

Dynamic interactions between groundwater level and discharge by phreatophytes

Cheng-Wei Huang^{1,2}, Jean-Christophe Domec^{3,4}, Thomas L O'Halloran^{5,6}, and Samantha Hartzell¹

¹Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97201, USA

²Oregon Water Resources Department, Salem, Oregon 97301, USA

³Bordeaux Sciences Agro, UMR 1391 INRAE-ISPA, 33170, Gradignan, France

⁴Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA

⁵Belle W. Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, South Carolina 29440, United States

⁶Forestry and Environmental Conservation Department, Clemson University, Clemson, South Carolina 29634, USA

June 26, 2025

Abstract

Many traditional models that predict plant groundwater use based on groundwater level variations, such as the White method, make various simplifying assumptions. For example, these models often neglect the role of plant hydraulic redistribution, a process that can contribute up to 80% of transpiration. Thus, this work aims to avoid such assumptions and subsequently explore the dynamic interactions between groundwater levels and phreatophytic vegetation, including plant nocturnal transpiration, hydraulic redistribution, and response to atmospheric conditions, in shallow-groundwater ecosystems using Loblolly pine (*Pinus taeda*) as a model species. The model scenarios are formulated using a stomatal-optimization model coupled to the soil-plant-atmosphere continuum. Flow through soil and groundwater are described using the Richards equation and a linear reservoir approximation, respectively, with groundwater in contact with an external water body of fixed elevation. Results show that nocturnal transpiration, mediated by plant residual conductance, and hydraulic redistribution, are able to reduce groundwater levels at night and alter the groundwater recharge rate. Projected atmospheric conditions of increased carbon dioxide and elevated temperature have opposing effects on groundwater levels, which tend to roughly cancel each other under a projected scenario of 500 ppm carbon dioxide and 1.5 C warming. Such detailed modeling can be used to provide further insights into coupled interactions between vegetation, climate and groundwater levels in phreatophyte-dominated ecosystems.

groundwater, hydraulic redistribution, nocturnal transpiration, phreatophytes, root water uptake, Loblolly pine (*Pinus taeda* L)

1 Introduction

¹ Groundwater has been used as the main source of drinking water for more than two billion people at the global scale (Morris et al., 2003; UNESCO World Water Assessment Programme

3 (WWAP), 2022). Globally, 42% of irrigation water, 36% of household water, and 27% of man-
4 ufacturing water withdrawals are from groundwater (Döll et al., 2012; Gleeson et al., 2020). In
5 the US High Plains, groundwater resources supported up to 90% of irrigation and produced 3
6 billion US dollars from 1960–2007 (García Suárez et al., 2019). However, in many semi-arid
7 and arid areas (including central and southern US High Plains) groundwater withdrawals have
8 far exceeded aquifer recharge rates in recent years (McGuire, 2017; Scanlon et al., 2010; Siebert
9 et al., 2010). When such significant imbalances between withdrawals and recharge persists, the
10 groundwater in these areas can be viewed as a nonrenewable resource (Ahmed and Umar, 2009;
11 Scanlon et al., 2007). Much work has gone into assessing groundwater storage and understanding
12 the sustainability of groundwater systems in the face of human-caused depletion (Rateb et al.,
13 2020; Scanlon et al., 2023; Siebert et al., 2010).

14 In order to adequately evaluate the sustainability of groundwater withdrawals, natural
15 groundwater discharge mechanisms and volumes must also be considered. Water loss through
16 plants (i.e., transpiration) often cannot be overlooked, especially when groundwater tables are
17 shallow and/or rooting systems are particularly deep. Phreatophytes uptake most of their water
18 requirements from the saturated zone (Cooper et al., 2006; Lacznak et al., 1999; Naumburg
19 et al., 2005). For example, groundwater discharge through phreatophytes in Dixie Valley and
20 Margosa Desert, Nevada can be up to 61% and 37% of total evapotranspiration, respectively
21 (Garcia et al., 2015; Moreo et al., 2017). When compared to bare soil conditions, a 50 cm drop
22 in mean groundwater level was predicted by a modeling study with a description of stochastic
23 precipitation process for recharge in loamy sand soil with deep rooted vegetation (Laio et al.,
24 2009). In such groundwater-dependent ecosystems, groundwater depth further dictates ecosys-
25 tem structure (i.e., plant community composition and distribution) and functioning (Eamus
26 et al., 2006), and the presence of groundwater may increase ecosystem resilience to prolonged
27 droughts (Koirala et al., 2017; Orellana et al., 2012). It is for these reasons that accurate es-
28 timation of the dynamic relation between groundwater level and withdrawal by phreatophytes
29 continues to draw significant research attention in hydrological, ecological, and biogeochemical
30 sciences (Hernandez, 2022; Rodriguez-Iturbe et al., 2007).

31 Thus, this study aims to develop a modeling framework that more accurately represents the
32 dynamic relationship between groundwater levels and plant water withdrawals. Understanding
33 such dynamic interactions is a vexing problem because fluctuations in groundwater levels can
34 be further impacted by various recharge and discharge processes (Jiang et al., 2017). Previous
35 modeling studies have made various assumptions around these dynamics, which are reviewed
36 here to illustrate how a more refined modeling approach might provide further information about
37 the interrelated interactions between vegetation and the water table.

38 In recent decades, the White method (WM) (White, 1932) and its variants—such as the wa-
39 ter table fluctuation method (Carlson Mazur et al., 2014a; Fahle and Dietrich, 2014; Gribovszki,
40 2018; Orellana et al., 2012; Soylu et al., 2012; Wang et al., 2014; Yin et al., 2013; Zhu et al.,
41 2011)—have utilized groundwater level fluctuations (i.e., hydrographs) to estimate groundwater
42 consumption by plants (i.e., transpiration) across various timescales. However, the WM makes
43 several assumptions about the interaction between vegetation and the water table. The WM
44 first assumes that the diurnal pattern of transpiration is the primary process shaping the diurnal
45 fluctuation of groundwater levels. However, various factors—such as changes in precipitation
46 input, cyclic pumping rates, barometric pressure, alternating freeze/thaw events, Lisse effects,
47 and connections to external water bodies—can also influence diurnal groundwater-level fluctua-
48 tions (Domec et al., 2012b; Healy and Cook, 2002; Todd and Mays, 2004). Another assumption
49 embedded in the WM is that of a constant daily recharge or discharge rate. This assumption
50 is often invalid, even when lateral flow between the targeted groundwater body and an exter-
51 nal water body is the only source of recharge or discharge, aside from water withdrawals by

52 phreatophytes (such as during dry periods with little to no rainfall). Specifically, the rate of lateral
53 recharge can vary with diurnal fluctuations in groundwater levels, even when the water level
54 of the external water body remains constant (Laio et al., 2009; Ridolfi et al., 2008). Therefore,
55 the proposed modeling approach in this study accounts for the connection between groundwater
56 and external water bodies and explores how the non-constant recharge rate induced by external
57 water bodies impacts groundwater dynamics.

58 Another assumption adopted by the WM is that nocturnal groundwater withdrawal through
59 plants can be neglected. However, several experiments (Caird et al., 2007; Dawson et al., 2007;
60 Huang et al., 2015; Novick et al., 2009) have shown that nocturnal transpiration can account for
61 10-30% of daily transpiration. Additionally, hydraulic redistribution—the movement of water
62 from wet to dry soil layers through the root system—commonly occurs at night and can contribute
63 up to 80% of daily transpiration, as demonstrated by several experimental and modeling
64 studies (Domec et al., 2010; Neumann and Cardon, 2012). Moreover, it is not uncommon for
65 plants to refill their internal water storage at night by drawing water directly from both the saturated
66 and unsaturated zones (see review in Huang et al. (2017)). These findings suggest that
67 nocturnal plant activity can significantly impact groundwater dynamics, especially when rooting
68 depth is sufficient to reach groundwater (Domec et al., 2012a). Consequently, the proposed
69 modeling framework accounts for the widely observed phenomena of nocturnal transpiration and
70 hydraulic redistribution, and their roles in groundwater dynamics are examined.

71 Finally, the WM uses a single value of specific yield to represent the overall water release from
72 the saturated soil column as groundwater levels fluctuate. However, specific yield can vary with
73 groundwater levels and different soil water statuses in the unsaturated zone (Bear, 1988; Fahle
74 and Dietrich, 2014; Gribovszki, 2018; Healy and Cook, 2002; Loheide et al., 2005; Nachabe, 2002).
75 This variability suggests that factors such as capillary rise, hydraulic redistribution through plant
76 rooting systems (Domec et al., 2012a; Mooney et al., 1980; Neumann and Cardon, 2012), and
77 nocturnal replenishment of plant water storage can also impact specific yield, thereby influencing
78 the estimation of water consumption by phreatophytes when using the WM. Therefore, the
79 proposed modeling approach incorporates soil water dynamics that allow for variations in specific
80 yield over time, particularly when accounting for hydraulic redistribution.

81 A recent review covering many previous modeling and experimental studies (Wang et al.,
82 2023) indicated that the lack of a more realistic representation of rhizosphere processes remains a
83 significant barrier for process-based modeling frameworks in providing more accurate estimates
84 of plants' groundwater consumption. Many different approaches have been taken over time to
85 elucidate the dynamics and drivers of plant-groundwater interactions. For instance, the energy
86 balance method (Nichols, 1993, 1994) has been used to estimate the soil evaporation and plant
87 transpiration. When adopting such a method, a relation between groundwater level and plant
88 transpiration can be subsequently developed to estimate groundwater consumption by plants
89 (Domec et al., 2012b). However, this method does not account for the partitioning of root water
90 uptake between the saturated and unsaturated zones.

91 Other studies have explored rhizosphere processes in more detail. For example, Loheide
92 et al. (2005), have explored how groundwater levels are impacted by various aquifer geometries
93 and soil properties, using a saturated-unsaturated flow model (VS2D) (Hsieh et al., 2000) with
94 a pre-set constant and uniformly distributed root water uptake. Similarly, Grimaldi et al.
95 (2015) used HYDRUS 2D (Simunek and Van Genuchten, 1999) to explore how different soil
96 types and root distributions impact the dynamics of groundwater level, given a pre-set constant
97 potential root water uptake adjusted by a water stress function (Feddes et al., 1976). Laio et al.
98 (2009) further considered stochastic precipitation (as a marked Poisson process) as an additional
99 recharge source in the modeling system, while Zhu et al. (2019) and Zhang et al. (2022) used
100 the SiTH (Simple Terrestrial Hydrosphere) model to explore the contribution of different water

101 paths (e.g., soil evaporation and transpiration from saturated and unsaturated zone) to the total
102 evapotranspiration. However, none of these modeling frameworks accounted for the effects of
103 hydraulic redistribution and nocturnal transpiration. The pre-specified root water uptake or
104 potential evapotranspiration in these studies also suggests that such approaches fail to capture
105 how groundwater level is impacted by the dynamic partitioning of root water uptake between
106 saturated and unsaturated zones.

107 In another study, Gou and Miller (2014) accounted for the effects of hydraulic redistribution
108 on plant groundwater usage through the development of a groundwater–soil–plant–atmosphere
109 continuum model, which was later incorporated into a distributed groundwater–land surface
110 model (Gou et al., 2018), ParFlow-CLM (Kollet and Maxwell, 2006, 2008; Maxwell and Miller,
111 2005), and represents multiple species. However, the depth of groundwater table is pre-set in this
112 approach, which disallows exploration of the impacts of plant water withdrawals on groundwater
113 levels.

114 Based on this review, a modeling framework explicitly describing the dynamic interactions
115 between the groundwater level and discharge by phreatophytic vegetation can be expected to
116 address a knowledge gap in the literature. Thus, a dynamic groundwater–soil–plant–atmosphere
117 continuum model is proposed here (see Fig. 1). This model combines the hydrodynamics
118 in the saturated and unsaturated zones with leaf-level physiological and soil–root constraints,
119 such that the impacts of capillary rise, hydraulic redistribution, and nocturnal transpiration on
120 the groundwater level are directly considered. The main sources of groundwater recharge or
121 discharge in the proposed model are phreatophytic water withdrawals and the inflow from or
122 outflow to an nearby external water body. In this framework, the groundwater level and root
123 water uptake (i.e., transpiration) are not pre-specified. That is, the predicted groundwater level
124 can be dynamically impacted by transpiration, and vice versa. Specifically, model simulations are
125 used to explore how different plant attributes and environmental factors influence the dynamics
126 of groundwater levels and recharge rates, overall plant transpiration and carbon assimilation,
127 and partitioning of plant water consumption between groundwater and unsaturated soil layers
128 when detailed plant hydraulic processes are included.

129 2 Model description

130 The proposed modeling approach is illustrated in Fig. 1, with the notation and units used
131 throughout listed in Table 1. The dynamic groundwater–soil–plant–atmosphere continuum
132 model is developed here by coupling a soil-plant model proposed elsewhere (Huang et al., 2017)
133 with a groundwater balance module. For simplicity, plant water storage is not considered.
134 Information on the formulations and assumptions is given next.

135 2.1 Leaf gas exchange

136 A detailed description of the leaf-level gas exchange model included in this work can be found
137 in Huang et al. (2015). Thus, only salient features of the model are summarized here. In this
138 leaf-level gas exchange model, the biochemical demand for CO_2 is described by the Farquhar
139 photosynthetic model for C_3 species (Farquhar et al., 1980). The transfer of CO_2 and water
140 vapor across the stomatal cavity and the laminar boundary layer attached to the leaf surface is
141 modeled as a steady-state Fickian diffusion and constrained by a leaf-level energy balance model
142 to account for the boundary-layer effects (Campbell and Norman, 1998). A residual conductance
143 (g_{res}) is also considered to accommodate the nighttime water leakage through both cuticle and
144 guard cells when nighttime evaporative demand is non-negligible. It is thus suggested that our

145 model can capture how nocturnal transpiration impacts the groundwater level dynamics when
 146 the rooting system is sufficiently deep to reach the groundwater resources. An optimal water use
 147 strategy is then used to determine variations in stomatal conductance (g_{s,CO_2}) and subsequently
 148 carbon assimilation (f_c) and transpiration (f_e) rates.

149 **2.2 Stomatal closure**

150 Based on the economics of leaf-level gas exchange (Givnish and Vermeij, 1976; Cowan and
 151 Farquhar, 1977; Konrad et al., 2008), the optimality hypothesis adopted here to predict g_{s,CO_2}
 152 is equivalent to maximizing the objective function defined as:

$$h_a(g_{s,CO_2}) = f_c - \lambda f_e, \quad (1)$$

153 where the species-specific parameter λ is known as the marginal water use efficiency that mea-
 154 sures the cost of water loss in carbon units. During a dry-down, λ increases on a daily time-scale
 155 due to the reduction in available soil water (Manzoni et al., 2013b). The meta-analysis of ap-
 156 proximately 50 species (Manzoni et al., 2011) has shown that λ increases as leaf water potential,
 157 ψ_l , drops in response to soil drying:

$$\lambda(\bar{\psi}_l) = \lambda^* \frac{c_a}{c_a^*} \exp [-\alpha \bar{\psi}_l] \quad (2)$$

158 where λ^* is the minimum water use efficiency under well-watered soil conditions at a reference
 159 atmospheric CO₂ concentration $c_a^* = 400$ ppm, $\bar{\psi}_l$ is leaf water potential, ψ_l , averaged over the
 160 previous 24-hour period, and α is the species-specific sensitivity parameter. When coupled with
 161 the soil-xylem hydraulic system, $\bar{\psi}_l$ is a hydraulic signal representing soil water potential that
 162 is not impacted by atmospheric dryness or light variations (Huang et al., 2017; Manzoni et al.,
 163 2011). Thus, the predicted g_{s,CO_2} decreases with decreasing $\bar{\psi}_l$ because λ increases as the water
 164 availability across the root zone decreases.

