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Abstract13

Species’ distributions and abundances are shifting in response to ongoing global climate change.14

Mutualistic microbial symbionts can provide their hosts with protection from environmental15

stress that may contribute towards resilient responses to environmental change, however these16

changes may also disrupt species interactions and lead to declines in hosts and/or symbionts.17

Symbionts preserved within natural history specimens offer a unique opportunity to quantify18

changes in microbial symbiosis across broad temporal and spatial scales. We asked how the19

prevalence of seed-transmitted fungal symbionts of grasses (Epichloë endophytes) have changed20

over time in response to climate change, and how these changes vary across host species’ ranges.21

Specifically, we analyzed 2,346 herbarium specimens of three grass host species (Agrostis hye-22

malis,Agrostis perennans,Elymus virginicus) collected over the past two centuries (1824 – 2019) for23

the presence or absence of Epichloë symbiosis. We found that endophytes increased in preva-24

lence over the last two centuries from ca. 25% prevalence to ca. 75% prevalence, on average,25

across three host species. Changes in seasonal climate drivers were associated with increasing26

endophyte prevalence. Notably, increasing precipitation during the peak growing season for27

Agrostis species and decreasing precipitation for E. virginicus were associated with increasing en-28

dophyte prevalence. Changes in the variability of precipitation and temperature during off-peak29

seasons were also important predictors of increasing endophyte prevalence. Our analysis per-30

formed favorably in an out-of-sample predictive test with contemporary survey data, a rare extra31

step in collections-based research. However, we identified greater local-scale variability in endo-32

phyte prevalence in contemporary data compared to model predictions based on historic data,33

suggesting new directions that could improve predictive accuracy. Our results provide novel34

evidence for a cryptic biological response to climate change that may contribute to the resilience35

of host-microbe symbiosis through context-dependent benefits that confer a fitness advantage to36

symbiotic hosts under environmental change.37

Abstract : 300 words38
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Introduction39

Understanding how biotic interactions are altered by global change is a major goal of basic and40

applied ecological research (Blois et al., 2013; Gilman et al., 2010). Documented responses to41

environmental change, such as shifts in species’ distributions (Aitken et al., 2008) and phenology42

(Piao et al., 2019), are typically blind to concurrent changes in associated biotic interactions.43

Empirically evaluating these biotic changes – whether interacting species shift in tandem with44

their partners or not (HilleRisLambers et al., 2013) – is crucial to predicting the reorganization45

of Earth’s biodiversity under global change. Such evaluations have been limited because few46

datasets on species interactions extend over sufficiently long time scales of contemporary climate47

change (Poisot et al., 2021).48

Natural history specimens, which were originally collected to study and preserve taxonomic49

diversity, present a unique opportunity to explore long-term changes in ecological interactions50

across broad spatial and temporal scales (Meineke et al., 2018). Natural history collections, built51

and maintained by the efforts of thousands of scientists, are invaluable time machines, primarily52

comprised of physical specimens of organisms along with information about the time and place53

of their collection. These specimens often preserve physical legacies of ecological processes and54

species’ interactions from dynamically changing environments across time and space. For exam-55

ple, previous researchers have used plant collections (herbaria) to document shifts in phenology56

(Berg et al., 2019; Park et al., 2019; Willis et al., 2017), pollination (Duan et al., 2019; Pauw and57

Hawkins, 2011), and herbivory (Meineke et al., 2019) related to anthropogenic climate change.58

However, few previous studies have leveraged biological collections to examine climate change-59

related shifts in a particularly common type of interaction: microbial symbiosis.60

Microbial symbionts are common to all macroscopic organisms and can have important ef-61

fects on their hosts’ survival, growth and reproduction (McFall-Ngai et al., 2013; Rodriguez et al.,62

2009). Many microbial symbionts act as mutualists, engaging in reciprocally beneficial interac-63

tions with their hosts that can ameliorate environmental stress. For example, bacterial symbionts64

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2024. ; https://doi.org/10.1101/2024.09.05.611506doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611506
http://creativecommons.org/licenses/by/4.0/


of insects, such as Wolbachia, can improve their hosts’ thermal tolerance (Renoz et al., 2019; Truitt65

et al., 2019), and arbuscular mycorrhizal fungi, documented in 70-90% of families of land plants66

(Parniske, 2008), allow their hosts to persist through drought conditions by improving water and67

nutrient uptake (Cheng et al., 2021). On the other hand, changes in the mean and variance of68

environmental conditions may disrupt microbial mutualisms by changing the costs and bene-69

fits of the interaction for each partner, leading the interaction to deteriorate (Aslan et al., 2013;70

Fowler et al., 2024). Coral bleaching (the loss of symbiotic algae) due to temperature stress (Sully71

et al., 2019) is perhaps the best known example, but this phenomenon is not unique to corals.72

Lichens exposed to elevated temperatures experienced loss of photosynthetic function along with73

changes in the composition of their algal symbiont community (Meyer et al., 2022). How com-74

monly and under what conditions microbial mutualisms deteriorate or strengthen under climate75

change remain unanswered questions (Frederickson, 2017). Previous work suggests that these76

alternative responses may depend on the intimacy and specialization of the interaction as well77

as the physiological tolerances of the mutualist partners (Rafferty et al., 2015; Toby Kiers et al.,78

2010; Warren and Bradford, 2014).79

Understanding of how microbial symbioses are affected by climate change is additionally80

complicated by spatial heterogeneity in the direction and magnitude of environmental change81

(IPCC, 2021). Beneficial symbionts are likely able to shield their hosts from environmental stress82

in locations that experience a small degree of change, but symbionts in locations that experience83

changes of large magnitude may be pushed beyond their physiological limits (Webster et al.,84

2008). Additionally, symbionts are often unevenly distributed across their hosts’ distribution.85

Facultative symbionts may be absent from portions of the host range (Afkhami et al., 2014), and86

hosts may engage with a diversity of partners (different symbiont species or locally-adapted87

strains) across their environments (Fowler et al., 2023; Frade et al., 2008; Rolshausen et al., 2018).88

Identifying broader spatial trends in symbiont prevalence is therefore an important step in de-89

veloping predictions for where to expect changes in the symbiosis in future climates.90

