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Let E/F be an elliptic curve over a number field F with complex
multiplication by the ring of integers in an imaginary quadratic
field K. We give a complete proof of the conjecture of Birch and
Swinnerton-Dyer for E/F , as well as its equivariant refinement
formulated by Gross [39], under the assumption that L(E/F, 1) �= 0
and that F (Etors)/K is abelian. We also prove analogous results
for CM abelian varieties A/K.
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1. Introduction

Let E/F be an elliptic curve over a number field F with complex multipli-
cation by the ring of integers in an imaginary quadratic field K and such
that F (Etors)/K is abelian. It is well known that the conjecture of Birch and

arXiv: 2206.09874
∗Partially supported by the NSF grants DMS 2303864 and 2302064.

357



358 Ashay Burungale and Matthias Flach

Swinnerton-Dyer for this class of elliptic curves, as well as its K-equivariant
refinement formulated by Gross [39], is amenable to the Iwasawa theory of
the field K. Indeed, this principle has its origin in the seminal work of Coates
and Wiles [18] which led to the finiteness of E(F ) if L(E/F, 1) �= 0. About a
decade later Rubin [66] showed the finiteness of X(E/F ) if L(E/F, 1) �= 0.
This remarkable work, partly motivated by the ideas of Thaine [81], gave
the very first proof of finiteness of the Tate-Shafarevich group of an abelian
variety over a number field. Subsequently, as a consequence of his proof of
the Iwasawa main conjecture for K, Rubin [68] proved the p-primary part
of Gross’ conjecture assuming F = K, L(E/F, 1) �= 0 and p � |O×

K |. He also
indicated that for general F his arguments give a proof of the p-primary part
of Gross’ conjecture if L(E/F, 1) �= 0 and

p � |O×
K | · [F : K] · disc(F/K).

The purpose of this paper is to eliminate these restrictions on the prime
ideal p of OK and give a complete proof of Gross’ conjecture if L(E/F, 1) �=
0. The main result is Theorem 1.1 below. Our approach is based on the
principle of the equivariant Tamagawa number conjecture: zeta elements
generate equivariant determinants of certain étale cohomology groups. The
key ingredients of the proof are the two variable Iwasawa main conjecture
for K due to Johnson-Leung and Kings [44] (based on the Euler system
of elliptic units) and Kato’s reciprocity law [48, Prop. 15.9] (we use Kato’s
formulation but the case we need goes back to Wiles [86] and Coates/Wiles
[19]). Our arguments also give the L-equivariant Birch and Swinnerton-Dyer
conjecture for abelian varieties A/K with complex multiplication by a CM
field L if L(A/K, 1) �= 0 which we record in Theorem 1.2. In particular this
proves a conjecture of Buhler and Gross [3, Conj. 12.3].

We first introduce some notation. For archimedean places v of F we have
the K-bilinear integration pairings

(1) H1(E(Fv),Q)×H0(E,ΩE/F )⊗F Fv → Fv; (γ, ω) �→
∫

γ
ω

which jointly induce a KR-linear period isomorphism

(2)
∏

v|∞

H1(E(Fv),Q)R ∼= HomF (H
0(E,ΩE/F ), F )R.

For each v | ∞ the period lattice H1(E(Fv),Z) is an invertible OK-module.
If E/OF denotes the Néron model of E then H0(E ,ΩE/OF

) is an invert-
ible OF -module and a projective OK-module of rank d = [F : K], hence
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so is HomOF
(H0(E ,ΩE/OF

),OF ). It follows that there is an invertible OK-
submodule a ⊂ KR so that

⊗

v|∞

H1(E(Fv),Z) = a · detOK
HomOF

(H0(E ,ΩE/OF
),OF )

under the determinant over KR of the isomorphism (2). We may write

a = Ω · a(Ω)

for some period
Ω ∈ K×

R
∼= C×

and fractional OK-ideal a(Ω) ⊆ K. Denote the order ideal of a finite OK-
module A by |A|K and the cardinality of a finite abelian group A by |A|. Let
Φv be the component group of the Néron model of E/F at the prime v.

Theorem 1.1. Let E/F be an elliptic curve over a number field F with
CM by OK for an imaginary quadratic field K and such that F (Etors)/K is
abelian. Let ψ : A×

F /F
× → C× be the Hecke character associated to E/F and

assume that L(ψ, 1) �= 0. Then E(F ) and X(E/F ) are finite OK-modules,

L(ψ, 1)

Ω
∈ K×

and
L(ψ, 1)

Ω
=

|X(E/F )|K
|E(F )| ·

∏

v

|Φv|K · a(Ω)

in the group of fractional OK-ideals.

Remark 1. As pointed out by Gross, not only the ideal |E(F )| but also
the ideal |X(E/F )|K is generated by a rational integer [39, Prop. 3.7]. The
ideals |Φv|K are equal to either (1), (2) or p with p2 = (2) or p2 = (3) [39,
Prop. 4.5].

Restricting scalars from KR to R in the period isomorphism (2) and
taking determinants over Z of the natural lattices in both sides, we find that
there exists Ω(E) ∈ R× such that

⊗

v|∞

detZH1(E(Fv),Z) = Ω(E) · detZ HomOF
(H0(E ,ΩE/OF

),OF ).

Moreover, we have

(3) Ω(E) · Z = NK/Qa = aa = ΩΩ · a(Ω)a(Ω).
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Corollary 1 (BSD for E/F ). Under the assumptions of Theorem 1.1 the
groups E(F ) and X(E/F ) are finite and

L(E/F, 1)

Ω(E)
=

|X(E/F )|
|E(F )|2 ·

∏

v

|Φv|

Proof. This follows from the identity [73, Thm. 7.42]

L(E/F, s) = L(ψ, s)L(ψ, s) = L(ψ, s)L(ψ, s)

the fact that NK/Q(|A|K) = |A| for any finite OK-module A, and (3).

Any elliptic curve E/K with CM by OK for which L(E/K, 1) �= 0 sat-
isfies the assumptions of Theorem 1.1 and Corollary 1. In this case the class
number of K is 1. More generally, for primes q ≡ 3 mod 4 and K = Q(

√−q)
the class number of K is odd and elliptic curves E/H where F = H is the
Hilbert class field have been much studied in, for example [37, 63, 58, 3].
One finds in these references many examples which satisfy the assumption
L(E/H, 1) �= 0 of Theorem 1.1 (see also Corollary 4).

Remark 2. For elements ω ∈ H0(E ,ΩE/OF
) and γv ∈ H1(E(Fv),Z) we may

define periods

Ωv := Ω(γv, ω) :=

∫

γv

ω

in terms of which Ω and Ω(E) can be expressed as follows. First, there are
fractional OK-ideals a(γv) and a(ω) such that

H1(E(Fv),Z) = a(γv) · γv

and

detOK
H0(E ,ΩE/OF

) = a(ω) · detOK
(OF · ω).

The trace map OF
Tr−→ OK induces an isomorphism

HomOF
(H0(E ,ΩE/OF

),OF ) ∼= HomOK
(H0(E ,ΩE/OF

)⊗OF
D−1

F/K ,OK)

where D−1
F/K is the inverse different, an invertible OF -module. Assume for

simplicity that D−1
F/K is a free OK-module and let β1, . . . , βd be a basis. Then

if we define

Ω := det

(∫

γv

ω ⊗ βk

)

v,k
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we have

a(Ω) = a(ω) ·
∏

v|∞

a(γv).

Let ev be the indecomposable idempotents in

D−1
F/K ⊗OK

KR
∼= OF ⊗OK

KR
∼=
∏

v|∞

Fv

and express the βk as a linear combination of the ev. Then the base change
matrix has determinant

det(βk,v)v,k =
(√

DF/K

)−1

where DF/K ∈ OK generates the relative discriminant ideal of the extension

F/K (and depends on the choice of βk by a factor in (O×
K)2 so that the

OK-ideal generated by
√

DF/K is well defined). So we find

Ω =
(√

DF/K

)−1
· det
(∫

γv

ω ⊗ ev′

)

v,v′

=
(√

DF/K

)−1
·
∏

v|∞

Ωv.

Denoting by DL/Q ∈ Z the discriminant of a number field L we have

|DF/Q| = NK/QDF/K · |DK/Q|[F :K] = DF/KDF/K · |DK/Q|[F :K]

and therefore

Z · Ω(E) = a(ω)a(ω) ·
(√

NK/QDF/K

)−1
·
∏

v|∞

ΩvΩv · a(γv)a(γv)

= a(ω)a(ω) ·
(√

|DF/Q|
)−1

·
∏

v|∞

√

|DK/Q| · ΩvΩv · a(γv)a(γv)

=
1

Iω
·
(√

|DF/Q|
)−1

·
∏

v|∞

volω(E(Fv))

where

Iω := (a(ω)a(ω))−1 = [H0(E ,ΩE/OF
) : OF · ω] ∈ Z

and the Haar measure on E(Fv) is induced by the volume form

2dx ∧ dy = idz ∧ dz̄
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after identifying the cotangent space of E/Fv with Fv � C via the basis
ω. This last form of the period term Ω(E) in the conjecture of Birch and
Swinnerton-Dyer for abelian varieties over number fields can be found, for
example, in [28, L3, Ex. 6.4] (see also [34, Lemma 18]) and continues to hold
without our assumption of the existence of a basis βi. However, in the above
computation there will then be yet another corrective fractional OK-ideal
a(βi) contributing to a(Ω).

Corollary 2 (BSD for E/F+). Under the assumptions of Theorem 1.1 as-
sume in addition that E is defined over a subfield F+ ⊂ F which is the fixed
field of an involution of F inducing complex conjugation on K. Then the
groups E(F+) and X(E/F+) are finite and

L(E/F+, 1)

Ω(E+)
=

|X(E/F+)|
|E(F+)|2 ·

∏

v

|Φ+
v |

where Φ+
v is the component group of the Néron model of E/F+ at the prime v.

Proof. If F/F+ is a quadratic extension of number fields and E/F+ an
elliptic curve then there is an isogeny of abelian surfaces over F+

A := ResFF+(E/F ) ∼ E × Eε

where Eε is the twist of E by the quadratic character ε attached to F/F+.
In our case Eε is isogenous to E (see [56, Thm. 3]), hence an isogeny

A ∼ E × E.

We have isomorphisms X(E/F ) � X(A/F+), E(F ) � A(F+) and the BSD
formula for E/F is equivalent to the BSD formula for A/F+ [56, Thm. 1].
By isogeny invariance of BSD we deduce the BSD formula for (E × E)/F+

(as well as finiteness of X((E ×E)/F+) and (E ×E)(F+)). Since all terms
in the BSD formula for (E × E)/F+ are simply the squares of the corre-
sponding terms in the BSD formula for E/F+ we deduce the BSD formula
for E/F+ by taking square roots (see also [56, Cor. to Thm. 3] for this entire
argument).

Any CM elliptic curve E/Q with L(E/Q, 1) �= 0 satisfies the assumptions
of Corollary 2. In particular we obtain the following.

Corollary 3. The Birch and Swinnerton-Dyer conjecture is true for con-
gruent number elliptic curves

E(n) : ny2 = x3 − x
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for a density one subset of positive square-free integers n ≡ 1, 2, 3 mod 8.

Proof. By [9] we have L(E(n)/Q, 1) �= 0 for a density one subset of positive

square-free integers n ≡ 1, 2, 3 mod 8 (see also [8]).

Remark 3. Let E/Q be a CM elliptic curve and {E(n)}n the family of

its quadratic twists over Q. Then Corollary 2 in combination with [60,

Thm. 3] implies that the distribution of orders of Tate-Shafarevich groups

{X(E(n)/Q)}n in the quadratic twist subfamily with analytic rank zero is

as in [60, Thm. 3].

The following application was suggested to us by B. Gross, to whom we

are grateful.

Corollary 4. Let p ≡ 7 mod 8 be a prime, K = Q(
√−p) and h the class

number of K. Let F = K(j) denote the Hilbert class field of K for

j = j((1 +
√−p)/2)

and F+ = Q(j). Let A(p)/F+ be the elliptic curve with CM by OK over F

with Weierstrass equation

y2 = x3 +
mp

233
x− np2

2533

where m and n are unique real numbers such that

m3 = j, − n2p = j − 1728 and sgn(n) = (
2

p
).

Then

|X(A(p)/F+)| =
(

1

2h−1
·
∏

ϕ∈ĈlK

∑

C∈ClK
ϕ(C)t(C)

∏

C∈ClK
t(C)

)2

where ĈlK denotes the character group of ClK and t the modular function

as in [62, p. 562].

Proof. By [63] we have L(A(p)/F+, 1) �= 0. So the assertion follows from

Corollary 2 and [62, Thm. 8.2].

