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Abstract. A tournament organizer must select one of n possible teams as the
winner of a competition after observing all (g) matches between them. The
organizer would like to find a tournament rule that simultaneously satisfies the
following desiderata. It must be Condorcet-consistent (henceforth, CC), mean-
ing it selects as the winner the unique team that beats all other teams (if one
exists). It must also be strongly non-manipulable for groups of size k at probabil-
ity a (henceforth, k-SNM-«), meaning that no subset of < k teams can fix the
matches among themselves in order to increase the chances any of it’s members
being selected by more than . Our contributions are threefold. First, wee con-
sider a natural generalization of the Randomized Single Elimination Bracket rule
from [18] to d-ary trees and provide upper bounds to its manipulability. Then, we
propose a novel tournament rule that is CC and 3-SNM-1/2, a strict improve-
ment upon the recent work of [7] who proposed a CC and 3-SNM-31/60 rule.
Finally, we initiate the study of reductions among tournament rules.

Keywords: Tournament design - Strategy-proof rules - Computational Social
Choice

1 Introduction

®
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Consider the problem a tournament organizer faces when, after observing all pairwise
matches between n teams, they must select one as the winner of the tournament. We
model the tournament 7" as a complete, directed graph on the n teams. A tournament
rule r is a (possibly randomized) mapping from the set of tournaments on n teams 7, to
a probability vector in A™, r : 7, — A"™. The tournament organizer is thus tasked with
designing a tournament rule r and would like the rule to satisfy the following natural
properties:

1.
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If there is a team who beats all other teams, termed a Condorcet-winner, they should
be picked as the winners of the tournament with probability 1. We call such rules
Condorcet-consistent (or CC).
No team should be incentivized to unilaterally throw their own games in order to
obtain a better outcome. We call such rules monotone.
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3. No subset of < k teams should have incentives to fix the matches among themselves
in order to improve the chances of any of its members being selected as the winner
of the tournament. We call such rules k-strongly non-manipulable (or k-SNM).

These properties are motivated by real-world sports competitions. It would be
unimaginable to violate Property 1 and not award the top prize to an undefeated team.
Violations to Properties 2, 3 have been observed in high-stakes competitions such as
the Olympic Games and the FIFA World Cup. An infamous scandal in the Women’s
Doubles Badminton tournament at the 2012 Olympics saw multiple teams purposefully
losing the last games of their group stage matches in order to avoid a difficult match-up
in the following single-elimination bracket. This clear violation of monotonicity (and
sportsmanship) resulted in the disqualification of 4 teams, including many of the likely
medalists. A less investigated but equally egregious scandal occurred during the 1982
FIFA World Cup. West Germany and Austria disputed the last match of their group
stage with full knowledge of the outcomes of all other games. It is suspected that they
colluded in order to produce an outcome that would see both teams advance to the next
stage of the tournament, at the expense of Algeria, who unexpectedly defeated West
Germany in their opening match. As a result of this possible violation of strong non-
manipulability, the last game of every group in every FIFA World Cup since has been
played simultaneously.

Observe that if one wanted to simply satisfy Properties 2, 3, there are numerous sim-
ple rules that do so. For example, picking a winner uniformly at random, picking a fixed
team as the winner (i.e., a dictatorship) or picking the winner proportional to the num-
ber of wins in the tournament all satisfy Properties 2, 3 but not Property 1. Similarly, it
is easy to satisfy Properties 1, 2. If there is a Condorcet-winner, pick that team. Other-
wise, pick a team uniformly at random. Unfortunately, it is known that Properties 1, 3
are directly at odds with each other: [1] showed that there exists no randomized tourna-
ment rule that can satisfy both of these properties at the same time, even for k = 2. One
way to overcome this impossibility result is to relax Property 3 as follows:

4. No subset of < k teams should be able to fix the matches among themselves in order
to improve the chances of any of its members being selected as the winner by more
than o. We call such rules k-SNM-q.

