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Abstract

Many traditional models that predict plant groundwater use based on groundwater level
variations, such as the White method, make various simplifying assumptions. For exam-
ple, these models often neglect the role of plant hydraulic redistribution, a process that can
contribute up to 80% of transpiration. Thus, this work aims to avoid such assumptions and
subsequently explore the dynamic interactions between groundwater levels and phreatophytic
vegetation, including plant nocturnal transpiration, hydraulic redistribution, and response
to atmospheric conditions, in shallow-groundwater ecosystems using Loblolly pine (Pinus
taeda) as a model species. The model scenarios are formulated using a stomatal-optimization
model coupled to the soil-plant-atmosphere continuum. Flow through soil and groundwater
are described using the Richards equation and a linear reservoir approximation, respectively,
with groundwater in contact with an external water body of fixed elevation. Results show
that nocturnal transpiration, mediated by plant residual conductance, and hydraulic redis-
tribution, are able to reduce groundwater levels at night and alter the groundwater recharge
rate. Projected atmospheric conditions of increased carbon dioxide and elevated temperature
have opposing effects on groundwater levels, which tend to roughly cancel each other under
a projected scenario of 500 ppm carbon dioxide and 1.5 C warming. Such detailed modeling
can be used to provide further insights into coupled interactions between vegetation, climate
and groundwater levels in phreatophyte-dominated ecosystems.

groundwater, hydraulic redistribution, nocturnal transpiration, phreatophytes, root water up-
take, Loblolly pine (Pinus taeda L)

1 Introduction

Groundwater has been used as the main source of drinking water for more than two billion
people at the global scale (Morris et al., 2003; UNESCO World Water Assessment Programme
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(WWAP), 2022). Globally, 42% of irrigation water, 36% of household water, and 27% of man-
ufacturing water withdrawals are from groundwater (Dol et al., 2012; Gleeson et al., 2020). In
the US High Plains, groundwater resources supported up to 90% of irrigation and produced 3
billion US dollars from 1960-2007 (Garcia Sudrez et al., 2019). However, in many semi-arid
and arid areas (including central and southern US High Plains) groundwater withdrawals have
far exceeded aquifer recharge rates in recent years (McGuire, 2017; Scanlon et al., 2010; Siebert
et al., 2010). When such significant imbalances between withdrawals and recharge persists, the
groundwater in these areas can be viewed as a nonrenewable resource (Ahmed and Umar, 2009;
Scanlon et al., 2007). Much work has gone into assessing groundwater storage and understanding
the sustainability of groundwater systems in the face of human-caused depletion (Rateb et al.,
2020; Scanlon et al., 2023; Siebert et al., 2010).

In order to adequately evaluate the sustainability of groundwater withdrawals, natural
groundwater discharge mechanisms and volumes must also be considered. Water loss through
plants (i.e., transpiration) often cannot be overlooked, especially when groundwater tables are
shallow and/or rooting systems are particularly deep. Phreatophytes uptake most of their water
requirements from the saturated zone (Cooper et al., 2006; Laczniak et al., 1999; Naumburg
et al., 2005). For example, groundwater discharge though phreatophytes in Dixie Valley and
Margosa Desert, Nevada can be up to 61% and 37% of total evapotranspiration, respectively
(Garcia et al., 2015; Moreo et al., 2017). When compared to bare soil conditions, a 50 cm drop
in mean groundwater level was predicted by a modeling study with a description of stochastic
precipitation process for recharge in loamy sand soil with deep rooted vegetation (Laio et al.,
2009). In such groundwater-dependent ecosystems, groundwater depth further dictates ecosys-
tem structure (i.e., plant community composition and distribution) and functioning (Eamus
et al., 2006), and the presence of groundwater may increase ecosystem resilience to prolonged
droughts (Koirala et al., 2017; Orellana et al., 2012). It is for these reasons that accurate es-
timation of the dynamic relation between groundwater level and withdrawal by phreatophytes
continues to draw significant research attention in hydrological, ecological, and biogeochemical
sciences (Hernandez, 2022; Rodriguez-Iturbe et al., 2007).

Thus, this study aims to develop a modeling framework that more accurately represents the
dynamic relationship between groundwater levels and plant water withdrawals. Understanding
such dynamic interactions is a vexing problem because fluctuations in groundwater levels can
be further impacted by various recharge and discharge processes (Jiang et al., 2017). Previous
modeling studies have made various assumptions around these dynamics, which are reviewed
here to illustrate how a more refined modeling approach might provide further information about
the interrelated interactions between vegetation and the water table.

In recent decades, the White method (WM) (White, 1932) and its variants—such as the wa-
ter table fluctuation method (Carlson Mazur et al., 2014a; Fahle and Dietrich, 2014; Gribovszki,
2018; Orellana et al., 2012; Soylu et al., 2012; Wang et al., 2014; Yin et al., 2013; Zhu et al.,
2011)—have utilized groundwater level fluctuations (i.e., hydrographs) to estimate groundwater
consumption by plants (i.e., transpiration) across various timescales. However, the WM makes
several assumptions about the interaction between vegetation and the water table. The WM
first assumes that the diurnal pattern of transpiration is the primary process shaping the diurnal
fluctuation of groundwater levels. However, various factors—such as changes in precipitation
input, cyclic pumping rates, barometric pressure, alternating freeze/thaw events, Lisse effects,
and connections to external water bodies—can also influence diurnal groundwater-level fluctua-
tions (Domec et al., 2012b; Healy and Cook, 2002; Todd and Mays, 2004). Another assumption
embedded in the WM is that of a constant daily recharge or discharge rate. This assumption
is often invalid, even when lateral flow between the targeted groundwater body and an exter-
nal water body is the only source of recharge or discharge, aside from water withdrawals by
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phreatophytes (such as during dry periods with little to no rainfall). Specifically, the rate of lat-
eral recharge can vary with diurnal fluctuations in groundwater levels, even when the water level
of the external water body remains constant (Laio et al., 2009; Ridolfi et al., 2008). Therefore,
the proposed modeling approach in this study accounts for the connection between groundwater
and external water bodies and explores how the non-constant recharge rate induced by external
water bodies impacts groundwater dynamics.

Another assumption adopted by the WM is that nocturnal groundwater withdrawal through
plants can be neglected. However, several experiments (Caird et al., 2007; Dawson et al., 2007;
Huang et al., 2015; Novick et al., 2009) have shown that nocturnal transpiration can account for
10-30% of daily transpiration. Additionally, hydraulic redistribution—the movement of water
from wet to dry soil layers through the root system—commonly occurs at night and can con-
tribute up to 80% of daily transpiration, as demonstrated by several experimental and modeling
studies (Domec et al., 2010; Neumann and Cardon, 2012). Moreover, it is not uncommon for
plants to refill their internal water storage at night by drawing water directly from both the sat-
urated and unsaturated zones (see review in Huang et al. (2017)). These findings suggest that
nocturnal plant activity can significantly impact groundwater dynamics, especially when root-
ing depth is sufficient to reach groundwater (Domec et al., 2012a). Consequently, the proposed
modeling framework accounts for the widely observed phenomena of nocturnal transpiration and
hydraulic redistribution, and their roles in groundwater dynamics are examined.

Finally, the WM uses a single value of specific yield to represent the overall water release from
the saturated soil column as groundwater levels fluctuate. However, specific yield can vary with
groundwater levels and different soil water statuses in the unsaturated zone (Bear, 1988; Fahle
and Dietrich, 2014; Gribovszki, 2018; Healy and Cook, 2002; Loheide et al., 2005; Nachabe, 2002).
This variability suggests that factors such as capillary rise, hydraulic redistribution through plant
rooting systems (Domec et al., 2012a; Mooney et al., 1980; Neumann and Cardon, 2012), and
nocturnal replenishment of plant water storage can also impact specific yield, thereby influencing
the estimation of water consumption by phreatophytes when using the WM. Therefore, the
proposed modeling approach incorporates soil water dynamics that allow for variations in specific
yield over time, particularly when accounting for hydraulic redistribution.