Epichloë fungal endophytes are specialized symbionts of cool-season grasses, which have been91
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documented in ∼ 30% of cool-season grass species (Leuchtmann, 1992). They are transmitted92

vertically from maternal plants to offspring through seeds. Vertical transmission creates a feed-93

back between the fitness of host and symbiont (Douglas, 1998; Fine, 1975; Rudgers et al., 2009).94

Over time, endophytes that act as mutualists should rise in prevalence within a host population95

(Donald et al., 2021). Epichloë are known to improve their hosts’ drought tolerance (Decunta96

et al., 2021) and protect their hosts against herbivores (Crawford et al., 2010) and pathogens (Xia97

et al., 2018) likely through the production of a diverse suite of alkaloids and other secondary98

metabolites. The fitness feedback induced by vertical transmission leads to the prediction that99

endophyte prevalence should be high in populations where these fitness benefits are most impor-100

tant. Previous survey studies of contemporary populations have documented large-scale spatial101

patterns in endophyte prevalence structured by environmental gradients (Afkhami, 2012; Bazely102

et al., 2007; Granath et al., 2007; Sneck et al., 2017). We predicted that prevalence should track103

temporal changes in environmental drivers that elicit strong fitness benefits.104

Early research on Epichloë used herbarium specimens to describe the broad taxonomic di-105

versity of host species that harbor these symbionts (White and Cole, 1985), establishing that106

endophyte symbiosis could be identified in plant tissue from as early as 1851. However, no107

subsequent studies, to our knowledge, have used the vast resources of biological collections to108

quantitatively assess spatio-temporal trends in endophyte prevalence and their environmental109

correlates. Grasses are commonly collected and identified based on the presence of their re-110

productive structures, meaning that preserved specimens typically contain seeds, conveniently111

preserving the fungi along with their host plants on herbarium sheets. This creates the oppor-112

tunity to leverage the unique spatio-temporal sampling of herbarium collections to examine the113

response of the symbiosis to historical climate change. However, the predictive ability derived114

from historical analyses is rarely tested against contemporary data (Lee et al., 2024). Critically115

evaluating whether insights from historical reconstruction are predictive of variation across con-116

temporary populations is a crucial step for the field to move from reading signatures of the past117

to forecasting ecological dynamics into the future.118
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In this study, we assessed the long-term responses of endophyte symbiosis to climate change119

through the use of herbarium specimens of three North American host grass species (Agrostis120

hyemalis, Agrostis perennans, and Elymus virginicus). We first addressed questions describing spa-121

tial and temporal trends in endophyte prevalence: (i) How has endophyte prevalence changed122

over the past two centuries? and (ii) How spatially variable are temporal trends in endophyte123

prevalence across eastern North America? We then addressed how climate change may be driv-124

ing trends in endophyte prevalence by asking: (iii) What is the relationship between temporal125

trends in endophyte prevalence and associated changes in climate drivers? We predicted that126

aggregate endophyte prevalence would increase over time in tandem with climate warming, and127

that hotspots of endophyte change would correspond spatially to hotspots of climate change.128

Finally, we evaluated the performance of models built on data from historic specimens with an129

out-of-sample test, using data on endophyte prevalence from contemporary surveys of host pop-130

ulations. To answer these questions we examined a total of 2,346 historic specimens collected131

across eastern North America between 1824 and 2019, and evaluated model performance against132

contemporary surveys comprising 1,442 individuals from 63 populations collected between 2013133

and 2020.134

Methods135

Focal species136

Our surveys focused on three native North American grasses: Agrostis hyemalis, Agrostis peren-137

nans, and Elymus virginicus. Both Agrostis species host Epichloë amarillans (Craven et al., 2001;138

Leuchtmann et al., 2014), while Elymus virginicus typically hosts Epichloë elymi (Clay and Schardl,139

2002). These C3 grass species are commonly represented in natural history collections with broad140

distributions covering much the eastern United States (Fig. 1). A. hyemalis is a small short-lived141

perennial species that germinates in spring and typically flowers between March and July (most142

common collection month: May). A. perennans is of similar stature but is longer lived than143
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Agrostis hyemalis and flowers in late summer and early autumn (most common collection month:144

September). A. perennans is more sparsely distributed, tending to be found in shadier and more145

moist habitats, while A. hyemalis is commonly found in open and recently disturbed ground.146

Both Agrostis species are recorded from throughout the Eastern US, but A. perennans has a slighty147

more northern distribution, whereas A. hyemalis is found rarely as far north as Canada and is148

listed as a rare plant in Minnesota. E. virginicus is a larger and relatively longer-lived species that149

is more broadly distributed than the Agrostis species. It begins flowering as early as March or150

April but continues throughout the summer (most common collection month: July).151

Herbarium surveys152

We visited nine herbaria between 2019 and 2022 (see Table A1 for a summary of specimens in-153

cluded from each collection). With permission from herbarium staff, we acquired seed samples154

from 1135 A. hyemalis specimens collected between 1824 and 2019, 357 A. perennans specimens155

collected between 1863 and 2017, and 854 E. virginicus specimens collected between 1839 and156

2019 (Fig. 1, Fig. 2A, Fig. A1). We chose our focal species in part because they are commonly157

represented in herbarium collections, and produce high numbers of seeds, meaning that small158

samples would not diminish the value of the specimens for future studies. We collected up159

to 5-10 seeds per specimen after examining the herbarium sheet under a dissecting microscope160

to ensure that we collected mature seeds, not florets or unfilled seeds, fit for our purpose of161

identifying fungal endophytes with microscopy. We excluded specimens for which information162

about the collection location and date were unavailable. Each specimen was assigned geographic163

coordinates based on collection information recorded on the herbarium sheet using the geocod-164

ing functionality of the ggmap R package (Kahle et al., 2019). Many specimens had digitized165

collection information readily available, but for those that did not, we transcribed information166

printed on the herbarium sheet. Collections were geo-referenced to the nearest county centroid,167

or nearest municipality when that information was available. For fifteen of the oldest specimens,168

only information at the state level was available, and so we used the state centroid.169
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After collecting seed samples, we quantified the presence or absence of Epichloë fungal hyphae170

in each specimen using microscopy. We first softened seeds with a 10% NaOH solution, then171

stained the seeds with aniline blue-lactic acid stain and squashed them under a microscope172

cover slip. We examined the squashed seeds for the presence of fungal hyphae at 200-400X173

magnification (Bacon and White, 2018). On average we scored 4.7 intact seeds per specimen of174

