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Abstract—Web browsers are implicitly trusted to handle a large amount of private user information. One such piece of private
information, a user’s browsing history, is maintained by browsers and is used to provide a popular usability feature: Web links are
rendered using different styles depending on whether the URLs they point to have been visited or not. Unfortunately, this feature can be
abused by malicious webpages in order to extract users’ browsing history.

We present new browsing history sniffing attacks through two contention-based side channels which are new in this context: Last-level
CPU cache contention, and GPU execution unit contention. The attacks are robust and can be executed successfully against the
popular Chrome browser. Compared to prior work which uses the rendering performance as a side channel, our work achieves an
attack rate increase of up to 30x. The new attacks are stealthier, because the side channels we use do not slow down the browser’s
rendering rate. In addition, we revisit the existing sniffing attacks based on the rendering performance side channel, and show how
their attack rate can also be increased by a significant amount. Finally, we discuss the root cause of history sniffing attacks and point

out solutions.

1 INTRODUCTION

Users share an extraordinary amount of private and poten-
tially sensitive information with their web browsers. One
of the sources of this information is the user’s browsing
history: Each time a user visits a website, the browser
records the website’s uniform resource locator, or URL, in an
internal data structure. Analyzing the list of sites collected
in this data structure can provide information about the
user’s age, gender, income, location, sexual orientation, and
even the real identity of a user hiding behind a pseudonym.
An attacker who gains knowledge of this information can
then use it for nefarious purposes, such as discrimination
in access to employment, housing and health opportunities,
political persecution, and even the risk of arrest in the case
of users in more oppressive regimes. Browser history sniffing
attacks describe a set of techniques which expose this inter-
nal data structure to an external attacker. The field of history
sniffing has a long history of attacks and defenses [1], [2], [3],
[4], [5], [6].

In the most commonly-considered attacker model, his-
tory sniffing is performed through an untrusted attacker web-
page which the victim is enticed into visiting. One popular
browser feature which attackers often exploit in this setting
is wvisited link styling — to improve usability, browsers com-
monly apply different style rules to visited and unvisited
links. Whereas browsers assign by default different colors
to visited and unvisited links, website designers can further
customize the style by using the : visited CSS selector. To
exploit this feature for history sniffing, the attacker embeds
into the attacker web page a link pointing to a potentially-
visited website. Due to the visited link styling feature, the
browser chooses which style is to be applied to this link
by querying its internal data structure storing the user’s
browsing history. Therefore, the attacker can detect if a

certain site is present in the user’s browsing history by
determining which style was applied by the browser to this
attacker-controlled link element — if the browser applied the
:visited style to the link, this means that the site is in the
user’s browsing history.

In the early years of web browsers, vendors paid little
attention to history sniffing attacks, and there were no
restrictions against programmatically querying the style of
a link element. This direct approach allowed for quick and
reliable history sniffing. Indeed, a 2010 study by Jang et al.
showed that a considerable amount of popular websites had
adopted this approach, and were actively using browsing
history sniffing techniques to profile their users [7]. Over
time, browser vendors became aware that history sniffing
attacks can lead to serious user privacy violations, and
started making it more difficult to launch these attacks.
For example, browsers began blocking direct programmatic
queries to visited link styling, and restricting the selection
of styles which may be applied to the :visited CSS
selector [3], [8]. Nevertheless, all modern browsers still
implement visited link styling, meaning that the underlying
privacy risk remains. As browsers add new features and
new APlIs, and browser vendors aggressively optimize their
code in order to keep the browsing experience fast and
responsive, this added complexity opens the door to new
avenues by which browsing history data can be exposed.

One central class of attacks which is used for history
sniffing are side-channel attacks. These are attacks which
observe indirect effects of the browser’s activity, such as
its response latency or memory activity, to infer informa-
tion about the browser’s secret internal state. In particular,
in the history sniffing context, attackers use side-channel
information to learn whether the browser is performing
activities caused by the visited link styling feature. The key
insight behind many of these attacks is the fact that browsers
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attempt to minimize the number of times they repaint the
screen in order to improve performance. To use this insight,
the attacker creates an HTML link element and makes sure it
points to an unvisited link. This can be done, for example, by
making the link refer to a randomly-generated invalid URL.
Next, the attacker modifies the page such that the link now
points to a potentially-visited website, without changing
any other element of the page. If this potentially-visited
website is, in fact, unvisited, the browser does not need
to repaint the screen. If, however, the website is actually
visited, the browser has to apply visited link styling to the
link element, causing a screen repaint. The attacker attempts
to detect this repaint operation using a side channel.

Two recent results [4], [5] use the rendering performance
side channel to perform history sniffing. The authors of these
works apply a complex CSS style to the text inside the <a>
HTML tag. As a result, when the browser has to recompute
and re-render the text associated with the <a> tag, this
operation has a heavy impact on the hardware and software,
which the attacker can then observe through side channels.

The side channel-based works presented so far had one
major limitation — they all relied on the rendering perfor-
mance side channel, and in particular on the time it takes
to render a link, as their sole source of information. The
low data rate of this side channel (essentially, one measure-
ment every time the page is refreshed), combined with the
continuous reduction in the timer resolution of web-based
timers, reduced the effective speed of existing history sniff-
ing attacks, and thus limited the attack’s effectiveness and
impact. In addition, these methods inherently slow down
the browser’s rendering speed, degrading the browser’s
responsiveness and making the attacks easily detectable by
the victim.

In this paper, we present new browsing history sniffing
attacks through contention-based side channels which are
new in this context: The last-level CPU cache side channel
and the GPU side channel. These side channels have a
higher data rate, allowing the browser’s internal state to be
probed with a higher sensitivity and, as a result, increasing
the effective speed of the attack and reducing its error rate.

As opposed to prior work which uses the rendering
performance as a side channel [4], [5], our work has several
advantages. First, the attacks we explore can be successfully
executed against the popular Chrome browser, which has
advanced mitigations against the timing leaks exploited
by prior attacks. Second, the attack rate of our attacks is
significantly higher: up to 60 URLs/second on the systems
we evaluated, compared to 2 URLs/second reported in ex-
isting works. Third, since the side channels used in our new
attacks do not slow down the browser’s rendering rate, the
attacks are harder to detect. We also revisit existing sniffing
attacks based on the rendering performance side channel,
and show how their attack rate can also be increased by
a significant amount. A key insight of our approach is
that we are able to use the lowest number of calls to the
requestAnimationFrame API (only 1 or 2 calls per tested
URL) in conjunction with leveraging the characteristics of
specific side channels.

As a secondary contribution, we perform a deeper in-
vestigation of the browsing history attack surface: First, we
investigate whether the CPU port contention side channel
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is robust enough to be used for performing history sniffing.
Second, we experiment with our new attacks against the
Firefox browser. While our findings suggest that some leak-
age occurs in both of these cases, developing this leakage
into an attack that can be executed in a reliable fashion
remains an open challenge.

Specifically, our main contributions are:

o We introduce two new attack methods that leverage
micro-architectural side channels to achieve robust, fast
and stealthy history sniffing attacks (Section 4.2).

o We introduce a new side channel technique based on
WebGL and GPU contention (Section 4.4).

o We successfully execute history sniffing attacks in the
Chrome browser using CPU cache-based and GPU-
based side channels, which are new in this context.
Compared to prior work that relies on the rendering
performance side channel, our attacks improve the
attack rate by up to 30x and maintain a high attack
accuracy while remaining stealthy (Section 4.3, 4.4). We
also significantly improve the rate of attacks that rely on
the rendering performance side channel (Section 4.5).

o We explore the effectiveness of port contention side-
channel attacks for history sniffing attacks, and remark
on the challenges of mounting a full attack using this
method. (Section 4.6).

o Finally, we discuss the root cause of history sniffing
attacks based on :visited CSS selector, and point out
the interim and the more fundamental solutions against
these attacks (Section 5).

Our work shows that side channel-based history sniff-
ing can be performed with accuracy, speed and stealth on
modern browsers such as Chrome. This reinforces the need
to solve the privacy issue caused by the visited link styling
feature in a more systematic way.

Artifact Availability. We provide attack pages that im-
plement the attacks described in this work, together with
instructions to reproduce the attacks. Due to the potential
security impact, the artifact repository is only accessible
through a token: git clone https://github_pat_1
1AA3SDAQOyclf801GN7zt_VxowtPOTrKcPvwO52hCjX
FUJjsi5FnbSzgn2um4bKrtrOSS5BZWFZgTquVel5@githu
b.com/mjz3/HistorySniffing2023.git

Responsible Disclosure. As part of a responsible disclosure
process, we have opened bug reports with browser vendors
(Chromium [9], Firefox [10]) and are sharing a draft of this
paper with Google and Mozilla. We are currently working
with these organizations to address the disclosed vulnera-
bilities. Until the responsible disclosure process concludes,
we plan to embargo the results.

2 BACKGROUND
2.1 CSS and Visited Link Styling

A web page contains multiple HTML elements, including
headings, paragraphs, images, links and tables. The Cas-
cading Style Sheet (CSS) language allows the web page to
describe how these elements should be visually presented
to the user. CSS statements consist of a series of rules,
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where each rule contains a selector and a style block. The
selector determines which elements need to be formatted in
a given style, and under which conditions. Selectors may
be used to pick elements based on one of the element’s
properties, such as its type (image, link, heading, etc.), or
its programmer-defined class. Selectors may also be used
to refer to the relationship between elements, for example
selecting the first row in every table, or all links which are
inside a specific area of the page. Finally, and of interest
to this work, selectors can be used to choose elements
based on their dynamic state. One of these last class of
selectors, referred to as pseudo-class selectors in CSS notation,
is the :visited selector, which can be used to define CSS
rules which should only be applied to links which were
previously visited by the user. As we show below, the visited
link styling functionality forms the basis of the attacks we
describe in this work.

Listing 1: HTML page incorporating a style for visited links.

<html>
<head>
<title>My HTML Page</title>
<style>
a:visited {
color: pink;
}
a:visited {
color: red;
}

a:not (:visited) {

color: green;
}
</style>
</head>
<body>
<a href= // /">
link to Example.com</a>
</body>

</html>

After the selector statement, which chooses which ele-
ments are to receive a certain style, CSS rules contain a style
block. The style block defines the actual formatting which
is to be applied to the element matching the selector. Style
blocks can modify the element’s color, size, positioning and
other similar attributes. Some CSS styles are highly resource-
intensive. For example, CSS styles can incorporate SVG
filters, which apply complex image processing algorithms
to elements on the page, as well as box shadows, gradients,
and animations. The HTML specification allows multiple
rules to apply to a single element. If the rules are in conflict,
the specification gives priority to the most specific rule, or
otherwise to the last rule which was defined. Listing 1 shows
a sample HTML page demonstrating visited link styling
applied to <a> elements, which represent links. In this
example, visited links are painted red, whereas unvisited
links are painted green. The first rule, specifying that visited
links will be painted pink, is superseded by an identical rule
which is defined later.