A recent review covering many previous modeling and experimental studies (Wang et al.,
2023) indicated that the lack of a more realistic representation of rhizosphere processes remains a
significant barrier for process-based modeling frameworks in providing more accurate estimates
of plants’ groundwater consumption. Many different approaches have been taken over time to
elucidate the dynamics and drivers of plant-groundwater interactions. For instance, the energy
balance method (Nichols, 1993, 1994) has been used to estimate the soil evaporation and plant
transpiration. When adopting such a method, a relation between groundwater level and plant
transpiration can be subsequently developed to estimate groundwater consumption by plants
(Domec et al., 2012b). However, this method does not account for the partitioning of root water
uptake between the saturated and unsaturated zones.

Other studies have explored rhizosphere processes in more detail. For example, Loheide
et al. (2005), have explored how groundwater levels are impacted by various aquifer geometries
and soil properties, using a saturated-unsaturated flow model (VS2D) (Hsieh et al., 2000) with
a pre-set constant and uniformly distributed root water uptake. Similarly, Grimaldi et al.
(2015) used HYDRUS 2D (Simunek and Van Genuchten, 1999) to explore how different soil
types and root distributions impact the dynamics of groundwater level, given a pre-set constant
potential root water uptake adjusted by a water stress function (Feddes et al., 1976). Laio et al.
(2009) further considered stochastic precipitation (as a marked Poisson process) as an additional
recharge source in the modeling system, while Zhu et al. (2019) and Zhang et al. (2022) used
the SiTH (Simple Terrestrial Hydrosphere) model to explore the contribution of different water



101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

paths (e.g., soil evaporation and transpiration from saturated and unsaturated zone) to the total
evapotranspiration. However, none of these modeling frameworks accounted for the effects of
hydraulic redistribution and nocturnal transpiration. The pre-specified root water uptake or
potential evapotranspiration in these studies also suggests that such approaches fail to capture
how groundwater level is impacted by the dynamic partitioning of root water uptake between
saturated and unsaturated zones.

In another study, Gou and Miller (2014) accounted for the effects of hydraulic redistribution
on plant groundwater usage through the development of a groundwater—soil-plant—atmosphere
continuum model, which was later incorporated into a distributed groundwater-land surface
model (Gou et al., 2018), ParFlow-CLM (Kollet and Maxwell, 2006, 2008; Maxwell and Miller,
2005), and represents multiple species. However, the depth of groundwater table is pre-set in this
approach, which disallows exploration of the impacts of plant water withdrawals on groundwater
levels.

Based on this review, a modeling framework explicitly describing the dynamic interactions
between the groundwater level and discharge by phreatophytic vegetation can be expected to
address a knowledge gap in the literature. Thus, a dynamic groundwater—soil-plant—atmosphere
continuum model is proposed here (see Fig. 1). This model combines the hydrodynamics
in the saturated and unsaturated zones with leaf-level physiological and soil-root constraints,
such that the impacts of capillary rise, hydraulic redistribution, and nocturnal transpiration on
the groundwater level are directly considered. The main sources of groundwater recharge or
discharge in the proposed model are phreatophytic water withdrawals and the inflow from or
outflow to an nearby external water body. In this framework, the groundwater level and root
water uptake (i.e., transpiration) are not pre-specified. That is, the predicted groundwater level
can be dynamically impacted by transpiration, and vice versa. Specifically, model simulations are
used to explore how different plant attributes and environmental factors influence the dynamics
of groundwater levels and recharge rates, overall plant transpiration and carbon assimilation,
and partitioning of plant water consumption between groundwater and unsaturated soil layers
when detailed plant hydraulic processes are included.

2 Model description

The proposed modeling approach is illustrated in Fig. 1, with the notation and units used
throughout listed in Table 1. The dynamic groundwater—soil-plant—atmosphere continuum
model is developed here by coupling a soil-plant model proposed elsewhere (Huang et al., 2017)
with a groundwater balance module. For simplicity, plant water storage is not considered.
Information on the formulations and assumptions is given next.

2.1 Leaf gas exchange

A detailed description of the leaf-level gas exchange model included in this work can be found
in Huang et al. (2015). Thus, only salient features of the model are summarized here. In this
leaf-level gas exchange model, the biochemical demand for COs5 is described by the Farquhar
photosynthetic model for Cs species (Farquhar et al., 1980). The transfer of COy and water
vapor across the stomatal cavity and the laminar boundary layer attached to the leaf surface is
modeled as a steady-state Fickian diffusion and constrained by a leaf-level energy balance model
to account for the boundary-layer effects (Campbell and Norman, 1998). A residual conductance
(gres) is also considered to accommodate the nighttime water leakage through both cuticle and
guard cells when nighttime evaporative demand is non-negligible. It is thus suggested that our
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model can capture how nocturnal transpiration impacts the groundwater level dynamics when
the rooting system is sufficiently deep to reach the groundwater resources. An optimal water use
strategy is then used to determine variations in stomatal conductance (gs co,) and subsequently
carbon assimilation (f.) and transpiration (f.) rates.

2.2 Stomatal closure

Based on the economics of leaf-level gas exchange (Givnish and Vermeij, 1976; Cowan and
Farquhar, 1977; Konrad et al., 2008), the optimality hypothesis adopted here to predict g co,
is equivalent to maximizing the objective function defined as:

ha (QS,COQ) = fe— Afes (1)

where the species-specific parameter A is known as the marginal water use efficiency that mea-
sures the cost of water loss in carbon units. During a dry-down, A increases on a daily time-scale
due to the reduction in available soil water (Manzoni et al., 2013b). The meta-analysis of ap-
proximately 50 species (Manzoni et al., 2011) has shown that A increases as leaf water potential,
1, drops in response to soil drying:

A() = X exp [~adh (2)
a

where \* is the minimum water use efficiency under well-watered soil conditions at a reference
atmospheric COg concentration ¢ = 400 ppm, 1), is leaf water potential, v, averaged over the
previous 24-hour period, and « is the species-specific sensitivity parameter. When coupled with
the soil-xylem hydraulic system, v; is a hydraulic signal representing soil water potential that
is not impacted by atmospheric dryness or light variations (Huang et al., 2017; Manzoni et al.,
2011). Thus, the predicted gs co, decreases with decreasing 1, because \ increases as the water
availability across the root zone decreases.

2.3 Whole-plant water transport capacity

For the water transport system of vascular plants, the above-ground compartment of the plant
xylem water conductance (K) can be described by a vulnerability curve (Huang et al., 2018;
Manzoni et al., 2013c):

K (W) = Knarexp [~ (32) 7] 3)

where K4, is the maximum xylem water transport conductance, and ¢; and cy are constants
describing the shape of K. As soil drought continues, 1; becomes more negative in response to
the decreasing soil water potential (1)s) to maintain f.. Thus, the linkage between g, co, and
the above-ground water transport system can be developed by the supply-demand balance of
water (Huang et al., 2018; Manzoni et al., 2014):

fe,s — K () [¢sb—11] — gt,HQO(ei_ea) _ fe,d

my Ay P,

(4)
(gs,H20+gres )gb,HQO
9s,HyOtgrest9gb, HoO

gt,HQO =

where f, s and f. q are the water supply from above-ground xylem system and the water demand
from the atmosphere, respectively; 14, is the water potential at the stem base; e; and e, are
the intercellular and ambient water vapor pressures, respectively; m,, is the molecular weight of
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water; A; is the leaf area; P, is the atmospheric pressure; g, g,0 and gs m,0 (~ 1.6gs,c0,) are
the total conductance and the stomatal conductance for water vapor, respectively; gres is the
residual conductance responsible for water loss through incomplete stomatal closure and cuticle;
and gy m,0 is the boundary layer conductance for water vapor at the leaf scale (Huang et al.,
2015). For simplicity, plant water storage is neglected here.