A growing body of work has asked what is the smallest « for which there exists a
rule that satisfies Properties 1, 2 and 4 (for some fixed value of k). First, the work
of [18] proves that the Random Single-Elimination Bracket (henceforth RSEB) rule is
CC and 2-SNM-1/3, and that no other CC rule can do better. Later, [19] show that a rule
termed Randomized King-of-the-Hill (henceforth, RKOTH) matches the performance
of RSEB and satisfies a condition even stronger than CC. These works completely settle
the question of finding CC and minimally manipulable (or optimal) strategy-proof rules
for collusions of size £k = 2. On the other hand, very little is known about the case
when k£ > 2, even k = 3. [18] prove a simple lower bound of o > % [19] proved
that there exists an LP-based rule that is CC and k-SNM-2/3 for all k simultaneously.
Unfortunately, this rule is neither explicit nor monotone. More recently, in concurrent
work [7] gave the first explicit, CC, monotone, 3-SNM-« rule for = 31/60 (and this
value of « is tight for their rule).
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As hinted in the previous paragraph, there are two approaches to proving the exis-
tence of CC and approximately strategy-proof tournament rules. One approach takes
simple rules (such as RSEB, RKOTH), in the hopes that they are not too manipula-
ble, and provides tight analysis for them. This does not always work: many simple
rules, such as picking the team with the most wins, are extremely manipulable (i.e.,
have « = 1 — O(1/n), see [18]). The other approach provides rules which are not
explicitly implementable. For example, the LP-based rule of [19] arises from fixing the
tournament rule for tournaments with a Condorcet-winner, relaxing the manipulability
constraints for tournaments that are close to having a Condorcet-winner and proving
that the resulting polytope is non-empty for some value of o < 1. Our results make use
of both of these approaches and introduce another.

Our first contribution, inspired by the positive results of [18], introduces a natural
generalization of RSEB. The RSEB rule randomly seeds teams on the leaf nodes of a
binary tree and recursively labels inner nodes as the winner of the match between its
children. The winner of the bracket is the team whose label appears in the root node of
the tree. We define the Random d-ary Single Elimination Bracket (henceforth RASEB)
rule similarly with one key difference: instead of using binary trees, we use d-ary trees.
If the sub-tournament induced by an inner node’s children has a Condorcet-winner,
then the inner node will carry the label of that child. Otherwise, the inner node picks a
child uniformly at random to advance'. We provide an upper bound a < 1 on the
manipulability of RASEB on tournaments with n teams and collusions of size up to
kE<d.

Theorem 1. Ler 2 < k < d. The RdASEB rule is Condorcet-consistent, monotone and
k—SNM—Oéd,k for

Oéd,kél—(

2'(05)1@)7

pm
where (d), = Hf;ol (d — 1) is the falling factorial of d with k terms.

For k = d = 3, we obtain that a3 3 = .8519. As a consequence of Theorem 1, we
get the first explicit family of CC, monotone rules whose manipulability for any (fixed)
k is bounded away from 1. This stands in contrast to the LP-based rule of [19] which
was neither monotone nor explicit and to several of the rules analyzed in [18] which
had « — 1 as n — o0, even for k = 2. In other words, the bound from Theorem 1 is
independent of n, the number of competing teams.

Our second contribution, inspired more by the second approach to finding approx-
imately optimal tournament rules, is a new explicit tournament rule which strictly
improves upon the results of [7].

Theorem 2. The SIGNIFICANTONLY rule is Condorcet-consistent, monotone,
2-SNM-1/3 and 3-SNM-1/2, and this is tight.>

! This decision is inspired by the observation that tournaments on three teams either have a
Condorcet-winner or have three teams that beat each other cyclically.
2 The best lower bound for this problem, due to [18], is 2/5.
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The SIGNTFICANTONLY rule, while explicitly describable, arises from an approach
similar to the LP-based rule of [19]. We identify the tournaments which are close to
having a Condorcet-winner as those where teams have more incentives to manipulate
outcomes. Given such a close-to-Condorcet tournament 7, our rule deems a small num-
ber of teams as significant and distributes most of the probability mass on these teams
according to additional properties of the tournament itself (and the rest uniformly across
the remaining teams).

Finally, our last contribution introduces a new way of designing Condorcet-con-
sistent and asymptotically optimal tournament rules. If one had substantial computa-
tional power, one could compute a top-cycle consistent,” optimal rule for fixed values
of n, k. How could we use such a rule r,, to construct a rule r,,, that works for n’ > n?
First pad the tournament with dummy teams that lose to all real teams until the number
of teams n’ := n - M is a multiple of n. Partition the teams into n groups of equal size.
Within each group, pick a team from the top-cycle uniformly at random as a finalist.
The number of finalists will be exactly n. Finally, run r,, on the n finalists and declare
its winner as the overall winner. We prove that this simple idea suffices to transform
top-cycle consistent, k-SNM-a rules for n teams to CC, k-SNM-a rules for n’ > n
teams where o’ is close to a.