Remark 4. The elliptic curves A(p) were introduced by Gross in the late 70’s

[37, 38, 39, 40] which continue to be instrumental.
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Corollary 5. Let E/F ′ be an elliptic curve as in either Corollary 1 or Corol-
lary 2 so that F ′ is either F or F+. Let X/F ′ be a principal homogeneous
space of E/F ′ and X → Spec(OF ′) a proper regular model of X. Then Br(X )
is finite and the special value conjecture [33, Conj. 5.12] for ζ(X , s) at s = 1
holds true. More precisely, if the Zeta function ζ(X , s) is factored as in [34,
Eq. (4)]

ζ(X , s) =
ζF ′(s)ζF ′(s− 1)

ζ(H1, s)

then

ords=1 ζ(H
1, s) = rankZ Pic

0(X )

and

ζ∗(H1, 1) =
#Br(X ) · δ2 · Ω(X ) ·R(X )

(#(Pic0(X )tor/Pic(OF ′)))2
·
∏

v real

#Φv

δ2v

where Pic0(X ) is the kernel of the degree map on Pic(X ), R(X ) is the regu-
lator of the Arakelov intersection pairing on Pic0(X ), Ω(X ) is the determi-
nant of the period isomorphism between the finitely generated abelian groups
H1(X (C), 2πi · Z)GR and H1(X ,OX ) and

Br(X ) = ker

(

Br(X ) →
⊕

v real

Br(XF ′
v
)

)

.

The integer δ is the index of X, i.e. the g.c.d. of the degrees of all closed
points, Φv = E(F ′

v)/E(F ′
v)

0 is the group of components, and δv is the index
of XF ′

v
over F ′

v.

Proof. By [34, Thm. 6.1] the BSD formula for E/F ′ is equivalent to the
special value conjecture [34, Eq. (6)] for ζ∗(H1, 1). Since E has genus 1 the
equality δ′v = δv of period and index for real v in [34, Eq. (6)] follows from
the proof of [34, Lemma 9].

Remark 5. In the situation of Corollary 2 the extension F/Q is Galois
since Aut(F ) contains the involution σ in addition to Gal(F/K) so that
#Aut(F ) = [F : Q]. The number r1 of real places of F+ is the number of
fixed points of the action of σ on the set of archimedean places of F . If one
chooses σ ∈ Aut(F ) as the restriction of complex conjugation with respect
to a particular complex embedding there is at least one fixed point, and the
total number of fixed points of σ coincides with the number of fixed points
of the conjugation action of Gal(K/Q) on Gal(F/K). Hence the signature



The conjecture of Birch and Swinnerton-Dyer 365

(r1, r2) of the field F+ in Corollary 2 either satisfies r1 = 0 or r1 | 2r2. One
can construct examples of fields F+ for any (r1, r2) with r1 | 2r2: choose

Gal(F/K) � Z/r′1Z× Z/((r1 + 2r2)/r
′
1)Z

with Gal(K/Q) acting trivially on the first factor and by −1 on the second.
Here r′1 = r1 if r1 is odd and r′1 = r1/2 if r1 is even. To construct examples
of Corollaries 2 and 5 one may take E/F with j(E) ∈ Q but one also needs
non-vanishing results for L(ψ, 1).

Theorem 1.2. Let A/K be a CM abelian variety with EndK(A) � OL for
some CM field L with [L : Q] = 2 dim(A). Let ϕ be its Serre-Tate character
and assume

L(ϕ̄, 1) �= 0.

Let Ω ∈ L×
R and a(Ω) be the period and fractional OL-ideal defined in Def. 1

in Section 2. Then X(A/K) and A(K) are finite, L(ϕ̄,1)
Ω ∈ L× and

L(ϕ̄, 1)

Ω
=

|X(A/K)|L
|A(K)|L|tA(K)|L

·
∏

v

|Φv|L · a(Ω)

in the group of fractional ideals of L.

Apart from being a special case of the equivariant Tamagawa number
conjecture [5] this L-equivariant Birch and Swinnerton-Dyer conjecture was
also formulated by Buhler and Gross [3, Conj. 12.3] in the special case where
A = ResH/K E for E/H a CM elliptic curve over the Hilbert class field and
[H : K] odd. We will explicate the connection to [3, Conj. 12.3] in Prop. 4.2
in Section 4.4.

Corollary 6 (BSD for A/K). Under the assumptions of Thm. 1.2 we have

L(A/K, 1)

Ω(A)
=

|X(A/K)|
|A(K)| · |tA(K)| ·

∏

v

|Φv|

where the period Ω(A) is defined for example in [34, Lemma 18].

Proof. This follows by taking the norm from L to Q of the identity in
Thm. 1.2.

Corollary 7 (BSD for A/Q). In the situation of Thm. 1.2 assume in addi-
tion that A is defined over Q. Then we have

L(A/Q, 1)

Ω(A+)
=

|X(A/Q)|
|A(Q)| · |tA(Q)| ·

∏

v

|Φ+
v |
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where the period Ω(A+) is the period of [34, Lemma 18] for A/Q.

Proof. This follows as in the proof of Cor. 2.

Corollary 8. Let f be an elliptic newform of weight 2, level N and arbi-
trary character, and let Af be the isogeny factor of the Jacobian of X1(N)
associated to f by Eichler-Shimura. If f has CM and L(Af , 1) �= 0 then the
Birch and Swinnerton-Dyer conjecture holds for Af .

Proof. Let K be the CM field of f and L0 := EndQ(Af )Q the field generated
by the Hecke eigenvalues of f [61, Cor. 4.2]. Then the base change Af,K of
Af to K is either simple with EndK(Af,K)Q � L := L0K or Af,K ∼ A1×A2

with EndK(Ai)Q � L := L0. By isogeny invariance of BSD we can assume
that Af,K has multiplications by the maximal order in either case. Then
BSD holds for Af,K by Cor. 6 and follows for Af as in Cor. 2.

Remarks on the proof. The proof of Theorem 1.1 is naturally situated in the
framework of the equivariant Tamagawa number conjecture. Let p be a prime
ideal of OK and p the rational prime below. The proof begins with a reduction
of Theorem 1.1 to the existence of an equivariant zeta element for E/F , i.e.
a basis z of the OK-equivariant determinant of the p-adic étale cohomology
of E/F which also encodes the L-value L(E/F, 1) (Prop. 2.3). By a descent
of the Iwasawa main conjecture for K [44], such a basis z is constructed via
elliptic units (Subsections 4.3 and 4.5) whose link to L(E/F, 1) is given by an
explicit reciprocity law (Subsection 3.4). The main conjecture [44] expresses
the determinant of Iwasawa cohomology of K in terms of elliptic units as
pioneered by Kato [46, 47]. Our descent of the main conjecture is formulated
in terms of perfect complexes and is uniform for any prime p. It first leads
to the finiteness of E(F ) and X(E/F )p∞ (offering another proof of results
of [18, 66]) and then to z.

The above approach to the p-primary part of Gross’ conjecture and the
BSD formula differs from that of Rubin [68]. The calculus of determinants
of perfect complexes does not appear in [68]. The descent [68, §11] involves
classical Iwasawa modules and is more involved for primes p non-split in K
[68, pp. 61–66].

Remarks on the related work. The CM elliptic curve X0(49) has analytic
rank 0 and it was the first elliptic curve for which the full BSD conjecture
was proved [37, 66, §22]. (See also the discussion in [40, p. 17].) Since Rubin’s
fundamental work [68], the p-primary part of the BSD formula for CM elliptic
curves with analytic rank 0 and primes p such that

p
∣

∣|O×
K | · [F : K] · disc(F/K)
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has been much studied, especially the case of CM elliptic curves over Q and
the prime p = 2. This includes the extensive work of Coates [20, 21, 24, 26,
17, 25, 23], Kezuka [49, 50, 53, 51, 52], Tian [55, 82, 83, 12, 13, 84], Tian-
Yuan-Zhang [85], Zhao [89, 90, 91, 92], as well as [69, 36, 59, 32, 10, 16,
43, 87, 64, 11, 74]. The prior work was the original impetus for our study.
Note that Coates-Kezuka-Li-Tian [23] prove the 2-part of the BSD formula
for CM elliptic curves with ordinary reduction at 2. Some of the prior work
concerns specific families of CM curves, for instance Tian [83] and Tian-
Yuan-Zhang [85] prove seminal results for congruent number elliptic curves
(which led to Smith’s work [77, 78, 79, 80]). The proofs employ various tools
such as the Euler system of elliptic units, explicit Waldspurger formula and
congruences between modular forms. Yet, prior to Corollary 2, the p-part
of the BSD formula for CM elliptic curves over Q with analytic rank 0 and
p||O×

K | remained open in general.
For some complementary results towards the BSD conjecture over the

last decade the reader may refer to [76, 75, 45, 88, 7, 6].
Our approach to the BSD formula seems amenable to other situations. In

future work we plan to consider the case of CM elliptic curves with analytic
rank 1.

2. Preliminary reductions

In this section we reduce the proof of Thm. 1.1, resp. Thm. 1.2, to the
existence of a basis of the determinant of global Galois cohomology of the
Tate module with certain properties, see Prop. 2.3, resp. Prop. 2.2. Such
a basis will then be provided by the combination of Kato’s reciprocity law
with the Iwasawa main conjecture in the next section. We present the initial
reduction step in the slightly more general context of an abelian variety
which is not necessarily CM. This initial reduction step is in principle well
known [47, Ch. I. 2.3] and has an analogue for any motive over a number
field (see for example [4, p. 85/86]).

Let A/F be an abelian variety over a number field F with dual abelian
variety tA/F and denote by A/OF , resp. tA/OF , the Néron model of A,
resp. tA. Let L be a number field so that there is given an embedding

OL → EndF (A).

This induces an embedding OL → EndF (
tA) by functoriality. We fix a prime

number p and define

Lp := L⊗Q Qp �
∏

p|p

Lp; OLp
:= OL ⊗Z Zp �

∏

p|p

OLp
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and

T := Tp(
tA) � H1(AF̄ ,Zp(1)); V := Vp(

tA) := Tp(
tA)⊗Zp

Qp

where Tp(
tA) is the p-adic Tate module of tA. Let S be a finite set of places

of F containing all archimedean places, all places above p and all places of
bad reduction. Then we may view T as a smooth sheaf of OLp

-modules on
Spec(OF,S)et and we denote by RΓ(OF,S , T ) its étale cohomology. For each
prime v | p of F let

H1(Fv, V )
exp∗

v−−−→ D0
dR(V ) � H0(AFv

,ΩAFv/Fv
)

be the dual exponential map of the Gal(F̄v/Fv) -representation V [47, Ch. II,
Thm. 1.4.1]. For any prime v of F denote by

Pv(
tA/F, t) = detLl

(1− Fr−1
v ·t|H1(tAF̄ ,Ql)

Iv) ∈ OL[t]

the Euler factor of the L-equivariant Hasse-Weil L-function of tA/F (which is
independent of the auxiliary prime v � l) and let Φv be the component group
of A at v. Denote by |M |Lp

the part of the order ideal of a finite OL-module
M supported in {p | p}.
Proposition 2.1. With the notation just introduced the following hold.

a) If A(F ) and X(A/F )p∞ are finite then the composite map

H1(OF,S , V ) −→
∏

v|p

H1(Fv, V )

∏
v|p exp

∗
v−−−−−−→
∏

v|p

H0(AFv
,ΩAFv/Fv

)

is an isomorphism, and H i(OF,S , V ) = 0 for i �= 1. We obtain an
induced isomorphism

ι : det−1
Lp

RΓ(OF,S , V ) � detLp
H1(OF,S , V ) � detLp

H0(A,ΩA/F )⊗QQp.

b) Assume in addition that F has no real embedding or that p > 2. Then
RΓ(OF,S , T ) is a perfect complex of OLp

-modules and

ι
(

det−1
OLp

RΓ(OF,S , T )
)

=
|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
·
∏

v∈S

Pv(
tA/F,Nv−1) ·Υp
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where Υp := Υ⊗OL
OLp

,

Υ := detOL

(

H0(A,ΩA/OF
)⊗OF

D−1
F/Q

)

and D−1
F/Q is the inverse different of the extension F/Q.

Proof. Consider the following diagram of complexes of OLp
-modules with

exact rows and columns

RΓc(OF,S , T ) −−−−→ RΓf (F, T ) −−−−→
⊕

v∈S

RΓf (Fv, T )

‖
⏐

⏐

�

⏐

⏐

�
⊕v³v

RΓc(OF,S , T ) −−−−→ RΓ(OF,S , T ) −−−−→
⊕

v∈S

RΓ(Fv, T )

⏐

⏐

�
´

⏐

⏐

�

⊕

v∈S

RΓ/f (Fv, T )
⊕

v∈S

RΓ/f (Fv, T ).