165 **2.3 Whole-plant water transport capacity**

166 For the water transport system of vascular plants, the above-ground compartment of the plant
 167 xylem water conductance (K) can be described by a vulnerability curve (Huang et al., 2018;
 168 Manzoni et al., 2013c):

$$K(\psi_l) = K_{max} \exp \left[- \left(\frac{-\psi_l}{c_1} \right)^{c_2} \right] \quad (3)$$

169 where K_{max} is the maximum xylem water transport conductance, and c_1 and c_2 are constants
 170 describing the shape of K . As soil drought continues, ψ_l becomes more negative in response to
 171 the decreasing soil water potential (ψ_s) to maintain f_e . Thus, the linkage between g_{s,CO_2} and
 172 the above-ground water transport system can be developed by the supply-demand balance of
 173 water (Huang et al., 2018; Manzoni et al., 2014):

$$f_{e,s} = \frac{K(\psi_l)[\psi_{sb} - \psi_l]}{m_v A_l} = \frac{g_{t,H_2O}(e_i - e_a)}{P_a} = f_{e,d} \quad (4)$$

$$g_{t,H_2O} = \frac{(g_{s,H_2O} + g_{res})g_{b,H_2O}}{g_{s,H_2O} + g_{res} + g_{b,H_2O}}$$

174 where $f_{e,s}$ and $f_{e,d}$ are the water supply from above-ground xylem system and the water demand
 175 from the atmosphere, respectively; ψ_{sb} is the water potential at the stem base; e_i and e_a are
 176 the intercellular and ambient water vapor pressures, respectively; m_v is the molecular weight of

177 water; A_l is the leaf area; P_a is the atmospheric pressure; g_{t,H_2O} and g_{s,H_2O} ($\sim 1.6g_{s,CO_2}$) are
 178 the total conductance and the stomatal conductance for water vapor, respectively; g_{res} is the
 179 residual conductance responsible for water loss through incomplete stomatal closure and cuticle;
 180 and g_{b,H_2O} is the boundary layer conductance for water vapor at the leaf scale (Huang et al.,
 181 2015). For simplicity, plant water storage is neglected here.

182 2.4 Water dynamics in the unsaturated zone

183 The 1-D Richards equation including root water uptake and release (Volpe et al., 2013; Manoli
 184 et al., 2014; Bonetti et al., 2015) is used to describe the water transport in the unsaturated soil
 185 layer:

$$\frac{\partial \theta_s(z_s, t)}{\partial t} = -\frac{\partial q_s}{\partial z_s} - q_r(z_s, t) \quad (5)$$

$$q_s = -K_s(\theta_s) \frac{\partial \psi_s}{\partial z_s}$$

$$\psi_s = \phi_s - z_s$$

186 where θ_s is the volumetric soil water content at depth z_s below the surface, q_s is the Darcian flux
 187 induced by the gradient of total soil water potential ψ_s , q_r is the root water uptake (denoted with
 188 superscript '+') or release (denoted with superscript '-') rate, ϕ_s is the soil matric potential,
 189 and K_s is the soil hydraulic conductivity. The Clapp and Hornberger formulations (Clapp and
 190 Hornberger, 1978) are then used to describe the soil water retention curve and soil hydraulic
 191 conductivity function, given by:

$$\phi_s = \phi_{s,sat} \left(\frac{\theta_s}{\theta_{s,sat}} \right)^{-b}, \quad (6)$$

$$K_s = K_{s,max} \left(\frac{\theta_s}{\theta_{s,sat}} \right)^{2b+3}, \quad (7)$$

192 193 where $\theta_{s,sat}$, $\phi_{s,sat}$ and $K_{s,max}$ are the soil water content near saturation, the air entry water
 194 potential and the saturated hydraulic conductivity, respectively, and b is a constant that varies
 195 with soil texture.

196 In Eq. 5, the change in soil water storage is attributed to the Darcian redistribution (i.e.,
 197 $-\partial q_s / \partial z_s$) and the water depletion or replenishment rate through the rooting system (i.e., q_r).
 198 The q_r is driven by the water potential gradient across the path where water molecules travel
 199 radially from the soil to the soil-root interface and the root membrane in series, and is given by:

$$q_r = -k [(\psi_{sb} - z_s) - \psi_s] a_R \quad (8)$$

$$k = \frac{k_r k_s}{k_r + k_s}$$

200 201 where k is the total soil-to-root conductance, $\psi_{sb} - z_s$ is a surrogate for the root water potential
 202 (ψ_r), $a_R = 2\pi r B$ is the root surface density, r is the effective root radius, B is the root length
 203 density, k_r and $k_s = K_s/l$ are the root membrane permeability and the conductance associated
 204 with the radial flow within the soil to the nearest rootlet, respectively, and $l = 0.53/\sqrt{\pi B}$ is the
 205 empirical length scale describing the mean radial distance for the movement of water molecules
 206 from the soil to the root surface in the rhizosphere (Vogel et al., 2013). We assume here that ψ_r
 207 is hydrostatically distributed (i.e., $\psi_r = \psi_{sb} - z_s$) because the water storage and energy losses
 208 are negligible within the roots (Lafolie et al., 1991; Siqueira et al., 2008) when compared to the
 209 above-ground compartments (Kavanagh et al., 1999).

209 In the absence of plant water storage, the coupling of the rooting system with the above-
 210 ground plant system can be described by the supply-demand balance for water between net root
 211 water uptake (RWU_{net}) and total transpiration rate (F_e):

$$F_e = f_e m_v A_l = RWU_{net} = \left[\int_{L_R}^0 (q_r^+ + q_r^-) dz_s \right] \rho A_{soil} \quad (9)$$

212 where L_R is the rooting depth, ρ is the water density, and A_{soil} is the soil surface area covering
 213 the roots. Thus, $Q_{r,s} = \left(\int_{L_R}^y q_r^+ dz_s \right) \rho A_{soil}$ and $Q_{r,us} = \left(\int_y^0 q_r^+ dz_s \right) \rho A_{soil}$, where y is the
 214 groundwater depth, are the total root water uptake from the saturated and unsaturated zones,
 215 respectively. During daytime, a significant water potential gradient from roots to leaves can
 216 drive root water uptake (i.e., q_r^+) for all z_s when transpiration is large. However, root water
 217 uptake from lower soil columns (i.e., saturated and unsaturated zones) can be released back to
 218 dryer soil layers and contributes to transpiration when transpiration is small. During nighttime,
 219 root water uptake from the lower saturated zone can be released back to the upper saturated
 220 zone (causing rise of y) and dry soil layers. That is, the rooting system (compared to soil
 221 medium) becomes a highway to transport water between soil layers in the presence of soil water
 222 potential gradient during the night. Here, hydraulic redistribution (HR) is defined as the water
 223 release to the unsaturated zone and computed as $Q_{r,us}^- = \left| \left(\int_y^0 q_r^- dz_s \right) \rho A_{soil} \right|$.

224 2.5 Groundwater dynamics

225 The water balance in the saturated zone (i.e., groundwater) is given as (Laio et al., 2009; Ridolfi
 226 et al., 2008):

$$\beta(y(t)) \frac{dy(t)}{dt} = O_{in} - Q_{r,s} - E_x \quad (10)$$

227 where β is the specific yield representing the volume of water gain or loss due to the rise or fall
 228 of a water table, O_{in} is the inflow (+) from or outflow (-) to the external water body depending
 229 on the relative depths between groundwater and external water body, and E_x is the exfiltration
 230 rate driven by capillary rise. In Eq. 10, the groundwater dynamics (i.e., y) are impacted by
 231 both F_e and HR through the sink term, $Q_{r,s}$. To predict y , O_{in} and E_x require specification,
 232 which is discussed next.

233 2.5.1 Recharge or discharge through a nearby water body

234 The lateral flow into or out of the groundwater underneath a horizontally uniform vegetation
 235 (i.e., recharge or discharge) is driven by the presence of an external water body in the proposed
 236 modeling framework (Fig. 1). When the water level of the external water body (y_0) is a constant
 237 in time and the distance between the external water body and vegetated area is sufficiently large,
 238 the inflow or outflow rate from the external water body, O_{in} , can be described by the linear
 239 reservoir approximation based on Darcy's law (Laio et al., 2009; Ridolfi et al., 2008):

$$O_{in} = K_g (y_0 - y) \quad (11)$$

$$K_g = \frac{K_s}{L_s + y}$$

240 where L_s is the distance between the soil surfaces at the vegetated area and under the external
 241 water body, and K_g is a constant depending on the soil properties (i.e., K_s) and the transport
 242 distance from or to the external water body (i.e., $L_s + y$). While $|y_0| < |y|$ leads to a recharge
 243 (i.e., $O_{in} > 0$), a discharge (i.e., $O_{in} < 0$) is guaranteed for $|y_0| > |y|$. Moreover, the total water

244 potential for the groundwater layer under the vegetated area, H , is linearly distributed in the
 245 vertical direction:

$$H = \underbrace{z_s}_{\text{Elevation head}} - \underbrace{(1 + C)z_s + y_0 - CL_s}_{\text{Pressure head}}, \quad (12)$$

246 where $C = O_{in}/K_s$ is the normalized recharge or discharge rate. It should be noted that the
 247 dynamic variation of H (i.e., not hydrostatic) can impact the water potential in the rooting zone
 248 and subsequently F_e and HR (a hydrostatic condition is not assumed here).

249 2.5.2 Capillary rise

250 Capillary rise (i.e., exfiltration rate) is the upward movement of pore water driven by the gradient
 251 in hydraulic head. In the presence of groundwater, E_x (see Eq. 10) represents the upward
 252 water flux from saturated zone to neighboring unsaturated infinitesimal soil layer, and can be
 253 approximated by a Darcian flux (Gardner, 1958; Lu and Likos, 2004):

$$E_x = q_s|_{z_s=y+\delta z_s} \quad (13)$$

254 where δz_s is the depth of the unsaturated infinitesimal soil layer right above y . When formulated
 255 in this manner, E_x is represented as the tendency for the neighboring unsaturated soil layer to
 256 reach a hydrostatic condition after root water uptake (i.e., q_r). Thus, E_x can be impacted by
 257 the antecedent water status in δz_s through F_e and HR.

258 2.6 Model set-up

259 Nine scenarios were constructed to explore how different environmental conditions and plant
 260 attributes impact the dynamic interactions between the groundwater level and phreatophytic
 261 vegetation (see Table 2) when y_0 is fixed as a constant (i.e., 0.75 m below the surface) and the
 262 initial y was set equal to y_0 across all scenarios. The main source responsible for recharge is
 263 the nearby external water body (i.e., no precipitation). Since it is difficult to obtain the plant
 264 physiological, hydraulic attributes from a single experiment, the plant model parameters were
 265 collected from the literature with a focus on *Pinus taeda* L. When parameters specific for *Pinus*
 266 *taeda* L. were not available, parameters for coniferous species in general and pine plantation
 267 trees were adopted (see Huang et al. (2017) for detailed information) for all model runs. It
 268 should be also noted that *Pinus taeda* L. is a phreatophytic plant with accessibility to shallow
 269 groundwater in Southeastern USA (Aguilos et al., 2021; Wahlenberg et al., 1960). For the soil
 270 hydraulic parameters, the required parameters in Eq. 6 and 7 were adopted from Clapp and
 271 Hornberger (1978). The model parameterizations are summarized in Appendix A. The bottom
 272 of the domain in the modeling system was considered as a no-flow boundary in all simulations
 273 (Loheide et al., 2005). The vertical discretization of soil domain and time step were set as 0.075
 274 cm and 0.02 s, respectively. For all model runs, the initial soil water conditions were specified
 275 as hydrostatic for the unsaturated zone. The model calculations were subsequently repeated
 276 with prescribed atmospheric variables on a periodic 24-h basis and that drove the dynamic
 277 groundwater-phreatophyte interactions (see Appendix). All the model runs were simulated for
 278 15 days to ensure that the daily equilibrium state can be captured.

279 In S1-S3, we set leaf area index (LAI) = 1.5 $\text{m}^2 \text{ m}^{-2}$, g_{res} = 0.04 mol $\text{m}^{-2} \text{ s}^{-1}$, and a
 280 rooting depth of 1.2 m. The soil type was set as clay to represent finer soil particles with a
 281 small K_s as listed elsewhere (Clapp and Hornberger, 1978). When all other model parameters
 282 and environmental conditions remained the same, reverse power-law ($B = B_{RP}$), power-law
 283 ($B = B_P$) and uniform root distributions ($B = B_U$) were set in S1, S2 and S3 (see Fig.

284 2), respectively. Thus, the impacts of vertical root distribution can be explored through the
285 comparison between S1, S2 and S3 as the total root length densities across all the scenarios
286 were maintained the same ($\sim 1 \times 10^7 \text{ m m}^{-3}$). The setup for S2 here is used to represent
287 *Pinus taeda* L. following a power-law rooting distribution common for many species including
288 coniferous species (Andersson, 2005; Finér et al., 1997; Jackson et al., 1996). A reverse power-
289 law distribution has been observed for plants in contact with the groundwater such as *Prosopis*
290 *glandulosa* var. *Torreyana* (Jarrell and Virginia, 1990) and can be also used to represent plants
291 with only sinker roots extending into groundwater such as *Celtis* as reported by Hultine et al.
292 (2003). Since LAI and g_{res} are finite and the rooting system can reach the groundwater, both
293 F_e (i.e., daytime and nocturnal) and HR can directly modify the dynamic y .

294 Regarding leaf attributes, S4 used a larger LAI ($3 \text{ m}^2 \text{ m}^{-2}$) and S5 adopted a smaller
295 g_{res} . The values of g_{res} (0.01 and $0.04 \text{ mol m}^{-2} \text{ s}^{-1}$) used here were well within the range for
296 many species reported elsewhere (Caird et al., 2007). To explore how soil texture impacts the
297 groundwater-phreatophyte interactions, the soil type in S6 was modified to clay loam such that
298 the K_s is nearly doubled when compared to clay as listed elsewhere (Clapp and Hornberger,
299 1978). Scenarios S7-S9 focused on the impact of changing environmental conditions. In S7, we
300 increased CO_2 concentration from 400 to 500 ppm and in S8, we increased air temperature by 1.5
301 $^{\circ}\text{C}$ following the upper boundary of the indicative likely range for all RCP scenarios at the end
302 of 2035 (IPCC, 2013). In S9, the CO_2 concentration and air temperature were simultaneously
303 increased to explore their combined effects on the groundwater level. When air temperature is
304 increased in S8 and S9, actual vapor pressure varies with saturation vapor pressure assuming
305 relative humidity is not sensitive to changes in air temperature (Katul et al., 2012).

306 3 Results and discussion

307 To address the study objectives, we first analyze how soil water dynamics are impacted by
308 daytime and nocturnal F_e and HR in Section 3.1. In Section 3.2, how the diurnal fluctuations of
309 y are generated in relation to daytime and nocturnal F_e (i.e., $Q_{r,s}$) and HR as well as O_{in} is then
310 discussed. When roots can directly utilize groundwater resources, we examine the sensitivity of
311 leaf-level responses to different root distributions, soil textures, leaf attributes and future climate
312 conditions in Section 3.3. In Section 3.4, how the total plant water use ($Q_r = Q_{r,s} + Q_{r,us}$) is
313 partitioned to $Q_{r,s}$ and $Q_{r,us}$ and its relation to the fraction of roots submerged in groundwater
314 (R) across all scenarios is presented. Based on the results from the proposed modeling approach
315 and previous studies, how the accessibility of groundwater to the rooting system impacts the
316 magnitude of HR is discussed in Section 3.5. The mechanisms leading to changes in y across
317 all scenarios are explained in Section 3.6. Finally, a brief summary of the study limitation in
318 the present modeling framework is presented in Section 3.7. To maintain a minimum number
319 of scenarios, the discussion here is based on the comparison to S1 when only one parameter in
320 each scenario (i.e., S2-S9) is modified.