JavaScript code has the ability to modify web
pages after they are loaded. This includes making
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changes not only to the web page’s HTML content,
but also to the CSS rules which define its appear-
ance. These CSS rules can be modified by accessing the
document.styleSheets[].cssRules/(] objeCt space.
Every time a change to the page is made, the browser checks
if the change has a user-visible effect. If so, the browser must
repaint the page to the screen, in order to reflect this change
to the user. In modern browsers, the repaint operation is not
performed immediately after the page is modified. Instead,
browsers attempt to queue multiple changes to the web
page and handle them all at once during a single repaint
event. These repaint events are generally synchronized to
the physical refresh rate of the user’s screen, which is 60
Hz on most systems. This corresponds to one refresh event
every 16.66 milliseconds. Web pages can use a browser-
provided API called requestAnimationFrame to make
sure that animations and other visual updates are synchro-
nized with the browser’s rendering activity. As demon-
strated in Listing 3, the web page passes a function pointer
to the requestAnimationFrame API, and the browser
calls this user-supplied function immediately after the pre-
vious repaint event has finished. The web page can then
use this function to queue any changes it would like to be
applied to the page the next time it is repainted. As observed
by [11] and others, an adversary can gain an insight into the
rendering complexity of the current web page by measuring
the time between consecutive calls to this user-supplied
function. If two consecutive calls are 16.66 ms apart, this
indicates the page was rendered quickly, while larger time
differences suggest that the browser took a longer time to
render the page, causing it to miss at least one physical
refresh event.

2.2 Existing Privacy Protections for Visited Link
Styling

As noted in Section 1, the combination of the fact that the
browser consults its internal history data structure when
choosing how to style links, and the fact that JavaScript was
originally allowed to directly read out the style applied to
any link element, made it simple for malicious websites to
perform history sniffing at a rate of thousands of potentially-
visited websites per second. Browsers have evolved several
mitigations to prevent this threat. The first set of mitigations,
introduced into Firefox in 2010 [3], includes three main
components: First, if JavaScript code attempts to query an
element’s computed style, the browser will always return
style values corresponding to an unvisited status, even if
the element is actually visited. Second, the types of styling
which can be applied to a visited link are severely restricted;
In particular, it is not allowed to use any styles which
load an external resource, or change the position or size
of an element. This prevents history sniffing from being
performed using a collaborating malicious server, which
would log accesses to these external resources, or by query-
ing the position of other elements of the page, which are
potentially affected by the changes to the link element.
Finally, the Firefox rendering code was modified to make
sure the code paths for visited and unvisited links are as
similar as possible. This third mitigation is an initial step
towards preventing rendering performance side channel-
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based history sniffing attacks, which are described in more
detail below.

2.3 Rendering Performance-Based Side Channel At-
tacks

As stated previously, web browsers typically attempt to ren-
der the contents of a webpage to the user’s screen at a rate
of 60 frames per second. If, however, the webpage contains
computation-intensive elements, such as complex styles or
animations, the browser will not be able to update the screen
at this frame rate, and will instead resort to a lower rate. The
browser’s effective refresh rate can be observed in JavaScript
using the requestAnimationFrame APIL This creates a
side-channel leak which can let a malicious web page learn
about the page’s current rendering complexity. To exploit
this side channel for history sniffing, the attacker creates
a page which is simple to render if a link is not visited,
but hard to render if a link is visited. This can be achieved,
for example, by defining a computationally-heavy styling
for visited links. Next, the attacker measures the effective
refresh rate of the browser as it displays the link. A reduced
frame rate indicates that the browser is struggling to render
complex content, suggesting that the link element it is trying
to render is already visited.

Prior privacy attacks based on measuring the ef-
fective frame rate relied on a common approach, in
which the attacker counts the number of times the
requestAnimationFrame API is called in a specified
period of time, e.g., 500ms. During each call to the API, the
href value of an <a>> tag is swapped between a target URL
and a URL that the attacker knows is not visited. The page
records the number of times the API is called. A low number
of calls means the system is busy with a style recomputation
caused by the constant changes to the element’s :visited
status. This means the target URL is visited. In contrast, a
high number of calls means the target URL is not visited.
Prior work on history sniffing which used this approach
achieved an attack rate of 2 URLs/second [5].

One major disadvantage of this approach is its lack of
stealth. Because of the attack’s very design, any time the
browser attempts to render a visited link, its performance
will degrade. Besides from negatively affecting the user, this
allows the attack to be detected. In this paper, we show how
using more refined side-channel approaches can allow his-
tory sniffing without noticeably degrading the performance
of the browser.

2.4 CPU Cache-Based Side-Channel Attacks

Modern computers typically contain one or more central
processing unit (CPU) cores, which are connected to a large
amount of dynamic random-access memory (DRAM). The
access speed of DRAM is considerably slower than the
potential speed of the CPU cores. Thus, connecting the
two modules directly can cause a severe degradation in the
system’s overall performance. To overcome this speed gap, a
series of memory elements, called caches, are placed between
the cores and the DRAM. The cache memory is typically
much faster than DRAM, allowing the CPU cores to carry
out most of its processing tasks without being slowed down
by DRAM. They are, however, smaller in size than the
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DRAM, and can only store a subset of the entire system
memory. Caches are organized in a cache hierarchy, consisting
of a series of progressively larger and slower cache elements
bridging the gap between the CPU and the DRAM. The
largest cache memory on most PCs is called the last-level
cache, or LLC. It is typically several megabytes in size, and
is shared among all of the cores in the CPU. Due to the
limited size of the cache, compared to the overall size of the
DRAM, caches experience contention, which causes active
and recently-accessed code and data to evict some of the
existing contents of the cache when they are loaded into the
cache. Modern CPUs have intricate and highly-optimized
schemes for mapping physical memory into the cache, and
for determining the eviction and replacement policies, which
determine which existing elements of the cache are evicted
to make room for new entries [12].

Cache-based side-channel attacks allow one process
to spy on another process by exploiting contention on
the cache. One building block for these attacks is the
Prime+Probe method [13], [14]. To use Prime+Probe, the
spy process first primes the cache, bringing it to a known
state. Next, the spy waits for the victim to perform a task
which potentially accesses the cache. Finally, the spy probes
the cache, checking whether the victim’s activity changed
the cache state. High-resolution Prime+Probe attacks can be
used to monitor accesses to an area of memory as small
as 64 bytes, with a temporal accuracy of nanoseconds.
Unfortunately, this type of attack requires the attacker to
understand the virtual and physical address space layouts
of the system, and to have access to high-resolution timers.
Both of these capabilities are generally not available in a
web context without complex and time-consuming prepro-
cessing steps [15].

To make cache attacks more feasible in a web setting,
Shusterman et al. introduced in 2019 the cache occupancy
channel, a coarse-grained method which measures the time
required to access the entire cache [16], based on the work
of Maurice et al. [17]. Since the cache occupancy channel
operates over the entire cache, it does not require that the
attacker understand the system’s cache mapping strategies,
nor does it require high-resolution timers. Its drawback is a
dramatically reduced temporal and spatial accuracy, which
makes it less useful for fine-grained attacks, such as attacks
on cryptographic algorithms. In settings where the timer
resolution is further reduced, Shusterman et al. proposed
an additional method, called sweep counting. Instead of mea-
suring the time needed to access the cache once, the attacker
counts the number of times the cache can be accessed in a
specified time interval.

2.5 GPU-Based Side Channel Attacks

Modern computers offload their rendering tasks to a ded-
icated graphics processing unit, or GPU, which is either
part of the system on chip (SOC) or located in a discrete
external chip. The GPU contains multiple execution units,
or cores, connected to a high-speed shared memory. This
architecture lets the GPU perform multiple rendering tasks
in parallel. Web pages may interface with the GPU using
WebGL [18], a portable variant of the native code OpenGL
APIL WebGL allows web developers to write image render-
ing code fragments, called shaders, and submit them to the
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GPU. These shaders are written in the GL Shader Language
(GLSL) format. When the web page calls a WebGL API spec-
ifying tasks which use these shaders, they are dispatched to
the multiple execution units on the GPU and executed in
parallel, asynchronously of the tasks running on the main
CPU. The code running on the CPU can then observe the
execution time of these tasks, either directly by using a timer
query, or indirectly by measuring the time it takes to render
them to a CPU-side data structure.

Just like the CPU’s cache, the collection of execu-
tion units on the GPU is a limited resource, which is
shared among multiple competing processes. Naghibijouy-
bari et al. [19] showed how native OpenGL code, with access
to the GPU’s memory allocation and performance count-
ing API, can use this shared resource to perform several
privacy-violating attacks, including website fingerprinting,
user activity tracking and keystroke timing inference. In
the web context, Laor et al. [20] showed how WebGL can
be used to perform individual device fingerprinting, by
measuring the performance of individual execution units in
the GPU. Laor et al.’s attack used multiple execution rounds,
where at each round, one execution unit is tasked with a
relatively heavy operation through shaders, while the other
execution units remain idle. Since all the execution units run
in parallel, the total time it takes to complete all the tasks
corresponds directly to the time it takes to complete the task
in the unit with the heavier operation. As Laor et al. showed,
the GPU execution units may have different performance
due to the hardware manufacturing process, and as a result,
these measurements for a set of execution units can be
used to generate a unique profile for each device. In this
work, we show how to construct a contention-based GPU
side channel using WebGL, allowing malicious websites to
perform history sniffing. By employing a simple GPU task
to measure ongoing contention, our approach eliminates the
need to utilize shaders for the attack.

3 THREAT MODEL

The attacks presented in this work assume that the attacker
has partial or full control over a malicious website, and
that the victim can be induced to visit this website. This
model can be realized through embedded malicious ad-
vertisements injected into otherwise-innocent web pages,
through compromise of a web server in active use by the
user, or by inducing the user to click on a link sent through
a phishing campaign.

The adversary is not allowed to install any software
on the victim’s machine, nor is the adversary capable of
observing network traffic entering and exiting the victim’s
machine. For clarity of presentation, we assume that the ad-
versary has some prior knowledge of the victim’s hardware
configuration, and in particular of the size of the victim's
last-level cache. Existing works show how this parameter
can be detected remotely, through the use of side-channel
attacks [21]. All of the attacks presented in this work target
a recent version (v109) of the Google Chrome browser. Al-
though we found evidence which suggests that the Firefox
browser leaks some information about a user’s browsing
history, developing this leakage into an attack that can be
executed in a reliable fashion remains an open challenge.
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We did not attempt the attacks against other browsers such
as Safari or Edge.

