] =[F:K](=dimB).

i=1
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¢) The extension F/K is abelian and there exists an algebraic Hecke char-
acter n of K so that

Y =noNp/k
where v is the algebraic Hecke character of F associated to E/F.

To the CM abelian variety B/K is attached a L-valued Serre-Tate char-
acter [71, Thm. 10|

%

(p:((pl,...,@T):A;{_)LX’ ‘70|KX:KX—>LX
where ¢; is the Serre-Tate character of the simple isogeny factor B; of B
with endomorphism algebra L;. Here 4 is the inclusion.

Proposition 3.3. In the situation of Prop. 3.2 there are isomorphisms of
free rank one L-modules

Vi(p) = VL, (1) x - x VL, (¢,) ~ H(B(C), Q)
S(p) = S(p1) x -+ x S(pr) 2 H(B, Q)

so that the diagram of free rank one Lr-modules

I S@or,C —— S —— H(B,Op/x)r
T€Homg (L,C)

1, per, l lperg

Vi(p) ®Lr C —— Vi(p)p —— H'(B(C),Q)r
T€Hom g (L,C)

commutes where perp was defined in (21). Moreover, for each prime number
p there is a Gal(Q/ K)-equivariant isomorphism of free rank one Ly,-modules

Vo(e) = [ Vi, (1) x - x [ Vi, (o) = Hy(B 0k Q.Qp)

plp plp

compatible with (26) and the Artin comparison isomorphism for B. Finally,
the p-adic (Deligne) period isomorphism for B is compatible with (27).

Proof. The following is based on the construction of B/K via Galois descent.
Put G = Gal(F/K) and define an abelian variety

B= ][] E“

o'eG
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for E(°") the Galois conjugate. An element o € G induces an isomorphism
E) ~ E@°) which leads to

¢y : B~ B,

Note that (B, (¢¢)req) is an effective descent datum, B/K being the descent.
One has
Endp(B)¢ = [[ Homp(E, EC)
a'eG
and accordingly Prop. 3.2 b) gives a partition of G by the indices {1,...,7}.

Let G; denote the subset of elements associated to an index 7. For each i
define an abelian variety

(28) Bi= [ E™.

TEG,

The descent datum on B induces a datum on Bi, let B;/K denote the de-
scent. Note that there is an isogeny

=1

over K. The main theorem of complex multiplication leads to the following
description of the descent datum on B;. Let O; C L; denote the endomor-
phism ring of B;. For o € G pick s, € A;(f with reck (s,) = o where

recy : A% /K* ~ Gal(K®/K) — G

is the Artin map normalized so that uniformizers map to lifts of the the
arithmetic Frobenius. By the main theorem of complex multiplication [14,
Thm. A.2.7| there is a unique L;-linear isomorphism of abelian varieties

Os,s, : Bi ®o, Is, ~ Bi(a)

for I, the principal fractional O;-ideal generated by ¢;(s,)~! € L. The
composite

~ i(se)™ b ~ O0o,s; ~
(30) d0): B, 7Y Biwe, 1, " B
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is an Lj-linear F-isomorphism. For varying o the isomorphisms ¢(c) : B; ~

Bl-(a) induce an O;-linear descent datum on B; with respect to GG, which is

compatible with the preceding datum [14, A.3.4] (see also [72, p. 513]).
Note that the motivic structure associated to a Hecke character ¢ as in
Section 3.3 may be defined via a CM pair (E’, ') where E’/F’ is an elliptic
curve as in Prop. 3.2 and o/ € E'(F") is a torsion point with annihilator f a
multiple of the conductor of ¢ and F'/K an abelian extension containing F”.
The resulting motivic structure is independent of the choice [48, p. 257]|. In
light of Remark 6 the elliptic curve E’/F' along with the isogeny E' — E'«
for o4 € Gal(F'/K) give rise to the motivic structure. In the following we
may thus consider an elliptic curve E(7) /F as above for 7 € G;. By definition

(31) H'(Bi(C),Q) = H'(Bi(C),Q) = H'(ET(C),Q) ®x L; = Vi, ().
As for the de Rham realisation S(y;) first note

HO(Bi’QBi/F) o~ HO(E(T),QE(T)/F) QK L;

since the endomorphism ring of B; is an order in L; and (28). In light of
the construction of B;/K observe H°(B;, Qp, k) is the fixed part of the

Gal(F/K)-action on HO(Bi,QBi/F) arising from the descent datum (30).
From the above description the action coincides with the Gal(F/K)-action
on HO(E(™, Qg /r) @K L; as in Section 3.3. Hence one has

(32) HY(B;,Qp, k) ~ S(4i).