2.4 Water dynamics in the unsaturated zone

The 1-D Richards equation including root water uptake and release (Volpe et al., 2013; Manoli
et al., 2014; Bonetti et al., 2015) is used to describe the water transport in the unsaturated soil
layer:

005 (zs, dqs

fet) = — 00— q,(2,1)
gs = —K,(05) 5% (5)
7/15 = ¢s — Zs

where 6, is the volumetric soil water content at depth zs below the surface, ¢s is the Darcian flux
induced by the gradient of total soil water potential 1, g, is the root water uptake (denoted with
superscript ‘+’) or release (denoted with superscript ‘—’) rate, ¢5 is the soil matric potential,
and Ky is the soil hydraulic conductivity. The Clapp and Hornberger formulations (Clapp and
Hornberger, 1978) are then used to describe the soil water retention curve and soil hydraulic

conductivity function, given by:
9 _b
¢s = ¢s,sat (S) ) (6)

Hs,sat

0 2b+3
Ks = Ks,max (s) ) (7)

es,sat
where 0 sat, ¢s,sat and K q, are the soil water content near saturation, the air entry water
potential and the saturated hydraulic conductivity, respectively, and b is a constant that varies
with soil texture.

In Eq. 5, the change in soil water storage is attributed to the Darcian redistribution (i.e.,
—0qs/0zs) and the water depletion or replenishment rate through the rooting system (i.e., ¢, ).
The g, is driven by the water potential gradient across the path where water molecules travel
radially from the soil to the soil-root interface and the root membrane in series, and is given by:

q = —k [(¢sb - Zs) - ¢s] ap
(8)

k=5

where k is the total soil-to-root conductance, 14, — z5 is a surrogate for the root water potential
(¢r), ar = 2mrB is the root surface density, r is the effective root radius, B is the root length
density, k, and ks = K/l are the root membrane permeability and the conductance associated
with the radial flow within the soil to the nearest rootlet, respectively, and [ = 0.53/ V7B is the
empirical length scale describing the mean radial distance for the movement of water molecules
from the soil to the root surface in the rhizosphere (Vogel et al., 2013). We assume here that v,
is hydrostatically distributed (i.e., 1, = ¥s — z5) because the water storage and energy losses
are negligible within the roots (Lafolie et al., 1991; Siqueira et al., 2008) when compared to the
above-ground compartments (Kavanagh et al., 1999).
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In the absence of plant water storage, the coupling of the rooting system with the above-
ground plant system can be described by the supply-demand balance for water between net root
water uptake (RWUpe) and total transpiration rate (F¢):

F. = femyA; = RWUpe, = [ J7 (gt + qr_)dzs} pAsoil (9)

where Lp is the rooting depth, p is the water density, and A,; is the soil surface area covering
the roots. Thus, @, = (f;jR qjdzs) pAsoir and Qpus = (fyo qjdzs) pAsoil, where y is the
groundwater depth, are the total root water uptake from the saturated and unsaturated zones,
respectively. During daytime, a significant water potential gradient from roots to leaves can
drive root water uptake (i.e., ¢}) for all z; when transpiration is large. However, root water
uptake from lower soil columns (i.e., saturated and unsaturated zones) can be released back to
dryer soil layers and contributes to transpiration when transpiration is small. During nighttime,
root water uptake from the lower saturated zone can be released back to the upper saturated
zone (causing rise of y) and dry soil layers. That is, the rooting system (compared to soil
medium) becomes a highway to transport water between soil layers in the presence of soil water
potential gradient during the night. Here, hydraulic redistribution (HR) is defined as the water

release to the unsaturated zone and computed as Qs = | ( fyo q, dzs> pAsoill.

2.5 Groundwater dynamics

The water balance in the saturated zone (i.e., groundwater) is given as (Laio et al., 2009; Ridolfi
et al., 2008):

dy(t)
Bly®)—,
where [ is the specific yield representing the volume of water gain or loss due to the rise or fall
of a water table, Oy, is the inflow (4) from or outflow (—) to the external water body depending
on the relative depths between groundwater and external water body, and E, is the exfiltration
rate driven by capillary rise. In Eq. 10, the groundwater dynamics (i.e., y) are impacted by
both F, and HR through the sink term, @,s. To predict y, O, and E, require specification,
which is discussed next.

= Oin - Qr,s - Em (10)

2.5.1 Recharge or discharge through a nearby water body

The lateral flow into or out of the groundwater underneath a horizontally uniform vegetation
(i.e., recharge or discharge) is driven by the presence of an external water body in the proposed
modeling framework (Fig. 1). When the water level of the external water body () is a constant
in time and the distance between the external water body and vegetated area is sufficiently large,
the inflow or outflow rate from the external water body, O;,, can be described by the linear
reservoir approximation based on Darcy’s law (Laio et al., 2009; Ridolfi et al., 2008):

Oin = Kg(yo - y)
(11)

_ K
Kg T Lsty
where L, is the distance between the soil surfaces at the vegetated area and under the external
water body, and K, is a constant depending on the soil properties (i.e., K) and the transport
distance from or to the external water body (i.e., Ls +y ). While |yo| < |y| leads to a recharge
(i.e., Oin, > 0), a discharge (i.e., O;, < 0) is guaranteed for |yo| > |y|. Moreover, the total water
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potential for the groundwater layer under the vegetated area, H, is linearly distributed in the
vertical direction:

H = —(1+C —CL
Zs ( + )Zs + Yo S (12)
Elevation head Pressure head

where C' = O, /K is the normalized recharge or discharge rate. It should be noted that the
dynamic variation of H (i.e., not hydrostatic) can impact the water potential in the rooting zone
and subsequently F, and HR (a hydrostatic condition is not assumed here).

2.5.2 Capillary rise

Capillary rise (i.e., exfiltration rate) is the upward movement of pore water driven by the gradient
in hydraulic head. In the presence of groundwater, E, (see Eq. 10) represents the upward
water flux from saturated zone to neighboring unsaturated infinitesimal soil layer, and can be
approximated by a Darcian flux (Gardner, 1958; Lu and Likos, 2004):

E, = qS‘zs=y+5zs (13)

where dz; is the depth of the unsaturated infinitesimal soil layer right above y. When formulated
in this manner, F, is represented as the tendency for the neighboring unsaturated soil layer to
reach a hydrostatic condition after root water uptake (i.e, ¢,). Thus, E, can be impacted by
the antecedent water status in dz; through F. and HR.

2.6 Model set-up

Nine scenarios were constructed to explore how different environmental conditions and plant
attributes impact the dynamic interactions between the groundwater level and phreatophytic
vegetation (see Table 2) when yq is fixed as a constant (i.e., 0.75 m below the surface) and the
initial y was set equal to yg across all scenarios. The main source responsible for recharge is
the nearby external water body (i.e., no precipitation). Since it is difficult to obtain the plant
physiological, hydraulic attributes from a single experiment, the plant model parameters were
collected from the literature with a focus on Pinus taeda L. When parameters specific for Pinus
taeda L. were not available, parameters for coniferous species in general and pine plantation
trees were adopted (see Huang et al. (2017) for detailed information) for all model runs. It
should be also noted that Pinus taeda L. is a phreatophytic plant with accessibility to shallow
groundwater in Southeastern USA (Aguilos et al., 2021; Wahlenberg et al., 1960). For the soil
hydraulic parameters, the required parameters in Eq. 6 and 7 were adopted from Clapp and
Hornberger (1978). The model parameterizations are summarized in Appendix A. The bottom
of the domain in the modeling system was considered as a no-flow boundary in all simulations
(Loheide et al., 2005). The vertical discretization of soil domain and time step were set as 0.075
cm and 0.02 s, respectively. For all model runs, the initial soil water conditions were specified
as hydrostatic for the unsaturated zone. The model calculations were subsequently repeated
with prescribed atmospheric variables on a periodic 24-h basis and that drove the dynamic
groundwater-phreatophyte interactions (see Appendix). All the model runs were simulated for
15 days to ensure that the daily equilibrium state can be captured.