The attacker is interested in mounting a closed-world
browsing history sniffing attack against the victim. In this
setting, we assume that there is a finite number of web-
sites that are of interest to the attacker, denoted as W =
{Wi---W,}. The victim has previously visited a certain
subset of these websites, denoted as S C W. The victim may
have also visited an arbitrary number of websites outside
of W, but these cannot be detected by the attacker. The
attacker, using one of the side-channel methods described
below, attempts to discover which of the websites were
visited by victim. The outcome of the attack is a set Scw.
In the case of a successful attack, S should be as similar as
possible to S.

The primary performance indicator used to evaluate the
attack is its accuracy. In the evaluation presented in this
paper, the test set is always balanced — it is constructed such
that half of the websites are visited and half not visited, i.e.
[W\ S| = |S|. In this setting, the best strategy for a naive
classifier would yield a base rate accuracy of 50%, and the
accuracy can be directly defined as the proportion of URLs
correctly predicted as belonging to either S (true positive)
or W\ S (true negative):

S NS+ (WA S)n (W 5)]
(W

In cases where the test set is unbalanced, additional
metrics such as precision, recall, and F1 score can be used as
a replacement for direct accuracy measurements.

An additional important metric which we evaluate is
the attack rate, measured in URLs per second. Since the
attacker must declare the set W of sites of interest ahead of
time, a higher attack rate immediately translates into a more
effective attack, since more websites can be considered in a
fixed time budget.

A final indicator we consider is the attack’s detectability.
An attack which creates significant visual artifacts on the
victim’s screen, or that noticeably slows down the victim’s
browser, will be less effective than a more stealthy attack.

Accuracy =

4 NEw BROWSING HISTORY SNIFFING ATTACKS
4.1 The Attack Page

As stated in Section 3, the attacker begins the attack with
a list of URLs W. The attacker’s objective is to learn which
of the URLs in that list have been visited by the victim (i.e.,
are in the victim’s browsing history). The attacker induces
the user to visit an attack page, which contains one or more
<a> tags. Next, the attack page tests each URL W; in W
one by one, by first setting the href attribute of the <a>
tag to point to WW;, and then trying to detect whether visited
link styling was applied to the <a> tag. Since direct mea-
surements are disallowed by modern browsers, the attacker
carries out this task by using JavaScript to measure the side
channel.

Listing 2 outlines key components of the attack page that
are common among the different side channel-based attacks
described in this paper. Lines 5 and 6 define how the <a>
tag is styled for unvisited and visited URLs. Line 10 defines
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the <a> tag, including its class name accessible through
the styles, its href attribute, and its text.

Listing 2: The history sniffing attack page.

1| <html>

2 <head>

3 <title>History Sniffing</title>

4 <style>

5 .attack { ... }

6 .attack:visited { ... }

7 </style>

8 </head>

9 <body>

10 <a class= href= > SOME
TEXT </a>

11 <script id= >

12 - Measure the side channel

13 </script>

14 <script id= >

15 - Setup callback for repaint that

16 1) updates the URL of the <a> tag

17 2) collects the measurement

18 - Predict the URL state based on the

collected measurements

19 </script>

20 </body>

21| </html>

The code referenced in Line 12 is responsible for the
side-channel measurements. A worker thread is used so
that the side channel measurements can run in parallel and
do not block the main thread. We implemented multiple
variants of this code in our work, each of which evaluated
a different side channel: CPU cache, GPU contention, and
CPU port contention. In all cases, the worker thread uses
a SharedArrayBuffer [22] in order to share the recorded
measurements with the main thread. In addition to these
measurement methods, we also reproduced the state-of-the-
art rendering performance side channel, which does not
require an extra worker thread.

The main script consists of two major parts:
Lines 15-17 define the callback function for
requestAnimationFrame, which updates the href
attribute of the <a> tag and collects the measurements
recorded in the worker thread; Line 18 predicts the URL’s
visited state based on the collected measurements.

4.2 Attack Methodology

Using the requestAnimationFrame API
method. As mentioned in Section 2, the
window.requestAnimationFrame method serves as the
medium between the web browser and the webpage. It
allows web developers to define what animations they wish
to perform before the next repaint. Developers can define
their code in a callback function and pass this callback as
an input argument to requestAnimationFrame. The
browser will then invoke this callback function right before
the next frame repaint.

The requestAnimationFrame method can also be
used for history sniffing attacks, as demonstrated in List-
ing 3. The JavaScript code defines the onAnimate callback

Listing 3: Using the window.requestAnimationFrame
method for history sniffing attacks.

<script>
function onAnimate () {
// collect the measurement
// modify the <a> tag
requestAnimationFrame (onAnimate) ;
}
requestAnimationFrame (onAnimate) ;
</script>

RO WN =

function and calls the requestAnimationFrame API to
register this callback (Line 7). As part of rendering the next
frame, the browser calls onAnimate right before repainting
that next frame. In our side channel-based history sniffing
attack, the onAnimate callback performs three main opera-
tions: First, it collects the side channel measurement; Next,
it modifies the <a> tag based on a specified pattern, as de-
scribed below; Finally, it registers the function onAnimate
as a callback for requestAnimationFrame (Line 5), so
that the function is called again by the browser when it
renders the next frame.

As explained in Sec. 2.3, prior work used the number
of calls to requestAnimationFrame as a side channel
to learn the visited status of a URL [4], [5]. We devise
two new attack methods that significantly improve the
attack’s rate, compared to the existing state of the art,
from 2 URLs/second to nearly to 60 URLs/second. The
novelty of our approach consists of reducing the number of
requestAnimationFrame API calls to a minimum of just
one or two calls per tested URL, in conjunction with leverag-
ing various types of side channels. The first method (Method
A) makes two requestAnimationFrame API calls per
tested URL, achieving an attack rate of 30 URLs/second.
It is capable of maintaining a high attack accuracy of close
to 100%,

The second method (Method B) makes only one
requestAnimationFrame API call per tested URL, yield-
ing an attack rate of up to 60 URLs/second. This increase in
attack rate results in a reduction in accuracy, which can be
mitigated by periodically resetting the <a> tag at the cost
of a slightly reduced rate, as described below. The optimal
working point we report this method depends on the par-
ticular type of side channel used in the attack: when using
the CPU cache contention side channel, Method B yields an
attack rate of 52.5 URLs/second and an attack accuracy of
86%, while using the GPU contention side channel yields an
attack rate of 59.07 URLs/second with an accuracy of 99.6%.
This suggests that Method B is always preferable for robust
side channels.

Method A: two calls to the requestAnimationFrame
API. Each time the attack page updates the href attribute
of the <a> tag to a new URL, the :visited status of the
<a> tag either remains the same or changes. If it remains
the same, the browser does not recompute the <a> tag’s
style. If the : visited status changes, the browser has to re-
compute the style. This computation is observable through
side channels during the interval starting from when the
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href attribute is set to the new URL to the time the
requestAnimationFrame API is called again. However,
the mere fact that the : visited status has changed or not
is not enough to determine if the new URL is visited by
the user. It also depends on the status of the previous URL,
i.e. the value of the href attribute before updating to the
new URL. In order to overcome this dependency, the href
is initialized before each measurement to a URL the attacker
knows is not visited by the user. Since the previous URL
is always unvisited, a change in the status means the new
URL can be labeled as visited, whereas no change in the
status means the new URL can be labeled as unvisited.
Figure 1 demonstrates how the attack works. The at-
tacker’s goal is to find out whether the user currently
browsing the attacker’s website has visited each of the
following URL addresses: google.com, youtube.com,
pornhub.com, facebook.com and reddit .com. The at-
tack page contains an <a> tag with its href attribute
initialized to notvisitedl368.foo (ie, a randomly-
generated URL which was, in all likelihood, not visited
by the user). Next, the URL is changed to google.com.
If the user has visited google.com, the status of the
<a> tag changes from unvisited to visited. This trig-
gers style recomputation, which the browser finishes at
16.66ms and becomes ready for the next call to the
requestAnimationFrame APIL At this point, the URL
is reset to notvisited9054. foo, another randomly gen-
erated URL that was not visited by the user. At this
time, the status changes from visited to unvisited. The
browser recomputes the style again, and finishes the style
recomputation at 33.33ms at the end of the second call to
requestAnimationFrame. Thus, even though the status
of the google.com URL is not directly visible to the attack
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Fig. 1: Method A of history sniffing attacks: two calls to the
requestAnimationFrame API We use the standard color
convention used by browsers to denote visited/unvisited
URLs: blue for unvisited links and purple for visited links.

If there is a high resource contention during the interval
between 0 and 33.33ms, it means that the URL status has
changed from unvisited (notvisitedl1368.foo) to vis-
ited (google.com), and the attacker labels google.com
as visited. In addition, at 33.33ms, the <a> tag is in a
fresh, unvisited state, ready to test with next URL. Similarly,
youtube.com and facebook.com are labeled as visited
by observing high resource contentions during the intervals
33.33-66.66ms and 99.99-133.33ms.

The other case is when the new URL is unvisited. Con-
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sider pornhub.com as an example. At 66.66ms, the URL
changes from notvisited9834.foo to pornhub.com
Since both of these URLs are unvisited, the : visited status
of the <a> tag does not change, and the browser does
not recompute the style. When requestAnimationFrame
is called next at 83.33ms, the URL changes from
pornhub.com to notvisited0168.foo. Again, there is
no change in the state and so the browser does not recom-
pute the style. This results in a low resource contention
during the interval between 66.66 and 99.99ms, and as
a result, pornhub.com is labeled as unvisited. Similarly,
reddit.com is labeled as unvisited by observing low re-
source contention during the interval between 133.33 and
166.66ms.

Given the 60fps rendering rate in web browsers, the
requestAnimationFrame API is called 60 times in one
second. Since Method A requires two calls to the API to
determine the visited status of each URL, the attack can
test 30 URLs in one second, a significant improvement
compared to 2 URLs in prior work.

Method B: one call to the requestAnimationFrame APL
To further improve the attack rate, we devise a second attack
method. Unlike Method A, which relies on a URL that the
attacker knows was not visited by the user, Method B relies
on the predicted status of the previous URL, and calls the
requestAnimationFrame API only once for each tested
URL. As such, the attack page can now test up to 60 URLs
in one second, reaching the theoretical limit for attacks
that rely on calling the requestAnimationFrame APL
However, in Method B, the attack page only has 16.66ms
to measure high or low resource contention, compared to
33.33ms in Method A. As a result, measurements are pos-
sibly less accurate. An incorrect labeling of a tested URL’s
status will propagate to subsequent tested URLs, resulting
in the incorrect labeling of their visited status. To overcome
this effect, the attack page resets the <a> tag to an unvisited
URL periodically, correcting the occasional wrong labeling.