(4)

Here, following [2] we define

RΓf (Fv, T ) =

{

tA(Fv)
∧[−1] v � ∞

τ≤1RΓ(Fv, T ) v | ∞

where for any abelian group M we denote by

(5) M∧ := lim←−
ν

M/pν

its (underived) p-adic completion. Since H0(Fv, T ) = 0 for v � ∞ there is a
map of complexes

αv : tA(Fv)
∧[−1]

³̃v−→ H1(Fv, T )[−1] → RΓ(Fv, T )

where α̃v is the inverse limit of the connecting homomorphisms

tA(Fv)/p
ν → H1(Fv,

tApν )

induced by the Kummer sequence. The complex RΓ/f (Fv, T ) is defined as
the mapping cone of αv and the complex RΓf (F, T ) as the mapping fibre
of β.
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Lemma 1. We have

H i
f (F, T ) �

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

tA(F )∧ i = 1

X(tA/F )∧ ⊕HomZp
(A(F )∧,Zp) i = 2

HomZp
(A(F )∧tor,Qp/Zp) i = 3

0 i �= 1, 2, 3

Proof. First note that RΓ/f (Fv, T ) is concentrated in degrees 1, 2 for v � ∞
and there is an isomorphism

H i(OF,S , T ) �
⊕

v real

H i(Fv, T ) �
⊕

v real

H i
/f (Fv, T )

for i ≥ 3 by [57, Prop. II.2.9, Thm. I.4.10]. It follows that RΓf (F, T ) is
concentrated in degrees 0 ≤ i ≤ 3. The long exact sequence associated to
the middle column in (4) gives

H0
f (F, T ) = H0(OF,S , T ) = 0

and

H1
f (F, T ) = ker

(

H1(OF,S , T ) →
⊕

v∈S

H1(Fv, T )
tA(Fv)∧

)

.

Recall that the classical Selmer group Sel(F, tApν ) can be defined as

Sel(F, tApν ) = ker

(

H1(OF,S ,
tApν ) →

⊕

v∈S

H1(Fv,
tApν )

tA(Fv)/pν

)

since the image of tA(Fv)/p
ν in H1(Fv,

tApν ) coincides with the unramified
classes for v /∈ S. Taking the inverse limit over ν in the short exact sequence

0 → tA(F )/pν → Sel(F, tApν ) → X(tA/F )pν → 0

and using finiteness of X(tA/F )p∞ we find

tA(F )∧ � lim←−
ν

Sel(F, tApν ) � H1
f (F, T ).

The long exact sequence associated to the top row in (4) gives an exact
sequence

⊕

v∈S

H1
f (Fv, T ) → H2

c (OF,S , T ) → H2
f (F, T ) → 0
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and an isomorphism

H3
c (OF,S , T ) � H3

f (F, T ).

Using Artin-Verdier duality [57, Cor. II.3.3] and the fact that our RΓc agrees
with that of loc. cit. (formed with Tate cohomology at the infinite places) in
degrees ≥ 2 we find an exact sequence

0 → H2
f (F, T )

∗ → H1(OF,S , Ap∞) →
⊕

v∈S

H1(Fv, Ap∞)

A(Fv)⊗Qp/Zp

and an isomorphism

H3
f (F, T )

∗ � H0(OF,S , Ap∞).

Here we use the definition

M∗ := HomZp
(M,Qp/Zp),

the isomorphism of π1(Spec(OF,S))-modules

(6) T ∗(1) � Ap∞

and the fact that the orthogonal complement of tA(Fv)
∧ under the perfect

pairing

H1(Fv, T )×H1(Fv, Ap∞) → H2(Fv,Qp/Zp(1)) � Qp/Zp

is A(Fv)⊗Qp/Zp [57, Cor. I.3.4, Rem. I.3.5]. Hence we obtain an isomorphism

H2
f (F, T )

∗ � Sel(F,Ap∞).

Dualizing again we find an exact sequence

0 → X(A/F )∗p∞ → H2
f (F, T ) → (A(F )∧ ⊗Zp

Qp/Zp)
∗ → 0

and an isomorphism

H3
f (F, T ) � (A(F )∧tor)

∗.

By [57, Thm. I.6.13] if X(A/F )p∞ is finite there is a non-degenerate pairing

X(tA/F )∧ ×X(A/F )p∞ → Qp/Zp
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and for any Zp-module M there is an isomorphism

HomZp
(M ⊗Zp

Qp/Zp,Qp/Zp)(7)

�HomZp
(M,HomZp

(Qp/Zp,Qp/Zp))

�HomZp
(M,Zp).

Hence we find an exact sequence

0 → X(tA/F )∧ → H2
f (F, T ) → HomZp

(A(F )∧,Zp) → 0

concluding the proof of Lemma 1.

Lemma 2. We have

H i
/f (Fv, T ) =

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

HomZp
(A(Fv)

∧,Zp) i = 1, v | p
HomZp

(A(Fv)
∧
tor,Qp/Zp) i = 2, v � ∞

H i(Fv, T ) i ≥ 3, v | ∞
0 else.

In particular, for v � ∞ there is a quasi-isomorphism of complexes of OLp
-

modules

(8) RΓ/f (Fv, T )[1] � RHomZp
(A(Fv)

∧,Zp).

Proof. The Kummer sequence

0 → tA(Fv)
∧ → H1(Fv, T ) → lim←−

ν

H1(Fv,
tA)pν → 0

together with duality for abelian varieties over local fields [57, Cor. I.3.4]
and (7)

lim←−
ν

H1(Fv,
tA)pν �

(

lim−→
ν

A(Fv)/p
ν

)∗

� HomZp
(A(Fv)

∧,Zp)

give the Lemma for i = 1. Note that these groups vanish unless v | p. The
statement for i = 2 follows from (6) and Tate local duality [57, Cor. I.2.3]

H2
/f (Fv, T ) � H2(Fv, T ) � H0(Fv, Ap∞)∗ �

(

A(Fv)
∧
tor

)∗
.

The statement for i ≥ 3 is just the definition of RΓ/f (Fv, T ). Note here that
H i(Fv, T ) = 0 for i = 2 and v | ∞ and for i ≥ 3 and v � ∞. The isomorphism
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(8) can be proved either via a version of Tate duality in the derived category,

or by direct inspection since HomZp
(A(Fv)

∧
tor,Qp/Zp) � Ext1Zp

(A(Fv)
∧,Zp),

and since any bounded complex of OLp
-modules is quasi-isomorphic to the

sum of its cohomology groups (placed in their respective degrees).

For v | p the dual exponential map

(9) H1
/f (Fv, Vp(

tA))
exp∗

v−−−→ H0(AFv
,ΩAFv/Fv

)

is an isomorphism since its dual [47, Ch. II, Thm. 1.4.1]

Lie(AFv
)

expv−−−→ H1
f (Fv, Vp(A)) � A(Fv)

∧ ⊗Zp
Qp

is an isomorphism. This is because the inverse logv of expv (the formal group

logarithm) induces an isomorphism

(10) logv : Â(mn
v )

∼−→ mn
vLie(AOFv

)

for large enough n and

(mn
vLie(AOFv

))⊗Zp
Qp = Lie(AFv

); Â(mn
v )⊗Zp

Qp = A(Fv)
∧ ⊗Zp

Qp.

Here mv is the maximal ideal of OFv
and Â is the formal completion of

AOFv
at the identity section. If now A(F ) and X(A/F )p∞ are both finite

then so are tA(F ) and X(tA/F )p∞ and it follows from Lemmas 1 and 2

that

RΓf (F, V ) � 0; RΓ/f (Fv, V ) �
{

H1
/f (Fv, V )[−1] v | p

0 else.

The middle vertical exact triangle in (4) then implies part a) of Prop. 2.1.

Lemma 3. For v | p let ιv be the isomorphism

ιv : det−1
Lp

RΓ/f (Fv, V ) � detLp
H1

/f (Fv, V ) � detLp
H0(AFv

,ΩAFv/Fv
)

induced by the dual exponential map (9). For v � p∞ let

ιv : det−1
Lp

RΓ/f (Fv, V ) � Lp

be the isomorphism arising from acyclicity of RΓ/f (Fv, V ). Then
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(11) ιv

(

det−1
OLp

RΓ/f (Fv, T )
)

= |tΦv|Lp
· Pv(

tA/F,Nv−1) ·Υv

where

Υv :=

{

detOLp

(

H0(AOFv
,ΩAOFv

/OFv
)⊗OFv

D−1
Fv/Qp

)

v | p
OLp

v � p

and D−1
Fv/Qp

is the inverse different of the extension Fv/Qp.

Proof. Let A0/OF be the open sub-group scheme of A/OF so that A0
κv

is the
connected component of the identity of Aκv

for each residue field κv of OF .
We have a filtration of the group A(Fv) = A(OFv

) given by exact sequences
of OL-modules

0 → A0(OFv
) → A(Fv) → Φv → 0

and

0 → Â(mv) → A0(OFv
) → A0(κv) → 0.

Since all these groups have bounded p-primary torsion, the p-adic completion
functor (5) is exact and we obtain exact sequences of OLp

-modules

(12) 0 → A0(OFv
)∧ → A(Fv)

∧ → Φ∧
v → 0

and

(13) 0 → Â(mv)
∧ → A0(OFv

)∧ → A0(κv)
∧ → 0.

Lemma 4. For any finite place v of F and any prime p there is an identity
of fractional OLp

-ideals

(14)
|A0(κv)

∧|Lp

|Lie(Aκv
)∧|Lp

= Pv(
tA/F,Nv−1).

Proof. The smooth, connected commutative group scheme A0
κv

over the per-
fect field κv has a filtration, preserved by any endomorphism,

(15) 0 → U → A0
κv

→ B → 0

where U is unipotent (and smooth and connected) and B is semiabelian
(combine Chevalley’s theorem [27] with [41, XVII Thm. 7.2.1]). We claim



The conjecture of Birch and Swinnerton-Dyer 375

that

(16)
|U(κv)

∧|Lp

|Lie(U)∧|Lp

= 1.

The group scheme U has a filtration with successive quotients Ga [41, XVII,

Prop. 4.1.1]. The Lie algebra functor being exact for smooth group schemes,

there is a corresponding filtration of Lie(U). Since H1(Gκv
, U ′) = 0 for

any connected group scheme U ′/κv there is also a corresponding filtration

of U(κv) with successive quotients Ga(κv) = κv. So for v � p we have

U(κv)
∧ = Lie(U)∧ = 0 and (16) holds. Since p annihilates Ga for v | p

some power pν annihilates U , and the action of OL on U factors through

the finite semilocal ring OL/p
ν . The indecomposable idempotents e1, . . . , er

of OL/p
ν act by algebraic endomorphisms on U , so have closed image eiU

and

U � e1U × · · · × erU.

To prove (16) it suffices to show

lengtheiOL/pν (eiU(κv)) = lengtheiOL/pν (Lie(eiU))

for i = 1, . . . , r. This follows from the fact that eiU is itself unipotent,

smooth, connected, hence has a filtration with subquotients Ga and Ga(κv) �
κv � Lie(Ga).

By similar reasoning the filtration (15) induces corresponding filtrations

on Lie(A0
κv
) � Lie(Aκv

) and on A0(κv). It therefore suffices to show

(17)
|B(κv)

∧|Lp

|Lie(B)∧|Lp

= Pv(
tA/F,Nv−1).

For v � p we have

Pv(
tA/F,Nv−1) = detLp

(1− Fr−1
v ·Nv−1|H1(tAF̄ ,Qp)

Iv)

= detLp
(1− Fr−1

v |H1(tAF̄ ,Qp(1))
Iv)

= detLp
(1− Fr−1

v |Vp(A)Iv)

= detLp
(1− Fr−1

v |Vp(B))

where the last identity is [42, IX, Prop. 2.2.5]. Moreover Lie(B)∧ = 0 and
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Frv acts invertibly on Tp(B). The exact sequence1 of OLp
-modules

0 → Tp(B)
Frv −1−−−−→ Tp(B) → B(κv)

∧ → 0

then shows that

|B(κv)
∧|Lp

= detLp
(Frv −1|Vp(B)) ∼O×

Lp
detLp

(1− Fr−1
v |Vp(B))

verifying (17).