In S1-S3, we set leaf area index (LAI) = 1.5 m® m™2, gyes = 0.04 mol m~2 s7!, and a
rooting depth of 1.2 m. The soil type was set as clay to represent finer soil particles with a
small K as listed elsewhere (Clapp and Hornberger, 1978). When all other model parameters
and environmental conditions remained the same, reverse power-law (B = Bprp), power-law
(B = Bp) and uniform root distributions (B = By) were set in S1, S2 and S3 (see Fig.
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2), respectively. Thus, the impacts of vertical root distribution can be explored through the
comparison between S1, S2 and S3 as the total root length densities across all the scenarios
were maintained the same (~ 1 x 10" m m~3). The setup for S2 here is used to represent
Pinus taeda L. following a power-law rooting distribution common for many species including
coniferous species (Andersson, 2005; Finér et al., 1997; Jackson et al., 1996). A reverse power-
law distribution has been observed for plants in contact with the groundwater such as Prosopis
glandulosa var. Torreyana (Jarrell and Virginia, 1990) and can be also used to represent plants
with only sinker roots extending into groundwater such as Celtis as reported by Hultine et al.
(2003). Since LAI and g,es are finite and the rooting system can reach the groundwater, both
F, (i.e., daytime and nocturnal) and HR can directly modify the dynamic y.

Regarding leaf attributes, S4 used a larger LAI (3 m? m~2) and S5 adopted a smaller
gres- The values of gres (0.01 and 0.04 mol m—2 sfl) used here were well within the range for
many species reported elsewhere (Caird et al., 2007). To explore how soil texture impacts the
groundwater-phreatophyte interactions, the soil type in S6 was modified to clay loam such that
the K is nearly doubled when compared to clay as listed elsewhere (Clapp and Hornberger,
1978). Scenarios S7-S9 focused on the impact of changing environmental conditions. In S7, we
increased CO5 concentration from 400 to 500 ppm and in S8, we increased air temperature by 1.5
°C following the upper boundary of the indicative likely range for all RCP scenarios at the end
of 2035 (IPCC, 2013). In S9, the CO2 concentration and air temperature were simultaneously
increased to explore their combined effects on the groundwater level. When air temperature is
increased in S8 and S9, actual vapor pressure varies with saturation vapor pressure assuming
relative humidity is not sensitive to changes in air temperature (Katul et al., 2012).

3 Results and discussion

To address the study objectives, we first analyze how soil water dynamics are impacted by
daytime and nocturnal F, and HR in Section 3.1. In Section 3.2, how the diurnal fluctuations of
y are generated in relation to daytime and nocturnal F, (i.e., @, ) and HR as well as O;y, is then
discussed. When roots can directly utilize groundwater resources, we examine the sensitivity of
leaf-level responses to different root distributions, soil textures, leaf attributes and future climate
conditions in Section 3.3. In Section 3.4, how the total plant water use (Q, = Qrs + Qrus) is
partitioned to Qs and @, s and its relation to the fraction of roots submerged in groundwater
(R) across all scenarios is presented. Based on the results from the proposed modeling approach
and previous studies, how the accessibility of groundwater to the rooting system impacts the
magnitude of HR is discussed in Section 3.5. The mechanisms leading to changes in y across
all scenarios are explained in Section 3.6. Finally, a brief summary of the study limitation in
the present modeling framework is presented in Section 3.7. To maintain a minimum number
of scenarios, the discussion here is based on the comparison to S1 when only one parameter in
each scenario (i.e., S2-S9) is modified.

3.1 General features of the modeled soil water dynamics

The modeled profiles of diurnal variations in 6, and g, across Lr are shown in Fig. 3(a) and (b),
respectively, for S1. When light activates photosynthesis during the day, phreatophytes begin
to extract water from both the unsaturated and saturated zones (i.e., F, > 0), thereby reducing
05 of the upper soil layer and y. However, the plant water consumption from the saturated zone
is much larger than that from the unsaturated zone. This can be explained by the fact that 1)
the majority of the roots are located below the groundwater level and 2) root water uptake is
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higher when water potential is near zero in the saturated zone. When light diminishes to zero
at night, a finite @, is still maintained. This nocturnal @, s contributes to both nocturnal
F. and HR (i.e., Q. ,s). Therefore, the upper soil layers can be partially refilled by HR, but
the rise of y is still limited by nocturnal @), s. This suggests that the assumption of negligible
plant groundwater usage at night is not valid when applying WM to estimate groundwater
consumption by phreatophytes.

We should also emphasize that nocturnal F, can suppress HR (Howard et al., 2009; Hul-
tine et al., 2003; Prieto et al., 2010; Scholz et al., 2008) although it can limit the rise of y at
night. Nocturnal F, is inevitable water loss through incomplete stomatal closure and cuticle
(i.e., embedded in gres) at the leaf level and is not regulated by photosynthesis (Boyer et al.,
1997; Larcher, 2003). Thus, nocturnal F, is governed primarily by the magnitude of g,.s and
the atmospheric dryness (e.g., vapor pressure deficit, D) (Domec et al., 2012a), not the soil
water status as Lgr can reach the saturated zone. Moreover, nocturnal F, generates a residual
water potential gradient along the plant vascular system during the night. Such non-negligible
competing sink strength can further reduce the magnitude of HR (Huang et al., 2017) when HR
is driven by the water potential gradient across Ly to move water from the saturated to the un-
saturated zone (Neumann and Cardon, 2012). This suggests that a larger nocturnal F, does not
guarantee a smaller rise of y at night because HR is simultaneously reduced. Unlike nocturnal
F,, it should be noted that the water redistributed to the unsaturated zone through HR can be
later used by plants (Warren et al., 2007). Furthermore, HR can also maintain root hydraulic
conductivity and microbial activity, enhance nutrient uptake through maintaining soil-root con-
tact in the unsaturated zone, and deliver water to neighboring species with shallower rooting
depth (Brooks et al., 2006; Domec et al., 2004; Prieto et al., 2012).

3.2 General features of the modeled groundwater level and recharge rate

Fig. 4 showcases the general predicted dynamics of y, Q. s, Fe and O;, using S1 as an example.
The diurnal fluctuations of y and O;, occur due to the presence of groundwater consumption
through plants (i.e., Fr # 0 and Qs # 0). The predicted difference between daily maximum
and minimum y (~ 0.05 m) is well within the range of 0.01-0.6 m as reported elsewhere (Carl-
son Mazur et al., 2014b; Cooper et al., 2006; Crosbie et al., 2019; Fahle and Dietrich, 2014;
Gribovszki et al., 2008; Gribovszki, 2018; Healy and Cook, 2002; Lautz, 2008; Loheide et al.,
2005) with similar patterns of diurnal fluctuations of y. At the beginning of the simulation,
y = yo = 0.75 m leads to O;, = 0. When light activates photosynthesis, y decreases because
Qrs > 0 driven by plant groundwater consumption through daytime transpiration (F, > 0) is
larger than O;, ~ yo —y > 0 (see Eq. 11). When F, recedes to a minimum during nighttime,
Oin > Qs leads to an increase in y. However, nocturnal @), is not negligible in the presence
of HR and nocturnal F, (see Section 3.1). It should be noted that y ~ yo with Oy, ~ 0 requires
Qrs ~ 0. Thus, y < yo (i.e., Oj, > 0) is guaranteed when plant groundwater consumption
(i.e., daytime and nocturnal F.) and water movement through the rooting system (i.e., HR)
continues. That is, the daily variation in Oy, is also dictated by y through changes in @, ;. This
further suggests that the assumption of a constant Oy, during a daily cycle in the WM is not
valid when phreatophytic plants can modify y and subsequently @, .