In the same vein the construction induces an isomorphism of L;[Gk]-
modules

(33) H,(Bi ®k Kuw, Qp) ®1,00, Lip = VL., (@)

Under the isomorphisms (31), (32) and (33) note that the period maps per,
and (27) as in Section 3.3 correspond to the period maps

perg, : HO(B;, Qp, k) — H'(B;(C),C)
and
Dar(Li ® Qp, HY(B; ®k Ky, Qp) ®1,00, Lip) = Hig(Bi/Ky) ®L,20, Lip

respectively. In view of the isogeny (29) the proof concludes. O
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Corollary 9. In the situation of Prop. 3.2 let p be any prime number, §
a multiple of the conductor of B and v € H'(B(C),Q). Then the image
Zpee§ () Of zpees under

HL(Zy(1) 5 H (Z,(1) © HY(B 0k ©.Qy) ~ He (V,(1B))
ﬁﬂlwmﬁ] V,('B) 225 HO(By,, Qp, /i)

is an element HO(B,QB/K). Moreover, if ~v1,...,74 s a K-basis of
HY(B(C),Q) then

(34) detyg, (perp) (2pj (1) A+ A zpei(va)) = Lpp($,1) - (91 A -+ A )

Proof. The first statement is clear from Prop. 3.1 for ¢1, ..., ¢,. Since v —
Zp=5(7y) is K-linear, and its scalar extension Kpg-linear, it suffices to show
(34) for a particular Kg-basis {v;} of H'(B(C),Q)g in order to deduce it
for all. Taking {v;} = {7} where 7, is a Kg = C-basis of Vi(¢) @, C
Prop. 3.1 gives the equality

detr (perp) (zp=j () A Azp=i(ra)) = [T Lpp(@rs 1)- (A= Ava).-
T7€Homg (L,C)

It remains to recall the identity of L-functions [35, Eq. (5.0), Lemma (4.8) (iii)|

(35) pf wb) H Lpf 907’7

T|k=t

where ¢ : K — C is the embedding fixed above. One can view the left hand
side as the K-equivariant L-function of 'E/F or, since

Vo('B) = Indgx V,('E),

as the K-equivariant L-function of !B = Resp, x 'E over K. On the other
hand, the tuple

(Lpf(‘ﬁTvs))T € H C~Lg

TlK:L

can be viewed as the L-equivariant L-function of !B/K. The identity (35)
then amounts to the fact that the norm from Lg to Kg of the L-equivariant
L-function is the K-equivariant L-function. O
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4. The Iwasawa main conjecture

In Section 4.1 we recall the exact notation for the Euler system of elliptic
units used in [44] and match it with the notation already introduced in
Section 3.2 (which is identical to Kato’s notation in [48]). In Section 4.2
we recall the “A-main conjecture” of [44] associated to an arbitrary prime
number p and finite order character y of Gk . In Section 4.3 we compute the
image of the basis given by the main conjecture in the determinant of Galois
cohomology of the Galois representation associated to a Hecke character.
This will allow us to complete the proof of Thm. 1.2, resp. Thm. 1.1, in
Section 4.4, resp. 4.5.

4.1. Twisted Elliptic Units

We use the notation of Sections 3.1 and 3.2. Let O be the ring of integers in
a finite extension of Q, and

Gr — Gpej 5 OF

a finite order character of conductor f, | f. Following [44, Def. 1.1] we de-
note by O(x) the free rank one O-module on which Gp~; acts via x~ ! and
following [44, Def. 4.2] we define

(36) A(x) = O(x) ®z, Zp|[I']]-
Then A(y) is a free, rank one module over
Ao = O[] = O[[T1, T2]]

with a continuous Ap-linear Gjp~s-action.