Theorem 3. If there exists a top-cycle consistent, and k-SNM-« rule r for n teams,
then there exists a top-cycle consistent and k-SNM-o' rule v’ for n' > n teams where

2 2
o saft- BT oD
n n

Theorem 3 can be thought of as reducing the problem of finding approximately
optimal tournament rules for large n to the same problem for small n. As an example,
if we could verify the existence of a top-cycle consistent 3-SNM-2/5 rule for n = 25,
then this would imply top-cycle consistent 3-SNM-« rules for n > 25 and o < 1/2,
directly improving on Theorem 2.

1.1 Related Work

Most of the related work has been mentioned already. There exist two other results that
are directly related to our problem. Whereas in this paper (and all previously mentioned
papers) we evaluate the manipulability of tournament rules based on their worst-case
performance, the work of [8] instead studies this question under the lens of average-case
analysis. More recently, the work of [6] expanded the model to include prize vectors
v = (v1,...,V,). Tournament rules with prizes output a complete, linear ranking over
the teams where the ¢-th team earns reward v;, rather than giving reward 1 to the winner
and O to everyone else.

Another related line of work involves the Tournament Fixing Problem, where the
organizer of the tournament is colluding with a team in order to produce a seeding that

3 Top-cycle consistency is stronger than Condorcet-consistency. We defer its formal definition
but informally, the top-cycle is the smallest non-empty set S of teams such that no team in
S loses to a team outside of S. A top-cycle consistent rule would only pick teams from the
top-cycle.
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selects them as the winner (see, e.g. [2,12,13,20,22,23]). The central questions here
are computational (i.e., can the organizer efficiently decide if there is a winning bracket
for their favorite team) and structural (i.e., under what conditions does there exist a
bracket that selects the organizer’s favorite team, see, e.g. [15]). Due to its connections
with voting theory and social choice, there is a long history of analyzing properties of
particular tournament rules ([4,5,9-11,16,17], to name a few). We refer the reader to
the survey by [21] on recent developments in tournaments and computational social
choice, or other books on computational social choice [3, 14].

2 Notation

In this section, we introduce key concepts to contextualize our results. Recall a tourna-
ment graph T is a complete, directed graph G = ([n], E') on n labelled vertices. We
refer to a tournament graph’s vertices as teams (and the number of teams as the size
of the tournament), its undirected edges as matches and its directed edges as outcomes
(where if (i,7) € E, we say 4 beats j in T'). For a fixed team %, tournament 7" we let
(4, T) = {jlj € [n],(i,4) € E)} be the set of teams that i beats under 7', and
let 6= (4,7) = {jlj € [n],(4,4) € E)} be the set of teams that ¢ loses to under 7.
Let 7,, be the set of all tournaments on 7 teams. Recall a tournament rule is a mapping
r: T, — A™. Thatis, for every tournament 7', (T") denotes the distribution over teams
according to which the organizer will select a winner. We use notation r;(7") to denote
team ¢’s probability of being selected by r as the winner under tournament 7'. We use
the shorthand notation rs(T") := ), 4 7:(T") to denote the probability that a team in S
is selected by 7 in tournament 7'. The next definitions formalize Properties 1, 2, 3 and 4.

Definition 1. Team ¢ is the Condorcet-winner of tournament T" if i beats every other
team under T A rule r is Condorcet-consistent if 7;(T') = 1 when i is T'’s Condorcet-
winner.

Definition 2. A tournament rule r is monotone if for all teams i and all tournaments
T, T' where all matches not involving team i are identical and 6% (i, T) 2 6+ (i, T"), it
holds that r;(T) > r;(T").

A tournament rule is monotone if it is not in a team’s best interest to unilaterally
lose matches it would otherwise win. We present the ways in which manipulations are
modelled.

Definition 3. We say tournaments T, T’ are S-adjacent if the only outcomes where
T, T’ differ on are those matches that involve two teams in S.

If T, T’ are S-adjacent, outcomes involving at least one team outside of S are iden-
tical. Motivated by the results from [1], the following relaxation was introduced by [18].

Definition 4. A fournament rule is k strongly non-manipulable at probability «
(k-SNM-«) if for all S C [n] of size at most k, for all tournaments T, T’ that are
S-adjacent we have rs(T") < rg(T) 4+ a. For a = 0, we simply say the rule is k
strongly non-manipulable (k-SNM).
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3 Analysis for the RASEB Rule

In this section we study the manipulability of the Randomized d-ary Single-Elimination
Bracket (RASEB) rule, a generalization of the Randomized Single-Elimination Bracket
(RSEB) rule from [18], against collusions of size k < d.