A. hyemalis, 4.2 seeds per specimen of A. perennans, and 3.8 seeds per specimen of E. virginicus;175

we scored 10, 342 seeds in total. . Due to imperfect vertical transmission (Afkhami and Rudgers,176

2008), it is possible that symbiotic host-plants produce a mixture of symbiotic and non-symbiotic177

seeds. We therefore designated a specimen as endophyte-symbiotic if Epichloë hyphae were178

observed in one or more of its seeds, or non-symbiotic if Epichloë hyphae were observed in none179

of its seeds. To capture uncertainty in the endophyte scoring process, we recorded both a "liberal"180

and a "conservative" endophyte status for each plant specimen. When we identified potential181

endophytes with unusual morphology, low uptake of stain, or a small amount of fungal hyphae182

across the scored seeds, we recorded a positive liberal status (more likely to be endophyte-183

positive) and a negative conservative status (less likely to be endophyte-positive). 89% of scored184

plants had matching liberal and conservative scores, reflecting high confidence in endophyte185

status. The following analyses used the liberal status, but we repeated all analyses with the186

conservative status which yielded qualitatively similar results (Fig. A8).187

Modeling spatial and temporal changes in endophyte prevalence188

We assessed spatial and temporal changes in endophyte prevalence across each host distribution,189

quantifying the “global” temporal trends aggregated across space, and then examining spatial190

heterogeneity in the direction and magnitude of endophyte change (hotspots and coldspots)191

across the spatial extent of each host’s distribution. To account for the spatial non-independence192

of geo-referenced occurrences, we used an approximate Bayesian method, Integrated Nested193

Laplace Approximation (INLA), to construct spatio-temporal models of endophyte prevalence.194

INLA provides a computationally efficient method of ascertaining parameter posterior distribu-195
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Figure 1: Collection locations of herbarium specimens sampled for Epichloë endophytes. Spec-

imens span eastern North America from nine herbaria, and are colored by host species.

tions for certain models that can be formulated as latent Gaussian Models (Rue et al., 2009).196

Many common statistical models, including structured and unstructured mixed-effects models,197

can be represented as latent Gaussian Models. We incorporated spatial heterogeneity into this198

analysis using spatially-structured intercept and slope parameters implemented as stochastic199

partial differential equations (SPDE) to approximate a continuous spatial Gaussian process. This200

SPDE approach is a flexible method of smoothing across space while explicitly accounting for201

spatial dependence between data-points (Bakka et al., 2018; Lindgren et al., 2011). Fitting models202

with structured spatial effects is possible with MCMC sampling but can require long computa-203

tion times, making INLA an effective alternative. This approach has been used to model spatial204

patterns in flowering phenology (Willems et al., 2022), the abundance of birds (Meehan et al.,205

2019) and butterflies (Crossley et al., 2022), the distribution of temperate trees (Engel et al., 2022)206

as well as the population dynamics of endangered amphibians (Knapp et al., 2016) and other207
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ecological processes (Beguin et al., 2012).208

We estimated global and spatially-varying trends in endophyte prevalence using a joint-209

likelihood model. For each host species h, endophyte presence/absence of the ith specimen (Ph,i)210

was modeled as a Bernoulli response variable with expected probability of endophyte occurrence211

P̂h,i. We modeled P̂h,i as a linear function of intercept Ah and slope Th defining the global trend212

in endophyte prevalence specific to each host species as well as with spatially-varying intercepts213

αh,li and slopes τh,li associated with location (li, the unique latitude-longitude combination of the214

ith observation). The joint-model structure allowed us to “borrow strength” across species in215

the estimation of shared variance terms for the spatially-dependent random effect δli , intended216

to account for residual spatial variation, and χci and ωsi i.i.d.-random effects indexed for each217

collector identity (ci), and scorer identity (si) of the ith specimen.218

logit(P̂h,i) = Ah + Th ∗ yeari + αh,li + τh,li ∗ yeari + δli + χci + ωsi (1)

By including random effects for collectors and scorers, we accounted for “nuisance” variance219

that may bias predictions for changes in endophyte prevalence. Previous work suggests that220

behavior of historical botanists may introduce biases into ecological inferences made from historic221

collections (Kozlov et al., 2020). Prolific collectors who contribute thousands of specimens may222

be more or less likely to collect certain species, or specimens with certain traits (Daru et al., 2018).223

Similarly, the process of scoring seeds for hyphae involved several student researchers who, even224

with standardized training, may vary in their likelihood of positively identifying Epichloë.225

We performed model fitting using the inlabru R package (Bachl et al., 2019). Global intercept226

and slope parameters A, and T , were given vague priors. Scorer and collector random effects,227

χ and ω, were given penalized complexity priors, with distributions approximating a Normal228

distribution with standard deviation of 5. Each spatially-structured parameter depended on a229

covariance matrix according to the proximity of each pair of collection locations (Bakka et al.,230

2018; Lindgren et al., 2011). The covariance matrix was approximated using a Matérn covariance231

function, with each data point assigned a location according to the nodes of a mesh of non-232
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overlapping triangles encompassing the study area (Fig. A2). We assessed model fit with visual233

posterior predictive checks (A3) and measurements of AUC (Figs. A4-A5). Priors for the Matérn234

covariance function, termed ”range" and "variance", define how proximity effects decay with235

distance. Results presented in the main text reflect a prior range of 342 kilometers (i.e. a 50%236

probability of estimating a range less than 342 kilometers). We tested a range of values (from 68237

kilometers to 1714 kilometers) and meshes (presented in the Supporting Methods), finding that238

while the magnitude and uncertainty of effects varied, model results were qualitatively similar,239

i.e. the same direction of effects across space.240

Modeling distributions of host species241

Because the herbarium records did not encompass the entirety of these host species’ranges,242

we additionally modeled the geographic distribution of each host species to generate realistic243

maps on which we could project the predictions of the INLA model. We followed the ODMAP244

(overview, data, model, assessment, prediction) protocol (Crossley et al., 2022) (see Supporting245