3.3 Stomatal responses to variations in plant attributes and environmental
conditions

Fig. 5 shows comparisons of gsco,, fe and f. for all scenarios. The predicted gsco,, fe
and f. remain similar when root distributions (S1, S2 and S3) and soil properties (S1 and
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S6) are modified. These results may not be surprising since water availability is not limiting
stomatal responses for any cases. Groundwater accessibility by the rooting systems and a moist
unsaturated zone due to HR guarantee sufficient water supply to maintain g, co,. This explains
why different root distributions and soil properties do not appreciably impact g co, as well as
fe and f. as long as the total root densities remain the same.

However, gs co,, fe and f, vary with different leaf attributes (S1, S4 and S5) and atmospheric
conditions (S1, S7, S8 and S9). A larger LAI in S4 increases total evaporative demand (i.e.,
F,) such that the water availability in the unsaturated zone and the root fraction submerged in
the saturated zone (R) are reduced. Thus, the overall water availability across the root zone in
S4 decreases, thereby generating smaller g5 co,, fe and f. in comparison to S1. Contrarily, a
larger gs co, is predicted by reductions in f. with a reduced gres (S5) when compared to S1. A
smaller g,.s in S5 reduces evaporative demand (i.e., f.) but maintains a greater overall water
availability with a larger R.

Regarding the impacts of atmospheric conditions on g, co,, the proposed model predicts a
smaller gs co, in S7 with increasing ¢, and a larger gs co, in S8 with increasing 77, when com-
pared to S1. The overall trends in negative response to increasing c, and positive response to
increasing leaf temperature (7;) are mainly reflected by the supply-demand balance of COy flux
(Huang et al., 2018) and have been reported elsewhere (Mansfield et al., 1990; Messinger et al.,
2006; Morison, 1998; Morison and Gifford, 1983; Mott, 1988). Specifically, increasing temper-
ature generally enhances photosynthetic capacity and subsequently stomatal conductance. In
some ecosystems, however, temperature may be already close to or above the thermal optimum
so that warming inhibits (rather than promotes) photosynthesis (Dusenge et al., 2019). It should
be also noted that increasing T, in S8 not only generates a larger leaf temperature, 1;, but also
alarger D. Their combined effects on gs co, cannot be separated. The negative trends in gs co,
with respect to increasing D have been widely reported (Aphalo and Jarvis, 1991; Grantz, 1990;
Katul et al., 2009; Lendzion and Leuschner, 2008; Massman and Kaufmann, 1991; McAdam and
Brodribb, 2015; Monteith, 1995; Oren et al., 1999).

However, a positive response of gs co, to increasing 7; is produced because the degree of
increasing gs co, induced by increasing T; (due to a higher rate of photosynthesis) overshadows
the negative response due to increasing D in the case of S8. When ¢, and 7T, are simultaneously
increased to represent future climate regime (i.e., S9), the model result here suggests that the
reduction in gsco, in response to increasing ¢, (i.e., S7) roughly compensates the effects of
hotter and drier atmospheric condition on gsco, (i-e., S8). Thus, the consideration of both
increasing ¢, and T, generates a greater water use efficiency (i.e., f./f.) in S9 where f. is largely
enhanced but f. does not appreciably increase. It should be also noted that how f. is impacted
by the opposing effects from increasing T, and ¢, largely depends on their degrees of increases
and the species considered (Kirschbaum and McMillan, 2018).

3.4 Partitioning of plant water use between saturated and unsaturated zones

Across all scenarios, the modeled fraction of root water uptake from the saturated zone (Q, s/ Q)
increases linearly with increasing root fraction submerged in the groundwater (R) (see Fig. 6(a)).
Thus, the partitioning of plant water use between the saturated and unsaturated zones is mainly
dictated by the root distribution. Examining the model results of S1, S2 and S3 for different
root distributions, it is evident that R determines the @, /Q, even when F, remains similar.
The magnitude of F, can also largely impact @, s/Q, and R when the root distribution stays
the same. For instance, a larger @), s induced by a larger F, in S4 with a doubled LAI creates a
deeper y that generates a smaller R and @, s/Q, in comparison to S1. The model results here
also suggest that groundwater (not unsaturated zone) is the main water supply to phreatophytes
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across all scenarios. For example, the predicted @, /@, can be larger than 80% when R is only
60 to 70 %. When R is only ~ 9%, @, s can still contribute to more than 30% of Q,.

The daily total ), s across all scenarios and the ratio between nighttime @), s and daily total
Qrs are shown in Fig. 6(b) and (c), respectively. While the daily total @, s is mainly governed
by the daily total F, and R, the nighttime @), contributes to both HR and nocturnal Fz.
Comparing the impact of root distribution on @, s in S1, S2, and S3 shows that the largest R in S1
generates the largest daily total @ s with a similar F,. When leaf area is increased in S4, a larger
F, generates a larger daily total @,s. When leaf area is maintained the same, the magnitude
of F, simply varies with the transpiration rate per unit leaf area (i.e., fe). Consequently, the
trend in the daily total @, s follows the trend in f. (see Fig. 5(b)) across S1, S5, S6, S7, S8 and
S9. For instance, a larger atmospheric CO2 concentration in S7 reduces F, such that the daily
total @, s in S7 becomes smaller than the case of S1. Furthermore, the predicted ratio between
nighttime @, s and daily total @, s ranges from 11.6 to 21.4 %. Again, the modeled results here
suggest that negligible nighttime plant groundwater usage as assumed in WM is not valid. Since
nocturnal F, remains similar across scenarios (i.e., same gres) except for S5 with a much smaller
F, (i.e., smaller gres), how nighttime @, s varies with different scenarios is mainly determined
by their magnitudes of HR as discussed next.

3.5 Model analysis for hydraulic redistribution (HR)

In Fig. 7, the comparison of daily averaged HR for all scenarios is illustrated. The accessibil-
ity of groundwater to the rooting system can impact the magnitudes of HR for different root
distributions. When roots are far from the groundwater, previous experiments and modeling
studies have shown that a vertically asymmetric root distribution corresponds to an increased
HR (Huang et al., 2017; Scholz et al., 2008; Siqueira et al., 2008; Volpe et al., 2013). A larger soil
water potential gradient created by the asymmetric root distribution during daytime transpira-
tion facilitates a greater HR at night (Huang et al., 2017). When roots are able to continuously
access groundwater, however, a smaller HR is predicted here for a vertically asymmetric root
distributions compared with its uniform counterpart (see Fig. 7(a)). A pattern similar to the
model predictions has been reported for three desert phreatophytic plants (Hultine et al., 2003).
When Frazinus and Juglans exhibit dimorphic root distributions with a network of shallow
lateral roots and deep taproots down to the water table, their root distributions can be approx-
imately represented as uniform root distribution across both saturated and unsaturated zone in
S3. When Celtis has only sinker roots extending into groundwater, the reverse power-law root
distribution with root density concentrated within groundwater in S1 can be used to represent
its rooting system. Interestingly, reverse sap flow in roots (i.e., evidence of HR) was observed for
Frazinus and Juglans but no HR was found for Celtis. This suggests that the water potential
gradient alone is not sufficient to drive HR. A sufficient number of roots across the root zone in
both the saturated and unsaturated zones is another key factor facilitating HR (see Eq. 8).