Definition 5. Given a tournament T, a sub-tournament on S is the sub-graph induced
by T on vertex set S.

We are now ready to formally define the RASEB rule.

Definition 6. 7he Randomized d-ary Single-Elimination Bracket rule operates as fol-
lows. Add dummy teams* until the number of teams n = d'°a("™1 is a power of d.
Randomly place teams at the leaf nodes of a complete d-ary tree of height [log,(n)].
Recursively label a parent node with the label of the Condorcet-winner of the sub-
tournament induced by the labels of its children, if there is one. Otherwise, choose one
of its children uniformly at random and use that label instead. The winner of the tour-
nament is the team whose label appears at the root of the tree.

In terms of Definition 6, RSEB is the rule that results from setting d = 2. The
family of RASEB rules operates in the same way as the RSEB rule except that if there
is no Condorcet-winner in the sub-tournament induced at a node, the rule advances a
team uniformly at random. This choice is motivated by the following simple observa-
tion when d = 3. There are only two non-isomorphic sub-tournament graphs on three
teams: one where there is a Condorcet-winner and one where the teams beat each other
cyclically. In the former case, it is obvious which team to advance. In the latter case, we
argue choosing a team uniformly at random is reasonable.

Theorem 1. Let 2 < k < d. The RASEB rule is Condorcet-consistent, monotone and
k-SNM-ayq i, for

2'(d)k>’

ad,k§1—< pra)

where (d), = Hi:ol (d — 1) is the falling factorial of d with k terms.

The main idea is that if some (at least two) colluding teams meet only in the final
round, then they can increase the joint probability that one of them will be winner
by at most (1 — 2/d) (which happens when the colluding teams create a Condorcet
winner). Obviously, if the colluding teams do not meet in a bracket at all or there exists
a Condorcet winner outside the colluding teams, then they cannot increase the chance
to win the tournament. In the remaining cases, we simply assume that they can increase
the chance to win the tournament by 1.

From Theorem 1, given a fixed k, the RESEB rule is monotone, CC and its manip-
ulability is bounded away from 1 for all n. This is the first explicit family of rules to
exhibit this property (since the LP-based rule of [19] is neither monotone nor explicit).
We suspect the bound from Theorem 1 is not tight. A finer argument like the one in [18]
might yield a better analysis.

* Dummy teams are teams that lose to all non-dummy teams. The outcome of a match between
two dummy teams is arbitrary.



On Approximately Strategy-Proof Tournament Rules 39

Proof. It is more convenient to consider the following equivalent variation of the
RdSEB rule. Instead of choosing one of the children of A uniformly at random, chose
a number j4 from [d] uniformly at random. If there is no Condorcet-winner in the sub-
tournament, label A by the label of j4-th child of A. In both cases, mark the node A
with j4 (even if there is a Condorcet-winner in the sub-tournament).’ For the sake of
the proof, let us denote ¢ as this equivalent variation of the RASEB rule. Observe that
the labels of inner nodes of the complete d-ary tree can be deduced from the labels of
leaves and marks of inner nodes: run r? but all random choices are made accordingly
to these labels and marks.

For any non negative number ¢, let D, be a reserved set containing ¢ dummy
teams. Moreover, let T’ be a tournament on N’ (disjoint from any D;) of n’ teams,
h := [log,(n')], and n := d". We assume that the rule ¢ initially adds n — n’ dummy
teams from D,,_,, into T.% Given N := N’ U D,,_,.+, a d-bracket G(w,m) for N is
a complete d-ary tree G of height h endowed with a pair (7, m), where

— 7 is a bijection from leaves of G to IV (i.e., labels of leaves),
— m is a mapping from inner nodes of G to [d] (i.e., marks of inner nodes).

Let By be the set of all d-brackets for N. Now we precisely describe how the labels
of nodes of G can be deduced from 7 and m. Given a d-bracket G(m, m) for N, the
outcome of G(m, m) under T is a labeling wr of nodes of G such that wr(A) = 7 (A),
for every leaf A, and if A is a node with children Ay, ..., Ay, then

x if z is the Condorcet-winner in
the sub-tournament induced by
{wr(A1),...,wr(Aq)} under T,

wr(Ap(ay) otherwise.

wT(A) =

Observe that wr is a one-to-one correspondence between the set of all outcomes of
d-ary brackets on N under 7" and the set of all runs of % on 7.