Methods). In short, we used presence-only observations of each host species from Global Bio-246

diversity Information Facility (GBIF) between 1990 to 2020. We fit maximum entropy (MaxEnt)247

models using the maxent function in the R package dismo (Hijmans et al., 2017) using the same248

set of seasonal climate predictors considered above calculated for the 1990-2020 climate normals:249

mean and standard deviation of spring, summer, and autumn temperature, and mean and stan-250

dard deviation of spring, summer, and autumn cumulative precipitation. We generated 10,000251

pseudo-absences as background points, and split the occurrence data into 75% for model train-252

ing and 25% for model testing. The performance of models was evaluated with AUC (Jiménez-253

Valverde, 2012). We found AUC values of 0.862, 0.838, 0.821 respectively for Agrostis hyemalis,254

Agrostis perennans, and Elymus virginicus indicating good model fit to data. To convert the contin-255

uous predicted probabilities into binary presence - absence maps on which we projected INLA256

predictions, we used the training sensitivity (true positive rate) and specificity threshold (true257

negative rate) (Liu et al., 2005).258
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Assessing the role of climate drivers259

We assessed how the magnitude of climate change may have driven changes in endophyte preva-260

lence by assessing correlations between changes in climate and changes in endophyte prevalence261

predicted from our spatial model at evenly spaced pixels across the study area. We first down-262

loaded monthly temperature and precipitation rasters from the PRISM climate group (Daly and263

Bryant, 2013) covering the time period between 1895 and 2020 using the ’prism’ R package (Hart264

and Bell, 2015). Prism provides reconstructions of historic climate variables across the United265

States by spatially-interpolating weather station data (Di Luzio et al., 2008). We calculated 30-year266

climate normals for seasonal mean temperature and cumulative precipitation for the recent (1990267

to 2020) and historic (1895 to 1925) periods. We used three four-month seasons within the year268

(Spring: January, February, March, April; Summer: May; June, July, August; Autumn: September,269

October, November, December). This division of seasons allowed us to quantify differences in270

climate associated with the two “cool” seasons, when we expected our focal species to be most271

biologically active (A. hyemalis flowering phenology: spring; E. virginicus: spring and summer; A.272

perennans: autumn). In addition to mean climate conditions, environmental variability itself can273

influence population dynamics (Tuljapurkar, 1982) and changes in variability are a key prediction274

of climate change models (IPCC, 2021; Stocker et al., 2013). Therefore, we calculated the standard275

deviation for each annual and seasonal climate driver across each 30-year period. We then took276

the difference between recent and historic periods for the mean and standard deviation for each277

climate driver (Figs. A12-A14). All together, we assessed twelve potential climate drivers: the278

mean and standard deviation of spring, summer, and autumn temperature, as well as the mean279

and standard deviation of spring, summer, and autumn cumulative precipitation.280

To evaluate whether areas that have experienced the greatest changes in endophyte preva-281

lence (hotspots of endophyte change) are associated with high degrees of change in climate282

(hotspots of climate change), we modeled the fitted, spatially-varying slopes of endophyte change283

through time (τ[h]l as a linear function of environmental covariates, with a Gaussian error distri-284
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bution. Data from each host species was analyzed separately. Fitting regressions to many pixels285

across the study region risks articially inflating confidence in our results due to large sample286

sizes, and so we performed this analysis using only a random subsample of 250 pixels across the287

study region; other sizes of subsample yielded similar results.288

Validating model performance with in-sample and out-of-sample tests289

We evaluated the predictive ability of the model using both in-sample training data from the290

herbarium surveys, and with out-of-sample test data, an important but rarely used strategy in291

ecological studies (Lee et al., 2024; Tredennick et al., 2021). We generated out-of-sample test292

data from contemporary surveys of endophyte prevalence in natural populations of A. hyemalis293

and E. virginicus in Texas and the southern US. Surveys of E. virginicus were conducted in 2013294

as described in Sneck et al. (2017), and surveys of A. hyemalis took place between 2015 and295

2020. Population surveys of A. hyemalis were initially designed to cover longitudinal variation296

in endophyte prevalence towards its range edge, while surveys of E. virginicus were designed to297

cover latitudinal variation. In total, we visited 43 populations of A. hyemalis and 20 populations298

of E. virginicus across the south-central US, with emphasis on Texas and neighboring states (Fig299

A11). During surveys, we collected seeds from up to 30 individuals per population (average300

number of plants sampled per population: 22.9); note that this sampling design provided greater301

local depth of information than the herbarium records, where only one plant was sampled at302

each locality. We quantified the endophyte status of each individual with staining microscopy303

as described for the herbarium surveys (with 5-10 seeds scored per individual), and calculated304

the prevalence of endophytes within the population (proportion of plants that were endophyte-305

symbiotic). For each population, we compared the observed fraction of endophyte-symbiotic306

hosts to the predicted probability of endophyte occurrence P̂ derived from the model for that307

location and year. The contemporary survey period (2013-2020) is at the most recent edge of the308

time period encompassed by the historical observations used for model fitting.309
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Results310

How has endophyte prevalence changed over time?311

Across >2300 herbarium specimens dating back to 1824, we found that prevalence of Epichloë312

endophytes increased over the last two centuries for all three grass host species (Fig. 2). On313

average, endophytes of A. perennans and E. virginicus increased from ∼ 40 % to 70% prevalence314

across the study region, and A. hyemalis increased from ∼ 25% to over 50% prevalence. Our315

model indicates a high certainty that overall temporal trends are positive across species (99%316

probability of a positive overall year slope in A. hyemalis, 92% probability of a positive overall317

year slope in A. perennans, and 91% probability of a positive overall year slope in E. virginicus)318

(Fig. A6).319
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Figure 2: Temporal trends in endophyte prevalence. (A) Histograms show the frequency of

scored specimens through time for each host species. (B) Lines show predicted mean endophyte

prevalence over the study period along with the 50% and 95% CI bands incorporating uncertainty

associated with collector and scorer random effects. Colored points are binned means of the

observed endophyte presence/absence data (black dashes). Colors represent each host species

and point size represents the number of specimens.

