bioRxiv preprint doi: https://doi.org/10.1101/2024.09.05.611506; this version posted October 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

. Increasing prevalence of plant-fungal symbiosis across two

: centuries of environmental change

3 Joshua C. Fowler!'?*
Jacob Moutouama!

Tom E. X. Miller!

2 1. Rice University, Department of BioSciences, Houston, Texas 77006; 2. University of Miami,
s Department of Biology, Miami, Florida;

s * Corresponding author; e-mail: jcf221@miami.edu.

7 Manuscript elements: Figure 1 - Figure 5, Appendix A (including Figure A1l - Figure A14, Table

s Al, and Supplemental Methods).

0 Keywords: climate change, plant-microbe symbiosis, herbarium, museum specimen, spatially-

10 varying coefficients model, Epichloé, Poaceae.
1 Manuscript type: Research Article.

12 Prepared using the suggested I4TEX template for Am. Nat.


https://doi.org/10.1101/2024.09.05.611506
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.05.611506; this version posted October 5, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

13 Abstract

14 Species’ distributions and abundances are shifting in response to ongoing global climate change.
15 Mutualistic microbial symbionts can provide their hosts with protection from environmental
16 stress that may contribute towards resilient responses to environmental change, however these
17 changes may also disrupt species interactions and lead to declines in hosts and/or symbionts.
18 Symbionts preserved within natural history specimens offer a unique opportunity to quantify
10 changes in microbial symbiosis across broad temporal and spatial scales. We asked how the
20 prevalence of seed-transmitted fungal symbionts of grasses (Epichloé¢ endophytes) have changed
21 over time in response to climate change, and how these changes vary across host species’ ranges.
22 Specifically, we analyzed 2,346 herbarium specimens of three grass host species (Agrostis hye-
23 malis,Agrostis perennans,Elymus virginicus) collected over the past two centuries (1824 — 2019) for
22 the presence or absence of Epichloé symbiosis. We found that endophytes increased in preva-
25 lence over the last two centuries from ca. 25% prevalence to ca. 75% prevalence, on average,
26 across three host species. Changes in seasonal climate drivers were associated with increasing
27 endophyte prevalence. Notably, increasing precipitation during the peak growing season for
28 Agrostis species and decreasing precipitation for E. virginicus were associated with increasing en-
20 dophyte prevalence. Changes in the variability of precipitation and temperature during off-peak
30 seasons were also important predictors of increasing endophyte prevalence. Our analysis per-
a1 formed favorably in an out-of-sample predictive test with contemporary survey data, a rare extra
;2 step in collections-based research. However, we identified greater local-scale variability in endo-
33 phyte prevalence in contemporary data compared to model predictions based on historic data,
ss suggesting new directions that could improve predictive accuracy. Our results provide novel
35 evidence for a cryptic biological response to climate change that may contribute to the resilience
36 of host-microbe symbiosis through context-dependent benefits that confer a fitness advantage to
37 symbiotic hosts under environmental change.

38 Abstract : 300 words
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20 Introduction

a0 Understanding how biotic interactions are altered by global change is a major goal of basic and
a1 applied ecological research (Blois et al., 2013; Gilman et al., 2010). Documented responses to
22 environmental change, such as shifts in species” distributions (Aitken et al., 2008) and phenology
a3 (Piao et al.,, 2019), are typically blind to concurrent changes in associated biotic interactions.
s Empirically evaluating these biotic changes — whether interacting species shift in tandem with
a5 their partners or not (HilleRisLambers et al., 2013) — is crucial to predicting the reorganization
s of Earth’s biodiversity under global change. Such evaluations have been limited because few
a7 datasets on species interactions extend over sufficiently long time scales of contemporary climate
s change (Poisot et al., 2021).

49 Natural history specimens, which were originally collected to study and preserve taxonomic
so diversity, present a unique opportunity to explore long-term changes in ecological interactions
51 across broad spatial and temporal scales (Meineke et al., 2018). Natural history collections, built
52 and maintained by the efforts of thousands of scientists, are invaluable time machines, primarily
ss comprised of physical specimens of organisms along with information about the time and place
sa of their collection. These specimens often preserve physical legacies of ecological processes and
55 species’ interactions from dynamically changing environments across time and space. For exam-
ss ple, previous researchers have used plant collections (herbaria) to document shifts in phenology
57 (Berg et al.,, 2019; Park et al., 2019; Willis et al., 2017), pollination (Duan et al., 2019; Pauw and
ss  Hawkins, 2011), and herbivory (Meineke et al., 2019) related to anthropogenic climate change.
so  However, few previous studies have leveraged biological collections to examine climate change-
e related shifts in a particularly common type of interaction: microbial symbiosis.

61 Microbial symbionts are common to all macroscopic organisms and can have important ef-
62 fects on their hosts” survival, growth and reproduction (McFall-Ngai et al., 2013; Rodriguez et al.,
63 2009). Many microbial symbionts act as mutualists, engaging in reciprocally beneficial interac-

s tions with their hosts that can ameliorate environmental stress. For example, bacterial symbionts
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es of insects, such as Wolbachia, can improve their hosts” thermal tolerance (Renoz et al., 2019; Truitt
es et al., 2019), and arbuscular mycorrhizal fungi, documented in 70-90% of families of land plants
ez (Parniske, 2008), allow their hosts to persist through drought conditions by improving water and
es nutrient uptake (Cheng et al., 2021). On the other hand, changes in the mean and variance of
e environmental conditions may disrupt microbial mutualisms by changing the costs and bene-
70 fits of the interaction for each partner, leading the interaction to deteriorate (Aslan et al., 2013;
71 Fowler et al., 2024). Coral bleaching (the loss of symbiotic algae) due to temperature stress (Sully
72 et al.,, 2019) is perhaps the best known example, but this phenomenon is not unique to corals.
73 Lichens exposed to elevated temperatures experienced loss of photosynthetic function along with
74 changes in the composition of their algal symbiont community (Meyer et al., 2022). How com-
7 monly and under what conditions microbial mutualisms deteriorate or strengthen under climate
76 change remain unanswered questions (Frederickson, 2017). Previous work suggests that these
77 alternative responses may depend on the intimacy and specialization of the interaction as well
78 as the physiological tolerances of the mutualist partners (Rafferty et al., 2015; Toby Kiers et al.,
79 2010; Warren and Bradford, 2014).