Fix a d-bracket G (7, m) for N. The winner of G(w, m) under T is wr (R), where R
is the root of G. Given a team © € N, G(w, m) is winning for x under T if z is
the winner of G(m, m) under 7. Denote by By r(x) C By the set of all winning d-
brackets for = under 7. The motivation behind this reframing of RASEB is to simply
the argument of the proof. Similar to the original argument of [18], we will bound the
manipulability of RISEB by directly counting the number of brackets where colluding
teams could gain and compare it to the total number of brackets. We have

rd(T) = [By,r(z)|/|Bu].

Observe that [By| = n! - d*, where ¢ := /£(d,h) is the number of inner nodes of
a complete d-ary tree of height h.

3 Every inner node has a label and a mark. Note that they can be equal but they have different
meaning.

® Hence every tournament on n’ teams is extended by the same set of dummy teams.

7 The outcome is well-defined only if the teams in 7T are the same as the set N.
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First, we prove that 7¢ is monotone. Take an arbitrary team = € N’. It sufficient to
show that r¢(T) > rd(T") for every {z,y}-adjacent tournaments 7" of T such that =
beats y under 7. Let G(, m) be a d-bracket for N. Observe that if G(7, m) is winning
for 2 under 7", then G(m, m) is also a winning for = under 7. Hence By 1/ (z) C
By (), and so r4(T") < r4(T) as required.

Second, we prove that ¢ is Condorcet-consistent. Suppose that 2 € N’ is the
Condorcet-winner in T'. For every d-bracket G(m, ¢) for N, consider the unique path P
from the leaf in GG labeled by « to the root of GG. Observe that every node of P is labeled
by « by the outcome of G(7, m) under T'. In particular, the root of G is labeled by z. It
follows that every d-bracket G(m, ¢) is winning for x under 7. Hence By r(z) = By,
and so 74(T) = 1 as required.

Lastly, we prove that rdis k-SNM-ayq j, for some a4 i, (to be determined). Suppose
that S = {s1,892,...,8x} € N’ is a subset of colluding teams. For any S-adjacent
tournaments 7" of T, we show that r&(7") — r%(T') < a. Recall that By r () is the set
of all winning d-brackets for = under 7. Moreover, define By, (S) := J,cg Bn,7(95).
In this notation, we can write

We upper bound this expression using the idea introduced in [18]. For that, let us
denote by Bj;(S) the set of all d-brackets G(m,m) for N such that the least common
ancestor of any leaves A and B with 7(A), 7(B) € S is the root of B(w, m). In other
words, Bf;(S) is the set of all d-brackets for N such that the colluding teams can meet
possibly only in the final round. Set By (S) := By \ B (S). Moreover, for a tour-
nament 7, let B;{,’T(S) = BY(S) N By (S) and By 1(S) := By(S) N Byx(S).
Then

rs(T') — rg(T) = By (S)]  [Bn,7(5)

|BN| |BN|
_BRa (9) + 1By (S 1BY7(S)] + 1By 1 (S)]
|Bn| |Bn|
_ 1B 20 (S) = BN 2(S)| 1By (S)] = By ()]
|Bn| |Bn|
- 1B 1/ (S)] = 1BX ()] N 1B (9))|
- |BN| IBn|

We upper bound the first term in the last expression. Let G := G(m, m) be a d-
bracket for N in Bj; ,(S). Let x := (21,...,24) be the d-tuple of finalists in G
under 7”. More precfsely, let R be the root of G with children A1, ..., Ay. Then d-
tuple of finalists of G under T is (w7 (A1), ...,wr(Ag)). The crucial observation
is that also x is d-tuple of finalist of G under 7. We say that there is a Condorcet-
winner in x under 7" if there is a Condorcet-winner in the sub-tournament induced by x
under T”. Notice that:

() If|S N {1, x2,...,za}| <1, then G € BY 1(S).
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@) If|SN{x1,x2,...,24}| > 2 and there is no Condorcet-winner in x under 7", then
G e BET(S).
(iii) If |SN{x1,xz2,...,24}| > 2 and there is a Condorcet-winner s; € S in x under 7",

then G ¢ BET(S ) only if there is no Condorcet-winner s; € S in X under T" and
the mark of the root R of G is pointing to a team outside of S (i.e., wr (A, (r)) ¢
S).