As discussed in Section 3.1, the residual water potential gradient along the plant vascular
system created by the nocturnal evaporative demand (i.e., nocturnal F) can diminish HR. This
explains why the modeled HR’s in S4 and S5 are respectively smaller and larger than that in
S1 (Fig. 7(b)). When compared with S1, nocturnal F, increases with increasing LAI in S4, but
decreases with a smaller g..s in S5. Regarding soil texture, the comparison between S1 and S6
suggests that coarser-textured (i.e., larger Kj) soils result in a smaller intensity of HR compared
with finer-textured counterpart (Fig. 7(c)). A split-root experiment (Wang et al., 2009) and
the experiments conducted in the Mojave Desert (Yoder and Nowak, 1999) have reported such a
trend associated with the impact of soil texture on HR. However, the mechanism leading to such
a similar trend is different from the model simulation here because their rooting systems are
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not in contact with groundwater. When roots are far from the groundwater, the development
of the soil water potential gradient required for HR is hindered by rapid drainage for the case
of coarser-textured soils (Burgess et al., 2000; Scholz et al., 2008). When roots can reach the
groundwater as the cases explored here, coarser-textured soil in S6 promotes the daytime use of
water from unsaturated soil layers per unit depth. Thus, coarser-textured soils create a shallower
daytime y, resulting in a smaller number of roots in the unsaturated soil domain (see Fig. 6(a))
for the development of HR at night. Again, the number of roots needs to be sufficiently large
in both the saturated and unsaturated zones to drive HR, as discussed for the three cases with
different root distributions (i.e., S1, S2 and S3).

How future climate conditions can potentially impact the magnitude of HR with roots in
contact with groundwater is explored here by comparing S7, S8 and S9 with S1 (Fig. 7(d)). The
proposed model predicts a larger HR with elevated ¢, (i.e., S7) and a smaller HR with increasing
Ti (i-e., S8) when compared to S1. F, in S7 is reduced by the reduction in g5 co, as discussed
in Section 3.3. S7 then creates a slightly shallower y (i.e., smaller ag in the unsaturated zone)
and a wetter unsaturated soil zone (i.e., larger k and less negative 15) in comparison to S1. The
positive response of HR to an increasing c, is predicted here because the degree of increasing
k overshadows the combined effects of increased s and decreased ag in the unsaturated zone
(see Eq. 8). However, we should also stress that such a positive response of HR to an increasing
cq only occurs when y and ag in the unsaturated zone are not appreciably modified, as is the
case here. HR can be significantly suppressed if ar in the unsaturated zone is largely reduced
due to the rise of y. The increase in T}, (i.e., S8) enhances daytime F, that generates a greater
water potential gradient across the root zone to drive HR. However, nocturnal F, also increases
with increased T, (i.e., D) such that HR is further suppressed by the residual water potential
gradient along the vascular system. Interestingly, one previous modeling approach (Volpe et al.,
2013) reported an opposite trend for the case of roots far from groundwater table. An increased
cq produces a reduction in HR because of reductions in root water uptake and water potential
gradient across the root zone when roots are not in contact with groundwater. The reason that
enhancement in HR with an increased T, is predicted by Volpe et al. (2013) is because g5 is
not considered. Thus, nocturnal F, is absent in their model to diminish HR. Simultaneously
considering increased ¢, and T, to represent the future climate regime (i.e., S9), the model result
here suggests that the increase in HR in response to elevated ¢, (i.e., S7) compensates the effects
of increased T, on HR (i.e., S8).

3.6 Model analysis for groundwater level

The modeled daily averaged y’s and nighttime rise in y’s for all scenarios are shown in Fig. 8 and
9, respectively. Regarding different root distributions (i.e., S1, S2, and S3) (Fig. 8 (a)), daily
averaged y’s are determined by @Q,s/Q, and the magnitudes of HR because their F¢’s remain
similar (see Section 3.3). When R is only ~ 9% for the case of power-law distribution (i.e., S2),
the water withdrawal from the saturated zone (i.e., @, s/Q;) is reduced (see Fig. 6). Thus,
the daily averaged y becomes shallower and nighttime rise of y in S2 becomes smaller (Fig. 9)
when compared with S1 (i.e., R ~ 62%). Considering the case of uniform root distribution (i.e.,
S3), its daily averaged y is predicted to be similar to S1 with a reverse power-law distribution.
Indeed, the daytime drop in y for S3 is smaller than that for S1 (see inset in Fig. 8 (a)), given
that R and Q,s/Q, are largely reduced (see Fig. 6). However, a smaller rise in nighttime y
(Fig. 9) caused by a larger HR in S3 (see Section 3.5) further reduces the difference in daily
averaged y between S1 and S3.

Since y is mainly controlled by @, s (see Section 3.2), the magnitudes of F, modified by
different leaf attributes (i.e., S1, S4, and S5) and atmospheric conditions (i.e., S1, S7, S8, and
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S9) can directly impact y through changes in @, . An increased @, caused by a larger F¢
generates a deeper y and a larger nighttime rise in y (i.e., a larger recharge rate). When
comparing y’s for different leaf attributes (Fig. 8 (b)), a deeper y in S4 than in S1 is predicted
when F, is largely enhanced by an increase in LAI. Contrarily, @, is reduced by a smaller
gres (i.e., S5 with a smaller Fi) (Huang et al., 2015) leading to a shallower y in S5 than in SI.
Considering the potential impacts of future climate conditions on y (Fig. 8 (d)), y increases
with an elevated ¢, (i.e., S7; decreased F. and @, s) but deceases with an increased T, (i.e.,
S8; increased F and @, ). Again, the combined effects of elevated ¢, and increasing T}, on y
(i.e., S9) may be negligible when F, (i.e., Q;s) is not appreciably modified as the case here (see
Section 3.3).

When compared with different soil properties (i.e., S1 and S6), the proposed model predicts
a shallower daily averaged y for coarser-textured soil with a larger K, (Fig. 8 (¢)). A pattern
similar to the modeled results here has been also reported by a previous modeling study using
four different soil textures (Loheide et al., 2005). The drop in daytime y decreases with an
increased daytime use of water from unsaturated soil layers for the coarser-textured soil. More-
over, a suppressed HR due to a shallower daytime y (see Section 3.5) further reduces the rise in
y at night (Fig. 9), resulting in an overall shallower daily averaged y.

3.7 Study limitations

Given all the assumptions taken to arrive at the proposed model, it is informational to reca-
pitulate its limitations for future improvements. Modeling uncertainties can be further reduced
when the relative humidity in the leaf inter-cellular spaces and plant water storage are appropri-
ately described. Recent studies have suggested that the water vapor inside the stomatal cavity
may not be saturated especially when the surrounding air is dry (Cernusak et al., 2018, 2019;
Wong et al., 2022). Thus, the assumption of saturated water vapor inside the stomatal cavity at
T; here may overestimate the evaporative demand, impacting the dynamics of modeled g, co,
and y. The presence of plant water storage can reduce y because it represents an above-ground
reservoir to store groundwater. However, plant water storage can also reduce root water uptake
and HR at night (Huang et al., 2017). Thus, the degree of impact on y through plant water
storage depends on the overall water storage capacity in the targeted ecosystem and requires
further exploration. The proposed model also assumes that the lateral inflow from an external
water body is the main source to recharge the groundwater. However, different geometries of the
flow system can result in different dynamics of y (Loheide et al., 2005). Moreover, uncertainties
in modeling y can be further reduced when the spatiotemporal dynamics of below-ground root
distribution, above-ground plant structure and their hydraulic and physiological attributes are
appropriately described. For instance, all the aforementioned properties can vary under future
climate conditions. Horizontal heterogeneity in root distribution and plant structure at the
landscape scale also needs to be further accounted for. Lastly, phreatophytic vegetation with a
deeper rooting depth and y (e.g., > 2 m) is not uncommon (Butler Jr et al., 2007; Canham et al.,
2012; Hultine et al., 2003; Wang et al., 2021). In such a case of y further away from the surface,
the soil water status in the upper soil layer and the magnitude of HR may not be maintained
at the same level as the case of shallow y. Thus, additional field and modeling experiments
are required to further understand the dynamic fluctuation of y in relation to the responses of
phreatophytic vegetation for a deeper y.
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4 Conclusions

The main goal of this work was to further understand the dynamic interactions between ground-
water level and discharge by phreatophytic plants without invoking the ad hoc assumptions
adopted by the White method. To address this goal, we developed a dynamic groundwa-
ter—soil-plant—atmosphere continuum model to describe the water dynamics throughout the
saturated and unsaturated soil domain as well as soil-root interface and plant vascular sys-
tem. When HR and nocturnal F, are also considered, y and @, can dynamically interact with
each other in the resulting modeling approach. Based on model results for a broad range of
environmental conditions and plant attributes, a number of conclusions can be drawn:

1) The assumptions of negligible plant groundwater usage during the night and a constant
Ojn in White method may not always occur in natural settings. Although HR is limited by
nocturnal F, through a residual water potential gradient along the plant vascular system, both
HR and nocturnal F, are able to reduce y at night. The fluctuation in y caused mainly by the
diurnal variation of F; further suggests that O;, cannot be constant (i.e., O, ~ yo —y > 0) as
in the cases explored here.