80 Understanding of how microbial symbioses are affected by climate change is additionally
s1 complicated by spatial heterogeneity in the direction and magnitude of environmental change
s2 (IPCC, 2021). Beneficial symbionts are likely able to shield their hosts from environmental stress
s3 in locations that experience a small degree of change, but symbionts in locations that experience
s changes of large magnitude may be pushed beyond their physiological limits (Webster et al.,
ss 2008). Additionally, symbionts are often unevenly distributed across their hosts” distribution.
ss Facultative symbionts may be absent from portions of the host range (Afkhami et al., 2014), and
sz hosts may engage with a diversity of partners (different symbiont species or locally-adapted
ss strains) across their environments (Fowler et al., 2023; Frade et al., 2008; Rolshausen et al., 2018).
s Identifying broader spatial trends in symbiont prevalence is therefore an important step in de-
%0 veloping predictions for where to expect changes in the symbiosis in future climates.

01 Epichloé fungal endophytes are specialized symbionts of cool-season grasses, which have been
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92 documented in ~ 30% of cool-season grass species (Leuchtmann, 1992). They are transmitted
o3 vertically from maternal plants to offspring through seeds. Vertical transmission creates a feed-
oa back between the fitness of host and symbiont (Douglas, 1998; Fine, 1975; Rudgers et al., 2009).
os  Over time, endophytes that act as mutualists should rise in prevalence within a host population
9 (Donald et al., 2021). Epichloé¢ are known to improve their hosts” drought tolerance (Decunta
o7 etal., 2021) and protect their hosts against herbivores (Crawford et al., 2010) and pathogens (Xia
9s et al., 2018) likely through the production of a diverse suite of alkaloids and other secondary
90 metabolites. The fitness feedback induced by vertical transmission leads to the prediction that
100 endophyte prevalence should be high in populations where these fitness benefits are most impor-
101 tant. Previous survey studies of contemporary populations have documented large-scale spatial
102 patterns in endophyte prevalence structured by environmental gradients (Afkhami, 2012; Bazely
103 et al., 2007; Granath et al., 2007; Sneck et al., 2017). We predicted that prevalence should track
104 temporal changes in environmental drivers that elicit strong fitness benefits.

105 Early research on Epichloé used herbarium specimens to describe the broad taxonomic di-
106 versity of host species that harbor these symbionts (White and Cole, 1985), establishing that
107 endophyte symbiosis could be identified in plant tissue from as early as 1851. However, no
108 subsequent studies, to our knowledge, have used the vast resources of biological collections to
100 quantitatively assess spatio-temporal trends in endophyte prevalence and their environmental
110 correlates. Grasses are commonly collected and identified based on the presence of their re-
11 productive structures, meaning that preserved specimens typically contain seeds, conveniently
112 preserving the fungi along with their host plants on herbarium sheets. This creates the oppor-
us tunity to leverage the unique spatio-temporal sampling of herbarium collections to examine the
114 response of the symbiosis to historical climate change. However, the predictive ability derived
115 from historical analyses is rarely tested against contemporary data (Lee et al., 2024). Critically
16 evaluating whether insights from historical reconstruction are predictive of variation across con-
117 temporary populations is a crucial step for the field to move from reading signatures of the past

us to forecasting ecological dynamics into the future.
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119 In this study, we assessed the long-term responses of endophyte symbiosis to climate change
120 through the use of herbarium specimens of three North American host grass species (Agrostis
121 hyemalis, Agrostis perennans, and Elymus virginicus). We first addressed questions describing spa-
122 tial and temporal trends in endophyte prevalence: (i) How has endophyte prevalence changed
123 over the past two centuries? and (ii) How spatially variable are temporal trends in endophyte
124 prevalence across eastern North America? We then addressed how climate change may be driv-
125 ing trends in endophyte prevalence by asking: (iii) What is the relationship between temporal
126 trends in endophyte prevalence and associated changes in climate drivers? We predicted that
127 aggregate endophyte prevalence would increase over time in tandem with climate warming, and
128 that hotspots of endophyte change would correspond spatially to hotspots of climate change.
120 Finally, we evaluated the performance of models built on data from historic specimens with an
130 out-of-sample test, using data on endophyte prevalence from contemporary surveys of host pop-
131 ulations. To answer these questions we examined a total of 2,346 historic specimens collected
132 across eastern North America between 1824 and 2019, and evaluated model performance against
133 contemporary surveys comprising 1,442 individuals from 63 populations collected between 2013

134 and 2020.

135 Methods

136 Focal species

137 Our surveys focused on three native North American grasses: Agrostis hyemalis, Agrostis peren-
138 nans, and Elymus virginicus. Both Agrostis species host Epichloé amarillans (Craven et al., 2001;
130 Leuchtmann et al., 2014), while Elymus virginicus typically hosts Epichloé elymi (Clay and Schardl,
1o 2002). These C3 grass species are commonly represented in natural history collections with broad
11 distributions covering much the eastern United States (Fig. 1). A. hyemalis is a small short-lived
142 perennial species that germinates in spring and typically flowers between March and July (most

13 common collection month: May). A. perennans is of similar stature but is longer lived than
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1a  Agrostis hyemalis and flowers in late summer and early autumn (most common collection month:
us  September). A. perennans is more sparsely distributed, tending to be found in shadier and more
us moist habitats, while A. hyemalis is commonly found in open and recently disturbed ground.
17 Both Agrostis species are recorded from throughout the Eastern US, but A. perennans has a slighty
us more northern distribution, whereas A. hyemalis is found rarely as far north as Canada and is
1s0 listed as a rare plant in Minnesota. E. virginicus is a larger and relatively longer-lived species that
150 is more broadly distributed than the Agrostis species. It begins flowering as early as March or

151 April but continues throughout the summer (most common collection month: July).

152 Herbarium surveys

153 We visited nine herbaria between 2019 and 2022 (see Table Al for a summary of specimens in-
154 cluded from each collection). With permission from herbarium staff, we acquired seed samples
155 from 1135 A. hyemalis specimens collected between 1824 and 2019, 357 A. perennans specimens
156 collected between 1863 and 2017, and 854 E. virginicus specimens collected between 1839 and
157 2019 (Fig. 1, Fig. 2A, Fig. Al). We chose our focal species in part because they are commonly
158 represented in herbarium collections, and produce high numbers of seeds, meaning that small
150 samples would not diminish the value of the specimens for future studies. We collected up
160 to 5-10 seeds per specimen after examining the herbarium sheet under a dissecting microscope
161 to ensure that we collected mature seeds, not florets or unfilled seeds, fit for our purpose of
12 identifying fungal endophytes with microscopy. We excluded specimens for which information
163 about the collection location and date were unavailable. Each specimen was assigned geographic
164 coordinates based on collection information recorded on the herbarium sheet using the geocod-
165 ing functionality of the ggmap R package (Kahle et al., 2019). Many specimens had digitized
16 collection information readily available, but for those that did not, we transcribed information
167 printed on the herbarium sheet. Collections were geo-referenced to the nearest county centroid,
168 Or nearest municipality when that information was available. For fifteen of the oldest specimens,