For v | p let D(B) be the covariant Dieudonné module of the p-divisible

group B[p∞] associated to B/κv [15, Thm. 4.33]. This is a free W (κv)-module

so that

Pv(
tA/F,Nv−1)

=detLp⊗W (κv)(1− Fr−1
v |D(B)Q)

=detLp⊗W (κv)(Frv −1|D(B)Q) · detLp⊗W (κv)(Frv |D(B)Q)
−1

=detLp⊗W (κv)(V
[κv:Fp] − 1|D(B)Q) · detLp⊗W (κv)(V

[κv:Fp]|D(B)Q)
−1

where V denotes the Verschiebung on D(B) and the last identity is [15,

Rem. 10.25].

Lemma 5. There is an exact sequence of OLp
⊗W (κv)-modules

0 → D(B)
V [κv :Fp]−1−−−−−−→ D(B) → B(κv)

∧ ⊗Zp
W (κv) → 0

1It arises as follows. The snake lemma applied to

(18)

0 −−−−→ B(κv) −−−−→ B(κv)
Frv −1−−−−→ B(κv) −−−−→ 0

⏐

⏐

�
pn

⏐

⏐

�
pn

⏐

⏐

�
pn

0 −−−−→ B(κv) −−−−→ B(κv)
Frv −1−−−−→ B(κv) −−−−→ 0

gives an exact sequence of finite OLp-modules

0 → B(κv)[p
n] → B(κv)[p

n]
Frv −1−−−−→ B(κv)[p

n] → B(κv)/p
n → 0

to which one applies the projective limit over n (an exact functor in this case).
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Proof. The kernel of the isogeny B[p∞]
Frv −1−−−−→ B[p∞] of p-divisible groups

over κv is the constant finite flat group scheme over κv associated to the fi-
nite abelian p-group B(κv)[p

∞] � B(κv)
∧. The covariant Dieudonné module

D(B(κv)
∧) � B(κv)

∧ ⊗Zp
W (κv) of B(κv)

∧ sits in an exact sequence

0 → B(κv)
∧ ⊗Zp

W (κv) → D(B)⊗Qp/Zp
Frv −1−−−−→ D(B)⊗Qp/Zp → 0

by [15, Prop. 4.53 (ii)]. Multiplication by pn gives a diagram analogous to
(18) and one proceeds as in the case v � p. The identity Frv = V [κv:Fp] is
again [15, Rem. 10.25].

Lemma 5 shows that

detLp⊗W (κv)(V
[κv:Fp] − 1|D(B)Q)

=|B(κv)
∧ ⊗Zp

W (κv)|OLp⊗W (κv) = |B(κv)
∧|OLp

.

Similarly, the exact sequence of OLp
-modules [15, Thm. 4.33 (3)]

0 → D(B)
V−→ D(B) → Lie(B) → 0

shows

detLp⊗W (κv)(V
[κv:Fp]|D(B)Q) ∼(OLp⊗W (κv))× detLp

(V |D(B)Q) = |Lie(B)|OLp

proving (17).

For a perfect complex of Zp-modules put

M † := RHomZp
(M,Zp).

If M is a finite OLp
-module we have

detOLp
(M †) = detOLp

(M∗[−1]) = |M∗|Lp
· OLp

⊂ detLp
(0) = Lp.

For v | p the isomorphism (10) together with the isomorphisms

Â(mi
v)/Â(mi+1

v )
∼−→ mi

vLie(AOFv
)/mi+1

v Lie(AOFv
)

for i = 1, . . . , n− 1 give an equality

ιv

(

detOLp
(Â(mv))

)

(19)
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= ιv

(

detOLp
(mvLie(AOFv

))
)

= ιv

(

detOLp
(Lie(AOFv

))
)

· |Lie(AOFv
)⊗OFv

κv|−1
Lp

= ιv

(

detOLp
(Lie(AOFv

))
)

· |Lie(Aκv
)|−1
Lp

(14)
= ιv

(

detOLp
(Lie(AOFv

))
)

· |A0(κv)
∧|−1

Lp
· Pv(

tA/F,Nv−1).

For v � p we have Â(mv)
∧ = 0. Hence

ιv

(

det−1
OLp

RΓ/f (Fv, T )
)

(8)
= ιv

(

detOLp
(A(Fv)

∧,†)
)

(12)
= ιv

(

detOLp
(A0(OFv

)∧,†)
)

· |Φ∧,∗
v |Lp

(13)
= ιv

(

detOLp
(Â(mv)

∧,†)
)

· |A0(κv)
∧,∗|Lp

· |Φ∧,∗
v |Lp

(19)
=

{

ιv

(

detOLp
(Lie(AOFv

)†)
)

· Pv(
tA/F,Nv−1) · |tΦv|Lp

v | p
Pv(

tA/F,Nv−1) · |tΦv|Lp
v � p.

Here we have used the perfect perfect pairing of finite groups [42, IX, 1.3.1]

(20) tΦv × Φv → Q/Z.

The proof of Lemma 3 is now completed by the following isomorphisms

Lie(AOFv
)† �HomZp

(Lie(AOFv
)⊗OFv

OFv
,Zp)

�HomOFv
(Lie(AOFv

),HomZp
(OFv

,Zp))

�HomOFv
(Lie(AOFv

),OFv
)⊗OFv

D−1
Fv/Qp

�H0(AOFv
,ΩAOFv

/OFv
)⊗OFv

D−1
Fv/Qp

.

We complete the proof of part b) of Prop. 2.1. The middle vertical exact
triangle in (4) and Lemmas 1 and 3 give

ι
(

det−1
OLp

RΓ(OF,S , T )
)

=ι

(

det−1
OLp

RΓf (F, T )⊗
⊗

v∈S

det−1
OLp

RΓ/f (Fv, T )

)
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=
|X(tA/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|tΦv|Lp
·
∏

v∈S

Pv(
tA/F,Nv−1) ·Υp

using the isomorphism

H0(A,ΩA/OF
)⊗OF

D−1
F/Q ⊗Z Zp �

∏

v|p

H0(A,ΩA/OF
)⊗OF

D−1
F/Q ⊗OF

OFv

�
∏

v|p

H0(AOFv
,ΩAOFv

/OFv
)⊗OFv

D−1
Fv/Qp

.

Since X(tA/F ) and X(A/F ), resp. tΦv and Φv, are dual finite abelian
groups with dual OL-action we have in fact

|X(tA/F )|Lp
= |X(A/F )|Lp

; |tΦv|Lp
= |Φv|Lp

concluding the proof of b).

For an abelian variety A/F with multiplications by OL → EndF (A) and
each place v | ∞ of F consider the Q-bilinear L-balanced integration pairing

H1(A(Fv),Q)×H0(A,ΩA/F )⊗F Fv → Fv
trFv/R−−−−→ R; (γ, ω) �→ trFv/R

∫

γ
ω

which induces LR-linear isomorphisms

perv : H0(A,ΩA/F )⊗F Fv
∼−→ HomQ(H1(A(Fv),Q),R)

∼−→ H1(A(Fv),R).

These isomorphisms combine to give a LR-linear (Deligne) period isomor-
phism

(21) perA : H0(A,ΩA/F )R �
∏

v|∞

H1(A(Fv),R).

Definition 1. For the invertible OL-module

Υ := detOL

(

H0(A,ΩA/OF
)⊗OF

D−1
F/Q

)

introduced in Prop. 2.1 choose a period Ω ∈ L×
R and a fractional OL-ideal

a(Ω) ⊂ L so that

(22) detLR
(perA)(Υ) = Ω · a(Ω) · detOL

⎛

¿

∏

v|∞

H1(A(Fv),Z)

À

⎠
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under the determinant of the period isomorphism (21).

Let A/F be a CM abelian variety together with an isomorphism

μ : OL � EndF (A)

for a CM field L with [L : Q] = 2 dim(A). To the CM abelian variety A/F
is attached a Serre-Tate character [71, Thm. 10]

ϕ : A×
F → L×, ϕ|F× = F× t−→ L×

from which a Hecke character

(23) ϕτ : A×
F /F

× ϕ·(t−1
R

·p∞)−−−−−−−→ L×
R

τ−→ C×

is deduced for each τ ∈ Hom(L,C). Here p∞ is the projection to F×
R and t is

an algebraic homomorphism determined by the CM-type of A/F . We have
the LC-valued L-function

L(ϕ, s) := (L(ϕτ , s))τ ∈
∏

τ

C � LC

which takes values in LR for real s. If

μ′ : OL � EndF (
tA)

denotes the isomorphism functorially induced by μ then a polarization p :
A → tA induces an isomorphism

(A, ρ ◦ μ) � (tA,μ′)

of abelian varieties with CM by L (up to isogeny). Here ρ denotes the Rosati
involution associated to p. Since ρ induces complex conjugation on L the
Serre-Tate character of (tA,μ′) is ϕ̄.

Proposition 2.2. Let A/F be a CM abelian variety so that

OL
∼−→ EndF (A)

for a CM field L with [L : Q] = 2 dim(A) and assume

L(ϕ̄, 1) �= 0.
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Let p be any prime number, T = Tp(
tA), V = T ⊗Zp

Qp and S a finite set
of places of F containing {v | p∞} and all places of bad reduction. Assume
that X(A/F )p∞ and A(F ) are finite and let

ι : det−1
Lp

RΓ(OF,S , V ) � detLp
H1(OF,S , V ) � detLp

H0(A,ΩA/F )⊗Q Qp

be the isomorphism of Prop. 2.1. Assume there exists

z ∈ detLp
H1(OF,S , V )

and a fractional OL-ideal a(z) prime to p with the following properties

a) OLp
· z = det−1

OLp
RΓ(OF,S , T )

b) ι(z) ∈ detLH
0(A,ΩA/F ) ⊂ detLp

(

H0(A,ΩA/F )⊗Q Qp

)

c) OL · detLR
(perA)(ι(z)) = LS(ϕ̄, 1) · a(z) · detOL

(

∏

v|∞

H1(A(Fv),Z)
)

Then L(ϕ̄,1)
Ω ∈ L× and

L(ϕ̄, 1)

Ω
=

|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
· a(Ω)

in the group of fractional OL-ideals supported in {p | p}.
Proof. First note that

Pv(
tA/F, t) = detLl

(1− Fr−1
v ·t|H1(tAF̄ ,Ql)

Iv)

= detLl
(1− Frv ·t|Vl(

tA)Iv)

= 1− ϕ(v) · t

and the L-equivariant L-function of tA/F agrees with L(ϕ̄, s). Also note that
F is totally imaginary (since the action of OL is defined over F ) and hence
Prop. 2.1 applies for all primes p. By Prop. 2.1 and a) we have

OLp
· ι(z) = ι

(

det−1
OLp

RΓ(OF,S , T )
)

=
|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
·
∏

v∈S

Pv(
tA/F,Nv−1) ·Υp

=
|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
·
∏

v∈S

(

1− ϕ(v)

Nv

)

·Υp
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and by the definition (22) of Ω and a(Ω) we have

OLp
· detLR

(perA)(ι(z)) =
|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
·
∏

v∈S

(

1− ϕ(v)

Nv

)

· Ω · a(Ω) · detOL

⎛

¿

∏

v|∞

H1(A(Fv),Z)

À

⎠ .

Comparing this identity with c) we find

LS(ϕ̄, 1) =
|X(A/F )|Lp

|A(F )|Lp
|tA(F )|Lp

·
∏

v

|Φv|Lp
·
∏

v∈S

(

1− ϕ(v)

Nv

)

· Ω · a(Ω)

up to a fractional OL-ideal a(z) prime to p. This is the statement of Propo-
sition 2.2.

Let now E/F be an elliptic curve over a number field F with complex
multiplication by OK for an imaginary quadratic field K. The period Ω ∈ K×

R

and the fractional ideal a(Ω) ⊆ K defined in the introduction satisfy

⊗

v|∞

H1(E(Fv),Z) = Ω · a(Ω) · detOK
HomOF

(H0(E ,ΩE/OF
),OF )

under the determinant over KR of the isomorphism

∏

v|∞

H1(E(Fv),Q)R ∼= HomF (H
0(E,ΩE/F ), F )R

which is the R-dual of perE defined in (21). Since

HomZ(H
1(E(Fv),Z),Z) �H1(E(Fv),Z)

HomZ(H
0(E ,ΩE/OF

)⊗OF
D−1

F/Q,Z) �HomOF
(H0(E ,ΩE/OF

),OF )

the quantities Ω and a(Ω) defined in the introduction coincide with the period
and ideal defined in Def. 1.