The model appears to under-predict the observed increase in endophyte prevalence relative320

to the data, particularly for A. hyemalis (Fig. 2B), but the model is accounting for random effects321

and spatial non-independence that are not readily seen in the figure. We found no evidence that322

collector biases influenced our results. Collector random effects were consistently small (Fig.323

A9), and models fit with and without this random effect provide qualitatively similar results.324
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The identity of individual scorers did contribute to observed patterns in endophyte prevalence.325

For example, 3 of the 25 scorers were more consistently likely than average to assign positive326

endophyte status, as indicated by 95% credible intervals greater than zero (Fig. A10). It is327

difficult to distinguish whether this was driven by true differences in scorers biases during the328

seed scoring process or by unintended spatial or temporal clustering of the specimens scored by329

each scorer (Clayton et al., 1993; Urdangarin et al., 2023). By under-weighting endophyte-positive330

samples that are clustered spatially or by collector or observer, the INLA model is appropriately331

accounting for nuisance variables and providing a conservative inference of endophyte change332

relative to the raw data.333

How spatially variable are temporal trends in endophyte prevalence?334

While there was an overall increase in endophyte prevalence, our model revealed hotspots and335

coldspots of change across the host species’ ranges, which are mapped in Fig. 3 across geo-336

graphic ranges predicted by MaxEnt species distribution models. In some regions, posterior337

mean estimates of spatially varying temporal trends indicate that A. hyemalis and A. perennans338

experienced increases in prevalence by as much as 2% per year over the study period, while339

E. virginicus experienced increases up to around 1% per year. Both Agrostis species show areas340

of strong increase and areas of declining prevalence, while E. virginicus had an overall weaker341

and geographically more homogeneous increase in endophyte prevalence. Notably, endophytes342

increased most strongly towards the western range edge of A. hyemalis (Fig. 3A) and across the343

northeastern US for A. perennans (Fig. 3B). Posterior estimates of uncertainty in spatially varying344

slopes indicate that these hotspots of change may have experienced increases of up to 5% per345

year while declines in prevalence may be as great as 4% per year for A. hyemalis and A. perennans.346

For E. virginicus, uncertainty ranges between 3.5% increases and 2.5% decreases (Fig. A7).347
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Figure 3: Predicted posterior mean of spatially-varying slopes representing change in endophyte

prevalence for each host species. Color indicates the relative change in predicted endophyte

prevalence.

What is the relationship between variation in temporal trends in endophyte348

prevalence and changes in climate drivers?349

We found that trends in endophyte prevalence were strongly associated with seasonal climate350

change drivers (Fig. 4). For the majority of the study region, the climate has become wetter (an351

average increase in annual precipitation of 60 mm.) with relatively little temperature warming352

(an average increase in annual temperature of 0.02 ◦C) over the last century (Fig. A12-A14), a con-353

sequence of regional variation in global climate change (IPCC, 2021). Within the region, climate354

changes were spatially variable; certain locations experienced increases in annual precipitation355

as large as 375 mm. or decreases up to 54 mm. across the last century, while annual temper-356

ature changes ranged from warming as great as 1.4 ◦C to cooling by 0.46 ◦C. Spatially variable357

climate trends were predictive of trends in endophyte prevalence. For example, strong increases358

in endophyte prevalence for A. perennans were most strongly associated with increasing autumn359

precipitation and with increasing mean and variability in autumn temperature (greater than 97%360

posterior probabilities of positive slopes). For this species, a 1 ◦C increase in autumn temper-361
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ature was associated with a 1.07 % increase per year in endophyte prevalence (Fig. 4A) and a362

100 mm. increase in precipitation was associated with a 0.8% increase per year in endophyte363

prevalence (Fig. 4B). This result aligns with the species’ autumn active growing season, however364

other seasonal climate drivers were also associated with increasing endophyte prevalence. In365

particular, we found cooler and drier springs and cooler summers to be associated with increas-366

ing endophyte prevalence (greater than 99% posterior probabilities of negative slopes) however367

these slopes were generally of smaller magnitude than those for autumn climate drivers.368

Changes in endophyte prevalence across the ranges of A. hyemalis and E. virginicus were less369

strongly driven by changes in climate. Like A. perennans, climate during peak growing season370

(spring for A. perennans and summer for E. virginicus) emerged most commonly as drivers of371

changes in endophyte prevalence. Increases in mean spring preciptation were the strongest pre-372

dictor of increasing trends in endophyte prevalence for A. hyemalis (Fig. 4B) (greater than 99%373

posterior probability of a positive slope). For this species, an increase of 100 mm. in spring374

precipitation led to an increase of 0.6% per year in endophyte prevalence. The next greatest375

slopes were those associated with variability in spring precipitation (greater than 96% posterior376

probability of a negative slope), as well as in the mean and variability of autumn climate (greater377

than 98% probability of negative and positive slopes, respectively). Changes in endophyte preva-378

lence in E. virginicus were not strongly associated with changes in most climate drivers, but379

regions with reduced variability in autumn precipitation (Fig. 4B) and with cooler and more380

variable summer temperatures (Fig. 4A,C) experienced the largest increases in endophyte preva-381

lence. While our analysis identified the importance of these drivers with relatively high certainty382

(greater than 99% posterior probability of either negative or positive slopes respectively), they383

translate to less than 0.2% change in endophyte prevalence per year for a change of 100 mm.384

change in precipitation over the century. Repeating this analysis using all pixels across each385

species’ distribution were qualitatively similar to these results.386
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Figure 4: Relationships between predicted trends in endophyte prevalence and changes in

seasonal climate drivers. Lines show marginal predicted relationship between spatially-varying

trends in endophyte prevalence and changes in mean and variability of climate ((A): mean tem-

perature, (B): cumulative precipitation, (C): standard deviation in temperature, (D): standard de-

viation in precipitation). Confidence bands represent the 50 and 95% CI, colored by host species.