160 only information at the state level was available, and so we used the state centroid.
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170 After collecting seed samples, we quantified the presence or absence of Epichloé fungal hyphae
171 in each specimen using microscopy. We first softened seeds with a 10% NaOH solution, then
172 stained the seeds with aniline blue-lactic acid stain and squashed them under a microscope
173 cover slip. We examined the squashed seeds for the presence of fungal hyphae at 200-400X
172 magnification (Bacon and White, 2018). On average we scored 4.7 intact seeds per specimen of
175 A. hyemalis, 4.2 seeds per specimen of A. perennans, and 3.8 seeds per specimen of E. virginicus;
176 we scored 10,342 seeds in total. . Due to imperfect vertical transmission (Afkhami and Rudgers,
177 2008), it is possible that symbiotic host-plants produce a mixture of symbiotic and non-symbiotic
178 seeds. We therefore designated a specimen as endophyte-symbiotic if Epichloé hyphae were
179 observed in one or more of its seeds, or non-symbiotic if Epichloé¢ hyphae were observed in none
10 Of its seeds. To capture uncertainty in the endophyte scoring process, we recorded both a "liberal"
1s1 and a "conservative" endophyte status for each plant specimen. When we identified potential
1.2 endophytes with unusual morphology, low uptake of stain, or a small amount of fungal hyphae
183 across the scored seeds, we recorded a positive liberal status (more likely to be endophyte-
184 Ppositive) and a negative conservative status (less likely to be endophyte-positive). 89% of scored
1s5  plants had matching liberal and conservative scores, reflecting high confidence in endophyte
186 status. The following analyses used the liberal status, but we repeated all analyses with the

157 conservative status which yielded qualitatively similar results (Fig. A8).

168 Modeling spatial and temporal changes in endophyte prevalence

180 We assessed spatial and temporal changes in endophyte prevalence across each host distribution,
10 quantifying the “global” temporal trends aggregated across space, and then examining spatial
101 heterogeneity in the direction and magnitude of endophyte change (hotspots and coldspots)
12 across the spatial extent of each host’s distribution. To account for the spatial non-independence
103 of geo-referenced occurrences, we used an approximate Bayesian method, Integrated Nested
104 Laplace Approximation (INLA), to construct spatio-temporal models of endophyte prevalence.

105 INLA provides a computationally efficient method of ascertaining parameter posterior distribu-
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Figure 1: Collection locations of herbarium specimens sampled for Epichloé endophytes. Spec-

imens span eastern North America from nine herbaria, and are colored by host species.

106 tions for certain models that can be formulated as latent Gaussian Models (Rue et al., 2009).
107 Many common statistical models, including structured and unstructured mixed-effects models,
108 can be represented as latent Gaussian Models. We incorporated spatial heterogeneity into this
100 analysis using spatially-structured intercept and slope parameters implemented as stochastic
200 partial differential equations (SPDE) to approximate a continuous spatial Gaussian process. This
200 SPDE approach is a flexible method of smoothing across space while explicitly accounting for
202 spatial dependence between data-points (Bakka et al., 2018; Lindgren et al., 2011). Fitting models
203 with structured spatial effects is possible with MCMC sampling but can require long computa-
204 tion times, making INLA an effective alternative. This approach has been used to model spatial
20 patterns in flowering phenology (Willems et al., 2022), the abundance of birds (Meehan et al.,
206 2019) and butterflies (Crossley et al., 2022), the distribution of temperate trees (Engel et al., 2022)

207 as well as the population dynamics of endangered amphibians (Knapp et al., 2016) and other
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208 ecological processes (Beguin et al., 2012).

200 We estimated global and spatially-varying trends in endophyte prevalence using a joint-
210 likelihood model. For each host species 1, endophyte presence/absence of the i specimen (P, ;)
211 was modeled as a Bernoulli response variable with expected probability of endophyte occurrence
212 ph,l-. We modeled ph,i as a linear function of intercept A;, and slope T}, defining the global trend
213 in endophyte prevalence specific to each host species as well as with spatially-varying intercepts
214 @y, and slopes T, ), associated with location (I;, the unique latitude-longitude combination of the
215 ith observation). The joint-model structure allowed us to “borrow strength” across species in
216 the estimation of shared variance terms for the spatially-dependent random effect ¢;,, intended
217 to account for residual spatial variation, and x., and ws, i.i.d.-random effects indexed for each

218 collector identity (c;), and scorer identity (s;) of the i*" specimen.

logit(Dy,;) = Ay + T), * year; + Q1 + Tyl * year; + 01 + X, + wy (1)
219 By including random effects for collectors and scorers, we accounted for “nuisance” variance

220 that may bias predictions for changes in endophyte prevalence. Previous work suggests that
221 behavior of historical botanists may introduce biases into ecological inferences made from historic
222 collections (Kozlov et al., 2020). Prolific collectors who contribute thousands of specimens may
223 be more or less likely to collect certain species, or specimens with certain traits (Daru et al., 2018).
224 Similarly, the process of scoring seeds for hyphae involved several student researchers who, even
225 with standardized training, may vary in their likelihood of positively identifying Epichloé.

226 We performed model fitting using the inlabru R package (Bachl et al., 2019). Global intercept
227 and slope parameters A, and T, were given vague priors. Scorer and collector random effects,
28 X and w, were given penalized complexity priors, with distributions approximating a Normal
220 distribution with standard deviation of 5. Each spatially-structured parameter depended on a
23 covariance matrix according to the proximity of each pair of collection locations (Bakka et al.,
231 2018; Lindgren et al., 2011). The covariance matrix was approximated using a Matérn covariance

232 function, with each data point assigned a location according to the nodes of a mesh of non-

10
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233 overlapping triangles encompassing the study area (Fig. A2). We assessed model fit with visual
234 posterior predictive checks (A3) and measurements of AUC (Figs. A4-Ab5). Priors for the Matérn
235 covariance function, termed “range" and "variance", define how proximity effects decay with
236 distance. Results presented in the main text reflect a prior range of 342 kilometers (i.e. a 50%
237 probability of estimating a range less than 342 kilometers). We tested a range of values (from 68
238 kilometers to 1714 kilometers) and meshes (presented in the Supporting Methods), finding that
239 while the magnitude and uncertainty of effects varied, model results were qualitatively similar,

220 i.e. the same direction of effects across space.