For nonzero ideals a,m of Ok, prime number p and r > 1 so that
(a,6pm) =1 and O — (Ok/p")* is injective, define [44, Def. 3.2]

aCm = Nk (prm)/K (m) (a2prm)-

Note that 4(m depends on p (in addition to a and m) but not on r. For an
O-basis t(x) of O(x) define [44, Def. 3.5]

G () = Tric(omy e (oG @ £)) € HY (O [}91, 0()(1)).
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Here O(x) denotes the p-adic étale sheaf j,O(x) where
| : Spec O [i]—>S ecO [1]
J 9P K(m) of P K(m) P

is an open embedding and the Galois module O() is viewed as a local system
on Spec OK(m)[ ]. For any field K C F C K(m) define

aCF(X) —TrK /F(a(m( ))-

Denote by K,/K the fixed field of the kernel of Gp~; — I' = I'/T?" and
define (44, 5.2]

o€(0) 1= lim oG, () € ' (O] A1)

n

and
C(x) = (Na— 0q) " ToC(x) € Hl(OK[%wx)(l)) D10 Q(Ao).

From Section 3.2 recall the norm compatible system
: 1 X 1 1
aZp=t = (aZprf)nz1 € im O [-]* @z Zp ~ H (Ok[-], A(1)).
7 p p
Lemma 6. For f, | f the image of qzp~j under the map
1 1 1 1
(37) A O[] A1) = HA(Ox ], AR)(1))
induced by (36) coincides with

[T @ —xEh) - a0

[f,4p

Similarly, the image of zp=s coincides with JTy; y,(1 — x(I) Fr; ) - C(x).
Proof. By definition

aCk, (X) = Trg 5 pm) /K0 (aGpm (X))
= Trg (5 pren) /1, (a2 prin @ (X))
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for an integer r with Ox — (Og/p")* injective. So the image of qzp~j,
under (37) coincides with 4((x). Note that (37) factors through the map

HI(OK[%],Af(l)) 5 Hl(oK[%],Aqu))

induced by the projection Gp~j — Gpes, where Ag := Z,[[Gal(K (p>g)/K)]]
for an ideal g C Og. It coincides with the norm map

. 1 . 1
Ni(pe)/K(p=): 0 Or[-]" @22y, —  lim  Og/[-]" @z Zy.
K'CK(fp>) N K'CK (§xp>) p
Recall the Euler system norm relation |44, Prop. 3.3 (2)]

Nic(ipey i Gap=) (azip=) = [ (1 =Fryh) - azppe
[f,UDfx

and observe that x(Fr; ') = x(I)~* € O acts on A(x) via x(I). Noting that
x(I) = 0 for [| § the proof concludes. O

4.2. The main conjecture
We shall also denote by 2, the image of zp-; under the composition of (37)
with the restriction map
1 1

Hl(OK[];],A(X)(l)) R0 Q(Ao) = Hl(OK[;f],A(x)(l)) o R(A0)

induced by the open immersion j.

Theorem 4.1. For f, |f there is an equality of invertible Ap-submodules

Ao -2y = dety L RI(Ok[ 5] A1)

of dety ! RT(Ok[%], A(x)(1)) @0 Q(Ao).
Proof. By [44, Cor. 5.3] there is an equality of invertible Ap-submodules

Ao+ T (1= x()FrY) - ¢(x) = dety RU(Ok =], A (1))
[If,4p P

of detXé RP((’)K[pif], A(x)(1)) ®p, Q(Ao). Together with Lemma 6 this gives
the result. O
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Remark 8. For primes p { |Ok| - |G}2%;| the above main conjecture is equiv-
alent Rubin’s main conjecture [67, 68| (see [44, §5.5]).

4.3. Descent to Galois representation of Hecke characters

Let ¢ be an algebraic Hecke character of K of infinity type (—1,0) and with
values in the number field L. For a prime number p and place p | p of L let
Vi, () be the continuous Lp-linear G'i-representation associated to ¢ as in
Section 3.3. Choose a free, rank one G'g-invariant O := Op -submodule

To,,(») C Vi, (»)

and let

p:Gpej — OF
denote the character giving the action of Gk on To, (¢). Here f is any
multiple of the conductor f, of ¢. Choose a decomposition (24), i.e. a splitting

Gp=; — A of the inclusion A := G;‘i’.ﬁf C Gp=j and define a finite order
character y as the composite

X 1 Gpees = A 2 la, ox
Lemma 7. For primes vt p of K we have

(fx)v = (fw)v (= (fﬂ)v)-

Proof. For v { p the image of the inertia subgroup I, in Gp~; is finite,
hence lies in A. By the definition of ¥ we have x|;, = p~!|;, and hence

(fx)v = (fp*l)v = (fp)v- [l

Remark 9. For v | p the conductor of y depends on the choice of a decom-
position (24) and might differ from (f,), (in either direction).