Slopes with greater than 95% probability of being either positive or negative are represented as

solid lines while those that have less than 95% probability are dashed. Points show 250 randomly

sampled pixels across each host’s distribution used in model fitting.
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Performance on test data387

Tests of model’s predictive performance as quantified by AUC and by visual posterior predic-388

tive checks, indicated good predictive ability. Model performance was similar between historic389

herbarium specimens used as training data and the out-of-sample test data from contemporary390

surveys (AUC = 0.79 and 0.77 respectively; Fig. A5-A4). The model successfully captured broad391

regional trends in endophyte prevalence seen in the contemporary survey data, such as decline392

endophyte prevalence in A. hyemalis towards western longitudes (Fig. 5A) and northern lati-393

tudes (Fig. 5B). However, model predictions for endophyte prevalence exhibited relatively little394

local geographic variation, whereas the out-of-sample survey data were maximally variable with395

populations spanning 0% to 100% endophyte-symbiotic plants (Fig. 5C). We interpret this to396

mean that the model captures coarse-scale spatial and temporal trends reasonably well, but is397

not equipped to capture local-scale nuances that generate population-to-population differences.398
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Figure 5: Predictive performance for contemporary test data. (A) The model, trained on historic

herbarium collection data, performed modestly at predicting prevalence in contemporary popu-

lation surveys. The model captured regional trends across (A) longitude and (B) latitude. Crosses

indicate predicted mean prevalence along with the 95% CI (colored lines) from the herbarium

model. Contemporary prevalence is represented by grey points (point size reflects sample size)

along with trend lines from generalized linear models (black line and shaded 95% confidence

interval). (C) Comparison of observed vs. predicted endophyte prevalence shows that contem-

porary test data had more variance between populations than contemporary predictions.

Discussion399

Our examination of historic plant specimens revealed cryptic shifts in microbial symbiosis over400

the last two centuries. For the three host species we examined, there have been strong increases401

in prevalence of fungal endophytes. We interpret increases in prevalence of Epichloë, which are402

vertically transmitted, as adaptive changes that improve the fitness of their hosts under increas-403

ing environmental stress. This interpretation is in line with theory predicting that the positive404

fitness feedback caused by vertical transmission leads beneficial symbionts to rise in prevalence405

within a population (Donald et al., 2021; Fine, 1975). We further found that trends in endophyte406
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prevalence varied across the distribution of each species in association with changes in climate407

drivers, suggesting that the increases in endophyte prevalence are driven by context-dependent408

benefits to hosts that confer resilience under environmental change. Taken together, this suggests409

an overall strengthening of host-symbiont mutualism over the last two centuries.410

Differences across host species underscore that while all of these C3 grasses share similar411

broad-scale distributions, each engages in unique biotic interactions and has unique responses to412

environmental drivers. We identified hotspots of change for A. perennans, which was the species413

that experienced the strongest absolute changes in endophyte prevalence (Fig. 3). Declines of414

0.9% per year in the southern portion of its range and increases of up to 2% per year in the415

north suggest a potential poleward range shift of endophyte-symbiotic plants (whether the over-416

all host distribution is shifting in parallel is an exciting next question). Based on previous work417

demonstrating that endophytes can shield their hosts from drought stress (reviewed inDecunta418

et al. (2021)), we generally predicted that drought conditions would be a driver of increasing en-419

dophyte prevalence. In contrast to this expectation, increasing prevalence for A. perennans were420

associated with increasing autumn temperature and precipitation (Fig. 4). To our knowledge,421

the response of the symbiosis in A. perennans to drought has not been examined experimentally,422

but in a greenhouse experiment, endophytes had a positive effect on host reproduction under423

shaded, low-light conditions (Davitt et al., 2010). Our results also hint that it may be useful to424

investigate whether lagged climate effects are important predictors of host fitness in this system425

(Evers et al., 2021). Endophyte prevalence of the autumn-flowering A. perennans was strongly426

linked with decreasing spring precipitation, and that of the spring-flowering A. hyemalis was as-427

sociated with decreasing autumn precipitation (Fig. 4B). For A. hyemalis, endophytes could be428

playing a role helping hosts weather autumn-season droughts, which may be an important time429

for the species’ germination. Previous work has demonstrated drought benefits in a greenhouse430

manipulation with this species (Davitt et al., 2011), and early life stages may be particularly vul-431

nerable to prolonged droughts. For E. virginicus, which experienced the most modest changes432

in endophte prevalence overall (ranging between 1.1% increases and 0.2% decreases), we only433
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found modest associations with changes in climate drivers. Surveys by Sneck et al. (2017), used434

as part of the test data in this study, identified a drought index (SPEI) that integrates precipitation435

with estimated evapotranspiration as an important predictor of endophyte prevalence. Epichloë436

endophytes have also been connected to a suite of non-drought related fitness benefits including437

herbivore protection (Brem and Leuchtmann, 2001), salinity resistence (Wang et al., 2020), and438

mediation of the soil microbiome (Roberts and Ferraro, 2015). These effects are potentially medi-439

ated by the diverse bioactive alkaloids and other signaling compounds they produce (Saikkonen440

et al., 2013). Increases in symbionts could be explained, at least in part, by these diverse benefits441

that may help hosts weather a world made increasingly stressful by changes in climate and other442

anthropogenically introduced stressors. While we show consistent increasing trends in preva-443

lence between the three species, the mechanisms that explain these changes may be diverse and444

idiosyncratic.445

The combination of a spatially-explicit model and historic herbarium specimens allowed us446

to identify regions of both increasing and decreasing endophyte prevalence, however we see447

several next steps towards the goal of predicting host and symbiont niche-shifts in response to448

future climate change. While the model recreated the large-scale spatial trends observed in con-449

temporary population surveys, test data contained more population-to-population variability in450

prevalence. Validating our model predictions in this way, a rare extra step in collections-based451

studies, allows us to evaluate places to improve the model’s out-of-sample predictive ability.452

Lack of information on local variability may simply be a feature of data derived from herbarium453

specimens. They are samples from local populations, but they are single specimens that are ag-454

gregated to derive broad-scale model estimates. This suggests that increasing local replication455

should be a factor considered in future collection efforts of natural history specimens, balanced456

with the required time and effort. Poor predictive ability at local scales in this grass-endophyte457

system is not surprising, as previous studies have found that local variation, even to the scale458

of hundreds of meters can structure endophyte-host niches (Kazenel et al., 2015). Other studies459

have found factors including land-use history (Vikuk et al., 2019) and the biotic environment,460
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including herbivory (Rudgers et al., 2016), and host genotype Sneck et al. (2017), to be important461

predictors of endophyte ecology. An important step would be integrating data from local and462

regional scales through modeling to constrain estimates of local and regional variation. Previ-463

ous population surveys have found environment-dependent gradients in endophyte prevalence464