201 Modeling distributions of host species

222 Because the herbarium records did not encompass the entirety of these host species’ranges,
223 we additionally modeled the geographic distribution of each host species to generate realistic
224 maps on which we could project the predictions of the INLA model. We followed the ODMAP
25 (overview, data, model, assessment, prediction) protocol (Crossley et al., 2022) (see Supporting
226 Methods). In short, we used presence-only observations of each host species from Global Bio-
247 diversity Information Facility (GBIF) between 1990 to 2020. We fit maximum entropy (MaxEnt)
2ss models using the maxent function in the R package dismo (Hijmans et al., 2017) using the same
220 set of seasonal climate predictors considered above calculated for the 1990-2020 climate normals:
250 mean and standard deviation of spring, summer, and autumn temperature, and mean and stan-
251 dard deviation of spring, summer, and autumn cumulative precipitation. We generated 10,000
252 pseudo-absences as background points, and split the occurrence data into 75% for model train-
253 ing and 25% for model testing. The performance of models was evaluated with AUC (Jiménez-
254 Valverde, 2012). We found AUC values of 0.862, 0.838, 0.821 respectively for Agrostis hyemalis,
255 Agrostis perennans, and Elymus virginicus indicating good model fit to data. To convert the contin-
256 uous predicted probabilities into binary presence - absence maps on which we projected INLA
257 predictions, we used the training sensitivity (true positive rate) and specificity threshold (true

258 negative rate) (Liu et al., 2005).

11
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250 Assessing the role of climate drivers

260 We assessed how the magnitude of climate change may have driven changes in endophyte preva-
261 lence by assessing correlations between changes in climate and changes in endophyte prevalence
262 predicted from our spatial model at evenly spaced pixels across the study area. We first down-
263 loaded monthly temperature and precipitation rasters from the PRISM climate group (Daly and
264 Bryant, 2013) covering the time period between 1895 and 2020 using the "prism’ R package (Hart
265 and Bell, 2015). Prism provides reconstructions of historic climate variables across the United
266 States by spatially-interpolating weather station data (Di Luzio et al., 2008). We calculated 30-year
267 climate normals for seasonal mean temperature and cumulative precipitation for the recent (1990
268 to 2020) and historic (1895 to 1925) periods. We used three four-month seasons within the year
260 (Spring: January, February, March, April; Summer: May; June, July, August; Autumn: September,
20 October, November, December). This division of seasons allowed us to quantify differences in
a1 climate associated with the two “cool” seasons, when we expected our focal species to be most
22 biologically active (A. hyemalis flowering phenology: spring; E. virginicus: spring and summer; A.
273 perennans: autumn). In addition to mean climate conditions, environmental variability itself can
274 influence population dynamics (Tuljapurkar, 1982) and changes in variability are a key prediction
2rs  of climate change models (IPCC, 2021; Stocker et al., 2013). Therefore, we calculated the standard
276 deviation for each annual and seasonal climate driver across each 30-year period. We then took
277 the difference between recent and historic periods for the mean and standard deviation for each
278 climate driver (Figs. A12-A14). All together, we assessed twelve potential climate drivers: the
279 mean and standard deviation of spring, summer, and autumn temperature, as well as the mean
280 and standard deviation of spring, summer, and autumn cumulative precipitation.

281 To evaluate whether areas that have experienced the greatest changes in endophyte preva-
2.2 lence (hotspots of endophyte change) are associated with high degrees of change in climate
283 (hotspots of climate change), we modeled the fitted, spatially-varying slopes of endophyte change

284 through time (7j;; as a linear function of environmental covariates, with a Gaussian error distri-

12
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285 bution. Data from each host species was analyzed separately. Fitting regressions to many pixels
286 across the study region risks articially inflating confidence in our results due to large sample
267 sizes, and so we performed this analysis using only a random subsample of 250 pixels across the

288 study region; other sizes of subsample yielded similar results.

200 Validating model performance with in-sample and out-of-sample tests

200 We evaluated the predictive ability of the model using both in-sample training data from the
201 herbarium surveys, and with out-of-sample test data, an important but rarely used strategy in
202 ecological studies (Lee et al., 2024; Tredennick et al., 2021). We generated out-of-sample test
203 data from contemporary surveys of endophyte prevalence in natural populations of A. hyemalis
204 and E. virginicus in Texas and the southern US. Surveys of E. virginicus were conducted in 2013
205 as described in Sneck et al. (2017), and surveys of A. hyemalis took place between 2015 and
206 2020. Population surveys of A. hyemalis were initially designed to cover longitudinal variation
207 in endophyte prevalence towards its range edge, while surveys of E. virginicus were designed to
208 cover latitudinal variation. In total, we visited 43 populations of A. hyemalis and 20 populations
200 of E. virginicus across the south-central US, with emphasis on Texas and neighboring states (Fig
s0 All). During surveys, we collected seeds from up to 30 individuals per population (average
s01  number of plants sampled per population: 22.9); note that this sampling design provided greater
302 local depth of information than the herbarium records, where only one plant was sampled at
303 each locality. We quantified the endophyte status of each individual with staining microscopy
s04 as described for the herbarium surveys (with 5-10 seeds scored per individual), and calculated
305 the prevalence of endophytes within the population (proportion of plants that were endophyte-
306 symbiotic). For each population, we compared the observed fraction of endophyte-symbiotic
307 hosts to the predicted probability of endophyte occurrence P derived from the model for that
308 location and year. The contemporary survey period (2013-2020) is at the most recent edge of the

300 time period encompassed by the historical observations used for model fitting.
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a10 Results

a1 How has endophyte prevalence changed over time?

sz Across >2300 herbarium specimens dating back to 1824, we found that prevalence of Epichloé
a1z endophytes increased over the last two centuries for all three grass host species (Fig. 2). On
314 average, endophytes of A. perennans and E. virginicus increased from ~ 40 % to 70% prevalence
a5 across the study region, and A. hyemalis increased from ~ 25% to over 50% prevalence. Our
a1 model indicates a high certainty that overall temporal trends are positive across species (99%
s17 probability of a positive overall year slope in A. hyemalis, 92% probability of a positive overall
s1s  year slope in A. perennans, and 91% probability of a positive overall year slope in E. virginicus)

s (Fig. A6).
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Figure 2: Temporal trends in endophyte prevalence. (A) Histograms show the frequency of
scored specimens through time for each host species. (B) Lines show predicted mean endophyte
prevalence over the study period along with the 50% and 95% CI bands incorporating uncertainty
associated with collector and scorer random effects. Colored points are binned means of the
observed endophyte presence/absence data (black dashes). Colors represent each host species

and point size represents the number of specimens.