321 3.1 General features of the modeled soil water dynamics

322 The modeled profiles of diurnal variations in θ_s and q_r across L_R are shown in Fig. 3(a) and (b),
323 respectively, for S1. When light activates photosynthesis during the day, phreatophytes begin
324 to extract water from both the unsaturated and saturated zones (i.e., $F_e > 0$), thereby reducing
325 θ_s of the upper soil layer and y . However, the plant water consumption from the saturated zone
326 is much larger than that from the unsaturated zone. This can be explained by the fact that 1)
327 the majority of the roots are located below the groundwater level and 2) root water uptake is

328 higher when water potential is near zero in the saturated zone. When light diminishes to zero
329 at night, a finite $Q_{r,s}$ is still maintained. This nocturnal $Q_{r,s}$ contributes to both nocturnal
330 F_e and HR (i.e., $Q_{r,us}^-$). Therefore, the upper soil layers can be partially refilled by HR, but
331 the rise of y is still limited by nocturnal $Q_{r,s}$. This suggests that the assumption of negligible
332 plant groundwater usage at night is not valid when applying WM to estimate groundwater
333 consumption by phreatophytes.

334 We should also emphasize that nocturnal F_e can suppress HR (Howard et al., 2009; Hul-
335 tine et al., 2003; Prieto et al., 2010; Scholz et al., 2008) although it can limit the rise of y at
336 night. Nocturnal F_e is inevitable water loss through incomplete stomatal closure and cuticle
337 (i.e., embedded in g_{res}) at the leaf level and is not regulated by photosynthesis (Boyer et al.,
338 1997; Larcher, 2003). Thus, nocturnal F_e is governed primarily by the magnitude of g_{res} and
339 the atmospheric dryness (e.g., vapor pressure deficit, D) (Domec et al., 2012a), not the soil
340 water status as L_R can reach the saturated zone. Moreover, nocturnal F_e generates a residual
341 water potential gradient along the plant vascular system during the night. Such non-negligible
342 competing sink strength can further reduce the magnitude of HR (Huang et al., 2017) when HR
343 is driven by the water potential gradient across L_R to move water from the saturated to the un-
344 saturated zone (Neumann and Cardon, 2012). This suggests that a larger nocturnal F_e does not
345 guarantee a smaller rise of y at night because HR is simultaneously reduced. Unlike nocturnal
346 F_e , it should be noted that the water redistributed to the unsaturated zone through HR can be
347 later used by plants (Warren et al., 2007). Furthermore, HR can also maintain root hydraulic
348 conductivity and microbial activity, enhance nutrient uptake through maintaining soil–root con-
349 tact in the unsaturated zone, and deliver water to neighboring species with shallower rooting
350 depth (Brooks et al., 2006; Domec et al., 2004; Prieto et al., 2012).

351 3.2 General features of the modeled groundwater level and recharge rate

352 Fig. 4 showcases the general predicted dynamics of y , $Q_{r,s}$, F_e and O_{in} using S1 as an example.
353 The diurnal fluctuations of y and O_{in} occur due to the presence of groundwater consumption
354 through plants (i.e., $F_e \neq 0$ and $Q_{r,s} \neq 0$). The predicted difference between daily maximum
355 and minimum y (~ 0.05 m) is well within the range of 0.01-0.6 m as reported elsewhere (Carl-
356 son Mazur et al., 2014b; Cooper et al., 2006; Crosbie et al., 2019; Fahle and Dietrich, 2014;
357 Gribovszki et al., 2008; Gribovszki, 2018; Healy and Cook, 2002; Lautz, 2008; Loheide et al.,
358 2005) with similar patterns of diurnal fluctuations of y . At the beginning of the simulation,
359 $y = y_0 = 0.75$ m leads to $O_{in} = 0$. When light activates photosynthesis, y decreases because
360 $Q_{r,s} > 0$ driven by plant groundwater consumption through daytime transpiration ($F_e > 0$) is
361 larger than $O_{in} \sim y_0 - y > 0$ (see Eq. 11). When F_e recedes to a minimum during nighttime,
362 $O_{in} > Q_{r,s}$ leads to an increase in y . However, nocturnal $Q_{r,s}$ is not negligible in the presence
363 of HR and nocturnal F_e (see Section 3.1). It should be noted that $y \sim y_0$ with $O_{in} \sim 0$ requires
364 $Q_{r,s} \sim 0$. Thus, $y < y_0$ (i.e., $O_{in} > 0$) is guaranteed when plant groundwater consumption
365 (i.e., daytime and nocturnal F_e) and water movement through the rooting system (i.e., HR)
366 continues. That is, the daily variation in O_{in} is also dictated by y through changes in $Q_{r,s}$. This
367 further suggests that the assumption of a constant O_{in} during a daily cycle in the WM is not
368 valid when phreatophytic plants can modify y and subsequently $Q_{r,s}$.

369 3.3 Stomatal responses to variations in plant attributes and environmental 370 conditions

371 Fig. 5 shows comparisons of g_{s,CO_2} , f_e and f_c for all scenarios. The predicted g_{s,CO_2} , f_e
372 and f_c remain similar when root distributions (S1, S2 and S3) and soil properties (S1 and

373 S6) are modified. These results may not be surprising since water availability is not limiting
374 stomatal responses for any cases. Groundwater accessibility by the rooting systems and a moist
375 unsaturated zone due to HR guarantee sufficient water supply to maintain g_{s,CO_2} . This explains
376 why different root distributions and soil properties do not appreciably impact g_{s,CO_2} as well as
377 f_e and f_c as long as the total root densities remain the same.

378 However, g_{s,CO_2} , f_e and f_c vary with different leaf attributes (S1, S4 and S5) and atmospheric
379 conditions (S1, S7, S8 and S9). A larger LAI in S4 increases total evaporative demand (i.e.,
380 F_e) such that the water availability in the unsaturated zone and the root fraction submerged in
381 the saturated zone (R) are reduced. Thus, the overall water availability across the root zone in
382 S4 decreases, thereby generating smaller g_{s,CO_2} , f_e and f_c in comparison to S1. Contrarily, a
383 larger g_{s,CO_2} is predicted by reductions in f_e with a reduced g_{res} (S5) when compared to S1. A
384 smaller g_{res} in S5 reduces evaporative demand (i.e., f_e) but maintains a greater overall water
385 availability with a larger R .

386 Regarding the impacts of atmospheric conditions on g_{s,CO_2} , the proposed model predicts a
387 smaller g_{s,CO_2} in S7 with increasing c_a and a larger g_{s,CO_2} in S8 with increasing T_a when com-
388 pared to S1. The overall trends in negative response to increasing c_a and positive response to
389 increasing leaf temperature (T_l) are mainly reflected by the supply-demand balance of CO_2 flux
390 (Huang et al., 2018) and have been reported elsewhere (Mansfield et al., 1990; Messinger et al.,
391 2006; Morison, 1998; Morison and Gifford, 1983; Mott, 1988). Specifically, increasing temper-
392 ature generally enhances photosynthetic capacity and subsequently stomatal conductance. In
393 some ecosystems, however, temperature may be already close to or above the thermal optimum
394 so that warming inhibits (rather than promotes) photosynthesis (Dusenge et al., 2019). It should
395 be also noted that increasing T_a in S8 not only generates a larger leaf temperature, T_l , but also
396 a larger D . Their combined effects on g_{s,CO_2} cannot be separated. The negative trends in g_{s,CO_2}
397 with respect to increasing D have been widely reported (Aphalo and Jarvis, 1991; Grantz, 1990;
398 Katul et al., 2009; Lendzion and Leuschner, 2008; Massman and Kaufmann, 1991; McAdam and
399 Brodribb, 2015; Monteith, 1995; Oren et al., 1999).

400 However, a positive response of g_{s,CO_2} to increasing T_a is produced because the degree of
401 increasing g_{s,CO_2} induced by increasing T_l (due to a higher rate of photosynthesis) overshadows
402 the negative response due to increasing D in the case of S8. When c_a and T_a are simultaneously
403 increased to represent future climate regime (i.e., S9), the model result here suggests that the
404 reduction in g_{s,CO_2} in response to increasing c_a (i.e., S7) roughly compensates the effects of
405 hotter and drier atmospheric condition on g_{s,CO_2} (i.e., S8). Thus, the consideration of both
406 increasing c_a and T_a generates a greater water use efficiency (i.e., f_c/f_e) in S9 where f_c is largely
407 enhanced but f_e does not appreciably increase. It should be also noted that how f_e is impacted
408 by the opposing effects from increasing T_a and c_a largely depends on their degrees of increases
409 and the species considered (Kirschbaum and McMillan, 2018).

410 3.4 Partitioning of plant water use between saturated and unsaturated zones

411 Across all scenarios, the modeled fraction of root water uptake from the saturated zone ($Q_{r,s}/Q_r$)
412 increases linearly with increasing root fraction submerged in the groundwater (R) (see Fig. 6(a)).
413 Thus, the partitioning of plant water use between the saturated and unsaturated zones is mainly
414 dictated by the root distribution. Examining the model results of S1, S2 and S3 for different
415 root distributions, it is evident that R determines the $Q_{r,s}/Q_r$ even when F_e remains similar.
416 The magnitude of F_e can also largely impact $Q_{r,s}/Q_r$ and R when the root distribution stays
417 the same. For instance, a larger $Q_{r,s}$ induced by a larger F_e in S4 with a doubled LAI creates a
418 deeper y that generates a smaller R and $Q_{r,s}/Q_r$ in comparison to S1. The model results here
419 also suggest that groundwater (not unsaturated zone) is the main water supply to phreatophytes

420 across all scenarios. For example, the predicted $Q_{r,s}/Q_r$ can be larger than 80% when R is only
421 60 to 70 %. When R is only $\sim 9\%$, $Q_{r,s}$ can still contribute to more than 30% of Q_r .

422 The daily total $Q_{r,s}$ across all scenarios and the ratio between nighttime $Q_{r,s}$ and daily total
423 $Q_{r,s}$ are shown in Fig. 6(b) and (c), respectively. While the daily total $Q_{r,s}$ is mainly governed
424 by the daily total F_e and R , the nighttime $Q_{r,s}$ contributes to both HR and nocturnal F_e .
425 Comparing the impact of root distribution on $Q_{r,s}$ in S1, S2, and S3 shows that the largest R in S1
426 generates the largest daily total $Q_{r,s}$ with a similar F_e . When leaf area is increased in S4, a larger
427 F_e generates a larger daily total $Q_{r,s}$. When leaf area is maintained the same, the magnitude
428 of F_e simply varies with the transpiration rate per unit leaf area (i.e., f_e). Consequently, the
429 trend in the daily total $Q_{r,s}$ follows the trend in f_e (see Fig. 5(b)) across S1, S5, S6, S7, S8 and
430 S9. For instance, a larger atmospheric CO₂ concentration in S7 reduces F_e such that the daily
431 total $Q_{r,s}$ in S7 becomes smaller than the case of S1. Furthermore, the predicted ratio between
432 nighttime $Q_{r,s}$ and daily total $Q_{r,s}$ ranges from 11.6 to 21.4 %. Again, the modeled results here
433 suggest that negligible nighttime plant groundwater usage as assumed in WM is not valid. Since
434 nocturnal F_e remains similar across scenarios (i.e., same g_{res}) except for S5 with a much smaller
435 F_e (i.e., smaller g_{res}), how nighttime $Q_{r,s}$ varies with different scenarios is mainly determined
436 by their magnitudes of HR as discussed next.

437 3.5 Model analysis for hydraulic redistribution (HR)

438 In Fig. 7, the comparison of daily averaged HR for all scenarios is illustrated. The accessibility
439 of groundwater to the rooting system can impact the magnitudes of HR for different root
440 distributions. When roots are far from the groundwater, previous experiments and modeling
441 studies have shown that a vertically asymmetric root distribution corresponds to an increased
442 HR (Huang et al., 2017; Scholz et al., 2008; Siqueira et al., 2008; Volpe et al., 2013). A larger soil
443 water potential gradient created by the asymmetric root distribution during daytime transpira-
444 tion facilitates a greater HR at night (Huang et al., 2017). When roots are able to continuously
445 access groundwater, however, a smaller HR is predicted here for a vertically asymmetric root
446 distributions compared with its uniform counterpart (see Fig. 7(a)). A pattern similar to the
447 model predictions has been reported for three desert phreatophytic plants (Hultine et al., 2003).
448 When *Fraxinus* and *Juglans* exhibit dimorphic root distributions with a network of shallow
449 lateral roots and deep taproots down to the water table, their root distributions can be approx-
450 imately represented as uniform root distribution across both saturated and unsaturated zone in
451 S3. When *Celtis* has only sinker roots extending into groundwater, the reverse power-law root
452 distribution with root density concentrated within groundwater in S1 can be used to represent
453 its rooting system. Interestingly, reverse sap flow in roots (i.e., evidence of HR) was observed for
454 *Fraxinus* and *Juglans* but no HR was found for *Celtis*. This suggests that the water potential
455 gradient alone is not sufficient to drive HR. A sufficient number of roots across the root zone in
456 both the saturated and unsaturated zones is another key factor facilitating HR (see Eq. 8).

457 As discussed in Section 3.1, the residual water potential gradient along the plant vascular
458 system created by the nocturnal evaporative demand (i.e., nocturnal F_e) can diminish HR. This
459 explains why the modeled HR's in S4 and S5 are respectively smaller and larger than that in
460 S1 (Fig. 7(b)). When compared with S1, nocturnal F_e increases with increasing LAI in S4, but
461 decreases with a smaller g_{res} in S5. Regarding soil texture, the comparison between S1 and S6
462 suggests that coarser-textured (i.e., larger K_s) soils result in a smaller intensity of HR compared
463 with finer-textured counterpart (Fig. 7(c)). A split-root experiment (Wang et al., 2009) and
464 the experiments conducted in the Mojave Desert (Yoder and Nowak, 1999) have reported such a
465 trend associated with the impact of soil texture on HR. However, the mechanism leading to such
466 a similar trend is different from the model simulation here because their rooting systems are

467 not in contact with groundwater. When roots are far from the groundwater, the development
 468 of the soil water potential gradient required for HR is hindered by rapid drainage for the case
 469 of coarser-textured soils (Burgess et al., 2000; Scholz et al., 2008). When roots can reach the
 470 groundwater as the cases explored here, coarser-textured soil in S6 promotes the daytime use of
 471 water from unsaturated soil layers per unit depth. Thus, coarser-textured soils create a shallower
 472 daytime y , resulting in a smaller number of roots in the unsaturated soil domain (see Fig. 6(a))
 473 for the development of HR at night. Again, the number of roots needs to be sufficiently large
 474 in both the saturated and unsaturated zones to drive HR, as discussed for the three cases with
 475 different root distributions (i.e., S1, S2 and S3).