The following Lemma is a pared down generalization of [31, Lemma 5.7]
from a one-variable to a two-variable Iwasawa algebra. Lemma 5.7 in [31]
computes the descent of a basis of the determinant of a perfect complex over
a one-variable Iwasawa algebra. It might be possible to formulate a descent
Lemma over a two-variable Iwasawa algebra in similar generality but we
found it too confusing to do so for the simple application that we need.

Lemma 8. Let R be a two-dimensional reqular local ring with fraction field
F and residue field k, A a perfect complex of R-modules and £ € H'(A) an
element such that the following hold.
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1) HY(A) is R-torsion free and of R-rank one, H*(A) is R-torsion and
HY(A) =0 fori#1,2.
2) There is an equality of invertible R-submodules

R L=detz'A

of
HY(A) @R F ~det;'(A) @p F.
3) The image L of L under the natural map H'(A) — HY (A @% k) is
nonzero.
4) HO(A®% k) =0.
Then HY(A ®% k) = 0 for i # 1, dimy H'(A ®% k) = 1 and the image of
L ® 1 under the isomorphism

(detz' A) @p k ~ det, (A @ k) ~ H' (A @Y% k)

coincides with L.

Proof. Let a,b € R be a system of parameters so that kK ~ R/(a,b). The
short exact sequences

0— H(A)®r R/a — H'(A®% R/a) = HT(A)y — 0

and the fact that H'(A) is torsion free show that H'(A ®% R/a) = 0 for
i # 1,2. The map in 3) factors

HY(A) — H'(A)®r R/a — H' (A ®% k)

and hence the image £, of £ in H'(A) ®g R/a is nonzero. By Nakayama’s
Lemma for the discrete valuation ring R(,) and the fact that H 1(A)(a) is
R(,)-torsion free and of R(,-rank one the element £ is a basis of H'(A)q).
From 2) we find H?(A)(,) = 0 and hence that H'(A ®% R/a)(,) has R, /a-
rank one.

We now have the perfect complex A’ := A ®% R/a over the discrete
valuation ring R’ := R/a with uniformizer b and fraction field I’ = R, /a,
cohomologically concentrated in degrees 1,2, such that H?(A’) is R'-torsion
and H'(A') is of rank one and R'-torsion free. This last claim follows from
the isomorphism

HO(A ®% k) ~ HY(A' @% R'/b) ~ H' (A,
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and assumption 4). By assumption 3) the image of £, € H'(A’) under
HY A — HY(A)Y®r R'/b - HY(A @% R'/b) ~ HY(A % k)

is nonzero, hence by Nakayama’s Lemma L, is an R’-basis of H!(A') (as we
already know that H1(A') is free of rank one). From 2) we know that £ ® 1
is an R'-basis of

(detpz'A) @p R~ detp! (A') ~ HY(A) @ detpt H2(A')
and the image of L ® 1 in
(38) (detpz'A) @ F' ~ dety (H' (A)(q/a) ~ H'(A) ®

coincides with £,. It follows that the R’-order ideal of the torsion module
H?(A') equals R and hence that H?(A’) = 0. We deduce that

0=H*A)®p R /b~ H*(A' ®@% R'/b) ~ H*(A &% k).
Since L, is an R'-basis of
HY(A) ~ detp!(A)
the image £ of £, in
HY (A ®% k) < HY(A) ®@p R /b~ dety (A) @p R /b~ detz! (A) @p k

is a k-basis. But £ is also the image of £L® 1 € det' (A) ®p k as we saw in
(38). This concludes the proof. O

Remark 10. Tt follows from the proof of Lemma 8 that H?(A) = 0 and
HY(A) is free with basis £ under the assumptions of Lemma 8.

Proposition 4.1. Let v € VL(¢) be such that its image in Vi (@) is an
O-basis of To, () and let f be a multiple of f,. Let 2p5(7) be the image of
Zpeoj under

Hpoet(Zp(1)) = Hpoet(Z(1 ))®VL( ) = Hpoot (VL (0)(1))

Ve, (9) (1) > H Ok [, Vi, (9)(1))

»(
%ﬂ(@K[1
p

pf”’
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and assume that Lyi(¢,1) # 0. Then there is an equality of invertible O-
submodules

O - 2yet() = detg! RU(Okc =], To, (#)(1))

pf
of
det;jRF(oK[]}f],va@)(l)) ~ detLpH%oK[gf],va(m(n)
~ HI(OK[%f],VLP(sO)(l))-

Moreover, the Selmer group
Sel(K,To,, (¢)(1))

s finite.