320 The model appears to under-predict the observed increase in endophyte prevalence relative
;21 to the data, particularly for A. hyemalis (Fig. 2B), but the model is accounting for random effects
522 and spatial non-independence that are not readily seen in the figure. We found no evidence that
523 collector biases influenced our results. Collector random effects were consistently small (Fig.

524 A9), and models fit with and without this random effect provide qualitatively similar results.
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325 The identity of individual scorers did contribute to observed patterns in endophyte prevalence.
326 For example, 3 of the 25 scorers were more consistently likely than average to assign positive
527 endophyte status, as indicated by 95% credible intervals greater than zero (Fig. A10). It is
a8 difficult to distinguish whether this was driven by true differences in scorers biases during the
320 seed scoring process or by unintended spatial or temporal clustering of the specimens scored by
330 each scorer (Clayton et al., 1993; Urdangarin et al., 2023). By under-weighting endophyte-positive
;31 samples that are clustered spatially or by collector or observer, the INLA model is appropriately
;32 accounting for nuisance variables and providing a conservative inference of endophyte change

333 relative to the raw data.

334 How spatially variable are temporal trends in endophyte prevalence?

s3s While there was an overall increase in endophyte prevalence, our model revealed hotspots and
a6 coldspots of change across the host species” ranges, which are mapped in Fig. 3 across geo-
s37  graphic ranges predicted by MaxEnt species distribution models. In some regions, posterior
;38 mean estimates of spatially varying temporal trends indicate that A. hyemalis and A. perennans
330 experienced increases in prevalence by as much as 2% per year over the study period, while
a0 E. virginicus experienced increases up to around 1% per year. Both Agrostis species show areas
a1 of strong increase and areas of declining prevalence, while E. virginicus had an overall weaker
a2 and geographically more homogeneous increase in endophyte prevalence. Notably, endophytes
a3 increased most strongly towards the western range edge of A. hyemalis (Fig. 3A) and across the
sas northeastern US for A. perennans (Fig. 3B). Posterior estimates of uncertainty in spatially varying
as  slopes indicate that these hotspots of change may have experienced increases of up to 5% per
ass  year while declines in prevalence may be as great as 4% per year for A. hyemalis and A. perennans.

a7 For E. virginicus, uncertainty ranges between 3.5% increases and 2.5% decreases (Fig. A7).
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Figure 3: Predicted posterior mean of spatially-varying slopes representing change in endophyte
prevalence for each host species. Color indicates the relative change in predicted endophyte

prevalence.

What is the relationship between variation in temporal trends in endophyte
prevalence and changes in climate drivers?

We found that trends in endophyte prevalence were strongly associated with seasonal climate
change drivers (Fig. 4). For the majority of the study region, the climate has become wetter (an
average increase in annual precipitation of 60 mm.) with relatively little temperature warming
(an average increase in annual temperature of 0.02 °C) over the last century (Fig. A12-A14), a con-
sequence of regional variation in global climate change (IPCC, 2021). Within the region, climate
changes were spatially variable; certain locations experienced increases in annual precipitation
as large as 375 mm. or decreases up to 54 mm. across the last century, while annual temper-
ature changes ranged from warming as great as 1.4 °C to cooling by 0.46 °C. Spatially variable
climate trends were predictive of trends in endophyte prevalence. For example, strong increases
in endophyte prevalence for A. perennans were most strongly associated with increasing autumn
precipitation and with increasing mean and variability in autumn temperature (greater than 97%

posterior probabilities of positive slopes). For this species, a 1 °C increase in autumn temper-
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62 ature was associated with a 1.07 % increase per year in endophyte prevalence (Fig. 4A) and a
363 100 mm. increase in precipitation was associated with a 0.8% increase per year in endophyte
se4 prevalence (Fig. 4B). This result aligns with the species” autumn active growing season, however
ses other seasonal climate drivers were also associated with increasing endophyte prevalence. In
36 particular, we found cooler and drier springs and cooler summers to be associated with increas-
367 ing endophyte prevalence (greater than 99% posterior probabilities of negative slopes) however
ses  these slopes were generally of smaller magnitude than those for autumn climate drivers.

369 Changes in endophyte prevalence across the ranges of A. hyemalis and E. virginicus were less
sro  strongly driven by changes in climate. Like A. perennans, climate during peak growing season
sn (spring for A. perennans and summer for E. virginicus) emerged most commonly as drivers of
sz changes in endophyte prevalence. Increases in mean spring preciptation were the strongest pre-
a7 dictor of increasing trends in endophyte prevalence for A. hyemalis (Fig. 4B) (greater than 99%
s7a posterior probability of a positive slope). For this species, an increase of 100 mm. in spring
srs  precipitation led to an increase of 0.6% per year in endophyte prevalence. The next greatest
are  slopes were those associated with variability in spring precipitation (greater than 96% posterior
sz probability of a negative slope), as well as in the mean and variability of autumn climate (greater
srs  than 98% probability of negative and positive slopes, respectively). Changes in endophyte preva-
s lence in E. virginicus were not strongly associated with changes in most climate drivers, but
ss0 regions with reduced variability in autumn precipitation (Fig. 4B) and with cooler and more
ss1  variable summer temperatures (Fig. 4A,C) experienced the largest increases in endophyte preva-
32 lence. While our analysis identified the importance of these drivers with relatively high certainty
;83 (greater than 99% posterior probability of either negative or positive slopes respectively), they
ss4 translate to less than 0.2% change in endophyte prevalence per year for a change of 100 mm.
sss change in precipitation over the century. Repeating this analysis using all pixels across each

386 species’ distribution were qualitatively similar to these results.
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Figure 4: Relationships between predicted trends in endophyte prevalence and changes in
seasonal climate drivers. Lines show marginal predicted relationship between spatially-varying
trends in endophyte prevalence and changes in mean and variability of climate ((A): mean tem-
perature, (B): cumulative precipitation, (C): standard deviation in temperature, (D): standard de-
viation in precipitation). Confidence bands represent the 50 and 95% ClI, colored by host species.
Slopes with greater than 95% probability of being either positive or negative are represented as
solid lines while those that have less than 95% probability are dashed. Points show 250 randomly

sampled pixels across each host’s distribution used in model fitting.
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ss7  Performance on test data

sss  Tests of model’s predictive performance as quantified by AUC and by visual posterior predic-
ss0  tive checks, indicated good predictive ability. Model performance was similar between historic
390 herbarium specimens used as training data and the out-of-sample test data from contemporary
s1  surveys (AUC = 0.79 and 0.77 respectively; Fig. A5-A4). The model successfully captured broad
392 regional trends in endophyte prevalence seen in the contemporary survey data, such as decline
303 endophyte prevalence in A. hyemalis towards western longitudes (Fig. 5A) and northern lati-
304 tudes (Fig. 5B). However, model predictions for endophyte prevalence exhibited relatively little
305 local geographic variation, whereas the out-of-sample survey data were maximally variable with
396 populations spanning 0% to 100% endophyte-symbiotic plants (Fig. 5C). We interpret this to
307 mean that the model captures coarse-scale spatial and temporal trends reasonably well, but is