Figure 2 demonstrates this approach in more detail.
The href value is initialized to notvisited7329.foo,
a URL that was not visited by the user. Then, the attack
page changes it to google.com and measures the resource
contention during the interval between 0 and 16.66ms.
High contention means that the URL status has changed.
At this point, it is also known that the previous URL
(notvisited7329.foo) has not been visited by the user.
The combination of these two pieces of information leads
the attacker to learn that the <a> tag’s URL changed its
status from unvisited to visited. As a result, google.com
is labeled as visited. Then, at 16.66ms, the attack page sets
the URL to youtube.com, and observes a high resource
contention during the interval between 16.66 and 33.33ms,
meaning that the status has changed. Knowing that the
previous URL (google.com) was visited and the new URL
(youtube. com) changed the status, the attacker learns that
youtube.com was not visited.

One disadvantage of Method B is that it is more sensitive
to errors than Method A. For example, consider a case
where youtube.com is unvisited and pornhub.com is
visited. As illustrated in Figure 2, at 33.33ms, the URL
is changed from youtube.com (an unvisited URL) to

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 26,2025 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3538541

Resource

High High Low High Low L High High L L
confention ig ig] ow Higl ow Low Higl ig ow Low
g g g
& = | € &
219|518l 5|g|e|8le|E|S
n 3 3 9 MR o 9| IS S| S
~ J o < & ) ] = = @ )
Slw| 2| 212|858 2|8/|%
S ) 3]
E = £
Time (ms) 0 1666 3333 49.99 66.66 8333 99.99 116.66 13333 149.99 166.66

Fig. 2: Method B of history sniffing attacks: one call to the
requestAnimationFrame APIL We use the standard color
convention used by browsers to denote visited/unvisited
URLs: blue for unvisited links and purple for visited links.

pornhub.com (a visited URL), but the resource contention
during 33.33-49.99ms was wrongly measured as low. As
a result, the attack page incorrectly labels pornhub.com
as unvisited. Even worse, this incorrect labeling will affect
the subsequent URLs. For example, at 49.99ms, the URL is
changed from pornhub. com (wrongly labeled as unvisited)
to facebook.com and a high resource contention is ob-
served, thus wrongly labeling facebook.com as visited.
To stop this error from propagating further, the URL is reset
at 66.66ms to notvisited5643.foo, which is known to
be not visited. Next, the URL changes to reddit.com and
a low contention is observed during 83.33-99.99ms interval,
indicating that the state has not changed. Knowing that the
previous URL (notvisited5643.foo) was not visited by
the user, the attack page correctly labels reddit.com as
unvisited. The example shown in Figure 2 resets the URL
after testing every 4 URLs, but the exact URL reset number
should be determined based on the level of accuracy and
reliability of the side channel used for the attack.

Measurement Methodology. We now describe the method-
ology used to perform the measurements in the remain-
der of this attack section (i.e., Sections 4.3, 4.4, 4.5).
The experiments were conducted under Chrome v109.0
on a Lenovo ThinkPad P14s Gen 1 with Intel(R)
Core(TM) 17-10610U CPU @ 1.80GHz, running Mi-
crosoft Windows 11 Pro. We used location.href for vis-
ited URLs and notvisited$Xs. foo for unvisited URLs,
where $X$ is a randomly generated number.

The attack requires a calibration step, in order to de-
termine some parameter values that lead to high attack
accuracy or to a good tradeoff between attack accuracy and
attack rate on specific devices (recall that our threat model
assumes that the attacker has some prior knowledge of the
victim’s hardware configuration). These parameters are the
size of the text inside the <a> tag (for Methods A and B),
and the URL reset value (for Method B). The calibration step
can be executed offline, either manually or in an automated
fashion.

The online portion of the attack proceeds in three phases:

Phase 1: The attack page first establishes baseline values,
which will be used to label the target URLs. For Method
A, the page performs 10 measurements for URLs that are
known to be in a visited state, followed by 10 measurements
for URLs that are known to be in an unvisited state. The
medians of these two sets of measurements are used as
baseline values for the visited and unvisited states. For
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Method B, the attack page performs 10 measurements for
scenarios that are known to change the visited status of the
<a> tag’s URL, followed by 10 measurements for scenarios
that are known not to change the URL’s visited status. The
medians of these measurements are used as baseline values
for the changed and not-changed states.

Phase 2: The attack page then tests 100 target URLs,
out of which 50 are visited and 50 are unvisited, shuffled
at random. For Method A, each tested URL is labeled as
visited or unvisited, depending on whether the side-channel
measurement is closer to the visited or to the unvisited
baseline value, respectively. For Method B, for each tested
URL, the attack page compares the measured value with the
two baseline values to determine if the state has changed or
not. Combining this information with the : visited status
of the previous URL, the web page decides whether the
tested URL is visited or not.

Phase 3: Finally, the attack page reports the accuracy of
the attack on these 100 target URLs. All of the reported
attack accuracies and attack rates represent the mean over
5 different experiments !. In a real-world attack, the attack
page would also report the determined visited status of the
target URLs.

4.3 CPU Cache-Based Side Channel Attacks

Prior work demonstrates the effectiveness of the CPU cache
side channel in multiple privacy attacks including web-
site fingerprinting and targeted deanonymization [16], [23].
Here, we use sweep counting, a side channel technique that
uses a buffer as large as the size of the last level cache.
This technique records the number of times it can access,
i.e. sweep, the entire buffer in a specified time interval; if the
cache is occupied with other system activity, it takes a longer
time to sweep the buffer. Thus, a low number of buffer
sweeps indicates a high contention in the cache, whereas
a high number of buffer sweeps indicates a low contention.

To leverage this side channel in the context of history
sniffing attacks, we employ a very large text inside an <a>
tag. The code snippet in Listing 4 demonstrates how the
attack page applies simple CSS styles such as font-size
and color on the <a> tag.

Listing 4: CSS style for the attack page that uses a CPU cache
contention-based side channel.

<style>
.attack {
font-size: 2px;
color: white;

}
.attack: wvisited ({

color: #feffff;
}
</style>
<a id= class= >
[VERY LARGE TEXT]
</a>

1. We have opted not to report the standard deviation because the
accuracy values that we obtained were quite similar.
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URL Text Length 28K 29K 30K 31K 32K
Accuracy 91.2% 91% | 96.4% | 93.8% | 96.8%
URL Text Length | 33K 34K 35K 36K 37K
Accuracy 97.6% | 944% | 92.6% | 91.6% | 98%
URL Text Length 38K 39K 40K 41K 42K
Accuracy 98.4% | 98.6% | 95.8% | 96.6% | 92.4%

TABLE 1: Attack accuracy with Method A using the CPU
cache side channel. The text length ranges from 28K to 42K
characters. The attack rate is 30 URLs/second.

Different shades of white color are used for visited and
unvisited states to hide the <a> tag from users and keep
the attack stealthy. Whenever the visited status changes, the
browser recomputes the CSS styles on the large text. This
results in a high cache contention, which can be observed
through sweep counting. When the visited status does not
change, on the other hand, cache contention is low.

Method A. The attack page performs sweep counting
measurements during 33.33ms intervals. As the level of
cache contention relies on the text length, we experiment
in the calibration step with texts of different lengths to find
which one is more effective. We covered a large search
space for the text length by first experimenting with text
lengths that are powers of two, starting with 512 characters
up to 128K characters. Among them, the experiment with
32K text length had the highest accuracy of 96.8%. We
then experimented with text lengths surrounding 32K, in
multiples of 1K characters, as shown in Table 1. Among
them, 37K, 38K and 39K yield the highest accuracy, whereas
accuracy decreases for other lengths in this range. As a
result, we chose the text length in the middle of this range,
38K, which yields an attack accuracy of 98.4% and an attack
rate of 30 URLs/second. To determine the root cause of this
accuracy, we performed two ablation experiments. In the
first, we reduced the text size to 0 characters, and obtained
an accuracy no better than a random guess. In the second
experiment, we changed the cache sweeping code such that
it did not make any cache accesses. In this latter case,
accuracy was significantly degraded, yielding accuracies as
low as 60%. This negative result, while perhaps intuitive,
seems not to conform to the claims of Cook et al. from [24].

Method B. The attack page takes sweep counting mea-
surements during 16.66ms intervals. As a result of our prior
experiments with Method A, we chose 38K as the text
length. We then experiment with various values for the URL
reset, which is specific to Method B. After experimenting
with powers of two between 1 and 64, the top accuracy of
87.6% was obtained for a URL reset value of 4. A higher
URL reset value yields a higher attack rate, but results in
a lower attack accuracy. We then experimented with values
surrounding 4, from 3 to 10, as shown in Table 2. Most of
these had an accuracy above 80%. As a tradeoff between
attack accuracy and attack rate, we chose to reset after every
7 URL tests, yielding an accuracy of 86% and a rate of 52.5
URLs/s.
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URL Reset Value 3 4 5 6
Accuracy 78% | 87.6% | 84% | 90.6%
Rate (URL/s) 45 48 50 51.43
URL Reset Value 7 8 9 10
Accuracy 86% | 81.8% | 72.8% 79%
Rate (URL/s) 52,5 | 53.33 54 54.54

TABLE 2: Attack accuracy and attack rate with Method B
using the CPU cache side channel. The text length is 38K
and the URL reset value ranges from 3 to 10.

4.4 GPU-Based Side Channel Attacks

Inspired by the sweep counting technique that measures the
CPU cache contention side channel, we now introduce a
new technique based on GPU contention. As described in
Sec. 2.5, prior work used WebGL for device fingerprinting
by taking advantage of the fact that GPU execution units
may have different performance due to the hardware manu-
facturing process [20]. Here, we revisit this attack vector, and
introduce a novel side channel based on GPU contention
and WebGL that can be used to learn about other activities
in the system. We rely on the fact that a GPU busy with
style computations would take a longer time to respond
to WebGL queries. Thus, the attack page tasks the GPU
with a simple operation, and measures the time it takes
to complete this task. A slow or fast completion of this
simple task indicates whether the GPU is engaged with
heavy operations from other processes at the same time.

We use computation-heavy CSS styles on the <a> tag
to impose a heavy workload on the GPU when a style
recomputation occurs. These CSS styles are similar to those
used by prior work [4], [5]. More specifically, we use
transform:rotateY () as a mechanism to cause future
animations and filters to be performed on the GPU [25], as
described in Listing 5.