A d-bracket is of type (i) if it satisfies the statement (i). Analogously, for types (ii)
and (iii). It follows that, for every d-bracket in BJJ{LT/ (S) of type (i) or (ii), there exists
at least one d-bracket in B]J{LT(S ) of the same type. Moreover, we claim that, for every
d d-bracket in BY; 1, (S) of type (iii), there exist at least two d-brackets in BY, 1.(S) of
type (iii). Indeed, take a bracket G(w,m) € BX,)T, (S) of type (iii). Then G(mw,m’) €
Bj; 7.(8) is of type (iii), where only the mark of the root of G' can be changed (there
are d ways how to change it). On the other hand, let ¢ # j be two indices such that
z;,x; € S. Then G(m,my), (m,m2) € Bf; -(S) are of type (iii), where m; and m are
m but the mark of the root of G is changed’to i and j, respectively.
If we denote by p be the number of d-brackets from BXLT, (S) of type (iii), then

B2 (8)| ~ 85 (8) <p- (1-2)
< B (s) - (1-3) <IBgs)- (1-3):
Observe that 3
BE(S) = (@ (5) - (=t
and hence
1By (S)| = nl - d* — (), - (@)k S(n— k) - d

Therefore,

rs(T') = rs(T) < Brr (]~ B2 (5)] By (S)]

|BN| |BN|
(@ (2) - n=pr-a) - (1-3)
= n!.dt
5 k‘ n — .
+n!.dé—(d)k n('g()ﬂ (n— k) -d
1= (G ) - )
B n! dk+1
2 (d)g
=1- dk(+3k
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We conjecture that the manipulability of RISEB is bounded away from 1/2 for all
k<d.

Conjecture 1 (See Table 1). Forall 3 < k < d, ag 1, > 227/420.

Table 1. Evaluation of o, for small values of d and k rounded up to 4 decimals.

dk

3 4 5 6 7
3/0.8519— - — —
4/0.8125/0.9531 - — —
5/0.808 ]0.9232/0.9846— —
6/0.8148/0.9074/0.9691|0.9949|—
7/0.8250[0.9  0.9572/0.9878/0.9983

4 Analysis for the SIGNIFICANTONLY Rule

In this section we formalize the SIGNIFICANTONLY rule and outline the proof of The-
orem 2. The motivation behind the SIGNIFICANTONLY rule is captured by the fol-
lowing simple observation. Suppose we are trying to design a rule which is CC and
k-SNM-« for some fixed k. Take any tournament graph 7. If there is a Condorcet-
winner, then the rule is fixed and must declare that team the winner. If 7" is far from
having a Condorcet-winner, meaning that the smallest set of teams who could collude
and produce a Condorcet-winner among them is larger than k, then pick a team uni-
formly at random. If 7" is only a small number of manipulations away from having
a Condorcet-winner, then in order to satisfy the SNM constraint (approximately) we
must allocate all (resp. most) of the probability mass to the teams who could produce
a Condorcet-winner. However, we must be careful in order not to incentivize teams
in tournaments that are far from having a Condorcet-winner to manipulate into those
which are close to having a Condorcet-winner.

The previous paragraph captures the spirit of the SIGNIFICANTONLY rule. We first
partition the set of all tournament graphs 7, into three groups: those with a Condorcet-
winner (Condorcet tournaments), those where (maybe multiple) sets of at most &k teams
can produce a Condorcet-winner (near-Condorcet tournaments) and those where no set
of k teams can produce a Condorcet-winner (far-Condorcet tournaments). The rule is
fixed for the first part of the partition, and will select a winner uniformly at random
on the last part of the partition. The middle part of the partition is further partitioned
into four categories depending on the exact number and size of the groups that could
produce a Condorcet-winner. For each of the parts in this sub-partition, we propose a
way to distribute the probability mass. We must balance two different sets of incentives
here. On the one side, we must give sufficient probability mass to the groups that can
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produce a Condorcet-winner. On the other, we can’t give them foo much mass, since
otherwise teams in far-Condorcet tournaments might be substantially incentivized into
manipulating the tournament into a near-Condorcet one, where some of the colluding
members are also in groups that can now produce Condorcet-winners. We formalize the
above with the following definitions.

Definition 7. A tournament T is said to be near-Condorcet for k if there is no
Condorcet-winner in T but there exists at least one team i with |6~ (i, T)| < k— 1. Call
the set of teams MW (i, T) := {i} U § (i, T) a minimal winning group (MW group).
We call team i the leader of MW (i, T) and any team in j € MW (i, T) significant. If
|[MW (i,T)| = 2,3 we call it an MW pair or an MW triple, respectively.