Proof. The character xp is trivial on A, hence induces a character xp: ' —
O* and a ring homomorphism xp : Zp[[I']] = O. We obtain an induced ring
homomorphism

k=id®@xp: Ao ~ O ®gz, Zy[[T]] = O
so that there is an O-linear isomorphism of Gp~j-modules

A(X) ®nos O =To, ().
This induces an isomorphism of invertible O-modules

(detAiRF(OK[pif]aA(X)(l))> Do O

zdetg)l (RF(OK[Z%L A(x)(1)) ®H1§(9,m O)

~detg! (RF(OK[I%], A1) Dagn O)>

_ 1
(39) 2OletolRT(OK[;f],ToL,,(SO)(l))-
We apply Lemma 8 in the following situation. Denote by q the kernel of &
and set

1

R:=MAoq A:= RF(OK[pf]’A(X)(l))q; L= zpeey.
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Then we have

k~Ly A%k~ RF(OK[pf] Vo, (0)1); L= zp=s(7).

For assumption 1) of Lemma 8 we refer to [48, §15|, assumption 2) is the
g-localization of Theorem 4.1, assumption 3) follows from L,;(®,1) # 0 and
Prop. 3.1 and assumption 4)

0 1
H ((’)K[pf

holds since the G g-action on V7, (¢)(1) is nontrivial. Lemma 8 implies that
the image of zp~; ® 1 in

[, Vi, ()(1)) =0

detLer((’)K[ 1, Vo,, (¢)(1)) ~ H' (Ok[=], Vi, (¢)(1))

1
Py i
under the isomorphisms in (39) coincides with zp~j(7). On the other hand
it follows from Theorem 4.1 that zp~; ® 1 is an O-basis of the invertible
O-module (39). This proves the first part of Prop. 4.1.
Lemma 8 also includes the vanishing of H 2((’)K[ i, VL, (9)(1)) and the
fact that

dlmL Hl((’)K[pf] VL( )( )) =1.

Prop. 3.1 then implies that the map in Prop. 2.1a) is nonzero and hence an
isomorphism. The central vertical triangle in (4) shows that

REf(K, Vi, (p)(1)) = 0.

By Lemma 1 we have Sel(K, To, (¢)(1))g, ~ H}(K, Vi, (p)(1)) = 0. O

Remark 11. In the situation of Prop. 4.1 the finiteness of the Mordell-Weil
group is due to Coates and Wiles [18], Arthaud [1] and Rubin [65]. For
L = K the finiteness of the Tate-Shafarevich group is due to Rubin [66]
and his approach likely generalizes. The above complementary approach via
Lemma 8 is essentially based on the arguments in [48, §15].

4.4. Proof of Theorem 1.2

We have K C End; H°(A, Q4/Kk) = L and the CM type of A is induced
from K. Since p(a) = a for @ = 1 mod f, the character ¢ o Ng/ of the
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idele group of F' := K(f,) takes values in K, hence arises from an elliptic
curve E/F with CM by Og. By [35, (4.4), (4.8)] and our assumption that
A/K is simple, A is an isogeny factor of B := Resp/x E. An argument as
in the proof of Prop. 3.3 shows that the motivic structure associated to ¢
in section 3.3 is isomorphic to the rational structure H'(A). We then verify
the assumptions of Prop. 2.2 for all primes p. We may choose

To,,(p)(1) = H'(Ag, Zy(1)) = T,(*A)

and hence the finiteness of III(A/K),~ and of A(K) follow from Prop. 4.1.
The element z := z,~;(7y) of Prop. 4.1 satisfies the assumptions of Prop. 2.2.
Indeed, assumption a) follows from Prop. 4.1 and assumptions b) and c)
follow from Prop. 3.1 if we choose v to be an L-basis of H'(A(C), Q) which
is also a Op, -basis of H'(A(C), Z,). The finiteness of III(A/K) then follows
from the global formula for its cardinality given by Thm. 1.2. This concludes
the proof of Thm. 1.2.