A worker thread defined in the attack page uses WebGL
code to measure GPU contention, as described in Listing 6.
First, in the prepare () function, the webpage uses the
OffscreenCanvas interface [26] to initialize an empty
one-pixel canvas that can be rendered off screen. Then, in
the go () function, a call to the convertToBlob method
of this interface causes all the instructions currently in the
WebGL pipeline to execute and ultimately return a binary
object representing the image contained in the canvas, as
in [20]. The attack page calls convertToBlob repeatedly,
and counts the number of times this call can be completed
during a specified time interval. A low count means that the
GPU experiences high contention due to other operations
in the system such as CSS style computations. In contrast, a
high count means the GPU experiences low contention. This
approach differs from previous work in that it measures
the GPU’s ongoing contention, rather than its hardware
capabilities. As a result, this new technique can be used with
history sniffing attacks, similar to the cache sweep counting
technique used in Sec. 4.3. Interestingly, our method works
even if the attack page dispatches no OpenGL drawing
operations to the GPU, and does nothing but repeatedly call
convertToBlob.

We evaluate the GPU attack using two methods, sim-
ilar to the CPU cache attack. Method A. The attack page
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Listing 5: CSS style for the attack page that uses a GPU
contention-based side channel.

<style>
.attack {
transform:
perspective (100px)
filter:
contrast (200%) ;
drop-shadow (16px 1l6px 10px #fefefe
)i
saturate (200%) ;
text-shadow: 1l6px 1l6px 10px #
fefefe;

rotateY (37deq) ;

outline-width: 24px;
font-size: 2px;
text—-align: center;
display: inline-block;
color: white;
background-color: white;
outline-color: white;
}
.attack: wvisited {
color: #feffff;
background-color: #feffff;
outline-color: #feffff;
}
</style>
<a id= class= >
[VERY LARGE TEXT]
</a>

Listing 6: Measuring the GPU contention side channel.

<script>
async function prepare() {
offscreenCan = new OffscreenCanvas
(1,1);
offscreenCan.getContext ( ’
)i

async function
count = 0;
start = performance.now();
while (performance.now() - start <
interval) {
blob = await offscreenCan.
convertToBlob () ;
count++;

go (interval) {

}

return count;

}
</script>

performs GPU contention measurements during 33.33ms
intervals. It works similar to Method A of Section 4.3, except
for using the CSS style shown in Listing 5 and a differ-
ent side channel (GPU contention instead of CPU cache
contention). In the calibration step, we first experimented
with text lengths which are powers of two, starting with
512 characters up to 16K characters. Among them, the
experiment with 4K text length had the highest accuracy
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URL Text Length 2K 3K 4K 5K
Accuracy 61% | 52.2% | 99.4% | 99.8%
URL Text Length 6K 7K 8K 9K
Accuracy 99.8% | 98.2% | 85.8% 75%

TABLE 3: Attack accuracy with Method A using the GPU
contention side channel. The text length ranges from 2K to
9K characters. The attack rate is 30 URLs/second.

URL Reset Value 2 4 8
Accuracy 80.2% 92% 95.6%
Rate (URL/s) 40 48 53.33
URL Reset Value 16 32 64
Accuracy 98.4% | 99.6% | 99.6%
Rate (URL/s) 56.47 | 58.18 | 59.07

TABLE 4: Attack accuracy and attack rate with Method B
using the GPU cache side channel. The text length is 5K and
the URL reset values are powers of two from 2 to 64.

of 99.4%. We then experimented with other text lengths
surrounding 4K, in multiples of 1K characters, from 2K to
9K, as shown in Table 3. Among them, the 5K and 6K text
lengths yielded the highest accuracy of 99.8% with an attack
rate of 30 URLs/second.

Method B. The attack page takes measurements during
16.66ms intervals. It works similar to Method B of Sec. 4.3,
except for the CSS styles and the side channel. We chose 5K
as the text length, based on the experiments with Method A.
We then experiment with various URL reset values, namely
powers of two between 1 and 64, as shown in Table 4. Most
of these had an accuracy above 90%, suggesting that the
GPU contention side channel is highly robust and accurate.
Still, to compensate for occasional inaccurate measurements
while considering the tradeoff for attack rate, it seems useful
to reset the URL to an unvisited URL after every 32 or 64
tests. This yields an attack accuracy of 99.6% and an attack
rate of 58-59 URLs/second.

4.5 Rendering Performance-Based Side Channel At-
tacks

Prior work has already experimented with the rendering
performance side channel, as described in Sec. 2.3. We take
a different approach to this attack, compared to prior work,
by measuring the time it takes to complete a small, constant
number of requestAnimationFrame API calls. This ap-
proach still impacts the browser’s rendering performance,
limiting the stealthiness of the attack, but it leads to an
improved attack rate compared to prior work [4], [5].

Method A. In Listing 3, the attack page uses the
JavaScript performance.now () API to record the start
time (Line 3) and sets the href attribute of the <a> tag
to the new URL (Line 4). The next call to onAnimate, sets
the href to an unvisited URL (Line 4). In the next call to
onAnimate, the attack page records the end time (Line 3).
The difference between the start and end times is used as
a side channel to measure the rendering performance and
predict the visited status.

We used the CSS styles described in Sec. 4.3, but with
a much larger text length to overwhelm the browser’s 60
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URL Text Length | 128K | 256K | 512K | IM
Accuracy 75.8% | 86% | 95.4% | 99%
Rate (URL/s) 26.54 | 15.61 | 588 | 3.13

TABLE 5: Attack accuracy and attack rate with Method
A using the rendering performance side channel. The text
length ranges from 128K to 1M characters.

URL Reset Value 2 4 8 16
Accuracy 77.8% | 70% | 67.6% | 51.4%
Rate (URL/s) 22.04 | 30.11 | 30.22 | 34.19

TABLE 6: Attack accuracy and attack rate with Method
B using the rendering performance side channel. The text
length is 256K and the URL reset values are powers of two
from 2 to 16.

fps rendering rate and induce a timing side channel. For the
calibration step, we experimented with text lengths that are
powers of two, between 512 and 1M characters. We noticed
that for lengths between 512 and 64K, the Chrome browser
preserved the 60fps frame rate and the attack accuracy
remained low at 50%. Starting from 128K, the frame rate
decreased and as a result, the attack accuracy improved
increasingly with larger texts. Table 5 shows the attack
accuracy and rate for the 128K, 256K, 512K, and 1M text
sizes. As a trade-off between attack accuracy and attack
rate, we chose 256K as text length, which yields an attack
accuracy of 86% and attack rate of 15.61 URLs/second.

Method B. In Listing 3, the attack page records the start
time (Line 3) and sets href attribute of the <a> tag to
the new URL (Line 4). At the next call to onAnimate, it
records the end time (Line 3). The difference between the
start and end times is used to predict the changed or not-
changed state. We chose 256K as the text length based on
the experiments with Method A and focused on varying the
URL reset value. Experimenting with different reset values
that are powers of two between 2 and 16, we observed that
the attack accuracy decreases with higher reset numbers, as
shown in Table 6. Due to the low accuracy of the rendering
performance side channel and shorter interval of just one
call to requestAnimationFrame in Method B, the accu-
racy decreases dramatically with increasing the URL reset
value. As a result, we chose to reset the URL after testing
every 2 URLs, which yields an attack accuracy of 77.8% and
an attack rate of 22.04 URLs/second.

4.6 CPU Port Contention-Based Side Channel Attacks

Previous studies have confirmed the efficacy of CPU port
contention as a covert channel [27]. In modern Intel CPUs,
each physical core has two logical cores, with the execution
engine responsible for scheduling micro operations between
them. Different ports are used to fetch instructions based on
their type; for example, arithmetic micro operations are dis-
tributed across ports 0, 1, 5, or 6. Rokicki et al. investigated
port contention on ports 1 and 5 and identified several Web
Assembly instructions that can exploit this side channel.
The authors utilized this side channel as a covert chan-
nel attack to transfer data between processes, achieving a
bit rate of 200bps in cross-browser communication. How-

11

ever, this approach has a limitation - the Web Assem-
bly code in the first process can only extract information
from the second process if it runs on the same physical
core as the second process, which can be one of sev-
eral physical cores in a CPU. To address this, the au-
thors suggested detecting the system’s core count using
the navigator.hardwareConcurrency API and run-
ning multiple worker threads.

We believe that the CPU port contention side channel
is suitable for history sniffing attacks, much like other
hardware-based side channels, including CPU cache and
GPU contention. To test this hypothesis, we used various
Web Assembly codes [28], such as Count Trailing Zeros,
Unsigned Remainder, and bitwise operations on 128-bit
vectors. Our experiments showed that the NOT, AND, XOR,
and ANDNOT operations on vectors produced positive results
with attack accuracies up to 76.3% using Method A, with
side channel measurements visibly different - the baseline
value for visited was approximately half of the baseline
value for unvisited. However, we were unable to reproduce
these results consistently over time, suggesting the observed
behavior may be unreliable.

In our efforts to identify the CPU port related to vis-
ited styling operations, we used Intel VTune Profiler [29]
to profile the Chrome browser while running a rendering
performance-based side channel attack. The profiling data
revealed that port 6, responsible for branch and simple ALU,
was the busiest during the attack. As a result, we ran the
CPU port contention-based side channel attack again, this
time using other operations to target port 6. We experi-
mented with operations such as ADC, LE, GT, and even a
simple loop in JavaScript, but were not able to improve
the attack accuracy. We consider this to be future work and
subject to more systematic analysis.

4.7 Firefox

Firefox deployed a fix in 2020 [8] in an effort to mitigate
history sniffing attacks that rely on browser rendering per-
formance. With this patch, the browser relies on always
doing the same amount of work for visited and unvisited
links [30]. After this fix, the browser always recomputes the
style when swapping between two URLs, and the measured
contention level is the same, both when the target URL
is visited and when it is not visited. This countermeasure
is effective against prior history sniffing attacks, and also
against Methods A and B introduced in this work. As a
result, in Firefox, we were not able to produce the same
results we obtained with Chrome.

Despite this, we were able to detect a specific pattern in
our experiments with Firefox v.110 with a technique similar
to Method A. We used rendering performance as the side
channel and a very large <a> tag text (512K). Based on
the results, the first call (when setting the href to the
new URL) takes a long time both for visited and unvisited
URLs (around 40ms rather than the typical 16.66ms), but the
second call (when setting the href to a randomly generated
unvisited URL) takes even a longer time than the first call
when the new URL in the first call is visited. Based on this
observation, if the second call takes a longer time than the
first call, we label the URL as visited, otherwise we label it
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[ Setup [ Accuracy | Rate (URL/s) |
Method A - CPU cache 98.4% 30
Method A - GPU 99.8% 30
Method A - Rendering performance | 86% 15.61
Method B - CPU cache 86% 52.5
Method B - GPU 99.6% 59.07
Method B - Rendering performance | 77.8% 22.04

TABLE 7: Summary of the attack results.

as unvisited. In some of our experiments, this led to highly
accurate attacks with accuracies above 90%. However, we
were not able to reproduce these results consistently over a
span of multiple days, suggesting that this specific pattern
may be unreliable. We hypothesize that although a pattern
may exist, it is dependent on the Firefox browser’s heuristics
and/or rendering performance optimization algorithms. To
conclude, this particular strategy deployed by Firefox ap-
pears to provide protection against history sniffing attacks,
but its implementation may not always be effective.