Proposition 2.3. Let E/F be an elliptic curve with CM by OK and asso-
ciated Serre-Tate character ψ : A×

F → K×. Assume that

L(ψ̄, 1) �= 0.
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Let p be any prime number, T = Tp(
tE), V = T ⊗Zp

Qp and S a finite set
of places of F containing {v | p∞} and all places of bad reduction. Assume
that X(E/F )p∞ and E(F ) are finite and let

ι : det−1
Kp

RΓ(OF,S , V ) � detKp
H1(OF,S , V ) � detKp

(H0(E,ΩE/F )⊗Q Qp)

be the isomorphism of Prop. 2.1. Assume there exists

z ∈ detKp
H1(OF,S , V )

and a fractional OK-ideal a(z) prime to p with the following properties

a) OKp
· z = det−1

OKp
RΓ(OF,S , T )

b) ι(z) ∈ detKH0(E,ΩE/F ) ⊂ detKp

(

H0(E,ΩE/F )⊗Q Qp

)

c) OK · detKR
(perE)(ι(z)) = LS(ψ̄, 1) · a(z) · detOK

(

∏

v|∞

H1(E(Fv),Z)
)

Then L(ψ̄,1)
Ω ∈ K× and

L(ψ̄, 1)

Ω
=

|X(E/F )|Kp

|E(F )| ·
∏

v

|Φv|Kp
· a(Ω)

in the group of fractional OK-ideals supported in {p | p}.

Proof. This is the special case of Prop. 2.2 where A/F = E/F is an elliptic
curve and L = K, noting that

|E(F )|K · |tE(F )|K = |E(F )|K · |E(F )|K = |E(F )|.

3. Kato’s reciprocity law

In this section we recall some definitions and results of [48, §15] for which we
need to introduce quite a bit of notation. Let K be an imaginary quadratic
field and fix an embedding K ⊂ C. We identify K̄ = Q̄ with the algebraic
closure of K in C.

3.1. Iwasawa modules

For any ideal f of OK we denote by

K(f) ⊆ K̄
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the ray class field of conductor f. For any prime number p and ideal f of OK

we set

K(p∞f) =
⋃

n

K(pnf); Gp∞f := Gal(K(p∞f)/K).

Then

(24) Gp∞f
∼= Γ×∆; Γ � Zp × Zp

where ∆ := Gtor
p∞f is a finite abelian group. Put

Λ := Zp[[Gal(K(p∞f)/K)]] � Zp[∆][[T1, T2]].

Consider the complex of Λ-modules

RΓp∞f(Zp(1)) := lim←−
K′

RΓ(OK′ [
1

p
],Zp(1))

where K ′ runs through the finite extensions of K contained in K(p∞f).
According to [48, 15.6] the cohomology groups of H i

p∞f(Zp(1)) are finitely
generated Λ-modules and vanish for i �= 1, 2.

3.2. Elliptic units

In [48, 15.5] there is defined an elliptic unit

(25) azf ∈ OK(f)[1/f]
×

for ideals a, f such that O×
K → (OK/f)× is injective and (a, 6f) = 1. If f

is not a power of a prime ideal then azf ∈ O×
K(f). The units azf are norm

compatible; in particular for any prime number p, any n ≥ 1 and any nonzero
ideal f (such that O×

K → (OK/pnf)× is injective) one has

NK(pn+1f)/K(pnf)(azpn+1f) = azpnf.

Denoting by (a, F/K) ∈ Gal(F/K) the Artin symbol, we have in particular
an element

σa := (a,K(p∞f)/K) ∈ Gp∞f ⊂ Λ×.

Define

zp∞f := (Na− σa)
−1 (azpnf)n≥1
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∈
(

lim←−
K′

OK′ [
1

p
]× ⊗Z Zp

)

⊗Λ Q(Λ) � H1
p∞f(Zp(1))⊗Λ Q(Λ)

which is independent of a.

3.3. Hecke characters

Let

ϕ : A×
K → L×

be an algebraic Hecke character of K with values in the number field L and
of infinity type (−1, 0). Following [48, 15.8] we recall the definition of the
motivic structure associated to ϕ. This consists of rank one L-vector spaces
VL(ϕ) and S(ϕ), a continuous Lp-linear Gal(Q̄/K)-representation VLp

(ϕ) for
each place p | p of L together with a (Deligne) period isomorphism

perτ : S(ϕ)⊗L,τ C
�−→ VL(ϕ)⊗L,τ C

for each embedding τ : L → C and comparison isomorphisms

(26) VLp
(ϕ) � VL(ϕ)⊗L Lp

as well as p-adic (Deligne) period isomorphisms

(27) D1
dR(Kp, VLp

(ϕ)) � S(ϕ)⊗L Lp

for each p | p.
Let f be a multiple of the conductor of ϕ such that O×

K → (OK/f)× is
injective, and let E = (E,α) be the canonical CM-pair over K(f) in the sense
of [48, (15.3.1)], i.e. E/K(f) is an elliptic curve with CM by OK and α ∈
E(K(f)) is a torsion point with annihilator f. As explained in [48, (15.3.3)] if
a is an ideal prime to f with Artin symbol σ = (a,K(f)/K) ∈ Gal(K(f)/K)
there is a canonical isomorphism

ηa : (E/E[a], α mod E[a]) � (E(σ), σ(α)).

We denote by η∗a the map induced on cohomology by the composite isogeny

E → E/E[a]
·a−→ E(σ). We then define

VL(ϕ) := H1(E(C),Q)⊗K L

S(ϕ) := (H0(E,ΩE/K(f))⊗K L)Gal(K(f)/K)
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where σ ∈ Gal(K(f)/K) acts as the composite

H0(E,ΩE/K(f))⊗
K
L

σ⊗1−−→ H0(E(σ),ΩE(σ)/K(f))⊗
K
L

ϕ(a)−1·∗
a−−−−−−→

�
H0(E,ΩE/K(f))⊗

K
L.

For each place p | p of L we define a Gal(Q̄/K)-representation

VLp
(ϕ) := H1

et(E ⊗K(f) Q̄,Qp)⊗Kp
Lp

where σ ∈ Gal(Q̄/K) acts via

VLp
(ϕ) = H1

et(E ⊗K(f) Q̄,Qp) ⊗
Kp

Lp

σ−→ H1
et(E

(σ) ⊗K(f) Q̄,Qp) ⊗
Kp

Lp

ϕ(a)−1·∗
a−−−−−−→ VLp

(ϕ).

Here a an ideal such that σ|K(f) = (a,K(f)/K). The isomorphism (27) is
induced by the p-adic period isomorphism for E/K(f) [48, (15.8.1)] and the
isomorphism perτ is induced by the period isomorphism (21) for E/K(f).

Remark 6. In the construction of the motivic structure the role of a torsion
point α ∈ E(K(f)) is to fix the isomorphism ηa : E/E[a] � E(σa). It induces

the isogeny E → E/E[a]
·a−→ E(σa) which is the only way ηa enters into the

construction. Note that the isogeny E → E(σa) is uniquely determined.

3.4. The reciprocity law

We state Kato’s reciprocity law and then deduce its consequences for an
elliptic curve E/F as in Thm. 1.1.

Proposition 3.1. Let ϕ be an algebraic Hecke character of K with values in
the number field L and of infinity type (−1, 0). For an embedding τ : L → C
let

ϕτ : A×
K/K× → C×

be the Hecke character deduced from ϕ as in (23). Let p | p be any prime
ideal of OL, f a multiple of the conductor of ϕ and γ ∈ VL(ϕ). Then the
image zp∞f(γ)

′ of zp∞f under

H1
p∞f(Zp(1))

γ−→ H1
p∞f(Zp(1))⊗ VLp

(ϕ) � H1
p∞f(VLp

(ϕ)(1))

→H1(OK [
1

p
], VLp

(ϕ)(1))
exp∗

−−−→ D1
dR(Kp, VLp

(ϕ)) � S(ϕ)⊗L Lp
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is an element of S(ϕ). Moreover

perτ (zp∞f(γ)
′) = Lpf(ϕ̄τ , 1) · γ.

Proof. This is the special case of [48, Prop. 15.9] where ϕ has infinity type

(−1, 0) and where K ′ = K.

Remark 7. Prop. 3.1 includes Deligne’s period conjecture [29] for the alge-

braic Hecke character ϕ̄. If b is an L-basis of S(ϕ) and

Ω = Ω(b, γ) = (Ωτ ) ∈ L×
R

is such perτ (b) = Ωτ · γ for all τ then

Lpf(ϕ̄, 1)

Ω
∈ L ⊆ LR.

In particular, if Lpf(ϕ̄τ0 , 1) �= 0 for one τ0 then

Lpf(ϕ̄τ , 1) �= 0

for all τ ∈ Hom(L,C). Deligne’s period conjecture in the situation of Prop. 3.1

was proven in [35] and is known for all algebraic Hecke characters of all num-

ber fields (see [70, Ch. II, Thm. 2.1] and references therein. The proof for

non-CM base fields was recently completed in [54]).

Recall the following proposition from [35, Thm. 4.1]

Proposition 3.2. Let E/F be an elliptic curve over a number field F with
complex multiplication by the ring of integers in an imaginary quadratic

field K. Then K ⊆ F and the following are equivalent

a) F (Etors)/K is an abelian extension of K.
b) The abelian variety B := ResF/K E has complex multiplication over K

in the sense that

L := EndK(B)⊗Q � L1 × · · · × Lr

where L1, . . . , Lr are CM fields containing K such that

[L : K] =

r
∑

i=1

[Li : K] = [F : K](= dimB).
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c) The extension F/K is abelian and there exists an algebraic Hecke char-
acter η of K so that

ψ = η ◦NF/K

where ψ is the algebraic Hecke character of F associated to E/F .

To the CM abelian variety B/K is attached a L-valued Serre-Tate char-
acter [71, Thm. 10]

ϕ = (ϕ1, . . . , ϕr) : A
×
K → L×, ϕ|K× = K× i−→ L×

where ϕj is the Serre-Tate character of the simple isogeny factor Bj of B
with endomorphism algebra Lj . Here i is the inclusion.

Proposition 3.3. In the situation of Prop. 3.2 there are isomorphisms of
free rank one L-modules

VL(ϕ) := VL1
(ϕ1)× · · · × VLr

(ϕr) �H1(B(C),Q)

S(ϕ) := S(ϕ1)× · · · × S(ϕr) �H0(B,ΩB/K)

so that the diagram of free rank one LR-modules

∏

τ∈HomK(L,C)

S(ϕ)⊗L,τ C
�−−−−→ S(ϕ)R

�−−−−→ H0(B,ΩB/K)R

∏
τ perτ

⏐

⏐

�

⏐

⏐

�

perB

∏

τ∈HomK(L,C)

VL(ϕ)⊗L,τ C
�−−−−→ VL(ϕ)R

�−−−−→ H1(B(C),Q)R

commutes where perB was defined in (21). Moreover, for each prime number
p there is a Gal(Q̄/K)-equivariant isomorphism of free rank one Lp-modules

Vp(ϕ) :=
∏

p|p

VL1,p
(ϕ1)× · · · ×

∏

p|p

VLr,p
(ϕr) � H1

et(B ⊗K Q̄,Qp)

compatible with (26) and the Artin comparison isomorphism for B. Finally,
the p-adic (Deligne) period isomorphism for B is compatible with (27).

Proof. The following is based on the construction of B/K via Galois descent.
Put G = Gal(F/K) and define an abelian variety

B̃ =
∏

σ′∈G

E(σ′)
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for E(σ′) the Galois conjugate. An element σ ∈ G induces an isomorphism

E(σ′) � E(σ◦σ′) which leads to

φσ : B̃ � B̃(σ).

Note that (B̃, (φσ)σ∈G) is an effective descent datum, B/K being the descent.

One has

EndF (B̃)G =
∏

σ′∈G

HomF (E,E(σ′))

and accordingly Prop. 3.2 b) gives a partition of G by the indices {1, ..., r}.
Let Gi denote the subset of elements associated to an index i. For each i

define an abelian variety

(28) B̃i =
∏

τ∈Gi

E(τ).