476 How future climate conditions can potentially impact the magnitude of HR with roots in
 477 contact with groundwater is explored here by comparing S7, S8 and S9 with S1 (Fig. 7(d)). The
 478 proposed model predicts a larger HR with elevated c_a (i.e., S7) and a smaller HR with increasing
 479 T_a (i.e., S8) when compared to S1. F_e in S7 is reduced by the reduction in g_{s,CO_2} as discussed
 480 in Section 3.3. S7 then creates a slightly shallower y (i.e., smaller a_R in the unsaturated zone)
 481 and a wetter unsaturated soil zone (i.e., larger k and less negative ψ_s) in comparison to S1. The
 482 positive response of HR to an increasing c_a is predicted here because the degree of increasing
 483 k overshadows the combined effects of increased ψ_s and decreased a_R in the unsaturated zone
 484 (see Eq. 8). However, we should also stress that such a positive response of HR to an increasing
 485 c_a only occurs when y and a_R in the unsaturated zone are not appreciably modified, as is the
 486 case here. HR can be significantly suppressed if a_R in the unsaturated zone is largely reduced
 487 due to the rise of y . The increase in T_a (i.e., S8) enhances daytime F_e that generates a greater
 488 water potential gradient across the root zone to drive HR. However, nocturnal F_e also increases
 489 with increased T_a (i.e., D) such that HR is further suppressed by the residual water potential
 490 gradient along the vascular system. Interestingly, one previous modeling approach (Volpe et al.,
 491 2013) reported an opposite trend for the case of roots far from groundwater table. An increased
 492 c_a produces a reduction in HR because of reductions in root water uptake and water potential
 493 gradient across the root zone when roots are not in contact with groundwater. The reason that
 494 enhancement in HR with an increased T_a is predicted by Volpe et al. (2013) is because g_{res} is
 495 not considered. Thus, nocturnal F_e is absent in their model to diminish HR. Simultaneously
 496 considering increased c_a and T_a to represent the future climate regime (i.e., S9), the model result
 497 here suggests that the increase in HR in response to elevated c_a (i.e., S7) compensates the effects
 498 of increased T_a on HR (i.e., S8).

499 3.6 Model analysis for groundwater level

500 The modeled daily averaged y 's and nighttime rise in y 's for all scenarios are shown in Fig. 8 and
 501 9, respectively. Regarding different root distributions (i.e., S1, S2, and S3) (Fig. 8 (a)), daily
 502 averaged y 's are determined by $Q_{r,s}/Q_r$ and the magnitudes of HR because their F_e 's remain
 503 similar (see Section 3.3). When R is only $\sim 9\%$ for the case of power-law distribution (i.e., S2),
 504 the water withdrawal from the saturated zone (i.e., $Q_{r,s}/Q_r$) is reduced (see Fig. 6). Thus,
 505 the daily averaged y becomes shallower and nighttime rise of y in S2 becomes smaller (Fig. 9)
 506 when compared with S1 (i.e., $R \sim 62\%$). Considering the case of uniform root distribution (i.e.,
 507 S3), its daily averaged y is predicted to be similar to S1 with a reverse power-law distribution.
 508 Indeed, the daytime drop in y for S3 is smaller than that for S1 (see inset in Fig. 8 (a)), given
 509 that R and $Q_{r,s}/Q_r$ are largely reduced (see Fig. 6). However, a smaller rise in nighttime y
 510 (Fig. 9) caused by a larger HR in S3 (see Section 3.5) further reduces the difference in daily
 511 averaged y between S1 and S3.

512 Since y is mainly controlled by $Q_{r,s}$ (see Section 3.2), the magnitudes of F_e modified by
 513 different leaf attributes (i.e., S1, S4, and S5) and atmospheric conditions (i.e., S1, S7, S8, and

514 S9) can directly impact y through changes in $Q_{r,s}$. An increased $Q_{r,s}$ caused by a larger F_e
515 generates a deeper y and a larger nighttime rise in y (i.e., a larger recharge rate). When
516 comparing y 's for different leaf attributes (Fig. 8 (b)), a deeper y in S4 than in S1 is predicted
517 when F_e is largely enhanced by an increase in LAI . Contrarily, $Q_{r,s}$ is reduced by a smaller
518 g_{res} (i.e., S5 with a smaller F_e) (Huang et al., 2015) leading to a shallower y in S5 than in S1.
519 Considering the potential impacts of future climate conditions on y (Fig. 8 (d)), y increases
520 with an elevated c_a (i.e., S7; decreased F_e and $Q_{r,s}$) but deceases with an increased T_a (i.e.,
521 S8; increased F_e and $Q_{r,s}$). Again, the combined effects of elevated c_a and increasing T_a on y
522 (i.e., S9) may be negligible when F_e (i.e., $Q_{r,s}$) is not appreciably modified as the case here (see
523 Section 3.3).

524 When compared with different soil properties (i.e., S1 and S6), the proposed model predicts
525 a shallower daily averaged y for coarser-textured soil with a larger K_s (Fig. 8 (c)). A pattern
526 similar to the modeled results here has been also reported by a previous modeling study using
527 four different soil textures (Loheide et al., 2005). The drop in daytime y decreases with an
528 increased daytime use of water from unsaturated soil layers for the coarser-textured soil. More-
529 over, a suppressed HR due to a shallower daytime y (see Section 3.5) further reduces the rise in
530 y at night (Fig. 9), resulting in an overall shallower daily averaged y .

531 3.7 Study limitations

532 Given all the assumptions taken to arrive at the proposed model, it is informational to reca-
533 pitulate its limitations for future improvements. Modeling uncertainties can be further reduced
534 when the relative humidity in the leaf inter-cellular spaces and plant water storage are appropri-
535ately described. Recent studies have suggested that the water vapor inside the stomatal cavity
536 may not be saturated especially when the surrounding air is dry (Cernusak et al., 2018, 2019;
537 Wong et al., 2022). Thus, the assumption of saturated water vapor inside the stomatal cavity at
538 T_l here may overestimate the evaporative demand, impacting the dynamics of modeled g_{s,CO_2}
539 and y . The presence of plant water storage can reduce y because it represents an above-ground
540 reservoir to store groundwater. However, plant water storage can also reduce root water uptake
541 and HR at night (Huang et al., 2017). Thus, the degree of impact on y through plant water
542 storage depends on the overall water storage capacity in the targeted ecosystem and requires
543 further exploration. The proposed model also assumes that the lateral inflow from an external
544 water body is the main source to recharge the groundwater. However, different geometries of the
545 flow system can result in different dynamics of y (Loheide et al., 2005). Moreover, uncertainties
546 in modeling y can be further reduced when the spatiotemporal dynamics of below-ground root
547 distribution, above-ground plant structure and their hydraulic and physiological attributes are
548 appropriately described. For instance, all the aforementioned properties can vary under future
549 climate conditions. Horizontal heterogeneity in root distribution and plant structure at the
550 landscape scale also needs to be further accounted for. Lastly, phreatophytic vegetation with a
551 deeper rooting depth and y (e.g., > 2 m) is not uncommon (Butler Jr et al., 2007; Canham et al.,
552 2012; Hultine et al., 2003; Wang et al., 2021). In such a case of y further away from the surface,
553 the soil water status in the upper soil layer and the magnitude of HR may not be maintained
554 at the same level as the case of shallow y . Thus, additional field and modeling experiments
555 are required to further understand the dynamic fluctuation of y in relation to the responses of
556 phreatophytic vegetation for a deeper y .

557 **4 Conclusions**

558 The main goal of this work was to further understand the dynamic interactions between ground-
559 water level and discharge by phreatophytic plants without invoking the *ad hoc* assumptions
560 adopted by the White method. To address this goal, we developed a dynamic groundwa-
561 ter–soil–plant–atmosphere continuum model to describe the water dynamics throughout the
562 saturated and unsaturated soil domain as well as soil–root interface and plant vascular sys-
563 tem. When HR and nocturnal F_e are also considered, y and Q_r can dynamically interact with
564 each other in the resulting modeling approach. Based on model results for a broad range of
565 environmental conditions and plant attributes, a number of conclusions can be drawn:

566 1) The assumptions of negligible plant groundwater usage during the night and a constant
567 O_{in} in White method may not always occur in natural settings. Although HR is limited by
568 nocturnal F_e through a residual water potential gradient along the plant vascular system, both
569 HR and nocturnal F_e are able to reduce y at night. The fluctuation in y caused mainly by the
570 diurnal variation of F_e further suggests that O_{in} cannot be constant (i.e., $O_{in} \sim y_0 - y > 0$) as
571 in the cases explored here.

572 2) Since the model simulations here consider the cases of rooting system in contact with
573 shallow groundwater (i.e., $y > -1$ m), the leaf-level gas exchange operates with little to no
574 limitation of water supply. Thus, g_{s,CO_2} , f_e and f_c are not appreciably impacted by different
575 root distributions or soil textures, but they still vary with various atmospheric conditions as if
576 the soil domain is under a well-watered condition. This explains why the correlation between
577 y and leaf-level gas exchange across all the scenarios explored here is weak. However, $Q_{r,s}/Q_r$
578 linearly increases with increasing R as y increases.

579 3) In the scenarios represented here which describe shallow groundwater levels, a sufficient
580 volume of roots connecting the saturated and unsaturated zones becomes the dominant factor
581 driving HR, rather than the water potential gradient across the rooting depth. Thus, the impact
582 of y on the partitioning of root volume between saturated and unsaturated zone for different
583 root distributions determines the magnitude of HR. This explains why a vertically asymmetric
584 root distribution does not guarantee enhancement in HR and HR is reduced by coarser-textured
585 soils with a shallower y .

586 4) Exogenous environmental factors (e.g., soil texture and atmospheric conditions) and en-
587 doogenous plant properties (e.g., root distribution and leaf attributes) can impact the dynamics
588 of y through modifications in $Q_{r,s}$ and HR. Interestingly, the proposed modeling approach pre-
589 dicted that y may not be appreciably impacted by simultaneous increases in c_a and T_a when F_e
590 (i.e., $Q_{r,s}$) remains similar under future climate regime. However, the water use efficiency is
591 enhanced as f_c increases with an elevated c_a .

592 **Acknowledgments**

593 Support from the Department of Energy (DOE) through the Office of Biological and Environ-
594 mental Research (BER) (DE-SC0023468) and the National Science Foundation (NSF-CBET-
595 2139003) is acknowledged.

596 **List of Tables**

597 1. Nomenclature

598 2. Nine scenarios (S1-S9) set up to explore dynamic interactions between groundwater and

599 phreatophytes

Table 1: Nomenclature

Symbol	Description	Unit
A_l	Leaf area	m^2
A_{soil}	Soil surface area covering the roots	m^2
a_R	Root surface density	$m^2 m^{-3}$
B	Root length density	$m m^{-3}$
b	Empirical constant for soil water retention curve and hydraulic conductivity function	Dimensionless
C	Normalized recharge or discharge rate ($= O_{in}/K_s$)	$kg m^{-1}$
c_a	Atmospheric CO_2 concentration	ppm
c_a^*	Reference atmospheric CO_2 concentration ($= 400$)	ppm
c_1	Constant describing the shape of K	MPa
c_2	Constant describing the shape of K	Dimensionless
E_x	Exfiltration rate	$kg s^{-1}$
e_a	Ambient water vapor pressures	kPa
e_i	Inter-cellular water vapor pressures	kPa
F_e	Total transpiration rate ($= f_e m_v A_l = RWU_{net}$)	$kg s^{-1}$
f_c	Assimilation rate per unit leaf area	$\mu mol m^{-2} s^{-1}$
f_e	Transpiration rate per unit leaf area	$mol m^{-2} s^{-1}$
$f_{e,s}$	Water supply function	$mol m^{-2} s^{-1}$
$f_{e,d}$	Water demand function	$mol m^{-2} s^{-1}$
g_{s,CO_2}	Stomatal conductance	$mol m^{-2} s^{-1}$
g_{t,H_2O}	Total conductance for water vapor	$mol m^{-2} s^{-1}$
g_{s,H_2O}	Stomatal conductance for water vapor ($\sim 1.6 g_{s,CO_2}$)	$mol m^{-2} s^{-1}$
g_{res}	Nocturnal residual conductance	$mol m^{-2} s^{-1}$
g_{b,H_2O}	Boundary layer conductance for water vapor	$mol m^{-2} s^{-1}$
h_a	Objective function	$\mu mol m^{-2} s^{-1}$
K	Plant xylem water conductance	$kg s^{-1} MPa^{-1}$
K_{max}	Maximum xylem water transport capacity	$kg s^{-1} MPa^{-1}$
K_s	Soil hydraulic conductivity	$m s^{-1}$
$K_{s,max}$	Saturated soil hydraulic conductivity	$m s^{-1}$
K_g	Constant depending on K_s	s^{-1}
k	Total soil-to-root conductance	s^{-1}
k_r	Root membrane permeability	s^{-1}
k_s	Conductance associated with the radial rootlet flow within the soil to the nearest rootlet	s^{-1}
LAI	Leaf area index	$m^2 m^{-2}$
L_R	Rooting depth ($= 1.2$)	m
L_s	Distance between the soil surfaces at the vegetated area and under the external water body ($= 5$)	m
l	length scale describing the mean radial distance for the movement of water molecules from the soil to the root surface in the rhizosphere	m
m_v	Molecular weight of water	$kg mol^{-1}$
O_{in}	Inflow (+) from or outflow (-) to the external water body	$kg s^{-1}$
P_a	Atmospheric pressure	kPa
$Q_r = Q_{r,s} + Q_{r,us}$	Total plant water use	$kg s^{-1}$
$Q_{r,s}$	Total root water uptake from saturated zone	$kg s^{-1}$

Continued on next page

Table 1 – continued from previous page

Symbol	Description	Unit
$Q_{r,us}$	Total root water uptake from unsaturated zone	kg s^{-1}
$Q_{r,us}^-$	Hydraulic redistribution	kg s^{-1}
q_s	Darcian flux	m s^{-1}
q_r	Root water uptake/release per unit soil volume	s^{-1}
RWU_{net}	Net root water uptake across the root zone	kg s^{-1}
R	Fraction of roots submerged in groundwater	Dimensionless
r	Effective root radius	m
t	Time	s
y	Groundwater depth	m
y_0	Water level of external water body	m
z_s	Depth below the surface	m
δz_s	Depth of the unsaturated infinitesimal soil layer right above y	m
λ	Marginal water use efficiency	$\mu\text{mol mol}^{-1} \text{kPa}^{-1}$
λ^*	Marginal water use efficiency under well-watered soil conditions	$\mu\text{mol mol}^{-1} \text{kPa}^{-1}$
α	Species-specific sensitivity parameter	MPa^{-1}
β	Specific yield	kg m^{-1}
ψ_l	Leaf water potential	MPa
ψ_r	Root water potential	MPa
ψ_s	Total soil water potential	m
$\psi_{s,b}$	Water potential at the stem base	MPa
ϕ_s	Soil matric potential	m
$\phi_{s,sat}$	Soil air entry water potential	m
$\bar{\psi}_l$	ψ_l averaged over the previous 24 hours period	MPa
θ_s	Volumetric soil water content	$\text{m}^3 \text{m}^{-3}$
$\theta_{s,sat}$	Soil water content near saturation	$\text{m}^3 \text{m}^{-3}$
ρ	Density of water	kg m^{-3}

Table 2: Nine scenarios (S1-S9) set up to explore dynamic interactions between groundwater and phreatophytes

	S1	S2	S3	S4	S5	S6	S7	S8	S9
Soil type ^a	C	C	C	C	C	CL	C	C	C
Root distribution ^b	RP	P	U	RP	RP	RP	RP	RP	RP
LAI ($m^2 m^{-2}$)	1.5	1.5	1.5	3	1.5	1.5	1.5	1.5	1.5
g_{res} ($mol m^{-2} s^{-1}$)	0.04	0.04	0.04	0.04	0.01	0.04	0.04	0.04	0.04
c_a (ppm)	400	400	400	400	400	400	500	400	500
T_a ($^{\circ}C$)	-	-	-	-	-	-	-	+1.5	+1.5

^a Two soil types: clay (C) and clay loam (CL).