We next specialize Thm. 1.2 to the situation considered in [3]. Let ¢ = 3
mod 4 be a prime number and set K = Q(v/—¢q). Let H be the Hilbert class
field of K and E/H an elliptic curve with j-invariant j(Og) whose Hecke
character is fixed by all o € G := Gal(H/K). Set

B :RGSH/KE; L:EndK(B)@.
It was shown in [37, Thm. 15.2.5] that L is a CM field. Let ¢ be the Serre-
Tate character of B/K.

Proposition 4.2. Assume L(p,1) # 0 and Endg (B) = Or,. Then Conjec-
ture (12.3) of [3] holds true for B/K.

Proof. The main work in this proof consists in matching the period of Def. 1
to that defined in [3]. The field Q(j(Ok)) has a unique real embedding as the
class number h = [H : K] is odd (see Remark 5). Together with our given
embedding K C C this gives a distinguished embedding ¢ : K(j(Ok)) =
H C C. Following |3, (10.2)| define v and w, uniquely up to Oy, by

Hl(EL((C),Z):OK-’)/; HO(S,Qg/OH):OH'OJ

and put
Q, ::/L(w) e C* /0%
gl
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For ¢ € G we have isomorphisms of O-modules
(40) Hompg(E’,F) ®p, H1(E“(C),Z) ~ Hi(E*(C),Z); f®&d§— fio.

Indeed this can be checked locally at each prime p and for any p there exists
an isogeny f : B — FE of degree prime to p. Since

(41) Op, = Endg(B) = @@ Homy (E°,E) - o
oeG

by [37, (15.1.5)] we see that

H\(B(C),Z) ~ P Hi\(E*(C),Z) = OL, - v

oeG

is free of rank one over Oy, (see also [3, proof of Prop. 10.12]).
The period Q € Ly and fractional Op-ideal a(?) of Def. 1 for B/K
satisfy

H°(B,Qp/0,) ®0, D;{}@ =Q-a(Q) - Homz(H:(B(C),Z),Z)
under the Deligne period isomorphism perg, or equivalently

HY(B,Q5/0,) = Q- a(Q) - Homz(H1(B(C), Z), Z) ®0, Dr/g
= Q- a(Q) - Homo, (H1(B(C),Z), Ok)

under the Kg = C-valued integration pairing. Define
(42) ~* € Homp,. (H1(B(C),Z),Ok)

by
“(5) = ¢ iféd=cye Hi(E(C),Z) with c € Ok
T N0 it s e Hy(EC(C),Z) with o # 1.
Again by (40) and (41) the element +* is a Op-basis of (42). However,
H°(B,p/0,.) need not be free over Or. Following [3] let M = LH be the

composite field, an extension of degree h? of K. Since H/K is unramified we
have Oy ~ O, ®0,. Og. There is an isomorphism of Ops-modules

(43) H(B,Qp/0,) @0, On ~ H(Bo,, s, j0,) ~ P H (7,9 0,)
ceG
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and we have isomorphisms of Og-modules
Hompy (E7, E) ®o, H*(£,Q¢/0,) ~ H(E7,Qes/0,);  f@n— .

Again this can be checked locally at each prime p. From (41) we see that
(43) is free of rank one over Oy with basis w. Extending scalars from Og
to Oy we then have an identity of free, rank one Ojs-modules

HO(B, QB/OK) ®o, O = Q- a() - Home,, (H1(B(C),Z) ®0,. O,O)

under an Hg-valued integration pairing perg . Since

/w:O
5

for 6 € H1(E*“(C),Z), o0 # 1 we have
perg, (w) =9, -4

where Q, € K C Ly ~ M with M, = M ®p, C. We obtain an identity of
invertible Op;-submodules of M,

On - = Q- a(Q) @0, O

The element 2 € Ly is the period of some K-rational differential on B, for
example we can take

wp = Zw” c H(B, QB/0,)-
oeG

In order to compute a(f2) recall that by [3, (10.8)] there exist units u, € Oy,
for each o € G such that

g

Us - W = W;  Ugr = UL - Usr.

Indeed, the differential w” is an Op-basis of H*(£7,Q¢. 0,,) and an Oy-
basis of (43), by the same reasoning as used above for w. We have

=Y - (Zugl) oz

oeG gelG
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with v € M* and
(44) Q=v"1.0Q,.