4.8 Discussion

Table 7 summarizes the main attack results of this work.
For all three side channels, Method A, which utilizes two
calls to requestAnimationFrame, achieves a lower attack
rate but higher attack accuracy compared to Method B.
Therefore, Method B is always preferred when using a
robust side channel technique for history sniffing (i.e., a side
channel that yields a high attack accuracy).

Among the three side channels that were experimented
in this paper, the GPU contention side channel resulted in
the most robust attacks with higher speeds, followed closely
by the CPU cache side channel. Compared to prior work that
relies on the rendering performance-based side channel, our
findings demonstrate that the use of micro-architectural side
channels leads to highly accurate and higher-rate attacks.
In addition, these new attacks do not affect the browser
rendering performance, making them difficult to detect. By
using a text color that matches the color of the background
(e.g., white text on white background), the attacks remain
stealthy. The rendering performance-based side channel was
found to be less effective, but the new attack methods
introduced in the paper still obtain a higher attack rate than
the existing state of the art.

5 DEFENSES

There is a long history of browsing history sniffing attacks,
resembling a cat-and-mouse game: Typically, once an attack
is disclosed against a browser, the browser vendor rushes to
plug the hole. Many of these attacks exploit various design
and/or implementation flaws related to the : visited CSS
selector. This pattern suggests that vulnerabilities will con-
tinue being found. A better solution would be to address
the root cause at a more fundamental level, especially if the
goal is to provide defenses against strong attacks such as
those that leverage side channels. There are two approaches
for addressing this root cause: the first is to modify the way
the browser exposes browsing history to users, effectively
meaning that the adversary has nothing to measure; the
second is to systematically mitigate side-channel attacks
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in web browsers, making it impossible for an attacker to
measure any leakage, including the one generated by visited
link styling. We explore both approaches in this section.

5.1 Modifying Browser Behavior

The most radical solution to prevent browsing history sniff-
ing attacks would be to simply not expose the browsing
history to webpages. This would mean, for example, dis-
abling the functionality of CSS selectors such as :visited
and :1link. As a result, developers would not be able to
style differently links that were visited from links that were
not visited. In general, browser vendors have been reluctant
to deploy such radical solutions by default, the argument
being that many users prefer the benefits provided by
:visited. On a positive note, Firefox provides a configura-
tion flag layout.css.visited_links_enabled which,
when disabled, deactivates the styling of visited links 2.

To reduce the attack surface against history sniffing,
Firefox deployed in 2020 (starting with Firefox v. 77) the
following strategy: it always recomputes the style of links
regardless of changes to their :visited status [8]. This
approach, which is enabled by default, has been effective
in safeguarding against the side channel-based attacks de-
scribed in this paper. However, we believe that the execution
of this strategy is rather complex and difficult to properly
implement, as observed in our experiments described in
Sec. 4.7 which show that information can sometimes leak.
We speculate there may be two potential reasons. It is
possible that even though both visited and unvisited links
are restyled, the system-wide effects of restyling visited
links are different from restyling unvisited links (i.e., the
computation time to restyle visited and unvisited links is
different). It may also be the case that the intended restyling
of all links may not be happening properly for the particular
case of our attack pages. Finally, we note that even Firefox
engineers also hint that this strategy does not fully mitigate
timing-based attacks [30]. Ultimately, the possibility of dif-
ferent final styles being rendered on visited and unvisited
URLs leaves the door open for potential vulnerabilities in
the future, similar to the one we explored in Sec. 4.7.

Proposed Defense: Double-Keying. One solution that
works at a more fundamental level is to key the status of
a link (visited or unvisited) both by the origin URL (i.e.,
the domain in the URL bar) and the link’s target URL. This
approach offers an additional layer of isolation, when com-
pared to current practice, which only uses the link’s target
URL. In this way, a link’s visited status would be enabled on
a webpage only if that link was visited in the past from that
particular webpage. This approach does not leak additional
information, because the origin website could know anyway
if the user had already visited that target URL in the past,
for example by monitoring mouse click events on the link
element.

This solution has a long history of discussions by the
W3C standardization forum [31], and similar ideas have also
been discussed in the context of Firefox [30] (referred to as
“first-party isolation” (FPI) for :visited), Chromium [32]

2. By default, this flag is enabled, but it can be disabled by setting it
to false.
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and WebKit [33], or proposed explicitly by the research
community [4].

This solution is being revisited periodically in meetings
of the W3C CSS Working Group, where its benefits and
drawbacks are being discussed, together with considering
paths to move closer to adoption. Recently, there seems
to be some traction to experiment with it in Chrome. We
summarize next these discussions.

Such a solution, if adopted by browser vendors, should
be effective against the attacks we disclose in this paper,
especially if the defense is implemented at the lowest level
possible (i.e., do the filtering at the storage engine respon-
sible for executing history data queries, rather than at the
renderer [31]).

Unlike other defenses that focus on addressing specific
flaws (e.g., adding resistance to browser fingerprinting in
Firefox [34]), this solution is a more robust solution and is
more provably correct than trying to patch individual flaws
as they appear.

The main drawback of this solution is that it may affect
usability, in that it would break certain use cases. If a user
visits a webpage linked from one website (or even directly
by providing the URL in the URL bar), and another website
links to that webpage, the links on the second website would
appear unvisited. This behavior would come apparent, for
example, when a user goes to some aggregator site and
wants to see what URLs are already visited (even if not from
this aggregator site). We note that if a user clicked on the
results of a Google search in the past, those links that were
clicked would appear as visited in a future Google search,
since they are being accessed from the Google search engine.

To reduce the negative usability impact, several situa-
tions could be exempted from this double-keying policy,
because the visited status of a link could be exposed safely
without having a privacy impact. One such situation is
same-origin links, i.e., links to URLs on the same domain.
In this case, the visited status can be reported, because
the server can track its own cross-links anyway. One other
situation is to allow the user to mark certain origins as “safe”
to expose the visited status of a link. For example, users can
mark their favorite search engine as “safe”, in which case if
the user has already visited site A directly and then searches
for it on Google, the link to A in the Google results would
show as visited. This would be similar to how browsers
expose an option for allowing third-party cookies in certain
cases.

In our opinion, this solution provides a good trade off
between the value that visited links provide to users and
stronger privacy guarantees. We hope that our work, which
we have reported to browser vendors, provides additional
data points to support the case for adopting this solution.

5.2 Systematically Mitigating Side-Channel Attacks in
Web Browsers

The history sniffing attack presented here is only one exam-
ple of a side-channel attack which can be launched through
a malicious webpage. A defense that could systematically
prevent the browser from being used to launch any side-
channel attack would be highly desirable. Unfortunately,
this is a highly challenging task, as the entire programming
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model of the web is based on the ability of a remote,
potentially untrusted server to execute code on the user’s
machine. To systematically prevent side-channel attacks, the
browser would either need to be able to execute code in a
way that is completely isolated from the rest of the system,
or otherwise to prevent the code from being able to measure
the side channel. Achieving total isolation is very difficult,
considering the significant amount of shared resources be-
tween the browser and the rest of the system, including not
only CPU and GPU components, but also the network stack,
the file system, and other resources. In addition, such a de-
fense must isolate individual web pages, and even the sub-
components of a single web page, from each other, forcing a
very uncomfortable tradeoff between security and perfor-
mance and ultimately introducing measurable contention
within the browser itself [35]. Systematically preventing side
channels from being observed is similarly challenging; side-
channel attacks have been demonstrated in cases where the
attacker is prevented from accessing memory, from taking
timing measurements or even completely prevented from
executing code [36]. A defense which will be able to over-
come these challenges would be a significant step forward
in the field of web security.

6 DISCUSSION
6.1 Limitations

Our work shows how both cache-based and GPU-based
contention channels can be used in a practical and effective
side channel attack which infers a user’s browsing history.
We note that we limit the evaluation of the attacks we
introduced to the Chrome web browser. Our attack claim
does not include other major browsers. Although we found
evidence which suggests that the Firefox browser leaks
some information about a user’s browsing history when
confronted with our attacks, developing this leakage into
an attack that can be executed in a reliable fashion remains
an open challenge. We did not attempt the attacks against
the Safari and Edge browsers, although we hypothesize that
the Edge browser is also vulnerable due to its use of the
Blink rendering engine also used by Chrome.

We also note that we did not evaluate our attack through
a large-scale user study. In such a setting, the attacker will
also have to consider how to effectively trick users into vis-
iting the malicious website required to carry out the attack,
and will also have to contend with the variability stemming
from the diversity of hardware and software configurations
that users have.

6.2 Related Work

We describe prior work related to the various techniques
used by the attacks introduced in this paper.

6.2.1 Browser History Sniffing Attacks

There is a line of direct attacks that can leak the browser
history by exploiting vulnerabilities in the browser. These
types of attacks usually have a very high rate, of thousands
of URLs/second. For example, as recently as 2002, it was
possible to obtain the visited status of a link by simply
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defining a background URL for the CSS :visited pseudo-
class [37]. Or, an attacker could exploit an inadequate imple-
mentation of the CSS Paint API in the Chrome browser [4].
Fortunately, such vulnerabilities are usually promptly fixed
by the browser vendors.

Mishra et al. [38] have shown an attack based on the
browser cache, more precisely on HITP response headers
that are cached by a browser, which can reveal not only
a user’s browsing history, but also to build a timeline of a
user’s visits. This attack is prevented after modern browsers
have adopted browser cache partitioning [39], [40].

There is another line of indirect attacks, such as those
relying on side channels, which affect the browser on a
more subtle level by exploiting contention to a computer’s
resources. Usually, the fix against this type of attacks is
not always straightforward to design or deploy, as it may
require more fundamental changes to the browser, which
may affect performance or even break backwards com-
patibility. The work of Smith et al. [4] and Huang et
al. [5] is closest to our work. They apply heavy CSS styles
on :visited pseudo-class and count number of calls to
requestAnimationFrame in a specified interval as ren-
dering performance side channel, and learn indirectly if a
site has been visited. In this paper, we improve the speed
and stealthiness of these indirect attacks by introducing two
new attack methods and using other types of side channels.

Sénchez-Rola et al. [6], [41] introduce a history-sniffing
technique based on timing the execution of server-side
request processing code. Basically, if a user has cookies with
a website, it can reveal whether the user has visited that
website and also the user’s login status with the website.
This type of attack is executed over a network and depends
on the server-side configuration and on the network round-
trip time between the user and the website. As such, it is
less reliable and has a lower attack rate.

Karami et al. [42] showed that an attacker can misuse the
prefetching and caching capabilities of the Service Workers
technology to execute history sniffing attacks. Among the
two attacks they introduce, the one based on the Perfor-
mance API has been fixed by browser vendors.