The descent datum on B̃ induces a datum on B̃i, let Bi/K denote the de-

scent. Note that there is an isogeny

(29) B →
r
∏

i=1

Bi

over K. The main theorem of complex multiplication leads to the following

description of the descent datum on B̃i. Let Oi ⊂ Li denote the endomor-

phism ring of Bi. For σ ∈ G pick sσ ∈ A×
K,f with recK(sσ) = σ where

recK : A×
K/K× � Gal(Kab/K) � G

is the Artin map normalized so that uniformizers map to lifts of the the

arithmetic Frobenius. By the main theorem of complex multiplication [14,

Thm. A.2.7] there is a unique Li-linear isomorphism of abelian varieties

θσ,sσ : B̃i ⊗Oi
Isσ � B̃

(σ)
i

for Isσ the principal fractional Oi-ideal generated by ϕi(sσ)
−1 ∈ L×

i . The

composite

(30) c(σ) : B̃i
ϕi(sσ)−1

� B̃i ⊗Oi
Isσ

¸σ,sσ� B̃
(σ)
i
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is an Li-linear F -isomorphism. For varying σ the isomorphisms c(σ) : B̃i �
B̃

(σ)
i induce an Oi-linear descent datum on B̃i with respect to G, which is

compatible with the preceding datum [14, A.3.4] (see also [72, p. 513]).
Note that the motivic structure associated to a Hecke character ϕ as in

Section 3.3 may be defined via a CM pair (E′, α′) where E′/F ′ is an elliptic
curve as in Prop. 3.2 and α′ ∈ E′(F̃ ′) is a torsion point with annihilator f a
multiple of the conductor of ϕ and F̃ ′/K an abelian extension containing F ′.
The resulting motivic structure is independent of the choice [48, p. 257]. In
light of Remark 6 the elliptic curve E′/F ′ along with the isogeny E′ → E

′σa

for σa ∈ Gal(F ′/K) give rise to the motivic structure. In the following we
may thus consider an elliptic curve E(τ)/F as above for τ ∈ Gi. By definition

(31) H1(Bi(C),Q) = H1(B̃i(C),Q) � H1(E(τ)(C),Q)⊗K Li = VLi
(ϕi).

As for the de Rham realisation S(ϕi) first note

H0(B̃i,ΩB̃i/F
) � H0(E(τ),ΩE(τ)/F )⊗K Li

since the endomorphism ring of B̃i is an order in Li and (28). In light of
the construction of Bi/K observe H0(Bi,ΩBi/K) is the fixed part of the

Gal(F/K)-action on H0(B̃i,ΩB̃i/F
) arising from the descent datum (30).

From the above description the action coincides with the Gal(F/K)-action
on H0(E(τ),ΩE(τ)/F )⊗K Li as in Section 3.3. Hence one has

(32) H0(Bi,ΩBi/K) � S(ϕi).

In the same vein the construction induces an isomorphism of Li,p[GK ]-
modules

(33) H1
et(Bi ⊗K K̄w,Qp)⊗Li⊗Qp

Li,p � VLi,p
(ϕi).

Under the isomorphisms (31), (32) and (33) note that the period maps perτ
and (27) as in Section 3.3 correspond to the period maps

perBi
: H0(Bi,ΩBi/K) → H1(Bi(C),C)

and

DdR(Li ⊗Qp, H
1
et(Bi ⊗K K̄v,Qp)⊗Li⊗Qp

Li,p) � H1
dR(Bi/Kv)⊗Li⊗Qp

Li,p

respectively. In view of the isogeny (29) the proof concludes.



The conjecture of Birch and Swinnerton-Dyer 391

Corollary 9. In the situation of Prop. 3.2 let p be any prime number, f

a multiple of the conductor of B and γ ∈ H1(B(C),Q). Then the image
zp∞f(γ)

′ of zp∞f under

H1
p∞f(Zp(1))

γ−→ H1
p∞f(Zp(1))⊗H1

et(B ⊗K Q̄,Qp) � H1
p∞f(Vp(

tB))

→H1(OK [
1

p
], Vp(

tB))
exp∗

−−−→ H0(BKp
,ΩBKp/Kp

)

is an element H0(B,ΩB/K). Moreover, if γ1, . . . , γd is a K-basis of
H1(B(C),Q) then

(34) detKR
(perB)

(

zp∞f(γ1)
′ ∧ · · · ∧ zp∞f(γd)

′
)

= Lpf(ψ̄, 1) · (γ1 ∧ · · · ∧ γd).

Proof. The first statement is clear from Prop. 3.1 for ϕ1, . . . , ϕr. Since γ �→
zp∞f(γ) is K-linear, and its scalar extension KR-linear, it suffices to show
(34) for a particular KR-basis {γi} of H1(B(C),Q)R in order to deduce it
for all. Taking {γi} = {γτ} where γτ is a KR = C-basis of VL(ϕ) ⊗L,τ C
Prop. 3.1 gives the equality

detKR
(perB)(zp∞f(γ1)∧· · ·∧zp∞f(γd)) =

∏

τ∈HomK(L,C)

Lpf(ϕ̄τ , 1)·(γ1∧· · ·∧γd).

It remains to recall the identity of L-functions [35, Eq. (5.0), Lemma (4.8)(iii)]

(35) Lpf(ψ̄¹, s) =
∏

τ |K=¹

Lpf(ϕ̄τ , s)

where ι : K → C is the embedding fixed above. One can view the left hand
side as the K-equivariant L-function of tE/F or, since

Vp(
tB) = IndGK

GF
Vp(

tE),

as the K-equivariant L-function of tB = ResF/K
tE over K. On the other

hand, the tuple

(Lpf(ϕ̄τ , s))τ ∈
∏

τ |K=¹

C � LR

can be viewed as the L-equivariant L-function of tB/K. The identity (35)
then amounts to the fact that the norm from LR to KR of the L-equivariant
L-function is the K-equivariant L-function.
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4. The Iwasawa main conjecture

In Section 4.1 we recall the exact notation for the Euler system of elliptic
units used in [44] and match it with the notation already introduced in
Section 3.2 (which is identical to Kato’s notation in [48]). In Section 4.2
we recall the “Λ-main conjecture” of [44] associated to an arbitrary prime
number p and finite order character χ of GK . In Section 4.3 we compute the
image of the basis given by the main conjecture in the determinant of Galois
cohomology of the Galois representation associated to a Hecke character.
This will allow us to complete the proof of Thm. 1.2, resp. Thm. 1.1, in
Section 4.4, resp. 4.5.

4.1. Twisted Elliptic Units

We use the notation of Sections 3.1 and 3.2. Let O be the ring of integers in
a finite extension of Qp and

GK → Gp∞f
χ−→ O×

a finite order character of conductor fχ | f. Following [44, Def. 1.1] we de-
note by O(χ) the free rank one O-module on which Gp∞f acts via χ−1 and
following [44, Def. 4.2] we define

(36) Λ(χ) := O(χ)⊗Zp
Zp[[Γ]].

Then Λ(χ) is a free, rank one module over

ΛO := O[[Γ]] � O[[T1, T2]]

with a continuous ΛO-linear Gp∞f-action.

For nonzero ideals a,m of OK , prime number p and r ≥ 1 so that
(a, 6pm) = 1 and O×

K → (OK/pr)× is injective, define [44, Def. 3.2]

aζm := NK(prm)/K(m)(azprm).

Note that aζm depends on p (in addition to a and m) but not on r. For an
O-basis t(χ) of O(χ) define [44, Def. 3.5]

aζm(χ) := TrK(fχm)/K(m)(aζfχm ⊗ t(χ)) ∈ H1(OK(m)[
1

p
],O(χ)(1)).



The conjecture of Birch and Swinnerton-Dyer 393

Here O(χ) denotes the p-adic étale sheaf j∗O(χ) where

j : SpecOK(m)[
1

pf
] → SpecOK(m)[

1

p
]

is an open embedding and the Galois module O(χ) is viewed as a local system
on SpecOK(m)[

1
pf ]. For any field K ⊆ F ⊆ K(m) define

aζF (χ) := TrK(m)/F (aζm(χ)).

Denote by Kn/K the fixed field of the kernel of Gp∞f → Γ → Γ/Γpn

and
define [44, 5.2]

aζ(χ) := lim←−
n

aζKn
(χ) ∈ H1(OK [

1

p
],Λ(χ)(1))

and

ζ(χ) := (Na− σa)
−1

aζ(χ) ∈ H1(OK [
1

p
],Λ(χ)(1))⊗ΛO

Q(ΛO).

From Section 3.2 recall the norm compatible system

azp∞f := (azpnf)n≥1 ∈ lim←−
K′

OK′ [
1

p
]× ⊗Z Zp � H1(OK [

1

p
],Λ(1)).

Lemma 6. For fχ | f the image of azp∞f under the map

(37) H1(OK [
1

p
],Λ(1)) → H1(OK [

1

p
],Λ(χ)(1))

induced by (36) coincides with

∏

l|f,l�p

(1− χ(l) Fr−1
l ) · aζ(χ).

Similarly, the image of zp∞f coincides with
∏

l|f,l�p(1− χ(l) Fr−1
l ) · ζ(χ).

Proof. By definition

aζKn
(χ) = TrK(fχpn)/Kn

(aζfχpn(χ))

= TrK(fχpr+n)/Kn
(azfχpr+n ⊗ t(χ))
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for an integer r with O×
K → (OK/pr)× injective. So the image of azp∞fχ

under (37) coincides with aζ(χ). Note that (37) factors through the map

H1(OK [
1

p
],Λf(1)) → H1(OK [

1

p
],Λfχ(1))

induced by the projection Gp∞f � Gp∞fχ where Λg := Zp[[Gal(K(p∞g)/K)]]
for an ideal g ⊂ OK . It coincides with the norm map

NK(fp∞)/K(fχp∞) : lim←−
K′⊂K(fp∞)

OK′ [
1

p
]× ⊗Z Zp → lim←−

K′⊂K(fχp∞)

OK′ [
1

p
]× ⊗Z Zp.

Recall the Euler system norm relation [44, Prop. 3.3 (2)]

NK(fp∞)/K(fχp∞)(azfp∞) =
∏

l|f,l�pfχ

(1− Fr−1
l ) · azfχp∞

and observe that χ(Fr−1
l ) = χ(l)−1 ∈ O acts on Λ(χ) via χ(l). Noting that

χ(l) = 0 for l | fχ the proof concludes.

4.2. The main conjecture

We shall also denote by zp∞f the image of zp∞f under the composition of (37)
with the restriction map

H1(OK [
1

p
],Λ(χ)(1))⊗ΛO

Q(ΛO) → H1(OK [
1

pf
],Λ(χ)(1))⊗ΛO

Q(ΛO)

induced by the open immersion j.

Theorem 4.1. For fχ | f there is an equality of invertible ΛO-submodules

ΛO · zp∞f = det−1
ΛO

RΓ(OK [
1

pf
],Λ(χ)(1))

of det−1
ΛO

RΓ(OK [ 1pf ],Λ(χ)(1))⊗ΛO
Q(ΛO).

Proof. By [44, Cor. 5.3] there is an equality of invertible ΛO-submodules

ΛO ·
∏

l|f,l�p

(1− χ(l) Fr−1
l ) · ζ(χ) = det−1

ΛO
RΓ(OK [

1

pf
],Λ(χ)(1))

of det−1
ΛO

RΓ(OK [ 1pf ],Λ(χ)(1))⊗ΛO
Q(ΛO). Together with Lemma 6 this gives

the result.



The conjecture of Birch and Swinnerton-Dyer 395

Remark 8. For primes p � |O×
K | · |Gtor

p∞f| the above main conjecture is equiv-
alent Rubin’s main conjecture [67, 68] (see [44, §5.5]).

4.3. Descent to Galois representation of Hecke characters

Let ϕ be an algebraic Hecke character of K of infinity type (−1, 0) and with
values in the number field L. For a prime number p and place p | p of L let
VLp

(ϕ) be the continuous Lp-linear GK-representation associated to ϕ as in
Section 3.3. Choose a free, rank one GK-invariant O := OLp

-submodule

TOLp
(ϕ) ⊂ VLp

(ϕ)

and let

ρ : Gp∞f → O×

denote the character giving the action of GK on TOLp
(ϕ). Here f is any

multiple of the conductor fϕ of ϕ. Choose a decomposition (24), i.e. a splitting
Gp∞f → ∆ of the inclusion ∆ := Gtor

p∞f ⊆ Gp∞f and define a finite order
character χ as the composite

χ : Gp∞f → ∆
ρ−1|∆−−−→ O×.

Lemma 7. For primes v � p of K we have

(fχ)v = (fϕ)v (= (fρ)v) .

Proof. For v � p the image of the inertia subgroup Iv in Gp∞f is finite,
hence lies in ∆. By the definition of χ we have χ|Iv = ρ−1|Iv and hence
(fχ)v = (fρ−1)v = (fρ)v.

Remark 9. For v | p the conductor of χ depends on the choice of a decom-
position (24) and might differ from (fϕ)v (in either direction).

The following Lemma is a pared down generalization of [31, Lemma 5.7]
from a one-variable to a two-variable Iwasawa algebra. Lemma 5.7 in [31]
computes the descent of a basis of the determinant of a perfect complex over
a one-variable Iwasawa algebra. It might be possible to formulate a descent
Lemma over a two-variable Iwasawa algebra in similar generality but we
found it too confusing to do so for the simple application that we need.