Since (v7) = (u;'v) = (v) for 7 € G and M/L is unramified the principal
Opr-ideal (v) descends to a fractional Op-ideal a(2). By [3, Prop. 11.1] there
is an element m € M so that

L(p*, 1
% =m®* Vac& HOmH,L(M7 C) = HomK’L(L’ (C)

and such that the Ojs-ideal (m) is G-invariant, hence descends to a fractional
Op-ideal mp. Conjecture (12.3) of [3] states that

(45) mp = ou - | [ ou/0is"
v

where
o = |I(B/K)L; o = [BUK)|L; g0 = | Pulr

and ¢ denotes the complex conjugation of L. On the other hand Theorem 1.2
states that

) o= =g ers 0= o [[a/ol o)

By (44) we have t = mv and (t) = mp - a(2) and hence we find that (45)
and (46) are equivalent. O

Remark 12. By [58] the assumption L(p,1) # 0 holds if ¢ = 7 mod 8 and
E = A(q) is the curve of conductor (/—¢q) studied in [37]. The condition
Endg(B) = Or may or may not hold. In [3, Sec.3| examples are given for
both maximal and non-maximal Endg (B).

4.5. Proof of Theorem 1.1

The proof of Theorem 1.1 amounts to the conjunction of Theorem 1.2 for all
characters @1, ..., @, in Prop. 3.2, restriction of coefficients from L to K, and
isogeny invariance of the K-equivariant BSD conjecture. We present these
arguments in the following sequence of Lemmas. From now on the notation
of Prop. 3.2 will be in effect. In particular L denotes the semisimple algebra

L=ILix---x L,
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with maximal order

OL::OL1X"'XOL

.

For the Serre-Tate character ¢ = (@1, ..., ®;) of ‘B we denote by

L(@,s) = (L(¢r9), €[] C=Le
T€Hom(L,C)

its Le¢-valued L-function. For any prime number p define a free, rank one
G k-invariant Op -submodule

To(¢) =[] To., (p1) x -+ x [[ To.., (#) € Vilp)
plp plp

of V() introduced in Prop. 3.3.

Lemma 9. Let v € VL(p) be such that its image in V,(p) is a Or, -basis of
Tp(¢) and let § be a multiple of the conductor fp of B/K. Let z,~;(7y) be the
image of zp=; in Hl(OK[pif],Vp(go)(l)) and assume that L(p,1) # 0. Then
there is an equality of invertible Oy, -submodules

O, - =1(3) = detg, ROk L. Ty(2)(1)
of
detL:Rer[Z}fL Vy(0)(1)) = detLpH%oK[pifL V,(0)(1)).

Proof. This is immediate by combining Prop. 4.1 for ¢ = ¢1,..., ¢, and all
primes p | p of the fields L;. O

Lemma 10. Let v1,...,74 be a K-basis of Vi(¢) whose image in V() is
a O, -basis of Ty(p) and let § be a multiple of fp. Assume that L(@,1) # 0.
Then there is an equality of invertible O -submodules

Or, - 2pmg(1) A+ A zpeg(3) = et RF(OK[]%],TP(@(U)
of
ety RI(Oxl L. V() (1) = det 1 (O [ Vi) (1)
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Proof. Since the map v +— zp~j(7) is K-linear it suffices to prove Lemma
10 for one particular basis {7;} satisfying its condition. Choosing ~; = b; -y
where b; is a K-basis of L which is also an O, -basis of O, and 7 is as in
Lemma 9 we deduce Lemma 10 immediately from Lemma 9. O

By Prop. 3.3 there is an isomorphism of G i-representations

V;)((P) = Helt(B QK @7 Qp)

over K,. The following is an analogue of Lemma 10 where the G -stable
Ok, -lattice T, (¢) has been replaced by the G-stable Ok -lattice HY(B®g
Q,Zy). Also recall the isomorphism H'(B ®@x Q,Z,)(1) ~ T,(*B).

Lemma 11. Let 71,...,94 be a K-basis of V(¢) ~ H'(B(C),Q) whose
image in Vy(p) =~ HY(B ®k Q,Qp) is a Ok, -basis of H'(B @k Q,Z,) and
let § be a multiple of fp. Assume that L(p,1) # 0. Then there is an equality
of invertible O, -submodules

- - _ 1
Ok, - Zp<j(71) A=+ A zZpej(Fa) = detoipRF(OK[;f], Tp(tB))

1 1
det}iRF(OK[;f]a Vo(‘B)) = dethHl(OK[;f], Vo('B)).