^b Three vertical root distributions: uniform (U), power-law (P) and reverse power-law (RP) rooting profiles. Note that the power-law distribution provides a more realistic description for coniferous species (Andersson, 2005; Finér et al., 1997; Jackson et al., 1996) and a reverse power-law distribution represents plants with only sinker roots extending into groundwater.

600 **List of Figures**

601 1. Schematic of the modeling approach describing the water movement through each compartment
602 of the dynamic groundwater–soil–plant–atmosphere continuum with a summary of
603 the porous medium flow equations, groundwater dynamics and plant hydraulic equations.

604 2. Cumulative fraction of root length density as a function of depth below soil surface. The
605 total root length density across the rooting depth is $1 \times 10^7 \text{ m m}^{-3}$ identical for all scenarios.
606 The two black-dotted lines represent the upper and lower values of predicted daily
607 averaged groundwater level (y) achieved after equilibrium across all scenarios. Note that
608 the power-law distribution provides a more realistic description for coniferous species (Andersson,
609 2005; Finér et al., 1997; Jackson et al., 1996) and a reverse power-law distribution
610 represents plants with only sinker roots extending into groundwater.

611 3. Modeled profiles of (a) soil water content (θ_s) and (b) root water influx (q_r^+) or efflux (q_r^-)
612 within a soil layer on a per unit ground area basis for S1 (see Table 2 for model set-up).
613 The black solid line in (a) represents the modeled groundwater level. The first contour
614 line from top in (b) represents zero flux.

615 4. Modeled time series of (a) groundwater level (y), (b) root water uptake from groundwater
616 ($Q_{r,s}$), (c) transpiration (F_e), and (d) the corresponding recharge rate (O_{in}) from external
617 water body for S1 (see Table 2 for model set-up).

618 5. Modeled daily averaged (a) stomatal conductance (g_{s,CO_2}), (b) transpiration rate (f_e) and
619 (c) assimilation rate (f_c) after daily equilibrium state for all scenarios.

620 6. (a) Fraction of root water uptake from the saturated zone ($Q_{r,s}/Q_r$) as a function of root
621 fraction submerged in the saturated zone (R), (b) daily total root water uptake from the
622 saturated zone across all scenarios, and (c) ratio between nighttime and daily total root
623 water uptake from the saturated zone.

624 7. Comparisons of daily averaged hydraulic redistribution (HR) after daily equilibrium state
625 for different (a) root distributions (reverse power law, power law, and uniform), (b) leaf
626 attributes (increased leaf area index and decreased residual conductance), (c) soil types (clay,
627 and clay loam), and (d) atmospheric conditions (increased atmospheric CO_2 concentration,
628 increased temperature, and increased atmospheric CO_2 concentration and temperature)
629 (see Table 2 for model set-up).

630 8. Modeled daily averaged groundwater level (y) for different (a) root distributions, (b) leaf
631 attributes, (c) soil types, and (d) atmospheric conditions. Since the predicted daily aver-
632 aged y 's for S1 and S3 in (a) overlap, how they vary at 30-minutes interval is shown in the
633 inset.

634 9. Modeled nighttime rise of y after daily equilibrium state across all scenarios.

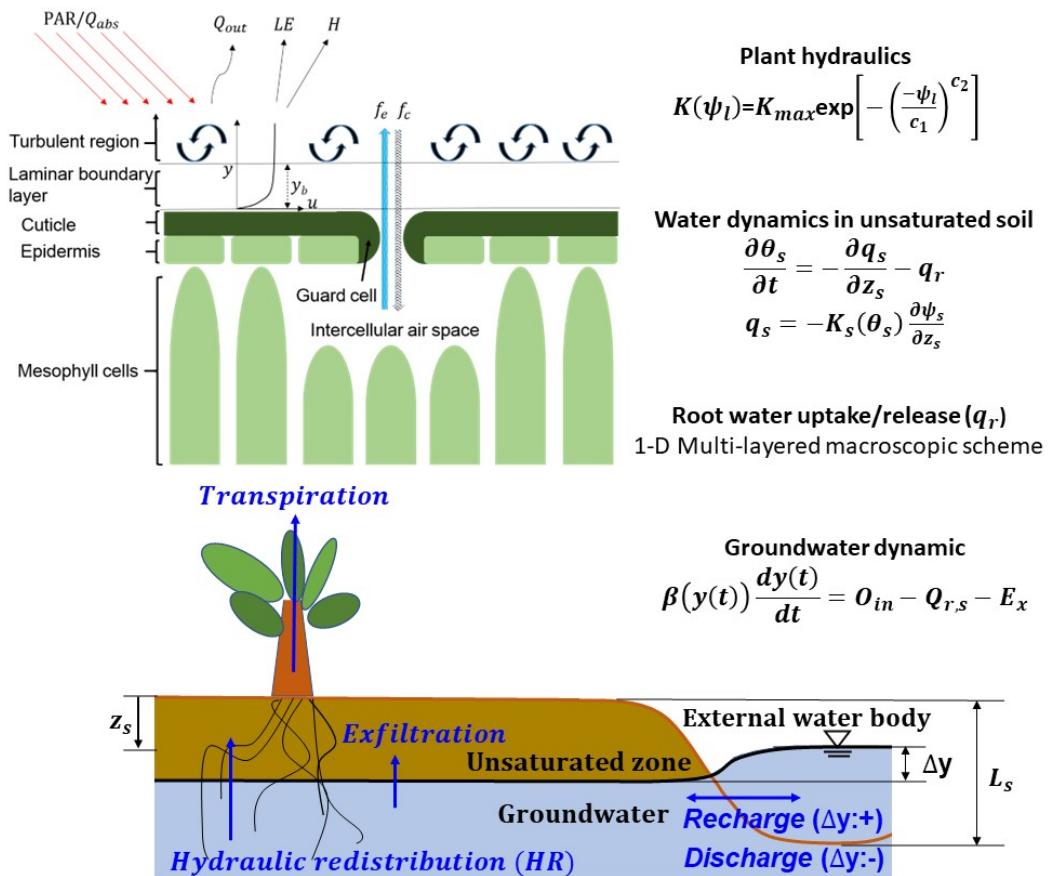


Figure 1: Schematic of the modeling approach describing the water movement through each compartment of the dynamic groundwater-soil-plant-atmosphere continuum with a summary of the porous medium flow equations, groundwater dynamics and plant hydraulic equations.

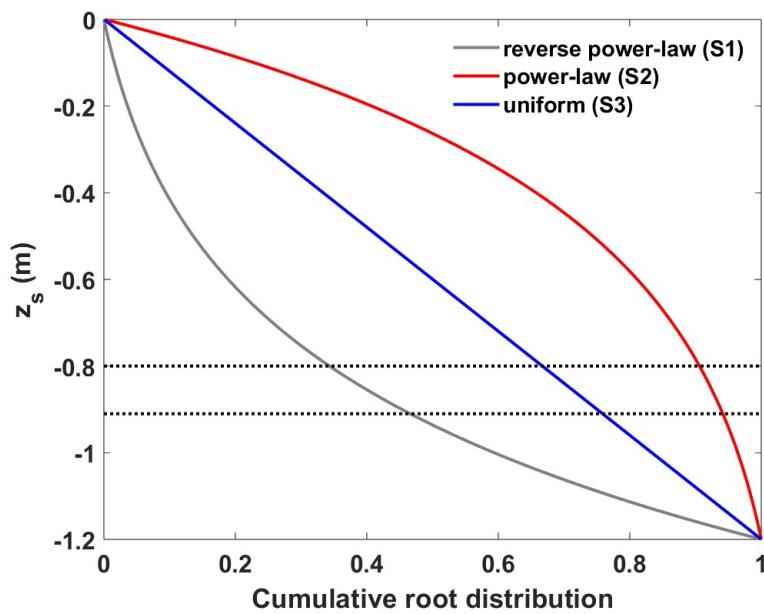


Figure 2: Cumulative fraction of root length density as a function of depth below soil surface. The total root length density across the rooting depth is $1 \times 10^7 \text{ m m}^{-3}$ identical for all scenarios. The two black-dotted lines represent the upper and lower values of predicted daily averaged groundwater level (y) after equilibrium state across all scenarios. Note that the power-law distribution provides a more realistic description for coniferous species (Andersson, 2005; Finér et al., 1997; Jackson et al., 1996) and a reverse power-law distribution represents plants with only sinker roots extending into groundwater.

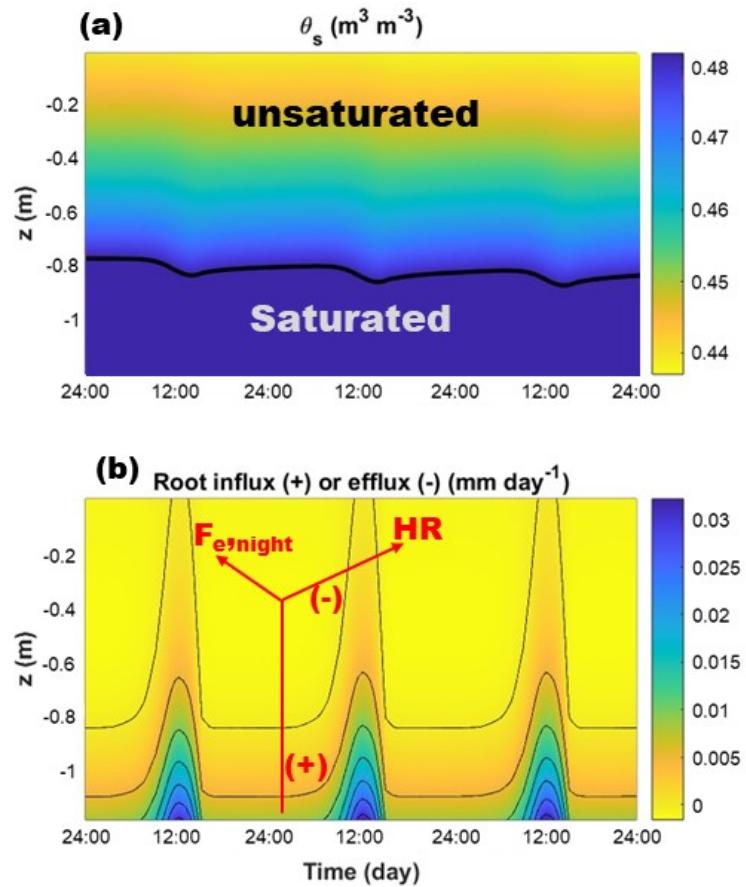


Figure 3: Modeled profiles of (a) soil water content (θ_s) and (b) root water influx (q_r^+) or efflux (q_r^-) within a soil layer on a per unit ground area basis for S1 (see Table 2 for model set-up). The black solid line in (a) represents the modeled groundwater level. The first contour line from top in (b) represents zero flux.

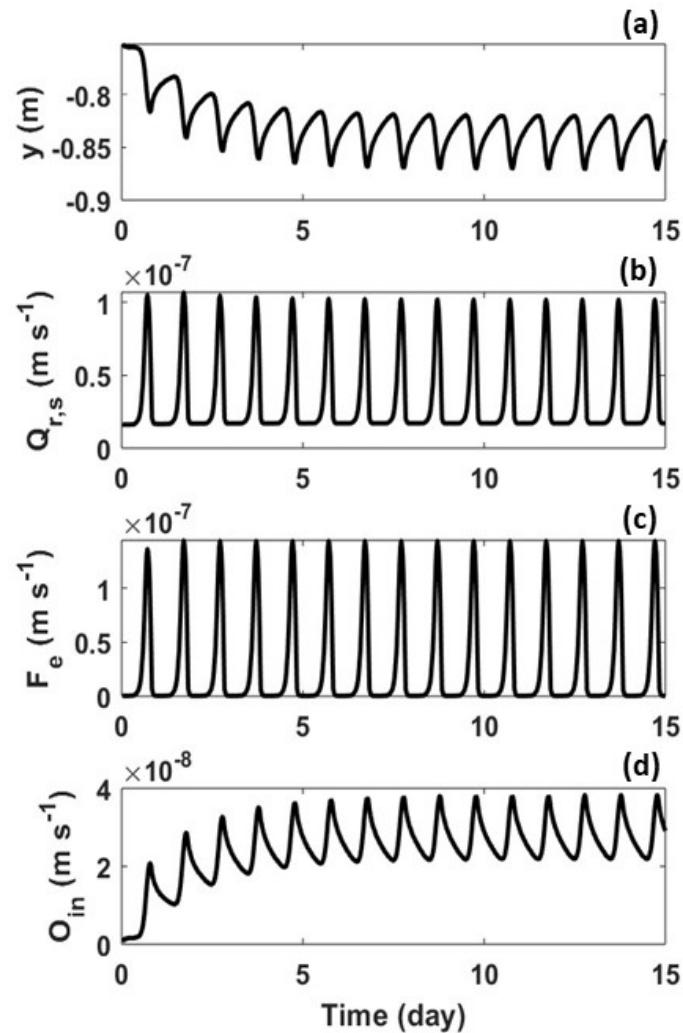


Figure 4: Modeled time series of (a) groundwater level (y), (b) root water uptake from groundwater ($Q_{r,s}$), (c) transpiration (F_e), and (d) the corresponding recharge rate (O_{in}) from external water body for S1 (see Table 2 for model set-up)

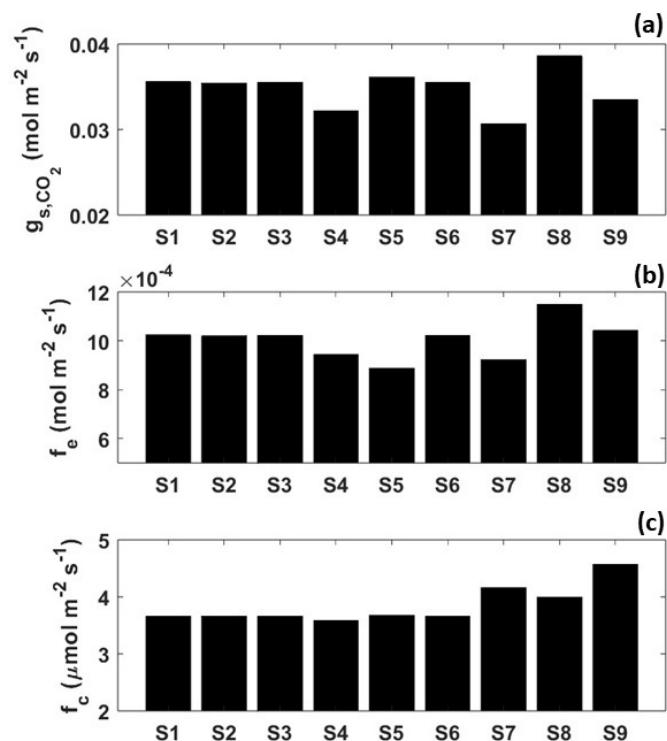


Figure 5: Modeled daily averaged (a) stomatal conductance (g_{s,CO_2}), (b) transpiration rate (f_e) and (c) assimilation rate (f_c) after daily equilibrium state for all scenarios.