308 not equipped to capture local-scale nuances that generate population-to-population differences.
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Figure 5: Predictive performance for contemporary test data. (A) The model, trained on historic
herbarium collection data, performed modestly at predicting prevalence in contemporary popu-
lation surveys. The model captured regional trends across (A) longitude and (B) latitude. Crosses
indicate predicted mean prevalence along with the 95% CI (colored lines) from the herbarium
model. Contemporary prevalence is represented by grey points (point size reflects sample size)
along with trend lines from generalized linear models (black line and shaded 95% confidence
interval). (C) Comparison of observed vs. predicted endophyte prevalence shows that contem-

porary test data had more variance between populations than contemporary predictions.

200 Discussion

a0 Our examination of historic plant specimens revealed cryptic shifts in microbial symbiosis over
aor the last two centuries. For the three host species we examined, there have been strong increases
a2 in prevalence of fungal endophytes. We interpret increases in prevalence of Epichloé, which are
sz vertically transmitted, as adaptive changes that improve the fitness of their hosts under increas-
a4 ing environmental stress. This interpretation is in line with theory predicting that the positive
aos fitness feedback caused by vertical transmission leads beneficial symbionts to rise in prevalence

as within a population (Donald et al., 2021; Fine, 1975). We further found that trends in endophyte
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a7 prevalence varied across the distribution of each species in association with changes in climate
as drivers, suggesting that the increases in endophyte prevalence are driven by context-dependent
a0 benefits to hosts that confer resilience under environmental change. Taken together, this suggests
a0 an overall strengthening of host-symbiont mutualism over the last two centuries.

a11 Differences across host species underscore that while all of these C; grasses share similar
a1z broad-scale distributions, each engages in unique biotic interactions and has unique responses to
a3 environmental drivers. We identified hotspots of change for A. perennans, which was the species
a14 that experienced the strongest absolute changes in endophyte prevalence (Fig. 3). Declines of
a5 0.9% per year in the southern portion of its range and increases of up to 2% per year in the
a6 north suggest a potential poleward range shift of endophyte-symbiotic plants (whether the over-
a7 all host distribution is shifting in parallel is an exciting next question). Based on previous work
s1s  demonstrating that endophytes can shield their hosts from drought stress (reviewed inDecunta
a0 et al. (2021)), we generally predicted that drought conditions would be a driver of increasing en-
a0 dophyte prevalence. In contrast to this expectation, increasing prevalence for A. perennans were
a1 associated with increasing autumn temperature and precipitation (Fig. 4). To our knowledge,
a2 the response of the symbiosis in A. perennans to drought has not been examined experimentally,
a3 but in a greenhouse experiment, endophytes had a positive effect on host reproduction under
a4 shaded, low-light conditions (Davitt et al., 2010). Our results also hint that it may be useful to
a5 investigate whether lagged climate effects are important predictors of host fitness in this system
a6 (Evers et al., 2021). Endophyte prevalence of the autumn-flowering A. perennans was strongly
a7 linked with decreasing spring precipitation, and that of the spring-flowering A. hyemalis was as-
a8 sociated with decreasing autumn precipitation (Fig. 4B). For A. hyemalis, endophytes could be
a0 playing a role helping hosts weather autumn-season droughts, which may be an important time
a3 for the species’ germination. Previous work has demonstrated drought benefits in a greenhouse
s31 manipulation with this species (Davitt et al., 2011), and early life stages may be particularly vul-
a2 nerable to prolonged droughts. For E. virginicus, which experienced the most modest changes

a3 in endophte prevalence overall (ranging between 1.1% increases and 0.2% decreases), we only
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a3 found modest associations with changes in climate drivers. Surveys by Sneck et al. (2017), used
a3s  as part of the test data in this study, identified a drought index (SPEI) that integrates precipitation
a3s  with estimated evapotranspiration as an important predictor of endophyte prevalence. Epichloé
a7 endophytes have also been connected to a suite of non-drought related fitness benefits including
ass  herbivore protection (Brem and Leuchtmann, 2001), salinity resistence (Wang et al., 2020), and
a39  mediation of the soil microbiome (Roberts and Ferraro, 2015). These effects are potentially medi-
a0 ated by the diverse bioactive alkaloids and other signaling compounds they produce (Saikkonen
a1 et al, 2013). Increases in symbionts could be explained, at least in part, by these diverse benefits
as2 that may help hosts weather a world made increasingly stressful by changes in climate and other
a3 anthropogenically introduced stressors. While we show consistent increasing trends in preva-
aas  lence between the three species, the mechanisms that explain these changes may be diverse and
a5 idiosyncratic.

446 The combination of a spatially-explicit model and historic herbarium specimens allowed us
a7 to identify regions of both increasing and decreasing endophyte prevalence, however we see
sz several next steps towards the goal of predicting host and symbiont niche-shifts in response to
a0 future climate change. While the model recreated the large-scale spatial trends observed in con-
a0 temporary population surveys, test data contained more population-to-population variability in
a1 prevalence. Validating our model predictions in this way, a rare extra step in collections-based
a2 studies, allows us to evaluate places to improve the model’s out-of-sample predictive ability.
a3 Lack of information on local variability may simply be a feature of data derived from herbarium
asa specimens. They are samples from local populations, but they are single specimens that are ag-
a5 gregated to derive broad-scale model estimates. This suggests that increasing local replication
ase  should be a factor considered in future collection efforts of natural history specimens, balanced
a7 with the required time and effort. Poor predictive ability at local scales in this grass-endophyte
ass  system is not surprising, as previous studies have found that local variation, even to the scale
sso  of hundreds of meters can structure endophyte-host niches (Kazenel et al., 2015). Other studies