We first prove simple structural properties of near-Condorcet tournaments.
Lemma 1. Every minimal winning group has exactly one leader.

Proof. Suppose there exists some other leader j of MW (i,T). By definition, j must
lose to 7 and vice versa, a contradiction. O

Notice that even though every MW group has a different unique leader, a leader of
one group can be a member in a different group. Moreover, it can happen that one MW
group is a subset of another MW group.

Lemma 2. Let T be a near-Condorcet tournament, and MW (i,T) and MW (j,T)
be distinct MW groups in T' with leaders i and j, respectively. Then either i is in
MW (4,T), or jis in MW (i,T). In particular, MW (i, T) and MW (j, T') must have
a non-empty intersection.

Proof. Suppose that both ¢ and j in MW (i,T) N MW (4, T), or they are both out-
side. Then, by the definitions of MW (i, T), MW (j,T), they should beat each other, a
contradiction. Thus, exactly one of them must be in the intersection. a

We now prove the main lemma about the structure of near-Condorcet tournaments
for £ = 3, showing that there are not too many significant teams and leaders.

Lemma 3. If k = 3 and T is a near-Condorcet tournament, then the number of signif-
icant teams in T is at most 6, and the number of teams in the union of MW pairs is at
most 3. Furthermore, there cannot be more than 3 MW pairs. If there is exactly one MW
pair, then the maximal number of significant teams is 5, if there are exactly two MW
pairs, then the maximal number of significant teams is 4, and if there are exactly three
pairs, then the maximal number of significant teams is 3.

Proof. Assume there are p MW pairs and ¢t MW triples in 7. By Lemmas 1 and 2, we
know that each such group has a unique leader, and these leaders are pairwise distinct.
Furthermore, each leader of an MW pair loses exactly one match, and each leader of an
MW triple loses exactly two matches. Therefore, all leaders together lose exactly p + 2¢
matches. On the other hand, there are exactly (" ;t) matches between leaders, and in
each of these matches, one leader loses. Hence,

t
(p;— ) <p+2t.
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We can equivalently rewrite is as p? + t2 + 2pt — 3p — 5t < 0. If p > 4 we get that
4+3t+t% < 0, which does not have a solution for a non-negative integer t. Hence, there
are either 3, 2, 1, or no MW pairs. Furthermore, significant teams are either leaders of
some groups or they beat some leaders. Hence, there are at most the number of leaders
plus the number of matches lost by leaders to some non-leaders many of them. In other
words, there at most (p +t) + p + 2t — (”3") significant teams. If there are three pairs,
the maximum of this expression for non-negative integer ¢ is 3. Similarly, if p = 2 the
maximum is 4, if p = 1 the maximum is 5, and if p = 0 the maximum is 6. Moreover,
there cannot be more than 3 teams in the union of all MW pairs. Otherwise, there would
be at least 3 MW pairs (there cannot be only two because they intersect), but we already
showed that if we have three or more MW pairs, there can be at most 3 teams in the
union of all MW groups. a

This lemma implies that in every near-Condorcet tournament at most 6 teams can
be directly part of some manipulating group creating a Condorcet-winner. Hence, we
can directly design a rule that is 3-SNM-§. It is sufficient to assign probability 1 to
Condorcet-winners, probability % to significant teams in near-Condorcet tournaments,
and distribute the remaining probabilities in all tournaments uniformly between the
remaining teams. We will not prove this formally since we design a better rule, but we
believe this intuition is useful in understanding our construction. We now formalize the
partition of tournament graphs 7,.

— Let CC,, C 7, be the set of tournaments with a Condorcet-winner.

— Let 7C,, C 7,, be the set of far-Condorcet tournaments.

— Let i—NCP,, C 7, be the set of near-Condorcet tournaments with exactly i MW
pairs for: = 0,1, 2, 3.

Now we are ready to define our main rule.

Definition 8 (SIGNIFICANTONLY Tournament Rule). For n > 6 teams, the SIGNIF-
ICANTONLY tournament rule does the following.

1. If T € CC,, the Condorcet-winner gets 1, and the remaining teams get zero.

2. If T € FC,, pick a winner uniformly at random.

3. IfT € 3—NCP, U2—-NCP,, teams in MW pairs get %, and the remaining teams
get zero.

4. If T € 1-NCP,, teams in the only MW pair get % teams in MW triples that are
not in any MW pair get %, and the remaining teams get the remaining probability
mass evenly distributed between them.