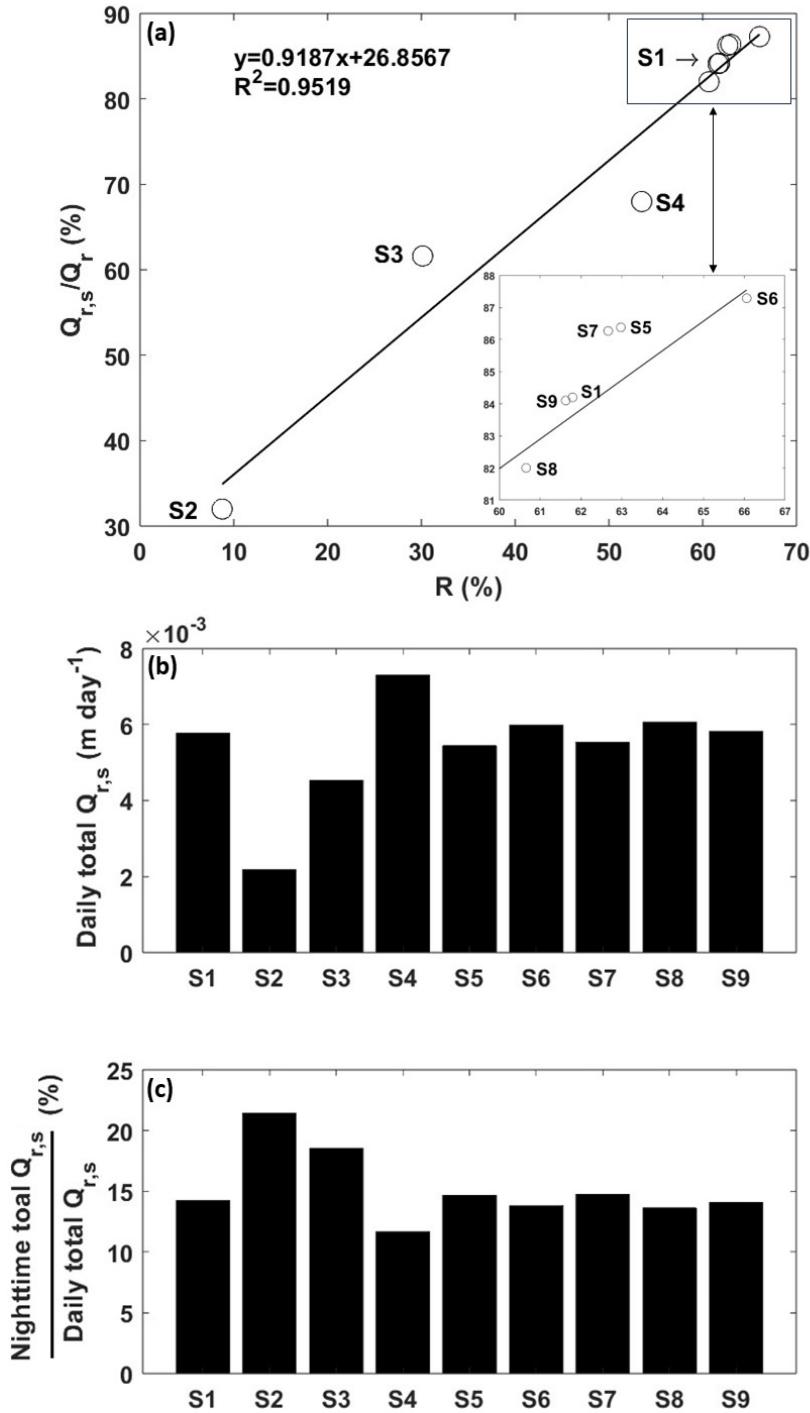


Figure 6: (a) Fraction of root water uptake from the saturated zone ($Q_{r,s}/Q_r$) as a function of root fraction submerged in the saturated zone (R), (b) daily total root water uptake from the saturated zone across all scenarios, and (c) ratio between nighttime and daily total root water uptake from the saturated zone.

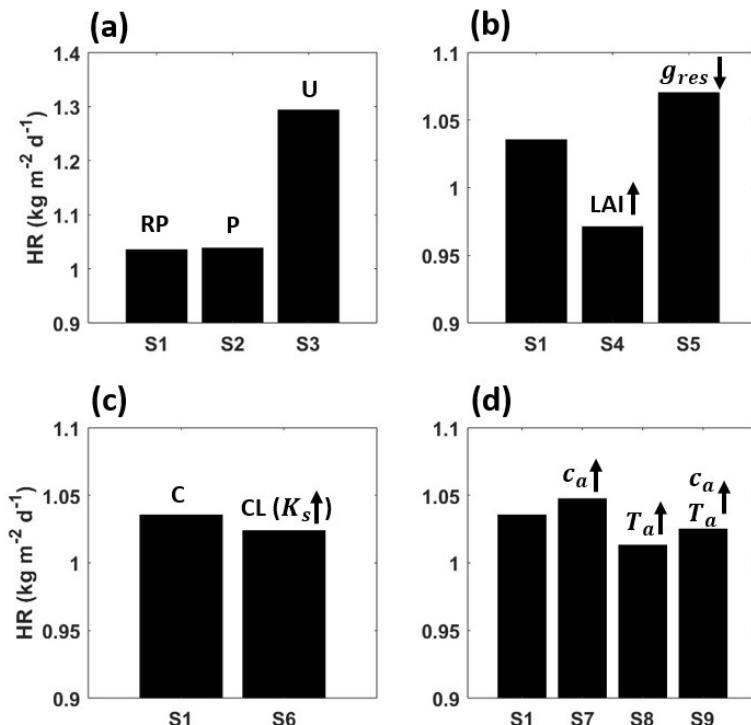


Figure 7: Comparisons of daily averaged hydraulic redistribution (HR) after daily equilibrium state for different (a) root distributions (reverse power law, power law, and uniform), (b) leaf attributes (increased leaf area index and decreased residual conductance), (c) soil types (clay, and clay loam), and (d) atmospheric conditions (increased atmospheric CO₂ concentration, increased temperature, and increased atmospheric CO₂ concentration and temperature) (see Table 2 for model set-up).

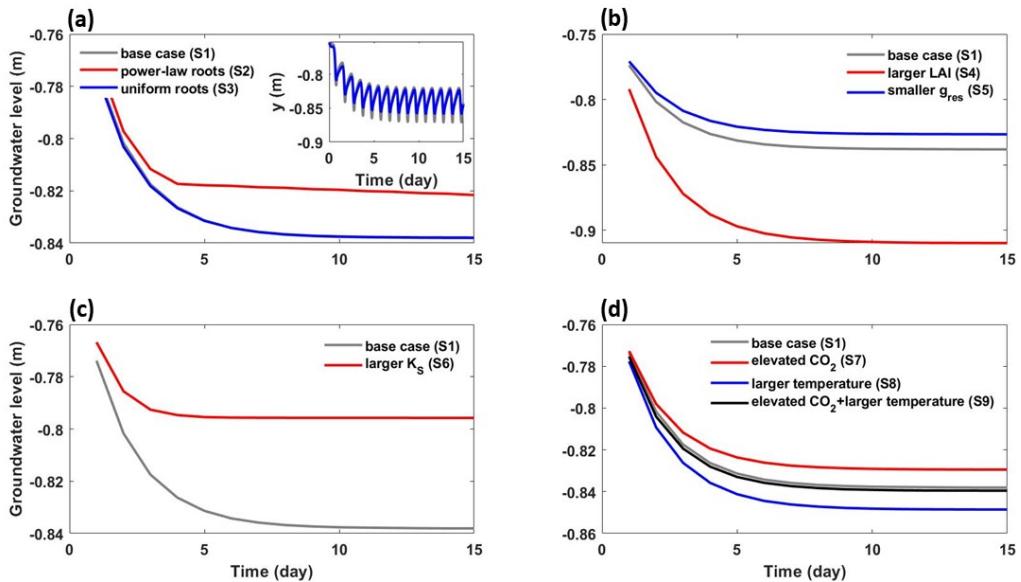


Figure 8: Modeled daily averaged groundwater level (y) for different (a) root distributions, (b) leaf attributes, (c) soil types, and (d) atmospheric conditions. Since the predicted daily averaged y 's for S1 and S3 in (a) overlap, how they vary at 30-minutes interval is shown in the inset.

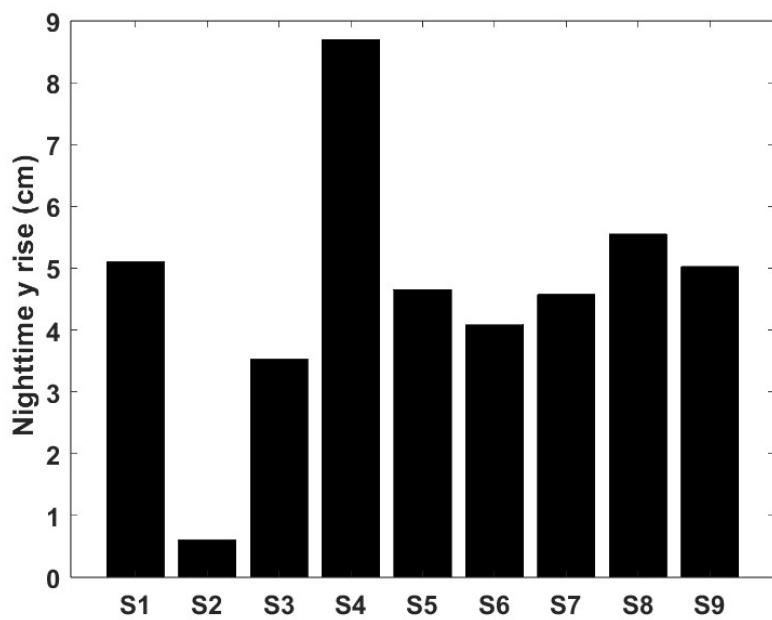


Figure 9: Modeled nighttime rise of y after daily equilibrium state across all scenarios.

635 A Model parameterization

636 Model parameters used for the nine scenarios are summarized here. The plant parameters were
637 collected from the literature with a focus on *Pinus taeda* L. When parameters specific for *Pinus*
638 *taeda* L. were not available, parameters for coniferous species in general and pine plantation
639 trees were adopted. The physiological parameters required for the leaf-level gas exchange and
640 water balance are summarized in Table A.1. The maximum carboxylation capacity ($V_{cmax,25}$)
641 and the light saturated rate of electron transport ($J_{max,25}$) at 25°C are set to be 57 and 98
642 $\mu\text{mol m}^{-2} \text{s}^{-1}$, respectively (Wullschleger, 1993; Wang et al., 1996; Medlyn et al., 2002). Those
643 physiological values are close to values reported for Loblolly pine at the Duke FACE site (Juang
644 et al., 2008). To explore how nocturnal transpiration impacts groundwater level, $g_{res} = 0.01$
645 and $0.04 \text{ mol m}^{-2} \text{s}^{-1}$ are assumed to reflect small and large nocturnal transpiration conditions.
646 The choice of g_{res} resides in the range for numerous coniferous species as summarized elsewhere
647 (Caird et al., 2007). The empirical parameters of the λ - $\bar{\psi}_l$ relation (i.e., λ^* and α) are taken for
648 the coniferous species reported elsewhere (Manzoni et al., 2011). The model parameters for the
649 xylem vulnerability curve are taken to be within the range for pine from the literature (Cochard,
650 1992; Domec and Gartner, 2001; Manzoni et al., 2013a; Phillips et al., 2004), and are listed in
651 Table A.2. The root properties and soil hydraulic parameters are provided in Table A.3 and
652 A.4, respectively. The rooting profiles are chosen to be uniformly distributed or varied using a
653 power-law reduction (Jackson et al., 1996) or reverse power-law function, given that the total
654 root density within the rooting depth (L_R) is held constant. Two different soil types – clay and
655 clay loam (Clapp and Hornberger, 1978) – are used to explore the model behavior for different
656 soil texture. Fig.A.1 shows the diurnal variation of the atmospheric variables used to drive
657 the model simulations. This 24-h time series of the atmospheric variables was determined by
658 ensemble averaging across summer periods by time of day and represents the typical summertime
659 meteorological variables at the Blackwood Division of the Duke Forest (35.971°N, 79.09°W,
660 elevation 163 m) near Durham, North Carolina (Volpe et al., 2013).

Table A.1: Leaf-level physiological attributes

Parameters	Value	Unit
$V_{cmax,25}$	57	$\mu\text{mol m}^{-2} \text{s}^{-1}$
$J_{max,25}$	98	$\mu\text{mol m}^{-2} \text{s}^{-1}$
g_{res}	0.01 or 0.04	$\text{mol m}^{-2} \text{s}^{-1}$
λ^* ^a	6.55	$\mu\text{mol mol}^{-1} \text{kPa}^{-1}$
α^a	1.56	MPa^{-1}

^a The parameters of relation were adopted for conifers in arid or semiarid climates (Manzoni et al., 2011).

Table A.2: Xylem hydraulic parameters

Parameters	Value	Unit
K_{max}	1.5×10^{-6}	$\text{kg s}^{-1} \text{ MPa}^{-1}$
c_1	4.8	MPa
c_2	3.5	Dimensionless

Table A.3: Root properties

Parameters	Value	Unit
L_R	1.2	m
k_r	10^{-9}	s^{-1}
	Formulation	Unit
B_U	6354	$m m^{-3}$
B_P^a	$19586 \times 0.976^{100z_s}$	$m m^{-3}$
B_{RP}	$19586 \times 0.976^{100(L_R - z_s)}$	$m m^{-3}$

^a The power law reduction function describing the vertical root length distribution is adopted from elsewhere (Jackson et al., 1996) for conifers. Note that the total root density across L_R is identical for all scenarios.

Table A.4: Soil properties

Parameters	Value	Unit
Clay ^a		
$K_{s,max}$	1.3×10^{-6}	m s^{-1}
$\theta_{s,sat}$	0.482	$\text{m}^3 \text{ m}^{-3}$
$\phi_{s,sat}$	-0.405	m
b	11.4	Dimensionless
Clay loam ^a		
$K_{s,max}$	2.5×10^{-6}	m s^{-1}
$\theta_{s,sat}$	0.476	$\text{m}^3 \text{ m}^{-3}$
$\phi_{s,sat}$	-0.63	m
b	8.52	Dimensionless

^a The hydraulic parameters for the two soil types are taken from elsewhere (Clapp and Hornberger, 1978).

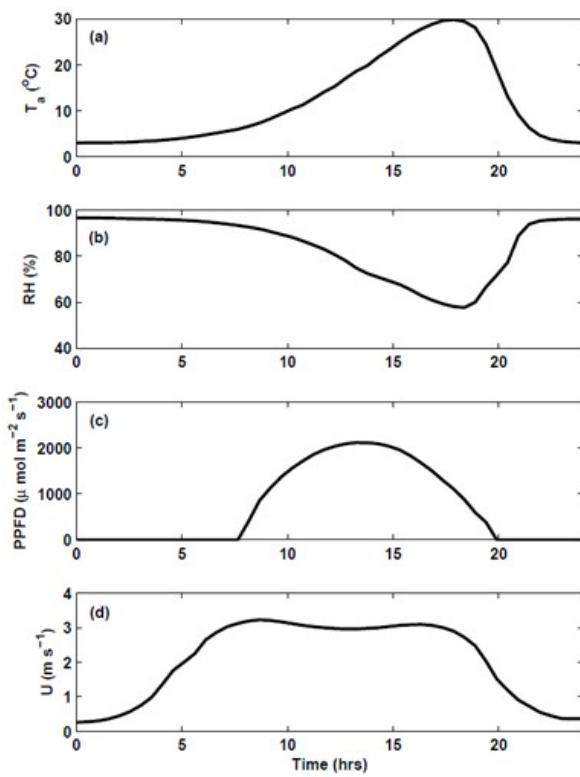


Figure A.1: The diurnal variations of (a) air temperature (T_a), (b) relative humidity (RH), (c) photosynthetically active radiation (PPFD), and (d) wind speed (U).