Lemma 8. Let R be a two-dimensional regular local ring with fraction field
F and residue field k, ∆ a perfect complex of R-modules and L ∈ H1(∆) an
element such that the following hold.
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1) H1(∆) is R-torsion free and of R-rank one, H2(∆) is R-torsion and
H i(∆) = 0 for i �= 1, 2.

2) There is an equality of invertible R-submodules

R · L = det−1
R ∆

of

H1(∆)⊗R F � det−1
R (∆)⊗R F.

3) The image L̄ of L under the natural map H1(∆) → H1(∆ ⊗L
R k) is

nonzero.
4) H0(∆⊗L

R k) = 0.

Then H i(∆ ⊗L
R k) = 0 for i �= 1, dimk H

1(∆ ⊗L
R k) = 1 and the image of

L ⊗ 1 under the isomorphism

(det−1
R ∆)⊗R k � det−1

k (∆⊗L
R k) � H1(∆⊗L

R k)

coincides with L̄.

Proof. Let a, b ∈ R be a system of parameters so that k � R/(a, b). The
short exact sequences

0 → H i(∆)⊗R R/a → H i(∆⊗L
R R/a) → H i+1(∆)a → 0

and the fact that H1(∆) is torsion free show that H i(∆ ⊗L
R R/a) = 0 for

i �= 1, 2. The map in 3) factors

H1(∆) → H1(∆)⊗R R/a → H1(∆⊗L
R k)

and hence the image La of L in H1(∆)⊗R R/a is nonzero. By Nakayama’s
Lemma for the discrete valuation ring R(a) and the fact that H1(∆)(a) is
R(a)-torsion free and of R(a)-rank one the element L is a basis of H1(∆)(a).

From 2) we find H2(∆)(a) = 0 and hence that H1(∆⊗L
R R/a)(a) has R(a)/a-

rank one.
We now have the perfect complex ∆′ := ∆ ⊗L

R R/a over the discrete
valuation ring R′ := R/a with uniformizer b and fraction field F ′ = R(a)/a,
cohomologically concentrated in degrees 1, 2, such that H2(∆′) is R′-torsion
and H1(∆′) is of rank one and R′-torsion free. This last claim follows from
the isomorphism

H0(∆⊗L
R k) � H0(∆′ ⊗L

R′ R′/b) � H1(∆′)b
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and assumption 4). By assumption 3) the image of La ∈ H1(∆′) under

H1(∆′) → H1(∆′)⊗R′ R′/b → H1(∆′ ⊗L
R′ R′/b) � H1(∆⊗L

R k)

is nonzero, hence by Nakayama’s Lemma La is an R′-basis of H1(∆′) (as we

already know that H1(∆′) is free of rank one). From 2) we know that L⊗ 1

is an R′-basis of

(det−1
R ∆)⊗R R′ � det−1

R′ (∆
′) � H1(∆′)⊗R′ det−1

R′ H
2(∆′)

and the image of L ⊗ 1 in

(38) (det−1
R ∆)⊗R F ′ � det−1

F ′ (H
1(∆)(a)/a) � H1(∆′)⊗R′ F ′

coincides with La. It follows that the R′-order ideal of the torsion module

H2(∆′) equals R and hence that H2(∆′) = 0. We deduce that

0 = H2(∆′)⊗R′ R′/b � H2(∆′ ⊗L
R′ R′/b) � H2(∆⊗L

R k).

Since La is an R′-basis of

H1(∆′) � det−1
R′ (∆

′)

the image L̄ of La in

H1(∆⊗L
R k)

∼←− H1(∆′)⊗R′ R′/b � det−1
R′ (∆

′)⊗R′ R′/b � det−1
R (∆)⊗R k

is a k-basis. But L̄ is also the image of L⊗ 1 ∈ det−1
R (∆)⊗R k as we saw in

(38). This concludes the proof.

Remark 10. It follows from the proof of Lemma 8 that H2(∆) = 0 and

H1(∆) is free with basis L under the assumptions of Lemma 8.

Proposition 4.1. Let γ ∈ VL(ϕ) be such that its image in VLp
(ϕ) is an

O-basis of TOLp
(ϕ) and let f be a multiple of fϕ. Let zp∞f(γ) be the image of

zp∞f under

H1
p∞f(Zp(1))

γ−→ H1
p∞f(Zp(1))⊗ VLp

(ϕ) � H1
p∞f(VLp

(ϕ)(1))

→H1(OK [
1

p
], VLp

(ϕ)(1)) → H1(OK [
1

pf
], VLp

(ϕ)(1))
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and assume that Lpf(ϕ̄, 1) �= 0. Then there is an equality of invertible O-
submodules

O · zp∞f(γ) = det−1
O RΓ(OK [

1

pf
], TOLp

(ϕ)(1))

of

det−1
Lp

RΓ(OK [
1

pf
], VLp

(ϕ)(1)) � detLp
H1(OK [

1

pf
], VLp

(ϕ)(1))

� H1(OK [
1

pf
], VLp

(ϕ)(1)).

Moreover, the Selmer group

Sel(K,TOLp
(ϕ)(1))

is finite.

Proof. The character χρ is trivial on ∆, hence induces a character χρ : Γ →
O× and a ring homomorphism χρ : Zp[[Γ]] → O. We obtain an induced ring
homomorphism

κ := id⊗χρ : ΛO � O ⊗Zp
Zp[[Γ]] → O

so that there is an O-linear isomorphism of Gp∞f-modules

Λ(χ)⊗ΛO,κ O � TOLp
(ϕ).

This induces an isomorphism of invertible O-modules

(

det−1
ΛO

RΓ(OK [
1

pf
],Λ(χ)(1))

)

⊗ΛO,κ O

�det−1
O

(

RΓ(OK [
1

pf
],Λ(χ)(1))⊗L

ΛO,κ O
)

�det−1
O

(

RΓ(OK [
1

pf
],Λ(χ)(1)⊗ΛO,κ O)

)

�det−1
O RΓ(OK [

1

pf
], TOLp

(ϕ)(1)).(39)

We apply Lemma 8 in the following situation. Denote by q the kernel of κ
and set

R := ΛO,q; ∆ := RΓ(OK [
1

pf
],Λ(χ)(1))q; L := zp∞f.
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Then we have

k � Lp; ∆⊗L
R k � RΓ(OK [

1

pf
], VOLp

(ϕ)(1)); L̄ = zp∞f(γ).

For assumption 1) of Lemma 8 we refer to [48, §15], assumption 2) is the
q-localization of Theorem 4.1, assumption 3) follows from Lpf(ϕ̄, 1) �= 0 and
Prop. 3.1 and assumption 4)

H0(OK [
1

pf
], VLp

(ϕ)(1)) = 0

holds since the GK-action on VLp
(ϕ)(1) is nontrivial. Lemma 8 implies that

the image of zp∞f ⊗ 1 in

det−1
Lp

RΓ(OK [
1

pf
], VOLp

(ϕ)(1)) � H1(OK [
1

pf
], VLp

(ϕ)(1))

under the isomorphisms in (39) coincides with zp∞f(γ). On the other hand
it follows from Theorem 4.1 that zp∞f ⊗ 1 is an O-basis of the invertible
O-module (39). This proves the first part of Prop. 4.1.

Lemma 8 also includes the vanishing of H2(OK [ 1pf ], VLp
(ϕ)(1)) and the

fact that

dimLp
H1(OK [

1

pf
], VLp

(ϕ)(1)) = 1.

Prop. 3.1 then implies that the map in Prop. 2.1a) is nonzero and hence an
isomorphism. The central vertical triangle in (4) shows that

RΓf (K,VLp
(ϕ)(1)) = 0.

By Lemma 1 we have Sel(K,TOLp
(ϕ)(1))Qp

� H1
f (K,VLp

(ϕ)(1)) = 0.

Remark 11. In the situation of Prop. 4.1 the finiteness of the Mordell-Weil
group is due to Coates and Wiles [18], Arthaud [1] and Rubin [65]. For
L = K the finiteness of the Tate-Shafarevich group is due to Rubin [66]
and his approach likely generalizes. The above complementary approach via
Lemma 8 is essentially based on the arguments in [48, §15].

4.4. Proof of Theorem 1.2

We have K ⊆ EndLH0(A,ΩA/K) = L and the CM type of A is induced
from K. Since ϕ(α) = α for α ≡ 1 mod fϕ the character ϕ ◦ NF/K of the
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idèle group of F := K(fϕ) takes values in K, hence arises from an elliptic
curve E/F with CM by OK . By [35, (4.4), (4.8)] and our assumption that
A/K is simple, A is an isogeny factor of B := ResF/K E. An argument as
in the proof of Prop. 3.3 shows that the motivic structure associated to ϕ
in section 3.3 is isomorphic to the rational structure H1(A). We then verify
the assumptions of Prop. 2.2 for all primes p. We may choose

TOLp
(ϕ)(1) � H1(AK̄ ,Zp(1)) � Tp(

tA)

and hence the finiteness of X(A/K)p∞ and of A(K) follow from Prop. 4.1.
The element z := zp∞f(γ) of Prop. 4.1 satisfies the assumptions of Prop. 2.2.
Indeed, assumption a) follows from Prop. 4.1 and assumptions b) and c)
follow from Prop. 3.1 if we choose γ to be an L-basis of H1(A(C),Q) which
is also a OLp

-basis of H1(A(C),Zp). The finiteness of X(A/K) then follows
from the global formula for its cardinality given by Thm. 1.2. This concludes
the proof of Thm. 1.2.

We next specialize Thm. 1.2 to the situation considered in [3]. Let q ≡ 3
mod 4 be a prime number and set K = Q(

√−q). Let H be the Hilbert class
field of K and E/H an elliptic curve with j-invariant j(OK) whose Hecke
character is fixed by all σ ∈ G := Gal(H/K). Set

B = ResH/K E; L = EndK(B)Q.

It was shown in [37, Thm. 15.2.5] that L is a CM field. Let ϕ be the Serre-
Tate character of B/K.

Proposition 4.2. Assume L(ϕ̄, 1) �= 0 and EndK(B) = OL. Then Conjec-
ture (12.3) of [3] holds true for B/K.

Proof. The main work in this proof consists in matching the period of Def. 1
to that defined in [3]. The field Q(j(OK)) has a unique real embedding as the
class number h = [H : K] is odd (see Remark 5). Together with our given
embedding K ⊆ C this gives a distinguished embedding ι : K(j(OK)) =
H ⊆ C. Following [3, (10.2)] define γ and ω, uniquely up to O×

K , by

H1(E
¹(C),Z) = OK · γ; H0(E ,ΩE/OH

) = OH · ω

and put

Ω¹ :=

∫

γ
ι(ω) ∈ C×/O×

K .
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For σ ∈ G we have isomorphisms of OK-modules

(40) HomH(Eσ, E)⊗OK
H1(E

¹σ(C),Z) � H1(E
¹(C),Z); f ⊗ δ �→ f∗δ.

Indeed this can be checked locally at each prime p and for any p there exists
an isogeny f : Eσ → E of degree prime to p. Since

(41) OL = EndK(B) =
⊕

σ∈G

HomH(Eσ, E) · σ

by [37, (15.1.5)] we see that

H1(B(C),Z) �
⊕

σ∈G

H1(E
¹σ(C),Z) = OL · γ

is free of rank one over OL (see also [3, proof of Prop. 10.12]).
The period Ω ∈ L×

R and fractional OL-ideal a(Ω) of Def. 1 for B/K
satisfy

H0(B,ΩB/OK
)⊗OK

D−1
K/Q = Ω · a(Ω) ·HomZ(H1(B(C),Z),Z)

under the Deligne period isomorphism perB, or equivalently

H0(B,ΩB/OK
) = Ω · a(Ω) ·HomZ(H1(B(C),Z),Z)⊗OK

DK/Q

= Ω · a(Ω) ·HomOK
(H1(B(C),Z),OK)

under the KR = C-valued integration pairing. Define

(42) γ∗ ∈ HomOK
(H1(B(C),Z),OK)

by

γ∗(δ) =

{

c if δ = c γ ∈ H1(E
¹(C),Z) with c ∈ OK

0 if δ ∈ H1(E
¹σ(C),Z) with σ �= 1.

Again by (40) and (41) the element γ∗ is a OL-basis of (42). However,
H0(B,ΩB/OK

) need not be free over OL. Following [3] let M = LH be the
composite field, an extension of degree h2 of K. Since H/K is unramified we
have OM � OL ⊗OK

OH . There is an isomorphism of OM -modules

(43) H0(B,ΩB/OK
)⊗OK

OH � H0(BOH
,ΩBOH

/OH
) �
⊕

σ∈G

H0(Eσ,ΩEσ/OH
)
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and we have isomorphisms of OK-modules

HomH(Eσ, E)⊗OK
H0(E ,ΩE/OH

) � H0(Eσ,ΩEσ/OH
); f ⊗ η �→ f∗η.