2) Since the model simulations here consider the cases of rooting system in contact with
shallow groundwater (i.e., y > —1 m), the leaf-level gas exchange operates with little to no
limitation of water supply. Thus, gsco,, fe and f. are not appreciably impacted by different
root distributions or soil textures, but they still vary with various atmospheric conditions as if
the soil domain is under a well-watered condition. This explains why the correlation between
y and leaf-level gas exchange across all the scenarios explored here is weak. However, Q,s/Qy
linearly increases with increasing R as y increases.

3) In the scenarios represented here which describe shallow groundwater levels, a sufficient
volume of roots connecting the saturated and unsaturated zones becomes the dominant factor
driving HR, rather than the water potential gradient across the rooting depth. Thus, the impact
of y on the partitioning of root volume between saturated and unsaturated zone for different
root distributions determines the magnitude of HR. This explains why a vertically asymmetric
root distribution does not guarantee enhancement in HR and HR is reduced by coarser-textured
soils with a shallower y.

4) Exogenous environmental factors (e.g., soil texture and atmospheric conditions) and en-
dogenous plant properties (e.g., root distribution and leaf attributes) can impact the dynamics
of y through modifications in @), s and HR. Interestingly, the proposed modeling approach pre-
dicts that y may not be appreciably impacted by simultaneous increases in ¢, and T, when F,
(i.e., Qrs) remains similar under future climate regime. However, the water use efficiency is
enhanced as f. increases with an elevated c,.
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Table 1: Nomenclature

Symbol Description Unit
Ay Leaf area m?
Agoil Soil surface area covering the roots m?
aR Root surface density m’m—3
B Root length density m m™3
b Empirical constant for soil water retention Dimensionless
curve and hydraulic conductivity function
C Normalized recharge or discharge rate(= O;,/Ks) kg m~!
Ca Atmospheric CO2 concentration ppm
c, Reference atmospheric CO2 concentration (= 400) ppm
c1 Constant describing the shape of K MPa
c2 Constant describing the shape of K Dimensionless
E, Exfiltration rate kg s7!
€q Ambient water vapor pressures kPa
e Inter-cellular water vapor pressures kPa
F, Total transpiration rate (= femy,A; = RWUet) kg 1
fe Assimilation rate per unit leaf area pmol m~2 s~
fe Transpiration rate per unit leaf area mol m~?2 s~!
fe,s Water supply function mol m~2 s—!
fed Water demand function mol m—2 g1
Js,C0, Stomatal conductance mol m—2 g1
9t,H,0 Total conductance for water vapor mol m™2 7!
Js,HO Stomatal conductance for water vapor (~ 1.6gsc0,) mol m™2 s7!
Gres Nocturnal residual conductance mol m—2 g1
9b,H0 Boundary layer conductance for water vapor mol m~2 s—!
ha Objective function pmol m™2 s~
K Plant xylem water conductance kg s~! MPa~!
Kiaz Maximum xylem water transport capacity kg s~1 MPa~!
K Soil hydraulic conductivity m s
Ky max Saturated soil hydraulic conductivity ms !
K, Constant depending on K s~1
k Total soil-to-root conductance st
k, Root membrane permeability s1
ks Conductance associated with the radial rootlet s—1
flow within the soil to the nearest rootlet
LAI Leaf area index m? m~?
Lgr Rooting depth (= 1.2) m
L, Distance between the soil surfaces at m
the vegetated area and under the external water body (= 5)
l length scale describing the mean radial distance m
for the movement of water molecules from
the soil to the root surface in the rhizosphere
My Molecular weight of water kg mol !
Oin Inflow (+) from or outflow (—) to the external water body kg s~!
P, Atmospheric pressure kPa
Qr = Qrs + Qrus Total plant water use kg s7!
Qr.s Total root water uptake from saturated zone kg s

Continued on next page
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Table 1 — continued from previous page

Symbol Description Unit
Qrus Total root water uptake from unsaturated zone kg s 1
s Hydraulic redistribution kg 571
s Darcian flux m st
qr Root water uptake/release per unit soil volume s~1
RWU, e Net root water uptake across the root zone kg s~
R Fraction of roots submerged in groundwater Dimensionless
r Effective root radius m
t Time S
Y Groundwater depth m
Y0 Water level of external water body m
Zs Depth below the surface m
0z Depth of the unsaturated infinitesimal soil layer right above y m
A Marginal water use efficiency pmol mol~! kPa~!
A* Marginal water use efficiency under well-watered soil conditions pmol mol~! kPa~!
« Species-specific sensitivity parameter MPa~!
I} Specific yield kg m~!
Py Leaf water potential MPa
Uy Root water potential MPa
Py Total soil water potential m
VYsp Water potential at the stem base MPa
s Soil matric potential m
Os,sat Soil air entry water potential m
P, iy averaged over the previous 24 hours period MPa
0, Volumetric soil water content m? m—3
Os,sat Soil water content near saturation m? m~3
p Density of water kg m 3
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Table 2: Nine scenarios (S1-S9) set up to explore dynamic interactions between

groundwater and phreatophytes
S1 S2 S3 S4 SH S6 S7 S8 S9

Soil type® C C C C C CL C C C
Root distribution® RP P U RP RP RP RP RP RP
1.5 1.5 3 1.5 1.5 1.5 15 1.5

LAI (m? m—2) 1.5

gres (mol m=2s71) 0.04 0.04 004 004 001 004 004 004 0.04

¢, (ppm) 400 400 400 400 400 400 500 400 500
- - +1.5 +1.5

T, (°C) - - -
@ Two soil types: clay (C) and clay loam (CL).

b Three vertical root distributions: uniform (U), power-law (P) and reverse
power-law (RP) rooting profiles. Note that the power-law distribution provides
a more realistic description for coniferous species (Andersson, 2005; Finér et al.,
1997; Jackson et al., 1996) and a reverse power-law distribution represents

plants with only sinker roots extending into groundwater.
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List of Figures

. Schematic of the modeling approach describing the water movement through each compart-

ment of the dynamic groundwater—soil-plant—atmosphere continuum with a summary of
the porous medium flow equations, groundwater dynamics and plant hydraulic equations.

. Cumulative fraction of root length density as a function of depth below soil surface. The

total root length density across the rooting depth is 1x10” m m™2 identical for all scenar-
ios. The two black-dotted lines represent the upper and lower values of predicted daily
averaged groundwater level (y) achieved after equilibrium across all scenarios. Note that
the power-law distribution provides a more realistic description for coniferous species (An-
dersson, 2005; Finér et al., 1997; Jackson et al., 1996) and a reverse power-law distribution
represents plants with only sinker roots extending into groundwater.