An interactive history sniffing attack is a type of attack
that typically involves giving the user a task to complete,
such as a CAPTCHA, a game, or a puzzle, as described
by Weinberg et al. [43]. The interactive task is typically
constructed from hyperlinks to the sites the malicious page
wants to probe, without the user realizing it. Although
these attacks require user interaction, they are challenging to
protect against, because web browsers allow different styles
to be displayed to the user for visited and unvisited URLs.
One potential solution to this type of attack is to implement
the double keying defense, as outlined in Sec. 5.

Recent research has presented significant improvements
to interactive history sniffing attacks. O'Neal et al. [44]
and Zalewski [45] have demonstrated improved interactive
attacks using CSS mix-blend-mode to perform XOR and
AND operations in order to increase the attack rate. These
techniques allow more efficient user-assisted history sniffing
attacks.

Felten and Schneider [46] were the first to demonstrate
the potential for browser history sniffing attacks through
timing attacks on the web browser’s cache, which was later
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Attack Vector Rate Dwell Stealthy
(URLs / | Req'd
sec)
Subnormal Floating | 16.4 No No
Point [49]
CPU Frequency [50] 1-3 No No
Paintlets [4] 3000 No Yes
Thermal Side Chan- | 0.005 No No
nel [51]
Rendering 0.33 No No
Contention [52]
Auxiliary Links [5] 2 No No
Prime + Probe [53] 267 Yes Yes
This work 59 No Yes

TABLE 8: Comparison of different browser history sniffing
attacks.

refined by Zalewski [47]. When a resource is accessed for
the first time, it is stored in the browser’s cache for future
use. If an attacker’s page can retrieve a webpage or its
embedded resources quickly, it means that the resource was
likely retrieved from the browser cache, rather than from
the server, which takes longer. This allows the attacker to
infer that the user has previously visited that webpage.
However, modern web browsers have implemented cache
partitioning [39], [40] as a protective measure against these
types of attacks.

Once a user’s history is leaked, a user’s history profile
can be used to track the user across the web, because a
user’s history profile provides useful information regarding
the user’s uniqueness and re-identifiability [1], [48].

Table 8 quantitatively compares the extraction rate of
several recent browser history sniffing attacks designed to
work under a threat model similar to ours. We note that
several other works did not report their attack rate [6],
[44]. As the Table shows, our attack is the fastest of all
previously reported history sniffing attacks, with the excep-
tion of the Paintlet attack of Smith et al. [4], which has
been mitigated in Chrome version 67, and the Prime+Probe
attack of O’Connell et al. [53]. In contrast to the attack
of O’Connell et al., which requires the victim to dwell on
the attack page for a minute or more while the eviction
set data structure is constructed, our attack can run im-
mediately as soon as the page is loaded. This makes the
amortized running time of our attack faster in practice in
most situations. We also note that both our attack and the
attack of O’Connell et al. are unique in being stealthy,
since they run in the background and do not interfere
with the user’s browsing experience. Other attacks work by
artificially slowing down the browser’s rendering engine,
and measuring this slowdown through its impact on the
requestAnimationFrame function. This slowdown no-
ticeably affects the user’s browsing experience, making the
attack detectable.

6.2.2 Side Channel-Based Attacks against Browsers

Lim et al. [54] provide a systematic overview of the security
landscape of modern web browsers, including their archi-
tectures, bug reports, and common attacks and defenses.
This work names four sources of side channels that have
been used to leak sensitive information in browsers: mi-
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croarchitectural state, GPU, floating-point timing channels,
and browser-specific side channels.

Next, we review prior work that leverages side channels
to infer sensitive information in browsers.

Rendering-based side channels. Pixel stealing attacks [11],
[49] exploit a rendering performance side channel to extract
cross-origin content that is embedded in an iframe or an
object HTML tag. Normally, this type of access is forbid-
den by the Same-origin Policy implemented in browsers.
The main idea behind these attacks is that different pixel
colors take varying amounts of time to render in a browser,
and this difference can be magnified by expanding the
target pixel. Particularly, the floating-point side channel was
leveraged to amplify this difference [25], [49], [55]. These
works also suggest using pixel stealing attacks for browser
history sniffing [11], [49], where a custom style is applied
to links on the sniffing page (e.g., using the black color for
visited links and white for unvisited ones), and a single pixel
of the link is read to determine its state.

Wau et al. [56] introduce a rendering contention side chan-
nel that stresses the browser rendering resource to execute
several attacks, such as browser history sniffing, website
fingerprinting, and keystroke logging. This side channel
is caused by contention between the CPU, GPU and the
screen buffer. Unlike other work that focuses on rendering a
single frame, this work measures the time needed to render
a sequence of frames. This, in turn, makes this attack not
particularly effective for browser history sniffing attacks, as
the attack rate is low.

CPU cache-based side channels. Zaheri et al. [23] leverage
CPU cache side channels to execute targeted deanonymiza-
tion attacks, in order to uniquely determine a user’s identity
on the web. Our goal in this paper is different, as we seek to
infer the user’s browsing history.

GPU-based side channels. Lee et al. [57] and Naghibijouy-
bari et al. [19] utilized the power of native APIs such as
OpenCL, OpenGL, and CUDA to assess the impact of a
victim process on a GPU, as well as to extract sensitive
user data, such as their visited websites. In contrast, our
approach to the history sniffing attack is different, as we
execute it from an untrusted webpage within the browser,
without direct access to these native APIs.

Laor et al. [20] conducted experiments running WebGL
code on an attack page to discover the physical character-
istics of individual execution units of a GPU. They used
this information to build a unique profile for each device
for the purpose of device fingerprinting. Inspired by this
idea, we have repurposed it to learn about dynamic content
processed in the GPU with the goal of carrying out browsing
history sniffing attacks.

7 CONCLUSION

In this work, we showed how attackers who make use
of contention-based side channels can mount browsing
history-sniffing attacks which are both faster and stealth-
ier than state-of-the-art history-sniffing attacks based on
rendering performance alone. We also discussed several
potential directions for countermeasures.
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Considering this attack from a wider context, it is clear
that the root cause of this privacy leak is the constant trade-
off made by browser vendors as they balance convenience,
speed and privacy: The visited link styling feature was intro-
duced to make browsers more convenient to use, while the
demand to make web pages render faster caused browser
vendors to introduce code optimizations which resulted in
non-uniform execution paths for visited and unvisited link
rendering. As a result, the users’ privacy was compromised.

Even if browser vendors fix the particular set of leaks
we exploited in this work, namely, visited link inference
through cache contention and GPU contention, the root
cause of this privacy leak remains, and novel side-channel
attacks which may emerge in the future could still be used to
exploit it. We therefore recommend that vendors adopt the
double-keying approach for storing browsing history. This
countermeasure is a classical example of approaches which
stop privacy leaks at their source, making it inaccessible
to any kind of present and future attack. Implementing it
will push back against the constant drive to make browsers
faster and more engaging, giving a priority to the user’s
right to privacy. We hope that our work provides compelling
additional data points showing that piecemeal defenses are
insufficient, and will help tip the scale towards defending
user privacy at a more fundamental level.

REFERENCES

[1] C. C. Lukasz Olejnik and A. Janc, “Why johnny can’t browse
in peace: On the uniqueness of web browsing history patterns,”
in 5th Workshop on Hot Topics in Privacy Enhancing Technologies
(HotPETs 2012), 2012.

[2] P. Stone, “Pixel perfect timing attacks with HTMLS5,” in Black Hat,
2013, https:/ /media.blackhat.com/us-13/US-13-Stone-Pixel-Per
fect-Timing- Attacks-with-HTML5-WP.pdf.

[3] S.Stamm, “Plugging the CSS History Leak,” https:/ /blog.mozilla
.org/security /2010/03/31/plugging-the-css-history-leak/.

[4] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and D. Stefan,
“Browser history re: visited,” in 12th USENIX Workshop on Offen-
sive Technologies, WOOT 2018, Baltimore, MD, USA, August 13-14,
2018, 2018.

[5] A. Huang, C. Zhu, D. Wu, Y. Xie, and X. Luo, “An Adaptive
Method for Cross-Platform Browser History Sniffing,” in Proc.
of the Workshop on Measurements, Attacks and Defenses for the Web
(MADWeb "20), 2020.

[6] I Sanchez-Rola, D. Balzarotti, and I. Santos, “Cookies from the
past: Timing server-side request processing code for history sniff-
ing,” Digital Threats, vol. 1, no. 4, dec 2020.

[7] D.]Jang, R.Jhala, S. Lerner, and H. Shacham, “An empirical study
of privacy-violating information flows in javascript web applica-
tions,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security. Association for Computing Machinery,
2010, p. 270-283.

[8] “Bugzilla: Turn on the visited link mitigations,” https://bugzilla
.mozilla.org/show_bug.cgi?id=1632765, 2020.

[9] “Chromium bugs: Issue 1446288: Security: Side-channel attack
allows accessing the browsing history,” https://bugs.chromiu
m.org/p/chromium/issues/detail?id=1446288, 2023.

[10] “Side-channel attack allows accessing the browsing history (PoC
for Chrome, preliminary results for Firefox),” https://bugzilla.m
ozilla.org/show_bug.cgi?id=1833918, 2023.

[11] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: Timing attacks using css filters,” in Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security,
ser. CCS "13.  Association for Computing Machinery, 2013, p.
1055-1062.

[12] P.Vila, P. Ganty, M. Guarnieri, and B. Kopf, “Cachequery: learning
replacement policies from hardware caches,” in PLDI. ACM, 2020,
pp. 519-532.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 26,2025 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://media.blackhat.com/us-13/US-13-Stone-Pixel-Perfect-Timing-Attacks-with-HTML5-WP.pdf
https://media.blackhat.com/us-13/US-13-Stone-Pixel-Perfect-Timing-Attacks-with-HTML5-WP.pdf
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://bugzilla.mozilla.org/show_bug.cgi?id=1632765
https://bugzilla.mozilla.org/show_bug.cgi?id=1632765
https://bugs.chromium.org/p/chromium/issues/detail?id=1446288
https://bugs.chromium.org/p/chromium/issues/detail?id=1446288
https://bugzilla.mozilla.org/show_bug.cgi?id=1833918
https://bugzilla.mozilla.org/show_bug.cgi?id=1833918

(13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
[31]

(32]

(33]

[34]

[35]

[36]

[37]

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3538541

E Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in IEEE S&P, 2015, pp. 605-
622.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: The Case of AES,” in CT-RSA, ser. LNCS, vol.
3860. Springer, 2006, pp. 1-20.