Again this can be checked locally at each prime p. From (41) we see that

(43) is free of rank one over OM with basis ω. Extending scalars from OK

to OH we then have an identity of free, rank one OM -modules

H0(B,ΩB/OK
)⊗OK

OH = Ω · a(Ω) ·HomOH
(H1(B(C),Z)⊗OK

OH ,OH)

under an HR-valued integration pairing perBH
. Since

∫

δ
ω = 0

for δ ∈ H1(E
¹σ(C),Z), σ �= 1 we have

perBHι
(ω) = Ω¹ · γ∗

where Ω¹ ∈ K×
R ⊂ L×

R � M×
¹ with M¹ = M ⊗H,¹ C. We obtain an identity of

invertible OM -submodules of M¹

OM · Ω¹ = Ω · a(Ω)⊗OL
OM .

The element Ω ∈ L×
R is the period of some K-rational differential on B, for

example we can take

ωB :=
∑

σ∈G

ωσ ∈ H0(B,ΩB/OK
).

In order to compute a(Ω) recall that by [3, (10.8)] there exist units uσ ∈ O×
M

for each σ ∈ G such that

uσ · ωσ = ω; uστ = uτσ · uτ .

Indeed, the differential ωσ is an OH -basis of H0(Eσ,ΩEσ/OH
) and an OM -

basis of (43), by the same reasoning as used above for ω. We have

ωB =
∑

σ∈G

ωσ =

(

∑

σ∈G

u−1
σ

)

· ω =: v−1 · ω
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with v ∈ M× and

(44) Ω = v−1 · Ω¹.

Since (vτ ) = (u−1
τ v) = (v) for τ ∈ G and M/L is unramified the principal

OM -ideal (v) descends to a fractional OL-ideal a(Ω). By [3, Prop. 11.1] there
is an element m ∈ M so that

L(ϕ̄³, 1)

Ω¹
= m³ ∀α ∈ HomH,¹(M,C) = HomK,¹(L,C)

and such that the OM -ideal (m) is G-invariant, hence descends to a fractional
OL-ideal mB. Conjecture (12.3) of [3] states that

(45) mB = gX ·
∏

v

gv/g
1+c
tor

where

gX := |X(B/K)|L; gtor := |B(K)|L; gv := |Φv|L
and c denotes the complex conjugation of L. On the other hand Theorem 1.2
states that

(46) t :=
L(ϕ̄, 1)

Ω
∈ L×; (t) = gX ·

∏

v

gv/g
1+c
tor · a(Ω).

By (44) we have t = mv and (t) = mB · a(Ω) and hence we find that (45)
and (46) are equivalent.

Remark 12. By [58] the assumption L(ϕ̄, 1) �= 0 holds if q ≡ 7 mod 8 and
E = A(q) is the curve of conductor (

√−q) studied in [37]. The condition
EndK(B) = OL may or may not hold. In [3, Sec.3] examples are given for
both maximal and non-maximal EndK(B).

4.5. Proof of Theorem 1.1

The proof of Theorem 1.1 amounts to the conjunction of Theorem 1.2 for all
characters ϕ1, . . . , ϕr in Prop. 3.2, restriction of coefficients from L to K, and
isogeny invariance of the K-equivariant BSD conjecture. We present these
arguments in the following sequence of Lemmas. From now on the notation
of Prop. 3.2 will be in effect. In particular L denotes the semisimple algebra

L = L1 × · · · × Lr
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with maximal order

OL := OL1
× · · · × OLr

.

For the Serre-Tate character ϕ̄ = (ϕ̄1, . . . , ϕ̄r) of tB we denote by

L(ϕ̄, s) := ((L(ϕ̄τ , s))τ ∈
∏

τ∈Hom(L,C)

C � LC

its LC-valued L-function. For any prime number p define a free, rank one
GK-invariant OLp

-submodule

Tp(ϕ) :=
∏

p|p

TOL1,p
(ϕ1)× · · · ×

∏

p|p

TOLr,p
(ϕr) ⊆ Vp(ϕ)

of Vp(ϕ) introduced in Prop. 3.3.

Lemma 9. Let γ ∈ VL(ϕ) be such that its image in Vp(ϕ) is a OLp
-basis of

Tp(ϕ) and let f be a multiple of the conductor fB of B/K. Let zp∞f(γ) be the
image of zp∞f in H1(OK [ 1pf ], Vp(ϕ)(1)) and assume that L(ϕ̄, 1) �= 0. Then
there is an equality of invertible OLp

-submodules

OLp
· zp∞f(γ) = det−1

OLp
RΓ(OK [

1

pf
], Tp(ϕ)(1))

of

det−1
Lp

RΓ(OK [
1

pf
], Vp(ϕ)(1)) � detLp

H1(OK [
1

pf
], Vp(ϕ)(1)).

Proof. This is immediate by combining Prop. 4.1 for ϕ = ϕ1, . . . , ϕr and all
primes p | p of the fields Li.

Lemma 10. Let γ1, . . . , γd be a K-basis of VL(ϕ) whose image in Vp(ϕ) is
a OKp

-basis of Tp(ϕ) and let f be a multiple of fB. Assume that L(ϕ̄, 1) �= 0.
Then there is an equality of invertible OKp

-submodules

OKp
· zp∞f(γ1) ∧ · · · ∧ zp∞f(γd) = det−1

OKp
RΓ(OK [

1

pf
], Tp(ϕ)(1))

of

det−1
Kp

RΓ(OK [
1

pf
], Vp(ϕ)(1)) � detKp

H1(OK [
1

pf
], Vp(ϕ)(1)).
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Proof. Since the map γ �→ zp∞f(γ) is K-linear it suffices to prove Lemma
10 for one particular basis {γi} satisfying its condition. Choosing γi = bi · γ
where bi is a K-basis of L which is also an OKp

-basis of OLp
and γ is as in

Lemma 9 we deduce Lemma 10 immediately from Lemma 9.

By Prop. 3.3 there is an isomorphism of GK-representations

Vp(ϕ) � H1
et(B ⊗K Q̄,Qp)

over Kp. The following is an analogue of Lemma 10 where the GK-stable
OKp

-lattice Tp(ϕ) has been replaced by the GK-stable OKp
-lattice H1(B⊗K

Q̄,Zp). Also recall the isomorphism H1(B ⊗K Q̄,Zp)(1) � Tp(
tB).

Lemma 11. Let γ̃1, . . . , γ̃d be a K-basis of VL(ϕ) � H1(B(C),Q) whose
image in Vp(ϕ) � H1

et(B ⊗K Q̄,Qp) is a OKp
-basis of H1(B ⊗K Q̄,Zp) and

let f be a multiple of fB. Assume that L(ϕ̄, 1) �= 0. Then there is an equality
of invertible OKp

-submodules

OKp
· zp∞f(γ̃1) ∧ · · · ∧ zp∞f(γ̃d) = det−1

OKp
RΓ(OK [

1

pf
], Tp(

tB))

of

det−1
Kp

RΓ(OK [
1

pf
], Vp(

tB)) � detKp
H1(OK [

1

pf
], Vp(

tB)).

Proof. The order EndK(B) is contained in the maximal order OL. By choos-
ing Tp(ϕ) to be the OLp

-span of H1(B ⊗K Q̄,Zp) inside Vp(ϕ) � H1
et(B ⊗K

Q̄,Qp) we can assume that H1(B ⊗K Q̄,Zp) is contained in Tp(ϕ). Define a
finite OKp

[GK ]-module M by the exact sequence

(47) 0 → H1(B ⊗K Q̄,Zp)(1) � Tp(
tB) → Tp(ϕ)(1) → M → 0.

This sequence induces an exact triangle in the derived category of OKp
-

modules

RΓ(OK [
1

pf
], Tp(

tB)) → RΓ(OK [
1

pf
], Tp(ϕ)(1)) → RΓ(OK [

1

pf
],M) →

and an isomorphism of invertible OKp
-modules

det−1
OKp

RΓ(OK [
1

pf
], Tp(ϕ)(1)) � det−1

OKp
RΓ(OK [

1

pf
], Tp(

tB))(48)
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⊗OKp
det−1

OKp
RΓ(OK [

1

pf
],M).

The complex RΓ(OK [ 1pf ],M) has finite cohomology groups and there is an
equality of invertible OKp

-submodules

(49) det−1
OKp

RΓ(OK [
1

pf
],M) =

∏

i

|H i(OK [
1

pf
],M)|(−1)i

Kp
= |M |−1

Kp

of
(

det−1
OKp

RΓ(OK [
1

pf
],M)

)

⊗OKp
Kp � Kp.

Here |N |Kp
denotes the order ideal of a finite OKp

-module N and the last
identity in (49) is Tate’s formula for the Euler characteristic [57, Thm. I.5.1],
or rather its equivariant generalization [30, Thm. 5.1]. If now γ1, . . . , γd is a
basis as in Lemma 10 we deduce from Lemma 10, (48) and (49)

(50) OKp
· zp∞f(γ1) ∧ · · · ∧ zp∞f(γd) = det−1

OKp
RΓ(OK [

1

pf
], Tp(

tB)) · |M |−1
Kp

.

On the other hand, if γ̃1, . . . , γ̃d is a basis as in Lemma 11 the exact sequence
(47) shows that

OKp
· γ̃1 ∧ · · · ∧ γ̃d = |M |Kp

· γ1 ∧ · · · ∧ γd

and K-linearity of γ �→ zp∞f(γ) gives

OKp
· zp∞f(γ̃1) ∧ · · · ∧ zp∞f(γ̃d) = |M |Kp

· zp∞f(γ1) ∧ · · · ∧ zp∞f(γd).

Comparing this last identity with (50) gives Lemma 11.

Since

Tp(
tB) � IndGK

GF
Tp(

tE)

Shapiro’s Lemma gives a canonical isomorphism

RΓ(OK [
1

pf
], Tp(

tB)) � RΓ(OF [
1

pf
], Tp(

tE)).

Furthermore there are canonical isomorphisms

H0(B,ΩB/K) � H0(E,ΩE/F )
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and

H1(B(C),Z) � H1(E(C⊗K F ),Z) �
∏

v|∞

H1(E(Fv),Z).

Lemma 11 and Corollary 9 can therefore be rewritten in terms of E/F as
follows.

Lemma 12. Let E/F be an elliptic curve as in Theorem 1.1, in particular
assume that L(ψ̄, 1) �= 0. Let γ̃1, . . . , γ̃d be a K-basis of H1(E(C),Q) whose
image in H1

et(E ⊗K Q̄,Qp) is a OKp
-basis of H1(E ⊗K Q̄,Zp) and let f be a

multiple of fB = NF/KfE ·DF/K . Put

z := zp∞f(γ̃1) ∧ · · · ∧ zp∞f(γ̃d) ∈ detKp
H1(OF [

1

pf
], Vp(

tE)).

Then there is an equality of invertible OKp
-submodules

OKp
· z = det−1

OKp
RΓ(OF [

1

pf
], Tp(

tE))

of

det−1
Kp

RΓ(OF [
1

pf
], Vp(

tE)) � detKp
H1(OF [

1

pf
], Vp(

tE)).

Moreover

z′ := detKp
(exp∗)(z) ∈ detKp

H0(EFp
,ΩEFp/Fp

)

is an element of detKH0(E,ΩE/F ) such that

detKR
(per)
(

z′
)

= Lpf(ψ̄, 1) · a(z) · detOK

⎛

¿

∏

v|∞

H1(E(Fv),Z)

À

⎠

where a(z) is a fractional OK-ideal prime to p.

Proof. This is immediate from Lemma 11 and Corollary 9. Note that the
assumption

OKp
· γ̃1 ∧ · · · ∧ γ̃d = detOKp

H1(B ⊗K Q̄,Zp)

on the basis γ̃i translates into the fact that

OK · γ̃1 ∧ · · · ∧ γ̃d = a(z) · detOK

⎛

¿

∏

v|∞

H1(E(Fv),Z)

À

⎠
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for some fractional OK-ideal a(z) prime to p.

Proof of Theorem 1.1. It suffices to produce an element z as in Prop. 2.3 for

all prime numbers p. The content of Lemma 12 is precisely that the element

z satisfies the assumptions of Prop. 2.3 for S = {v | pf}. Since it was shown

in Prop. 4.1 that the p-primary part of X(E/F ) (and of E(F )) is finite for

any prime p, the finiteness of X(E/F ) follows from the global formula for its

cardinality given by Prop. 2.3. This concludes the proof of Theorem 1.1.
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