(Rudgers and Swafford, 2009; Semmartin et al., 2015; Sneck et al., 2017), that may be caused465

by symbiont-derived fitness benefits allowing their hosts to persist in environments where they466

otherwise could not (Afkhami et al., 2014; Fowler et al., 2023; Kazenel et al., 2015). Predict-467

ing future niche-shifts of hosts and symbionts will require considering the coupled dynamics of468

host-symbiont dispersal in addition to fitness benefits. For example, transplanting symbiotic and469

non-symbiotic plants beyond the range edge of A. hyemalis could tell us whether low endophyte470

prevalence in that area is a result of environmental conditions that lead the symbiosis to negative471

fitness consequences, or is a result of some historical contingency or dispersal limitation that472

has thus far limited the presence of symbiotic hosts from a region where they would otherwise473

flourish and provide resilience. Incorporating available climatic and soil layers as covariates is474

another obvious step that could improve predictions. These steps will bridge gaps that often475

exist between large but broad bioclimatic and biodiversity data and small but local data on bi-476

otic interactions, and move towards the goal of predicting the dynamics of microbial symbioses477

under climate change (Isaac et al., 2020; Miller et al., 2019).478

Our analysis advances the use of herbarium specimens in global change biology in two ways.479

First and foremost, this is the first study to link long-term changes in microbial symbioses to480

changes in climate using specimens from natural history collections. The responses of micro-481

bial symbioses are a rich target for future studies within museum specimens, particularly those482

that take advantage of advances in sequencing technology. While we used relatively coarse483

presence/absence data based on fungal morphology, other studies have examined historic plant484

microbiomes using molecular sequencing and sophisticated bioinformatics techniques, but these485

studies have so far been limited to relatively few specimens at limited spatial extents (Bieker486

et al., 2020; Bradshaw et al., 2021; Gross et al., 2021; Heberling and Burke, 2019; Yoshida et al.,487
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2015). Continued advances in capturing historic DNA and in filtering out potential contamina-488

tion during specimen storage (Bakker et al., 2020; Daru et al., 2019; Raxworthy and Smith, 2021)489

will be imperative in the effort to scale up these efforts. This scaling up will be essential to be490

able to quantify changes not just in the prevalence of symbionts, but also in symbionts’ intraspe-491

cific variation and evolutionary responses to climate change, as well as in changes in the wider492

microbial community. Genetic variation in Epichloë endophytes, particularly in genes respon-493

sible for alkaloid production, produces “chemotypes" with differing benefits for hosts against494

insect or mammalian herbivores mediated by environmental conditions (Saikkonen et al., 2013;495

Schardl et al., 2012). With improved molecular insights from historic specimens, we could ask496

whether the broad increases in endophytes that we have identified reflect selection for particular497

chemotypes and how this selection varies across space. Answering these questions as well as498

the unknown questions that future researchers may ask also reiterates the value in capturing499

meta-information during ongoing digitization efforts at herbaria around the world and during500

the accession of newly collected specimens (Edwards et al.; Lendemer et al., 2020). Second, we501

accounted for several potential biases in the data observation process that may be common to502

many collections-based research questions by using a spatially-explicit random effects model.503

Spatial autocorrelation (Willems et al., 2022), potential biases introduced by the sampling habits504

of collectors (Daru et al., 2018), and variation between contemporary researchers during the col-505

lection of trait data, if not corrected for could lead to over-confident inference about the strength506

and direction of historic change (Fig. 2). Previous studies that have quantified the effects of507

collector biases typically find them to be small (Davis et al., 2015; Meineke et al., 2019), and we508

similarly did not find that collector has a strong effect on the results of our analysis, but that509

scorer identity did impact results.510

Ultimately, a central goal of global change biology is to generate predictive insights into the511

future of natural systems on a rapidly changing planet. Beyond host-microbe symbioses, de-512

tecting ecological responses to anthropogenic global change and attributing their causes would513

inform public policy decision-makers and adaptive management strategies. This survey of his-514
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toric endophyte prevalence is necessarily correlative, yet it serves as a foundation to develop515

better predictive models of the response of microbial symbioses to climate change. By compar-516

ing detected ecological responses with alternative mechanistic simulations of the past, we could517

attribute their cause, in a manner similar to methods from climate science and economics (Car-518

leton and Hsiang, 2016; Stott et al., 2010; Trenberth et al., 2015). Combining the insights from519

this type of regional-scale survey with field experiments and physiological performance data520

could be invaluable to identify mechanisms driving shifts in host-symbiont dynamics. Evidence521

is strong that certain dimensions of climate change correlated with endophytes’ temporal re-522

sponses, however we do not know why trends in prevalence were weak in some areas or how523

endophytes would respond to more extreme changes in climate. The “time machine” of natu-524

ral history collections revealed evidence of mutualism resilience for grass-endophyte symbioses525

in the face of environmental change, but more extreme changes could potentially push one or526

both partners beyond their physiological limits, leading to the collapse of the mutualism; more527

research is needed to understand what those limits might be.528
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Appendix A839

Figure A1: Endophyte presence/absence in specimens of each host species. Points show col-

lection locations colored according to whether the specimen contained endophytes ( E+; blue

points) or did not contain endophytes (E-, tan points). To visualize temporal change, the data are

faceted before and after the median year of collection.
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Figure A2: Triangulation mesh used to estimate spatial dependence between data points. Grey

lines indicate edges of triangles used to define distances between observations. Colored points

indicate locations of sampled herbarium specimens for each host species, and the blue line shows

the convex hull and coastline used to define the edge of the mesh around the data points. The

thick black line shows the convex hull defining a buffer space around the edge of the mesh to

reduce the influence of edge effects on model estimates.
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Figure A3: Consistency between real data and simulated values indicate that the fitted model

accurately describes the data. Graph shows density curves for the observed data (black) along

with with 100 simulated datasets (red).
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Figure A4: ROC plot showing model performance classifying observations according to en-

dophyte status within the in-sample data. The curves show adequate model performance for

observed data. The AUC value is 0.79.
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Figure A5: ROC plot showing model performance classifying observations according to endo-

phyte status within the out-of-sample data. The curves show adequate model performance for

test data. The AUC value is 0.77.
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Figure A6: Density curves show the probability density along with mean (colored line) and 95%

CI (black lines) for the (A) intercept and (B) slope terms, A and T respectively. Colors represent

each host species
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Figure A7: Shading represents the range of the 95% posterior credible interval for spatially

varying slopes, τ.
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Figure A8: Comparison of liberal versus conservative endophyte scores on modeled outcomes.