T. Rokicki, C. Maurice, and P. Laperdrix, “Sok: In search of lost
time: A review of javascript timers in browsers,” in EuroS&P.
IEEE, 2021, pp. 472-486.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust Website Fingerprinting Through the Cache
Occupancy Channel,” in USENIX Security Symposium, 2019.

C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-
cores cache covert channel,” in DIMVA, ser. Lecture Notes in
Computer Science, vol. 9148. Springer, 2015, pp. 46-64.
“WebGL,” https:/ /www.khronos.org/webgl/.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS "18. Association for Computing
Machinery, 2018, p. 2139-2153.

T. Laor, N. Mehanna, A. Durey, V. Dyadyuk, P. Laperdrix, C. Mau-
rice, Y. Oren, R. Rouvoy, W. Rudametkin, and Y. Yarom, “DRAW-
NAPART: A Device Identification Technique based on Remote
GPU Fingerprinting,” in Proc. of NDSS '22, 2022.

A. Shusterman, Z. Avraham, E. Croitoru, Y. Haskal, L. Kang,
D. Levi, Y. Meltser, P. Mittal, Y. Oren, and Y. Yarom, “Website
Fingerprinting Through the Cache Occupancy Channel and its
Real World Practicality,” IEEE Trans. Dependable Secur. Comput.,
vol. 18, no. 5, pp. 2042-2060, 2021.

“Shared ArrayBuffer,” https://developer.mozilla.org/en-US/do
cs/Web/JavaScript/Reference/Global_Objects/Shared ArrayBu
ffer, 2023.

M. Zaheri, Y. Oren, and R. Curtmola, “Targeted Deanonymization
via the Cache Side Channel: Attacks and Defenses,” in USENIX
Security Symposium. USENIX Association, 2022, pp. 1505-1523.

J. Cook, ]J. Drean, ]J. Behrens, and M. Yan, “There’s always a
bigger fish: a clarifying analysis of a machine-learning-assisted
side-channel attack,” in ISCA. ACM, 2022, pp. 204-217.

D. Kohlbrenner and H. Shacham, “On the effectiveness of mitiga-
tions against floating-point timing channels,” in USENIX Security
Symposium. USENIX Association, 2017, pp. 69-81.

“MDN Web Docs: OffscreenCanvas,” https:/ /developer.mozilla.
org/en-US/docs/Web/API/OffscreenCanvas, 2023.

T. Rokicki, C. Maurice, M. Botvinnik, and Y. Oren, “Port contention
goes portable: Port contention side channels in web browsers,” in
Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, 2022, pp. 1182-1194.

T. Rokicki, “Port Contention Goes Portable: The Code!” https:
/ / github.com/MIAOUS-group /web-port-contention, 2022.

Intel, “Intel® VTune™ Profiler: Find and Fix Performance Bot-
tlenecks Quickly and Realize All the Value of Your Hardware,”
https:/ /www.intel.com/content/www /us/en/developer/tools/
oneapi/vtune-profiler.html#gs.udpéms4, 2023.

“Bugzilla: Key :visited per origin (first-party-isolation for :vis-
ited),” https:/ /bugzilla.mozilla.org/show_bug.cgi?id=1398414.
“[selectors] Solve :visited once and for all #3012,” https:/ /github
.com/w3c/csswg-drafts/issues/3012.

“bugs chromium: Issue 713521: Eliminate :visited privacy issues
once and for all,” https:/ /bugs.chromium.org/p/chromium/iss
ues/detail?id=713521.

“WebKit BugZilla: Bug 37443 - CSSStyleSelector should pass
through origin information when determined if link visited,”
https:/ /bugs.webkit.org/show_bug.cgi?id=37443.

“Bugzilla: Simplify ResistFingerprinting callers in nsMediaFea-
tures,” https:/ /bugzilla.mozilla.org/show_bug.cgi?id=1434215,
2018.

P. Snyder, S. Karami, A. Edelstein, B. Livshits, and H. Haddadji,
“Pool-party: Exploiting browser resource pools for web tracking,”
in USENIX Security Symposium. USENIX Association, 2023, pp.
7091-7105.

A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren,
and Y. Yarom, “Prime+Probe 1, JavaScript 0: Overcoming Browser-
based Side-Channel Defenses,” in USENIX Security Symposium,
2021.

A. Clover, “CSS visited pages disclosure,” https://lists.w3.org/A
rchives /Public/ www-style/2002Feb /0039.html, 2002.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

16

V. Mishra, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Déja
vu: Abusing Browser Cache Headers to Identify and Track
Online Users,” in PETS 2021 - The 21th International Symposium
on Privacy Enhancing Technologies, Jul. 2021. [Online]. Available:
https:/ /hal.inria.fr /hal-03017222

M. W. Docs, “State Partitioning,” https:/ /developer.mozilla.org/
en-US/docs/Web/Privacy/State_Partitioning#network_partition
ing, 2023.

E. Kitamura, “Gaining security and privacy by partitioning the
cache,” https:/ /developer.chrome.com/en/blog/http-cache-part
itioning/, 2020.

I. Sénchez-Rola, D. Balzarotti, and I. Santos, “Bakingtimer: Privacy
analysis of server-side request processing time,” in Proceedings
of the 35th Annual Computer Security Applications Conference, ser.

ACSAC "19.  Association for Computing Machinery, 2019, p.
478-488.
S. Karami, P. Ilia, and ]. Polakis, “Awakening the Web’s Sleeper

Agents: Misusing Service Workers for Privacy Leakage,” in Proc.
of NDSS 21, 2021.

Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via
user interaction and side channel attacks,” in 2011 IEEE Symposium
on Security and Privacy. IEEE, 2011, pp. 147-161.

K. O'Neal and S. Yilek, “Interactive history sniffing with
dynamically-generated qr codes and css difference blending,” in
2022 IEEE Security and Privacy Workshops (SPW). 1EEE, 2022, pp.
335-341.

M. Zalewski, “CSS mix-blend-mode is bad for your browsing
history,” https:/ /lcamtuf.blogspot.com/2016/08/, 2016.

E. W. Felten and M. A. Schneider, “Timing attacks on web pri-
vacy,” in Proceedings of the 7th ACM Conference on Computer and
Communications Security. ACM, 2000, pp. 25-32.

M. Zalewski, “Rapid history extraction through nondestructive
cache timing,” https:/ /lcamtuf.coredump.cx/cachetime/, 2011.

S. Bird, I. Segall, and M. Lopatka, “Replication: Why we still can’t
browse in peace: On the uniqueness and reidentifiability of web
browsing histories,” in Sixteenth Symposium on Usable Privacy and
Security (SOUPS 2020). USENIX Association, Aug. 2020, pp. 489-
503.

M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,”
in 2015 IEEE Symposium on Security and Privacy, 2015, pp. 623-639.
Y. Wang, R. Paccagnella, A. Wandke, Z. Gang, G. Garrett-
Grossman, C. W. Fletcher, D. Kohlbrenner, and H. Shacham,
“DVEFS frequently leaks secrets: Hertzbleed attacks beyond sike,
cryptography, and cpu-only data,” in SP.  IEEE, 2023, pp. 2306—
2320.

H. Taneja, J. Kim, J. J. Xu, S. van Schaik, D. Genkin, and Y. Yarom,
“Hot pixels: Frequency, power, and temperature attacks on gpus
and arm socs,” in USENIX Security Symposium. USENIX Associ-
ation, 2023, pp. 6275-6292.

S. Wu, J. Yu, M. Yang, and Y. Cao, “Rendering contention channel
made practical in web browsers,” in USENIX Security Symposium.
USENIX Association, 2022, pp. 3183-3199.

S. O’Connell, L. A. Sour, R. Magen, D. Genkin, Y. Oren,
H. Shacham, and Y. Yarom, “Pixel thief: Exploiting SVG filter
leakage in firefox and chrome,” in USENIX Security Symposium.
USENIX Association, 2024.

J. Lim, Y. Jin, M. Alharthi, X. Zhang, J. Jung, R. Gupta, K. Li,
D. Jang, and T. Kim, “SOK: on the analysis of web browser
security,” CoRR, vol. abs/2112.15561, 2021. [Online]. Available:
https:/ /arxiv.org/abs/2112.15561

A. Rane, C. Lin, and M. Tiwari, “Secure, precise, and fast Floating-
Point operations on x86 processors,” in 25th USENIX Security
Symposium (USENIX Security 16).  USENIX Association, Aug.
2016, pp. 71-86.

S. Wu, J. Yu, M. Yang, and Y. Cao, “Rendering contention channel
made practical in web browsers,” in 31st USENIX Security Sympo-
sium (USENIX Security 22), 2022, pp. 3183-3199.

S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing Webpages Rendered
on Your Browser by Exploiting GPU Vulnerabilities,” in IEEE
Symposium on Security and Privacy, 2014, pp. 19-33.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on June 26,2025 at 15:25:59 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://www.khronos.org/webgl/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://github.com/MIAOUS-group/web-port-contention
https://github.com/MIAOUS-group/web-port-contention
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.udp6m4
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.udp6m4
https://bugzilla.mozilla.org/show_bug.cgi?id=1398414
https://github.com/w3c/csswg-drafts/issues/3012
https://github.com/w3c/csswg-drafts/issues/3012
https://bugs.chromium.org/p/chromium/issues/detail?id=713521
https://bugs.chromium.org/p/chromium/issues/detail?id=713521
https://bugs.webkit.org/show_bug.cgi?id=37443
https://bugzilla.mozilla.org/show_bug.cgi?id=1434215
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html
https://lists.w3.org/Archives/Public/www-style/2002Feb/0039.html
https://hal.inria.fr/hal-03017222
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning#network_partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning#network_partitioning
https://developer.mozilla.org/en-US/docs/Web/Privacy/State_Partitioning#network_partitioning
https://developer.chrome.com/en/blog/http-cache-partitioning/
https://developer.chrome.com/en/blog/http-cache-partitioning/
https://lcamtuf.blogspot.com/2016/08/
https://lcamtuf.coredump.cx/cachetime/
https://arxiv.org/abs/2112.15561

	Introduction
	Background
	CSS and Visited Link Styling
	Existing Privacy Protections for Visited Link Styling
	Rendering Performance-Based Side Channel Attacks
	CPU Cache-Based Side-Channel Attacks
	GPU-Based Side Channel Attacks

	Threat Model
	New Browsing History Sniffing Attacks
	The Attack Page
	Attack Methodology
	CPU Cache-Based Side Channel Attacks
	GPU-Based Side Channel Attacks
	Rendering Performance-Based Side Channel Attacks
	CPU Port Contention-Based Side Channel Attacks
	Firefox
	Discussion

	Defenses
	Modifying Browser Behavior
	Systematically Mitigating Side-Channel Attacks in Web Browsers

	Discussion
	Limitations
	Related Work
	Browser History Sniffing Attacks
	Side Channel-Based Attacks against Browsers


	Conclusion
	References