661 **References**

662 Aguilos, M., Sun, G., Noormets, A., Domec, J.C., McNulty, S., Gavazzi, M., Prajapati, P.,
663 Minick, K.J., Mitra, B., King, J., 2021. Ecosystem productivity and evapotranspiration are
664 tightly coupled in loblolly pine (*pinus taeda* l.) plantations along the coastal plain of the
665 southeastern us. *Forests* 12, 1123.

666 Ahmed, I., Umar, R., 2009. Groundwater flow modelling of yamuna-krishni interstream, a part
667 of central ganga plain uttar pradesh. *Journal of Earth System Science* 118, 507–523.

668 Andersson, F., 2005. Coniferous forests. volume 6. Elsevier.

669 Aphalo, P., Jarvis, P., 1991. Do stomata respond to relative humidity? *Plant, Cell and*
670 *Environment* 14, 127–132.

671 Bear, J., 1988. Dynamics of fluids in porous media. Courier Corporation.

672 Bonetti, S., Manoli, G., Domec, J.C., Putti, M., Marani, M., Katul, G., 2015. The influence of
673 water table depth and the free atmospheric state on convective rainfall predisposition. *Water*
674 *Resources Research* 51, 2283–2297.

675 Boyer, J.S., Wong, S.C., Farquhar, G.D., 1997. CO₂ and water vapor exchange across leaf
676 cuticle (epidermis) at various water potentials. *Plant Physiology* 114, 185–191.

677 Brooks, J.R., Meinzer, F.C., Warren, J.M., DOME, J.C., Coulombe, R., 2006. Hydraulic
678 redistribution in a douglas-fir forest: lessons from system manipulations. *Plant, Cell & Envi-*
679 *ronment* 29, 138–150.

680 Burgess, S.S., Pate, J.S., Adams, M.A., Dawson, T.E., 2000. Seasonal water acquisition and
681 redistribution in the australian woody phreatophyte, *Banksia prionotes*. *Annals of Botany*
682 85, 215–224.

683 Butler Jr, J.J., Kluitenberg, G.J., Whittemore, D.O., Loheide, S.P., Jin, W., Billinger, M.A.,
684 Zhan, X., 2007. A field investigation of phreatophyte-induced fluctuations in the water table.
685 *Water Resources Research* 43.

686 Caird, M.A., Richards, J.H., Donovan, L.A., 2007. Nighttime stomatal conductance and tran-
687 spiration in C₃ and C₄ plants. *Plant Physiology* 143, 4–10.

688 Campbell, G.S., Norman, J., 1998. An introduction to environmental biophysics. Springer, New
689 York.

690 Canham, C.A., Froend, R.H., Stock, W.D., Davies, M., 2012. Dynamics of phreatophyte root
691 growth relative to a seasonally fluctuating water table in a mediterranean-type environment.
692 *Oecologia* 170, 909–916.

693 Carlson Mazur, M.L., Wiley, M.J., Wilcox, D.A., 2014a. Estimating evapotranspiration and
694 groundwater flow from water-table fluctuations for a general wetland scenario. *Ecohydrology*
695 7, 378–390.

696 Carlson Mazur, M.L., Wiley, M.J., Wilcox, D.A., 2014b. Estimating evapotranspiration and
697 groundwater flow from water-table fluctuations for a general wetland scenario. *Ecohydrology*
698 7, 378–390.

699 Cernusak, L.A., Goldsmith, G.R., Arend, M., Siegwolf, R.T., 2019. Effect of vapor pressure
700 deficit on gas exchange in wild-type and abscisic acid-insensitive plants. *Plant Physiology*
701 181, 1573–1586.

702 Cernusak, L.A., Ubierna, N., Jenkins, M.W., Garrity, S.R., Rahn, T., Powers, H.H., Hanson,
703 D.T., Sevanto, S., Wong, S.C., McDowell, N.G., et al., 2018. Unsaturation of vapour pressure
704 inside leaves of two conifer species. *Scientific reports* 8, 7667.

705 Clapp, R., Hornberger, G., 1978. Empirical equations for some soil hydraulic properties. *Water
706 Resources Research* 14, 601–604.

707 Cochard, H., 1992. Vulnerability of several conifers to air embolism. *Tree physiology* 11, 73–83.

708 Cooper, D.J., Sanderson, J.S., Stannard, D.I., Groeneveld, D.P., 2006. Effects of long-term
709 water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte
710 community. *Journal of Hydrology* 325, 21–34.

711 Cowan, I., Farquhar, G., 1977. Stomatal function in relation to leaf metabolism and environment.
712 In: *Integration of activity in the higher plant. Symposia of the Society for Experimental
713 Biology. volume 31.* Cambridge University Press, Cambridge.

714 Crosbie, R.S., Doble, R.C., Turnadge, C., Taylor, A.R., 2019. Constraining the magnitude
715 and uncertainty of specific yield for use in the water table fluctuation method of estimating
716 recharge. *Water Resources Research* 55, 7343–7361.

717 Dawson, T.E., Burgess, S.S.O., Tu, K.P., Oliveira, R.S., Santiago, L.S., Fisher, J.B., Simonin,
718 K.A., Ambrose, A.R., 2007. Nighttime transpiration in woody plants from contrasting ecosys-
719 tems. *Tree Physiology* 27, 561–575.

720 Döll, P., Hoffmann-Dobrev, H., Portmann, F.T., Siebert, S., Eicker, A., Rodell, M., Strassberg,
721 G., Scanlon, B., 2012. Impact of water withdrawals from groundwater and surface water on
722 continental water storage variations. *Journal of Geodynamics* 59, 143–156.

723 Domec, J., Gartner, B., 2001. Cavitation and water storage capacity in bole xylem segments of
724 mature and young Douglas-fir trees. *Trees* 15, 204–214.

725 Domec, J., King, J.S., Noormets, A., Treasure, E., Gavazzi, M., Sun, G., McNulty, S., 2010.
726 Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net
727 ecosystem carbon exchange. *New Phytologist* 187, 171–183.

728 Domec, J.C., Ogée, J., Noormets, A., Jouangy, J., Gavazzi, M., Treasure, E., Sun, G., McNulty,
729 S.G., King, J.S., 2012a. Interactive effects of nocturnal transpiration and climate change on
730 the root hydraulic redistribution and carbon and water budgets of southern United States
731 pine plantations. *Tree Physiology* 32, 707–723.

732 Domec, J.C., Sun, G., Noormets, A., Gavazzi, M.J., Treasure, E.A., Cohen, E., Swenson, J.J.,
733 McNulty, S.G., King, J.S., 2012b. A comparison of three methods to estimate evapotran-
734 spiration in two contrasting loblolly pine plantations: age-related changes in water use and
735 drought sensitivity of evapotranspiration components. *Forest Science* 58, 497–512.

736 Domec, J.C., Warren, J., Meinzer, F., Brooks, J., Coulombe, R., 2004. Native root xylem
737 embolism and stomatal closure in stands of douglas-fir and ponderosa pine: mitigation by
738 hydraulic redistribution. *Oecologia* 141, 7–16.

739 Dusenge, M.E., Duarte, A.G., Way, D.A., 2019. Plant carbon metabolism and climate change:
740 elevated co₂ and temperature impacts on photosynthesis, photorespiration and respiration.
741 *New Phytologist* 221, 32–49.

742 Eamus, D., Froend, R., Loomes, R., Hose, G., Murray, B., 2006. A functional methodology for
743 determining the groundwater regime needed to maintain the health of groundwater-dependent
744 vegetation. *Australian Journal of Botany* 54, 97–114.

745 Fahle, M., Dietrich, O., 2014. Estimation of evapotranspiration using diurnal groundwater level
746 fluctuations: Comparison of different approaches with groundwater lysimeter data. *Water
747 Resources Research* 50, 273–286.

748 Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic
749 CO₂ assimilation in leaves of C₃ species. *Planta* 149, 78–90.

750 Feddes, R.A., Kowalik, P., Kolinska-Malinka, K., Zaradny, H., 1976. Simulation of field water
751 uptake by plants using a soil water dependent root extraction function. *Journal of Hydrology*
752 31, 13–26.

753 Finér, L., Messier, C., De Grandpré, L., 1997. Fine-root dynamics in mixed boreal conifer-
754 broad-leaved forest stands at different successional stages after fire. *Canadian Journal of
755 Forest Research* 27, 304–314.

756 Garcia, C.A., Huntington, J.M., Buto, S.G., Moreo, M.T., Smith, J., Andraski, B.J., 2015.
757 Groundwater Discharge by Evapotranspiration, Dixie Valley, West-central Nevada, March
758 2009–September 2011. US Department of the Interior, US Geological Survey.

759 García Suárez, F., Fulginiti, L.E., Perrin, R.K., 2019. What is the use value of irrigation water
760 from the high plains aquifer? *American Journal of Agricultural Economics* 101, 455–466.

761 Gardner, W., 1958. Some steady-state solutions of the unsaturated moisture flow equation with
762 application to evaporation from a water table. *Soil science* 85, 228–232.

763 Givnish, T.J., Vermeij, G.J., 1976. Sizes and shapes of liane leaves. *American Naturalist* 110,
764 743–778.

765 Gleeson, T., Cuthbert, M., Ferguson, G., Perrone, D., 2020. Global groundwater sustainability,
766 resources, and systems in the anthropocene. *Annual review of earth and planetary sciences*
767 48, 431–463.

768 Gou, S., Miller, G., 2014. A groundwater–soil–plant–atmosphere continuum approach for mod-
769 ellng water stress, uptake, and hydraulic redistribution in phreatophytic vegetation. *Ecohy-
770 drology* 7, 1029–1041.

771 Gou, S., Miller, G.R., Saville, C., Maxwell, R.M., Ferguson, I.M., 2018. Simulating groundwater
772 uptake and hydraulic redistribution by phreatophytes in a high-resolution, coupled subsurface-
773 land surface model. *Advances in Water Resources* 121, 245–262.

774 Grantz, D., 1990. Plant response to atmospheric humidity. *Plant, Cell and Environment* 13,
775 667–679.

776 Gribovszki, Z., 2018. Comparison of specific-yield estimates for calculating evapotranspiration
777 from diurnal groundwater-level fluctuations. *Hydrogeology Journal* 26, 869–880.

778 Gribovszki, Z., Kalicz, P., Szilágyi, J., Kucsara, M., 2008. Riparian zone evapotranspiration
779 estimation from diurnal groundwater level fluctuations. *Journal of Hydrology* 349, 6–17.

780 Grimaldi, S., Orellana, F., Daly, E., 2015. Modelling the effects of soil type and root distribution
781 on shallow groundwater resources. *Hydrological Processes* 29, 4457–4469.

782 Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. *Hydrogeology
783 journal* 10, 91–109.

784 Hernandez, J.O., 2022. Ecophysiological effects of groundwater drawdown on phreatophytes:
785 Research trends during the last three decades. *Land* 11, 2061.

786 Howard, A.R., Van Iersel, M.W., Richards, J.H., Donovan, L.A., 2009. Night-time transpiration
787 can decrease hydraulic redistribution. *Plant, Cell and Environment* 32, 1060–1070.

788 Hsieh, P.A., Wingle, W., Healy, R.W., 2000. VS2DI-A graphical software package for simulating
789 fluid flow and solute or energy transport in variably saturated porous media. Technical Report.
790 US Geological Survey.

791 Huang, C.W., Chu, C.R., Hsieh, C.I., Palmroth, S., Katul, G.G., 2015. Wind-induced leaf
792 transpiration. *Advances in Water Resources* 86, 240–255. doi:doi:10.1016/j.advwatres.
793 2015.10.009.

794 Huang, C.W., Domec, J.C., Palmroth, S., Pockman, W.T., Litvak, M.E., Katul, G.G., 2018.
795 Transport in a coordinated soil-root-xylem-phloem leaf system. *Advances in Water Resources
796* 119, 1–16.

797 Huang, C.W., Domec, J.C., Ward, E.J., Duman, T., Manoli, G., Parolari, A.J., Katul, G.G.,
798 2017. The effect of plant water storage on water fluxes within the coupled soil–plant system.
799 *New Phytologist* 213, 1093–1106. URL: <http://dx.doi.org/10.1111/nph.14273>, doi:10.
800 1111/nph.14273.

801 Hultine, K., Williams, D., Burgess, S., Keefer, T., 2003. Contrasting patterns of hydraulic
802 redistribution in three desert phreatophytes. *Oecologia* 135, 167–175.

803 IPCC, 2013. Climate change 2013: the physical science basis. *In: Stocker, T. F. and Qin, D.
804 and Plattner, G. K. and Tignor, M. and Allen, S. K. and Boschung, J. and Nauels, A. and
805 Xia, Y. and Bex, B. and Midgley, B. M. (Eds)*, Working Group I contribution to the Fifth
806 assessment report of the Intergovernmental Panel on Climate Change. Cambridge University
807 Press.

808 Jackson, R., Canadell, J., Ehleringer, J., Mooney, H., Sala, O., Schulze, E., 1996. A global
809 analysis of root distributions for terrestrial biomes. *Oecologia* 108, 389–411.

810 Jarrell, W., Virginia, R., 1990. Response of mesquite to nitrate and salinity in a simulated
811 phreatic environment: water use, dry matter and mineral nutrient accumulation. *Plant and
812 Soil* 125, 185–196.

813 Jiang, X.W., Sun, Z.C., Zhao, K.Y., Shi, F.S., Wan, L., Wang, X.S., Shi, Z.M., 2017. A
814 method for simultaneous estimation of groundwater evapotranspiration and inflow rates in
815 the discharge area using seasonal water table fluctuations. *Journal of hydrology* 548, 498–507.

816 Juang, J., Katul, G.G., Siqueira, M., Stoy, P., McCarthy, H., 2008. Investigating a hierar-
817 chy of eulerian closure models for scalar transfer inside forested canopies. *Boundary-Layer
818 Meteorology* 128, 1–32.

819 Katul, G.G., Oren, R., Manzoni, S., Higgins, C., Parlange, M.B., 2012. Evapotranspiration:
820 A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate
821 system. *Reviews of Geophysics* 50, RG3002. doi:10.1029/2011RG000366.

822 Katul, G.G., Palmroth, S., Oren, R., 2009. Leaf stomatal responses to vapour pressure deficit
823 under current and CO₂-enriched atmosphere explained by the economics of gas exchange.
824 Plant, cell and environment 32, 968–979.

825 Kavanagh, K., Bond, B., Aitken, S., Gartner, B., Knowe, S., 1999. Shoot and root vulnerability
826 to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiology 19, 31–37.

827 Kirschbaum, M.U., McMillan, A.M., 2018. Warming and elevated co 2 have opposing influences
828 on transpiration. which is more important? Current Forestry Reports 4, 51–71.

829 Koirala, S., Jung, M., Reichstein, M., de Graaf, I.E., Camps-Valls, G., Ichii, K., Papale, D.,
830 Ráduly, B., Schwalm, C.R., Tramontana, G., et al., 2017. Global distribution of groundwater-
831 vegetation spatial covariation. Geophysical Research Letters 44, 4134–4142.

832 Kollet, S.J., Maxwell, R.M., 2006. Integrated surface–groundwater flow modeling: A free-surface
833 overland flow boundary condition in a parallel groundwater flow model. Advances in Water
834 Resources 29, 945–958.