(A) Posterior estimates of global temporal trend for models fit to liberal scores (grey) and to

conservative scores (blue). Maps show the spatially varying temporal trend estimates from model

fit to conservative scores for (B) A. hyemalis, (C) A. perennans, and (D) E. virginicus. Note that the

color scale differs between this visualization and Fig. 3.
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Figure A9: Posterior estimates of collector random effects. Points show posterior median along

with 95% CI for each of 924 individual collectors.
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Figure A10: Posterior estimates of scorer random effects. Points show posterior median along

with 95% CI for each of 25 individual collectors.
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Figure A11: Locations of contemporary surveys of endophytes in A. hyemalis used as "test"

data (red points), relative to the historical collection data (black crosses).
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Figure A12: Change in seasonal climate variables between the periods 1895-1925 and 1990-

2020. Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps

show pixels covering the modeled distribution of A. hyemalis used in post-hoc climate correlation

analysis.
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Figure A13: Change in seasonal climate variables between the periods 1895-1925 and 1990-2020.

Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps show

pixels covering the modeled distribution of A. perennans used in post-hoc climate correlation

analysis.
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Figure A14: Change in seasonal climate variables between the periods 1895-1925 and 1990-

2020. Color represents change in (A) seasonal temperature and (B) seasonal precipitation. Maps

show pixels covering the modeled distribution of E. virginicus used in post-hoc climate correlation

analysis.
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Table A1: Summary of herbarium samples across collections

Herbarium Collection AGHY AGPE ELVI

Botanical Research Institute of Texas 350 190 198

Louisiana State University 72 38 62

Mercer Botanic Garden 3 – 6

Missouri Botanic Garden 210 205 122

Texas A&M 100 – 72

University of Kansas 134 34 197

University of Oklahoma 85 34 95

University of Texas & Lundell 183 91 102

Oklahoma State University 51 10 74

Supporting Methods840

ODMAP Protocol841

Overview842

Model purpose: Mapping current distribution of Epichloë host species.843

Target species: Agrostis hyemalis, Agrostis perennans, and Elymus virginicus.844

Study area: Eastern North America845

Spatial extent: -125.0208, -66.47917, 24.0625, 49.9375 (xmin, xmax, ymin, ymax).846

Spatial resolution: 0.04166667, 0.04166667 (x, y).847

Temporal extent: 1990 to 2020.848

Boundary: Natural.849

Data850

Observation type: Occurrence records from Global Biodiversity Information Facility and851

herbarium collection across eastern North America. We used 713 occurrences records for852
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Agrostis hyemalis, 656 occurrence records for Agrostis perennans and 2338 for Elymus virginicus.853

Response data type: occurrence record, presence-only.854

Coordinate reference system: WGS84 coordinate reference system (EPSG:4326 code)855

Climatic data: raster data extracted from PRISM856

Model857

Model assumption: We assumed that the target species are at equilibrium with their environ-858

ment.859

Algorithms: Maximum entropy (maxent)860

Workflow: We described the workflow in the method section of the manuscript.861

Software: All statistics were performed using Maxent 3.3.4 and R4.3.1 with packages terra,862

usdm, spThin and dismo.863

Code availability: Available through this link: https://github.com/joshuacfowler/EndoHerbarium864

Data availability: Will be available upon acceptance865

Assessment866

We used AUC to test model performance.867

Prediction868

We predicted the probability of presence of the host species as a binary maps (presence or869

absence)870

Mesh and Prior Sensitivity analysis871

To test the influence that the triangulation mesh and choice of priors has on results, we compared872

model results across a range of meshes and priors. We re-ran our model for the mesh used in873

main body of the text (Fig. A2), which we refer to as the "standard mesh", and with a mesh with874

smaller minimum vertices (finer mesh). Finer scale meshes increase computation time. For each875

of these meshes, we ran the model with a range of priors defining the spatial range of our spatial876

random effects: 342km (the prior used for presented results), as well as ranges five times smaller877

(68 km) and five times larger (1714 km). We found generally that these choices did not alter the878
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direction of model predictions, but did influence the associated uncertainty and magnitude of879

some effects.880

For overall temporal trends, we found that models with differing priors predicted consistently881

positive relationships over time (Fig. A15).882
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Figure A15: Overall trend in endophyte prevalence evaluated for models with different range

priors on spatially structured random effects, and for two different meshes. Note that these

plots, as compared to Fig. 2 in main text, show mean trends and do not incorporate prediction

uncertainty associated with collector and scorer random effects.

For spatially-varying temporal trends, we found that models with different priors predicted883
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consistent spatial patterns in temporal trends, although the range of this prediction varied de-884

pending on the prior and mesh (Fig. A16 - A17). One noteworthy result of this analysis is that885

combinations of prior choice and mesh can introduce instability in model fitting. This is evident886

in A16 panel B and A17 panel B, where the prior range is smaller than the minimum vertex887

length of the mesh. Model fitting takes an extended time period and the model struggles to888

identify variation across space. Results with a set of prior ranges (Fig. A16 - A and C; Fig. A17889

- A and C) result in models that estimate trends across space of the same direction and order of890

magnitude, although the “smoothness" of these predictions vary.891
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Figure A16: Spatially-varying trends in endophyte prevalence evaluated for models with dif-

ferent range priors on spatially structured random effects, and for the "standard" mesh. Shad-

ing indicates the magnitude and direction of predicted trends for each of three host species for

each of three prior ranges (rows A-C). Note that each plot has an individual scale bars.
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Figure A17: Spatially-varying trends in endophyte prevalence evaluated for models with dif-

ferent range priors on spatially structured random effects, and for the "finer" mesh. Shading

indicates the magnitude and direction of predicted trends for each of three host species for each

of three prior ranges (rows A-C). Note that each plot has an individual scale bars.
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