a0 have found factors including land-use history (Vikuk et al., 2019) and the biotic environment,
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a1 including herbivory (Rudgers et al., 2016), and host genotype Sneck et al. (2017), to be important
a2 predictors of endophyte ecology. An important step would be integrating data from local and
63 regional scales through modeling to constrain estimates of local and regional variation. Previ-
as4 ous population surveys have found environment-dependent gradients in endophyte prevalence
a5 (Rudgers and Swafford, 2009; Semmartin et al., 2015; Sneck et al., 2017), that may be caused
a6 by symbiont-derived fitness benefits allowing their hosts to persist in environments where they
a7 otherwise could not (Afkhami et al., 2014; Fowler et al., 2023; Kazenel et al., 2015). Predict-
sss ing future niche-shifts of hosts and symbionts will require considering the coupled dynamics of
a0 host-symbiont dispersal in addition to fitness benefits. For example, transplanting symbiotic and
a0 non-symbiotic plants beyond the range edge of A. hyemalis could tell us whether low endophyte
ann prevalence in that area is a result of environmental conditions that lead the symbiosis to negative
a2 fitness consequences, or is a result of some historical contingency or dispersal limitation that
a3 has thus far limited the presence of symbiotic hosts from a region where they would otherwise
a7a flourish and provide resilience. Incorporating available climatic and soil layers as covariates is
a7s  another obvious step that could improve predictions. These steps will bridge gaps that often
a76 exist between large but broad bioclimatic and biodiversity data and small but local data on bi-
a77 otic interactions, and move towards the goal of predicting the dynamics of microbial symbioses
azs under climate change (Isaac et al., 2020; Miller et al., 2019).

479 Our analysis advances the use of herbarium specimens in global change biology in two ways.
aso  First and foremost, this is the first study to link long-term changes in microbial symbioses to
as1 changes in climate using specimens from natural history collections. The responses of micro-
a2 bial symbioses are a rich target for future studies within museum specimens, particularly those
a3 that take advantage of advances in sequencing technology. While we used relatively coarse
a4 presence/absence data based on fungal morphology, other studies have examined historic plant
a5 microbiomes using molecular sequencing and sophisticated bioinformatics techniques, but these
a6 studies have so far been limited to relatively few specimens at limited spatial extents (Bieker

a7 et al., 2020; Bradshaw et al., 2021; Gross et al., 2021; Heberling and Burke, 2019; Yoshida et al.,
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ass 2015). Continued advances in capturing historic DNA and in filtering out potential contamina-
a0 tion during specimen storage (Bakker et al., 2020; Daru et al., 2019; Raxworthy and Smith, 2021)
a0 will be imperative in the effort to scale up these efforts. This scaling up will be essential to be
a1 able to quantify changes not just in the prevalence of symbionts, but also in symbionts” intraspe-
a0z cific variation and evolutionary responses to climate change, as well as in changes in the wider
a3 microbial community. Genetic variation in Epichloé endophytes, particularly in genes respon-
a04 sible for alkaloid production, produces “chemotypes" with differing benefits for hosts against
a0s insect or mammalian herbivores mediated by environmental conditions (Saikkonen et al., 2013;
ass Schardl et al., 2012). With improved molecular insights from historic specimens, we could ask
a7 Whether the broad increases in endophytes that we have identified reflect selection for particular
a0s  chemotypes and how this selection varies across space. Answering these questions as well as
a9 the unknown questions that future researchers may ask also reiterates the value in capturing
soo meta-information during ongoing digitization efforts at herbaria around the world and during
so1 the accession of newly collected specimens (Edwards et al.; Lendemer et al., 2020). Second, we
s2 accounted for several potential biases in the data observation process that may be common to
s3 many collections-based research questions by using a spatially-explicit random effects model.
so4 Spatial autocorrelation (Willems et al., 2022), potential biases introduced by the sampling habits
sos Of collectors (Daru et al., 2018), and variation between contemporary researchers during the col-
so6 lection of trait data, if not corrected for could lead to over-confident inference about the strength
so7 and direction of historic change (Fig. 2). Previous studies that have quantified the effects of
sos collector biases typically find them to be small (Davis et al., 2015; Meineke et al., 2019), and we
so0 similarly did not find that collector has a strong effect on the results of our analysis, but that
s10 scorer identity did impact results.

511 Ultimately, a central goal of global change biology is to generate predictive insights into the
sz future of natural systems on a rapidly changing planet. Beyond host-microbe symbioses, de-
s13  tecting ecological responses to anthropogenic global change and attributing their causes would

514 inform public policy decision-makers and adaptive management strategies. This survey of his-
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s15 toric endophyte prevalence is necessarily correlative, yet it serves as a foundation to develop
si6  better predictive models of the response of microbial symbioses to climate change. By compar-
s17 - ing detected ecological responses with alternative mechanistic simulations of the past, we could
518 attribute their cause, in a manner similar to methods from climate science and economics (Car-
s19 leton and Hsiang, 2016; Stott et al., 2010; Trenberth et al., 2015). Combining the insights from
s20 this type of regional-scale survey with field experiments and physiological performance data
s21 could be invaluable to identify mechanisms driving shifts in host-symbiont dynamics. Evidence
522 is strong that certain dimensions of climate change correlated with endophytes’ temporal re-
523 sponses, however we do not know why trends in prevalence were weak in some areas or how
s« endophytes would respond to more extreme changes in climate. The “time machine” of natu-
s2s ral history collections revealed evidence of mutualism resilience for grass-endophyte symbioses
s26 in the face of environmental change, but more extreme changes could potentially push one or
527 both partners beyond their physiological limits, leading to the collapse of the mutualism; more

s2s research is needed to understand what those limits might be.
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Figure Al: Endophyte presence/absence in specimens of each host species. Points show col-
lection locations colored according to whether the specimen contained endophytes ( E+; blue
points) or did not contain endophytes (E-, tan points). To visualize temporal change, the data are

faceted before and after the median year of collection.
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Figure A2: Triangulation mesh used to estimate spatial dependence between data points. Grey
lines indicate edges of triangles used to define distances between observations. Colored points
indicate locations of sampled herbarium specimens for each host species, and the blue line shows
the convex hull and coastline used to define the edge of the mesh around the data points. The
thick black line shows the convex hull defining a buffer space around the edge of the mesh to

reduce the influence of edge effects on model estimates.
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Figure A3: Consistency between real data and simulated values indicate that the fitted model

accurately describes the data. Graph shows density curves for the observed data (black) along

with with 100 simulated datasets (red).
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Figure A4: ROC plot showing model performance classifying observations according to en-
dophyte status within the in-sample data. The curves show adequate model performance for