Proof. The order Endg (B) is contained in the maximal order Op,. By choos-
ing T,(¢) to be the Oy, -span of H'(B ®k Q,Z,) inside V,(¢) ~ HY(B ®k
Q,Qp) we can assume that H'(B ®x Q,Z,) is contained in Tp(p). Define a
finite Ok, [Gx]-module M by the exact sequence

(47 00— HY(Bokr Q,Z,)(1) 2 T,("B) — T)(¢)(1) = M — 0.
This sequence induces an exact triangle in the derived category of O, -
modules
1 ¢ 1 1
RF(OK[;f],Tp( B)) — RF(OK[ﬁ]an(‘P)(l)) - RF(OK[;{_],M) —

and an isomorphism of invertible Ok, -modules

(45 detgl, AU(OKC]Ty()(1) = detg), RU(OK LT, (B)

Kp
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1
®0,, detgh RF(oK[p—f

The complex RF(OK[pif], M) has finite cohomology groups and there is an
equality of invertible Ok -submodules

|, M).

(49) detg RF(OK H|H1 OK M)l b* s

of
1
<det5}( RF((’)K[;f],M)> ®0y, Kp =~ Kp.

Here |N|g, denotes the order ideal of a finite O, -module N and the last
identity in (49) is Tate’s formula for the Euler characteristic [57, Thm. I1.5.1],
or rather its equivariant generalization [30, Thm. 5.1|. If now ~q,...,74 is a
basis as in Lemma 10 we deduce from Lemma 10, (48) and (49)

(50) Ok, - zpj(y1) A+ A zpi(7a) = det, RF(OK[ LT, ("B)) - M.

pf”’

On the other hand, if 741, ...,74 is a basis as in Lemma 11 the exact sequence
(47) shows that

Ok, NN Na= Mg, ANy

and K-linearity of v +— 2zp-5(7) gives

Ok, - 2p=§(V1) A+ A zpoi(Fa) = M|k, - 2Zps(71) A= A Zpoei(7a)-
Comparing this last identity with (50) gives Lemma 11. O

Since
Gk
T,('B) ~ Ind:x T,('E)
Shapiro’s Lemma gives a canonical isomorphism

Lo 1
;f]va( B)) =~ RF(OF[pf

Furthermore there are canonical isomorphisms

RT(Ok| ]an(tE))'

HO(B,Qp)x) ~ H(E,Qp/p)
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and
H'(B(C),Z) ~ H(E(C &k F),Z) ~ [ H'(E(F,), Z).
v]oo
Lemma 11 and Corollary 9 can therefore be rewritten in terms of E/F as
follows.

Lemma 12. Let E/F be an elliptic curve as in Theorem 1.1, in particular
assume that L(1p,1) # 0. Let 41, ..., be a K-basis of H'(E(C),Q) whose
image in HY(E @k Q,Qp) is a Ok, -basis of H'(E ®k Q,Zy,) and let § be a
multiple of f = Np/kfE - Dp/k. Put

1

Z = Zpoof(:}’l) JANRRIAN Zpoof(:}/d) S dethHl(OF[ZTf], V;,(tE))

Then there is an equality of invertible O, -submodules

k)

Ok, - z = detg RF((’)F[pf],Tp(tE))
of
det;(},Rer[]}f], V,('E)) = detK,,leF[}%f], Vo('E)).
Moreover

7= detg, (exp”)(z) € dethHO(EFp,QEFp/Fp)
is an element of detx HO(F, Qp/r) such that

det g, (per) (2) = Lp;(¥,1) - a(z) - deto, H HY(E(F,),7Z)

v]oo

where a(z) is a fractional Ok -ideal prime to p.

Proof. This is immediate from Lemma 11 and Corollary 9. Note that the
assumption

Ok, - M A -+ Na = deto,, H' (B @k Q,Z,)
on the basis 4; translates into the fact that

Ok M1 A+ ANa = a(z) - deto, HHI(E(Fv)aZ)

v]oo
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for some fractional Og-ideal a(z) prime to p. O

Proof of Theorem 1.1. It suffices to produce an element z as in Prop. 2.3 for
all prime numbers p. The content of Lemma 12 is precisely that the element
z satisfies the assumptions of Prop. 2.3 for S = {v | pf}. Since it was shown
in Prop. 4.1 that the p-primary part of HI(E/F) (and of E(F)) is finite for
any prime p, the finiteness of ILI(E/F) follows from the global formula for its
cardinality given by Prop. 2.3. This concludes the proof of Theorem 1.1. [J
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