5. IfT € 0-NCP,, teams in MW triples get %, and the reaming teams get the remain-
ing probability mass evenly distributed between them.

We restate the main result of this section.

Theorem 2. The SIGNIFICANTONLY rule is Condorcet-consistent, monotone,
2-SNM-1/3 and 3-SNM-1/2, and this is tight. (See Footnote 2)

The fact that SIGNIFICANTONLY is Condorcet-consistent follows directly from the
definition. The proof of Theorem 2 and other missing proofs can be found in the full
version of this paper.



On Approximately Strategy-Proof Tournament Rules 45

S Almost Optimal Rules for Large n from Optimal Rules
for Small

For fixed values of n, k, [18] present an LP that can compute the minimally manipula-
ble, Condorcet-consistent and monotone rule. Unfortunately, solving this LP is highly
intractable as the number of variables and constraints grows exponentially in the number
of teams. For small values of n, k, and with sufficient computational power, one could
compute such solutions, in the hope that one could use that rule in order to construct
approximately optimal ones for larger n. Consider the following simple procedure to
scale a k-SNM-« rule r,, for n teams to a k-SNM-ao’ rule r,,» for n’ > n. First, increase
n’ to the nearest multiple of n, n’ := nM of n. Partition the teams into n groups of
equal size. Within each group, compute the top-cycle on the induced sub-tournament
and select a team from it uniformly at random as a finalist. This will reduce the number
of teams to exactly n finalists. Run 7,, on the n finalists and declare that rule’s winner
as the overall winner. The result of this section bounds the value of o’ for r,,/.

Theorem 3. If there exists a top-cycle consistent, and k-SNM-« rule r for n teams,
then there exists a top-cycle consistent and k-SNM-o’ rule v’ for n' > n teams where

o <al1- (k—1)2>+ (k—1)*

n n

We now outline the proof of Theorem 3 and defer its proof to the full version of
this paper. It is easy to show that ' is top-cycle consistent. The derivation of the upper
bound on o’ is more complicated but it is based on a fairly simple idea. Let S be a set of
colluding teams in a tournament 7" on a set of n’ teams. If a permutation 7 on a set of n’
teams is chosen uniformly at random, then either every group in the partition contains
at most one team from S or there exists a group containing at least two teams from S. In
the former case, we use the fact that fixing matches inside S does not change a team’s
chances of surviving the group. Then we use the assumption that r is k-SNM-« to
conclude that S can increase the probability to win the tournament 7" by at most « by
fixing matches inside S. In the latter case, we simply assume that they can increase the
probability by 1. The latter case happens with probability (k —1)? /n, which finishes the
proof. An explicit consequence of this result is the following. If there exists a top-cycle
consistent 3-SNM-2/5 rule for n = 25 teams (which would be the best possible as per
[18]), then there exists a 3-SNM-« rule for all n > 25 for some o < 1/2.

6 Conclusion and Future Directions

This paper extends our knowledge of non-manipulable tournament rules in several
ways. First, we generalize RSEB from [18] into RdSEB. This rule, at every node,
picks a Condorcet-winner if one exists among its children and otherwise chooses a
team uniformly at random. We show that for k£ < d this rule is k-SNM-ay ;, for some
aq,; bounded away from 1, providing the first explicit family of rules that are bounded
away from 1 for any n. We suspect that a more careful analysis for small values of d, k
might yield better rules but conjecture, however, that ag , > 1/2 forall & < d.
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We present a new rule, the SIGNIFICANTONLYRule, which is monotone, Condorcet
-consistent, 3-SNM-1/2 and 2-SNM-1/3 (which is best possible). The rule identifies
a small set of teams as significant, awards them substantial probability mass and dis-
tributes it uniformly among non-significant teams. The motivation for the rule is that
tournaments with a Condorcet-winner and tournaments which are far from having a
Condorcet-winner are easy to resolve. We find a way to resolve the intermediate tour-
naments in a way to avoid substantial gains from manipulation.

Finally we propose a way of reducing the problem of finding good rules for large
values of n to the problem of finding good rules for small values of n. Our result implies
that if there exists a 3-SNM-2/5 just for n = 25, then there exist 3-SNM-« rules for
n > 25 and « < 1/2, which would directly improve on the state of the art results.
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