observed data. The AUC value is 0.79.
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Figure A5: ROC plot showing model performance classifying observations according to endo-
phyte status within the out-of-sample data. The curves show adequate model performance for

test data. The AUC value is 0.77.
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Figure A6: Density curves show the probability density along with mean (colored line) and 95%
CI (black lines) for the (A) intercept and (B) slope terms, A and T respectively. Colors represent

each host species
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Figure A7: Shading represents the range of the 95% posterior credible interval for spatially

varying slopes, T.
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Figure A8: Comparison of liberal versus conservative endophyte scores on modeled outcomes.
(A) Posterior estimates of global temporal trend for models fit to liberal scores (grey) and to
conservative scores (blue). Maps show the spatially varying temporal trend estimates from model
fit to conservative scores for (B) A. hyemalis, (C) A. perennans, and (D) E. virginicus. Note that the

color scale differs between this visualization and Fig. 3.
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Figure A9: Posterior estimates of collector random effects. Points show posterior median along

with 95% CI for each of 924 individual collectors.
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Figure A10: Posterior estimates of scorer random effects. Points show posterior median along

with 95% CI for each of 25 individual collectors.
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Figure A1l: Locations of contemporary surveys of endophytes in A. hyemalis used as "test"

data (red points), relative to the historical collection data (black crosses).
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Figure A12: Change in seasonal climate variables between the periods 1895-1925 and 1990-
2020. Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps
show pixels covering the modeled distribution of A. hyemalis used in post-hoc climate correlation

analysis.
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Figure A13: Change in seasonal climate variables between the periods 1895-1925 and 1990-2020.
Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps show
pixels covering the modeled distribution of A. perennans used in post-hoc climate correlation

analysis.
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Figure A14: Change in seasonal climate variables between the periods 1895-1925 and 1990-
2020. Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps
show pixels covering the modeled distribution of E. virginicus used in post-hoc climate correlation

analysis.
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Table Al: Summary of herbarium samples across collections

Herbarium Collection AGHY AGPE ELVI
Botanical Research Institute of Texas 350 190 198
Louisiana State University 72 38 62
Mercer Botanic Garden 3 - 6
Missouri Botanic Garden 210 205 122
Texas A&M 100 - 72
University of Kansas 134 34 197
University of Oklahoma 85 34 95
University of Texas & Lundell 183 91 102
Oklahoma State University 51 10 74

840 Supporting Methods

sa1 ODMAP Protocol

sz Overview

23 Model purpose: Mapping current distribution of Epichloé host species.

sas Target species: Agrostis hyemalis, Agrostis perennans, and Elymus virginicus.

sss  Study area: Eastern North America

sss  Spatial extent: -125.0208, -66.47917, 24.0625, 49.9375 (xmin, xmax, ymin, ymax).

sa7  Spatial resolution: 0.04166667, 0.04166667 (X, y).

sss  Temporal extent: 1990 to 2020.

sso  Boundary: Natural.

sso  Data

ss1 Observation type: Occurrence records from Global Biodiversity Information Facility and

ss2  herbarium collection across eastern North America. We used 713 occurrences records for
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ss3  Agrostis hyemalis, 656 occurrence records for Agrostis perennans and 2338 for Elymus virginicus.

ss4 Response data type: occurrence record, presence-only.

sss  Coordinate reference system: WGS84 coordinate reference system (EPSG:4326 code)

sss Climatic data: raster data extracted from PRISM

ss7 Model

sss  Model assumption: We assumed that the target species are at equilibrium with their environ-
sso ment.

seo Algorithms: Maximum entropy (maxent)

ss1  Workflow: We described the workflow in the method section of the manuscript.

sz Software: All statistics were performed using Maxent 3.3.4 and R4.3.1 with packages terra,
g3 usdm, spThin and dismo.

sss Code availability: Available through this link: https://github.com /joshuacfowler/EndoHerbarium
ses Data availability: Will be available upon acceptance

se6 Assessment

sz We used AUC to test model performance.

ses  Prediction

seo  We predicted the probability of presence of the host species as a binary maps (presence or

g0 absence)

on1 Mesh and Prior Sensitivity analysis

sz To test the influence that the triangulation mesh and choice of priors has on results, we compared
s73 model results across a range of meshes and priors. We re-ran our model for the mesh used in
s7a main body of the text (Fig. A2), which we refer to as the "standard mesh", and with a mesh with
srs  smaller minimum vertices (finer mesh). Finer scale meshes increase computation time. For each
s7e  Of these meshes, we ran the model with a range of priors defining the spatial range of our spatial
sz random effects: 342km (the prior used for presented results), as well as ranges five times smaller

sre (68 km) and five times larger (1714 km). We found generally that these choices did not alter the
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sro direction of model predictions, but did influence the associated uncertainty and magnitude of
ss0 some effects.
881 For overall temporal trends, we found that models with differing priors predicted consistently

ss2 positive relationships over time (Fig. A15).
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Figure A15: Overall trend in endophyte prevalence evaluated for models with different range
priors on spatially structured random effects, and for two different meshes. Note that these
plots, as compared to Fig. 2 in main text, show mean trends and do not incorporate prediction

uncertainty associated with collector and scorer random effects.

883 For spatially-varying temporal trends, we found that models with different priors predicted
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ss4 consistent spatial patterns in temporal trends, although the range of this prediction varied de-
sss pending on the prior and mesh (Fig. A16 - A17). One noteworthy result of this analysis is that
sss combinations of prior choice and mesh can introduce instability in model fitting. This is evident
ss7 in Al6 panel B and A17 panel B, where the prior range is smaller than the minimum vertex
sss length of the mesh. Model fitting takes an extended time period and the model struggles to
sso identify variation across space. Results with a set of prior ranges (Fig. A16 - A and C; Fig. Al7
so0o - A and C) result in models that estimate trends across space of the same direction and order of

so1 magnitude, although the “smoothness" of these predictions vary.
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Figure Al6: Spatially-varying trends in endophyte prevalence evaluated for models with dif-

ferent range priors on spatially structured random effects, and for the "standard" mesh. Shad-

ing indicates the magnitude and direction of predicted trends for each of three host species for

each of three prior ranges (rows A-C). Note that each plot has an individual scale bars.
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Figure A17: Spatially-varying trends in endophyte prevalence evaluated for models with dif-
ferent range priors on spatially structured random effects, and for the "finer" mesh. Shading

indicates the magnitude and direction of predicted trends for each of three host species for each

of three prior ranges (rows A-C). Note that each plot has an individual scale bars.

61


https://doi.org/10.1101/2024.09.05.611506
http://creativecommons.org/licenses/by/4.0/