835 Kollet, S.J., Maxwell, R.M., 2008. Capturing the influence of groundwater dynamics on land
836 surface processes using an integrated, distributed watershed model. Water Resources Research
837 44.

838 Konrad, W., Roth-Nebelsick, A., Grein, M., 2008. Modelling of stomatal density response to
839 atmospheric CO₂. Journal of Theoretical Biology 253, 638–658.

840 Lacznak, R.J., DeMeo, G.A., Reiner, S.R., Smith, J., Nylund, W.E., 1999. Estimates of ground-
841 water discharge as determined from measurements of evapotranspiration, Ash Meadows Area,
842 Nye County, Nevada. Technical Report. Geological Survey, Las Vegas, NV (US).

843 Lafolie, F., Bruckler, L., Tardieu, F., 1991. Modeling root water potential and soil-root water
844 transport: I. Model presentation. Soil Science Society of America Journal 55, 1203–1212.

845 Laio, F., Tamea, S., Ridolfi, L., D'Odorico, P., Rodriguez-Iturbe, I., 2009. Ecohydrology of
846 groundwater-dependent ecosystems: 1. stochastic water table dynamics. Water Resources
847 Research 45.

848 Larcher, W., 2003. Physiological plant ecology: ecophysiology and stress physiology of functional
849 groups. Springer Science & Business Media.

850 Lautz, L.K., 2008. Estimating groundwater evapotranspiration rates using diurnal water-table
851 fluctuations in a semi-arid riparian zone. Hydrogeology Journal 16, 483–497.

852 Lendzion, J., Leuschner, C., 2008. Growth of european beech (*Fagus sylvatica* L.) saplings is
853 limited by elevated atmospheric vapour pressure deficits. Forest Ecology and Management
854 256, 648–655.

855 Loheide, S.P., Butler Jr, J.J., Gorelick, S.M., 2005. Estimation of groundwater consumption by
856 phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assess-
857 ment. Water resources research 41.

858 Lu, N., Likos, W., 2004. Rate of capillary rise in soil. Journal of geotechnical and Geoenviron-
859 mental engineering 130, 646–650.

860 Manoli, G., Bonetti, S., Domec, J.C., Putti, M., Katul, G., Marani, M., 2014. Tree root systems
861 competing for soil moisture in a 3D soil-plant model. Advances in Water Resources 66, 32–42.

862 Mansfield, T., Hetherington, A., Atkinson, C., 1990. Some current aspects of stomatal physiology. *Annual review of plant biology* 41, 55–75.

864 Manzoni, S., Katul, G., Porporato, A., 2014. A dynamical system perspective on plant hydraulic failure. *Water Resources Research* 50, 5170–5183.

866 Manzoni, S., Vico, G., Katul, G., Fay, P.A., Polley, W., Palmroth, S., Porporato, A., 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. *Functional Ecology* 25, 456–467.

869 Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B., Porporato, A., 2013a. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. *New Phytologist* 198, 169–178.

872 Manzoni, S., Vico, G., Palmroth, S., Porporato, A., Katul, G., 2013b. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. *Advances in Water Resources* 62, 90–105.

875 Manzoni, S., Vico, G., Porporato, A., Katul, G., 2013c. Biological constraints on water transport in the soil-plant-atmosphere system. *Advances in Water Resources* 51, 292–304.

877 Massman, W., Kaufmann, M., 1991. Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains. *Agricultural and Forest Meteorology* 54, 155–167.

880 Maxwell, R.M., Miller, N.L., 2005. Development of a coupled land surface and groundwater model. *Journal of Hydrometeorology* 6, 233–247.

882 McAdam, S.A., Brodribb, T.J., 2015. The evolution of mechanisms driving the stomatal response to vapor pressure deficit. *Plant Physiology* 167, 833–843.

884 McGuire, V.L., 2017. Water-level and recoverable water in storage changes, high plains aquifer, predevelopment to 2015 and 2013–15 .

886 Medlyn, B.E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P.C., Kirschbaum, M.U.F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., 2002. Temperature response of parameters of a biochemically based model of photosynthesis. II. a review of experimental data. *Plant, Cell and Environment* 25, 1167–1179.

890 Messinger, S.M., Buckley, T.N., Mott, K.A., 2006. Evidence for involvement of photosynthetic processes in the stomatal response to CO₂. *Plant Physiology* 140, 771–778.

892 Monteith, J., 1995. A reinterpretation of stomatal responses to humidity. *Plant, Cell and Environment* 18, 357–364.

894 Mooney, H.A., Gulmon, S., Rundel, P.W., Ehleringer, J., 1980. Further observations on the water relations of *prosopis tamarugo* of the northern atacama desert. *Oecologia* 44, 177–180.

896 Moreo, M.T., Andraski, B.J., Garcia, C.A., 2017. Groundwater discharge by evapotranspiration, flow of water in unsaturated soil, and stable isotope water sourcing in areas of sparse vegetation, Amargosa Desert, Nye County, Nevada. Technical Report. US Geological Survey.

899 Morison, J.I., 1998. Stomatal response to increased CO₂ concentration. *Journal of Experimental Botany* 49, 443–452.

901 Morison, J.I., Gifford, R.M., 1983. Stomatal sensitivity to carbon dioxide and humidity. A
902 comparison of two C3 and two C4 grass species. *Plant physiology* 71, 789–796.

903 Morris, B.L., Lawrence, A.R., Chilton, P., Adams, B., Calow, R.C., Klinck, B.A., 2003. Ground-
904 water and its susceptibility to degradation: a global assessment of the problem and options
905 for management. United Nations Environment Programme.

906 Mott, K.A., 1988. Do stomata respond to CO₂ concentrations other than intercellular? *Plant
907 Physiology* 86, 200–203.

908 Nachabe, M.H., 2002. Analytical expressions for transient specific yield and shallow water table
909 drainage. *Water resources research* 38, 11–1.

910 Naumburg, E., Mata-Gonzalez, R., Hunter, R.G., McLendon, T., Martin, D.W., 2005. Phreato-
911 phytic vegetation and groundwater fluctuations: a review of current research and application
912 of ecosystem response modeling with an emphasis on great basin vegetation. *Environmental
913 Management* 35, 726–740.

914 Neumann, R., Cardon, Z., 2012. The magnitude of hydraulic redistribution by plant roots: a
915 review and synthesis of empirical and modeling studies. *New Phytologist* 194, 337–352.

916 Nichols, W.D., 1993. Estimating discharge of shallow groundwater by transpiration from grease-
917 wood in the northern great basin. *Water Resources Research* 29, 2771–2778.

918 Nichols, W.D., 1994. Groundwater discharge by phreatophyte shrubs in the great basin as
919 related to depth to groundwater. *Water Resources Research* 30, 3265–3274.

920 Novick, K.A., Oren, R., Stoy, P.C., Siqueira, M.B.S., Katul, G.G., 2009. Nocturnal evapotran-
921 spiration in eddy covariance records from three colocated ecosystems in the Southeastern U.S.:
922 Implications for annual fluxes. *Agricultural and Forest Meteorology* 149, 1491–1504.

923 Orellana, F., Verma, P., Loheide, S.P., Daly, E., 2012. Monitoring and modeling water-vegetation
924 interactions in groundwater-dependent ecosystems. *Reviews of Geophysics* 50.

925 Oren, R., Sperry, J.S., Katul, G., Pataki, D.E., Ewers, B., Phillips, N., Schäfer, K., 1999. Survey
926 and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure
927 deficit. *Plant, Cell and Environment* 22, 1515–1526.

928 Phillips, N.G., Oren, R., Licata, J., Linder, S., 2004. Time series diagnosis of tree hydraulic
929 characteristics. *Tree Physiology* 24, 879–890.

930 Prieto, I., Armas, C., Pugnaire, F., 2012. Water release through plant roots: new insights into
931 its consequences at the plant and ecosystem level. *New Phytologist* 193, 830–841.

932 Prieto, I., Kikvidze, Z., Pugnaire, F., 2010. Hydraulic lift: soil processes and transpiration in
933 the mediterranean leguminous shrub *Retama sphaerocarpa* (L.) boiss. *Plant and Soil* 329,
934 447–456.

935 Rateb, A., Scanlon, B.R., Pool, D.R., Sun, A., Zhang, Z., Chen, J., Clark, B., Faunt, C.C.,
936 Haugh, C.J., Hill, M., et al., 2020. Comparison of groundwater storage changes from grace
937 satellites with monitoring and modeling of major us aquifers. *Water Resources Research* 56,
938 e2020WR027556.

939 Ridolfi, L., D'Odorico, P., Laio, F., Tamea, S., Rodriguez-Iturbe, I., 2008. Coupled stochastic
940 dynamics of water table and soil moisture in bare soil conditions. *Water resources research*
941 44.

942 Rodriguez-Iturbe, I., D'Odorico, P., Laio, F., Ridolfi, L., Tamea, S., 2007. Challenges in humid
943 land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and
944 vegetation. *Water Resources Research* 43.

945 Scanlon, B., Reedy, R., Gates, J., Gowda, P., 2010. Impact of agroecosystems on groundwater
946 resources in the central high plains, usa. *Agriculture, ecosystems & environment* 139, 700–713.

947 Scanlon, B.R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton,
948 R.Q., Jobbagy, E., Kebede, S., Kolusu, S.R., et al., 2023. Global water resources and the role
949 of groundwater in a resilient water future. *Nature Reviews Earth & Environment* 4, 87–101.

950 Scanlon, B.R., Jolly, I., Sophocleous, M., Zhang, L., 2007. Global impacts of conversions from
951 natural to agricultural ecosystems on water resources: Quantity versus quality. *Water re-
952 sources research* 43.

953 Scholz, F., Bucci, S., Goldstein, G., Moreira, M., Meinzer, F., Domec, J.C., Villalobos-Vega, R.,
954 Franco, A., Miralles-Wilhelm, F., 2008. Biophysical and life-history determinants of hydraulic
955 lift in Neotropical savanna trees. *Functional Ecology* 22, 773–786.

956 Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P., Portmann, F.T., 2010.
957 Groundwater use for irrigation—a global inventory. *Hydrology and earth system sciences* 14,
958 1863–1880.

959 Simunek, J., Van Genuchten, M.T., 1999. Manual of hydrus-2d computer program for simulation
960 water flow, heat and solute transport in variably saturated porous media. USDA, Riverside,
961 CA .

962 Siqueira, M., Katul, G., Porporato, A., 2008. Onset of water stress, hysteresis in plant con-
963 ductance, and hydraulic lift: scaling soil water dynamics from millimeters to meters. *Water
964 Resources Research* 44.

965 Soylu, M.E., Lengers, J.D., Istanbulluoglu, E., Loheide, S.P., 2012. On evapotranspiration and
966 shallow groundwater fluctuations: A fourier-based improvement to the white method. *Water
967 Resources Research* 48.

968 Todd, D.K., Mays, L.W., 2004. *Groundwater hydrology*. John Wiley & Sons.

969 UNESCO World Water Assessment Programme (WWAP), 2022. The United Nations World
970 Water Development Report 2022: Groundwater – Making the Invisible Visible. UNESCO,
971 Paris. URL: <https://www.unesco.org/reports/wwdr/2022>.

972 Vogel, T., Dohnal, M., Dusek, J., Votrubova, J., Tesar, M., 2013. Macroscopic modeling of plant
973 water uptake in a forest stand involving root-mediated soil water redistribution. *Vadose Zone
974 Journal* 12.

975 Volpe, V., Marani, M., Albertson, J.D., Katul, G.G., 2013. Root controls on water redistribution
976 and carbon uptake in the soil-plant system under current and future climate. *Advances in
977 Water Resources* 60, 110–120.

978 Wahlenberg, W.G., et al., 1960. Loblolly pine. its use, ecology, regeneration, protection, growth
979 and management. *Loblolly Pine. Its use, ecology, regeneration, protection, growth and man-
980 agement.* .

981 Wang, K.Y., Kellomaki, S., Laitinen, K., 1996. Acclimation of photosynthetic parameters in
982 Scots pine after three years exposure to elevated temperature and CO₂. *Agricultural and
983 Forest Meteorology* 82, 195–217. doi:Doi10.1016/0168-1923(96)02329-5.

984 Wang, P., Grinevsky, S.O., Pozdniakov, S.P., Yu, J., Dautova, D.S., Min, L., Du, C., Zhang, Y.,
985 2014. Application of the water table fluctuation method for estimating evapotranspiration at
986 two phreatophyte-dominated sites under hyper-arid environments. *Journal of Hydrology* 519,
987 2289–2300.

988 Wang, T., Wu, Z., Wang, P., Wu, T., Zhang, Y., Yin, J., Yu, J., Wang, H., Guan, X., Xu, H.,
989 et al., 2023. Plant-groundwater interactions in drylands: A review of current research and
990 future perspectives. *Agricultural and Forest Meteorology* 341, 109636.

991 Wang, T.Y., Wang, P., Wang, Z.L., Niu, G.Y., Yu, J.J., Ma, N., Wu, Z.N., Pozdniakov, S.P.,
992 Yan, D.H., 2021. Drought adaptability of phreatophytes: insight from vertical root distribu-
993 tion in drylands of china. *Journal of Plant Ecology* 14, 1128–1142.

994 Wang, X., Tang, C., Guppy, C., Sale, P.W.G., 2009. The role of hydraulic lift and subsoil P
995 placement in P uptake of cotton (*Gossypium hirsutum* L.). *Plant and Soil* 325, 263–275.

996 Warren, J.M., Meinzer, F.C., Brooks, J.R., Domec, J.C., Coulombe, R., 2007. Hydraulic redis-
997 tribution of soil water in two old-growth coniferous forests: Quantifying patterns and controls.
998 *New Phytologist* 173, 753–765.

999 White, W.N., 1932. A method of estimating ground-water supplies based on discharge by plants
1000 and evaporation from soil: Results of investigations in Escalante Valley, Utah. volume 659.
1001 US Government Printing Office.

1002 Wong, S.C., Canny, M.J., Holloway-Phillips, M., Stuart-Williams, H., Cernusak, L.A., Márquez,
1003 D.A., Farquhar, G.D., 2022. Humidity gradients in the air spaces of leaves. *Nature Plants* 8,
1004 971–978.

1005 Wullschleger, S.D., 1993. Biochemical limitations to carbon assimilation in C₃ plants-a retro-
1006 spective analysis of the A/C_i curves from 109 species. *Journal of Experimental Botany* 44,
1007 907–920.

1008 Yin, L., Zhou, Y., Ge, S., Wen, D., Zhang, E., Dong, J., 2013. Comparison and modification
1009 of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in
1010 arid and semiarid regions. *Journal of hydrology* 496, 9–16.

1011 Yoder, C.K., Nowak, R.S., 1999. Hydraulic lift among native plant species in the Mojave Desert.
1012 *Plant and Soil* 215, 93–102.

1013 Zhang, K., Zhu, G., Ma, N., Chen, H., Shang, S., 2022. Improvement of evapotranspiration simu-
1014 lation in a physically based ecohydrological model for the groundwater–soil–plant–atmosphere
1015 continuum. *Journal of Hydrology* 613, 128440.

1016 Zhu, G., Zhang, K., Chen, H., Wang, Y., Su, Y., Zhang, Y., Ma, J., 2019. Development and eval-
1017 uation of a simple hydrologically based model for terrestrial evapotranspiration simulations.
1018 *Journal of hydrology* 577, 123928.

1019 Zhu, J., Young, M., Healey, J., Jasoni, R., Osterberg, J., 2011. Interference of river level changes
1020 on riparian zone evapotranspiration estimates from diurnal groundwater level fluctuations.
1021 *Journal of Hydrology* 403, 381–389.