. Modeled profiles of (a) soil water content (65) and (b) root water influx (¢;7) or efflux (g;,)

within a soil layer on a per unit ground area basis for S1 (see Table 2 for model set-up).
The black solid line in (a) represents the modeled groundwater level. The first contour
line from top in (b) represents zero flux.

. Modeled time series of (a) groundwater level (y), (b) root water uptake from groundwater

(Qr.s), (c) transpiration (F.), and (d) the corresponding recharge rate (O;y,) from external
water body for S1 (see Table 2 for model set-up).

. Modeled daily averaged (a) stomatal conductance (gs co,), (b) transpiration rate ( f.) and

(c) assmilation rate (f.) after daily equilibrium state for all scenarios.

. (a) Fraction of root water uptake from the saturated zone (Q;s/@;) as a function of root

fraction submerged in the saturated zone (R), (b) daily total root water uptake from the
saturated zone across all scenarios, and (c) ratio between nighttime and daily total root
water uptake from the saturated zone.

. Comparisons of daily averaged hydraulic redistribution (HR) after daily equilibrium state

for different (a) root distributions (reverse power law, power law, and uniform), (b) leaf at-
tributes (increased leaf area index and decreased residual conductance), (c) soil types (clay,
and clay loam), and (d) atmospheric conditions (increased atmospheric CO4 concentration,
increased temperature, and increased atmospheric CO9 concentration and temperature)
(see Table 2 for model set-up).

. Modeled daily averaged groundwater level (y) for different (a) root distributions, (b) leaf

attributes, (c¢) soil types, and (d) atmospheric conditions. Since the predicted daily aver-
aged y’s for S1 and S3 in (a) overlap, how they vary at 30-minutes interval is shown in the
inset.

. Modeled nighttime rise of y after daily equilibrium state across all scenarios.
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Figure 1: Schematic of the modeling approach describing the water movement through each
compartment of the dynamic groundwater—soil-plant—atmosphere continuum with a summary
of the porous medium flow equations, groundwater dynamics and plant hydraulic equations.
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Figure 2: Cumulative fraction of root length density as a function of depth below soil surface.
The total root length density across the rooting depth is 1x107 m m™ identical for all scenarios.
The two black-dotted lines represent the upper and lower values of predicted daily averaged
groundwater level (y) after equilibrium state across all scenarios. Note that the power-law
distribution provides a more realistic description for coniferous species (Andersson, 2005; Finér
et al., 1997; Jackson et al., 1996) and a reverse power-law distribution represents plants with
only sinker roots extending into groundwater.
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Figure 3: Modeled profiles of (a) soil water content (65) and (b) root water influx (g,") or efflux
(g, ) within a soil layer on a per unit ground area basis for S1 (see Table 2 for model set-up).
The black solid line in (a) represents the modeled groundwater level. The first contour line from
top in (b) represents zero flux.
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Figure 4: Modeled time series of (a) groundwater level (y), (b) root water uptake from ground-
water (Qr ), (c) transpiration (F¢), and (d) the corresponding recharge rate (O;y,) from external

water body for S1 (see Table 2 for model set-up)
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Figure 5: Modeled daily averaged (a) stomatal conductance (gsco,), (b) transpiration rate (f.)
and (c) assmilation rate (f.) after daily equilibrium state for all scenarios.
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Figure 7: Comparisons of daily averaged hydraulic redistribution (HR) after daily equilibrium
state for different (a) root distributions (reverse power law, power law, and uniform), (b) leaf
attributes (increased leaf area index and decreased residual conductance), (¢) soil types (clay, and
clay loam), and (d) atmospheric conditions (increased atmospheric CO4 concentration, increased
temperature, and increased atmospheric CO4 concentration and temperature) (see Table 2 for
model set-up).
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Figure 8: Modeled daily averaged groundwater level (y) for different (a) root distributions, (b)
leaf attributes, (c) soil types, and (d) atmospheric conditions. Since the predicted daily averaged
y’s for S1 and S3 in (a) overlap, how they vary at 30-minutes interval is shown in the inset.
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Figure 9: Modeled nighttime rise of y after daily equilibrium state across all scenarios.
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A Model parameterization

Model parameters used for the nine scenarios are summarized here. The plant parameters were
collected from the literature with a focus on Pinus taeda L. When parameters specific for Pinus
taeda L. were not available, parameters for coniferous species in general and pine plantation
trees were adopted. The physiological parameters required for the leaf-level gas exchange and
water balance are summarized in Table A.1. The maximum carboxylation capacity (Vemaz,25)
and the light saturated rate of electron transport (Jmee2s5) at 25°C are set to be 57 and 98
pmol m~—2 s~1 respectively (Wullschleger, 1993; Wang et al., 1996; Medlyn et al., 2002). Those
physiological values are close to values reported for Loblolly pine at the Duke FACE site (Juang
et al., 2008). To explore how nocturnal transpiration impacts groundwater level, g,.s = 0.01
and 0.04 mol m~2 s™! are assumed to reflect small and large nocturnal transpiration conditions.
The choice of g,.s resides in the range for numerous coniferous species as summarized elsewhere
(Caird et al., 2007). The empirical parameters of the A\-1); relation (i.e., \* and ) are taken for
the coniferous species reported elsewhere (Manzoni et al., 2011). The model parameters for the
xylem vulnerability curve are taken to be within the range for pine from the literature (Cochard,
1992; Domec and Gartner, 2001; Manzoni et al., 2013a; Phillips et al., 2004), and are listed in
Table A.2. The root properties and soil hydraulic parameters are provided in Table A.3 and
A 4, respectively. The rooting profiles are chosen to be uniformly distributed or varied using a
power-law reduction (Jackson et al., 1996) or reverse power-law function, given that the total
root density within the rooting depth (Lg) is held constant. Two different soil types — clay and
clay loam (Clapp and Hornberger, 1978) — are used to explore the model behavior for different
soil texture. Fig.A.1 shows the diurnal variation of the atmospheric variables used to drive
the model simulations. This 24-h time series of the atmospheric variables was determined by
ensemble averaging across summer periods by time of day and represents the typical summertime
meteorological variables at the Blackwood Division of the Duke Forest (35.971°N, 79.09°W,
elevation 163 m) near Durham, North Carolina (Volpe et al., 2013).
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Table A.1: Leaf-level physiological attributes

Parameters Value Unit

chmax,25 57 pmol m2 s !
Jmaa:,25 98 pmol m2 st

Gres 0.01 or 0.04 mol m~2s7?

AR 6.55 pmol mol~! kPa~!
a? 1.56 MPa~!

8 The parameters of relation were adopted for
conifers in arid or semiarid climates (Manzoni
et al., 2011).
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Table A.2: Xylem hydraulic parameters

Parameters Value Unit
Konaz 1.5x107% kgs~! MPa~!
c1 4.8 MPa
co 3.5 Dimensionless
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Table A.3: Root properties

Parameters Value Unit

Lg 1.2 m

k, 107° g1
Formulation Unit

By 6354 m m >

Bp? 19586x0.9761002 m m~3

Brp 19586 x0.976100(Lr—2:) 1y =3

The power law reduction function describ-
ing the vertical root length distribution is
adopted from elsewhere (Jackson et al., 1996)
for conifers. Note that the total root density
across Lp is identical for all scenarios.
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Table A.4: Soil properties

Parameters Value Unit

Clay®

K maz 1.3x107% ms!

Os,sat 0.482 m? m~3

Os,sat -0.405 m

b 11.4 Dimensionless
Clay loam?®

K maz 2.5x107°% ms™!

Os,sat 0.476 m? m~3

¢s,sat -0.63 m

b 8.52 Dimensionless

& The hydraulic parameters for the two
soil types are taken from elsewhere
(Clapp and Hornberger, 1978).
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Figure A.1: The diurnal variations of (a) air temperature (7},), (b) relative humidity (RH), (c)
photosynthetically active radiation (PPFD), and (d) wind speed (U).
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