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Abstract—Human-robot collaboration (HRC) is the paradigm
of humans and robots working synergistically in a shared
workspace toward common goals. Prior research models such
collaborative scenarios as multiagent systems composed of a fixed
number of agents. Such models where the number and type of
agents remain constant throughout, are termed closed systems.
Conversely, a human-robot collaborative where the team size
dynamically changes during the task is called an open HRC
system (OHRCS). OHRCS allows for a realistic representation of
human-robot collaboration by allowing agents to join or leave the
task as needed. In this paper, we posit that many real-world HRC
scenarios are better modeled as OHRCS. We present our vision
of OHRC, present potential applications, examine the benefits of
openness in HRC, and provide some avenues for future research.

Index Terms—Human-robot collaboration, agent-openness,
multiagent systems

I. INTRODUCTION

Collaboration plays a crucial role in the success of human
endeavors. As robots become an integral part of human
society, they need to work hand-in-hand with human teams
to contribute effectively. However, accomplished human teams
employ a variety of techniques for enhanced coordination and
collaboration [1]. In order for humans and robots to collaborate
in a shared workspace, all agents must factor in the behavior
of the other(s) during decision-making. This scenario naturally
lends itself to a multiagent system [2] that can be used to
model and learn behavioral policies.

This paper focuses on multiagent systems involving flexible
collaboration between humans and robots. Previous work on
human-robot collaboration (HRC) often assumes a predeter-
mined and unchanging set of agents throughout the task.
However, in certain scenarios, collaborative efficiency could
be enhanced if the human joins in when needed and exits
upon completing their role in the task. For example, envision
a factory floor setup (see Fig. 1) where a collaborative robot
begins assembling a part; upon reaching a stage that requires
human assistance, signals for help through an alarm, or a
flashing light. The human factory worker arrives, assists the
robot with the collaborative subtask, and leaves to attend to
other tasks. We term such a system, where human or robotic
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Fig. 1: Open HRC - Illustration of a factory floor scenario
where a collaborative robot and a human operator are working
on two different tasks independently. The robot reaches a
point where it requires human assistance, signals, and calls a
human operator. The human operator arrives, assists the robot
in completing the collaborative subtask, and then leaves to
attend to other tasks.

agents can enter and exit the task as needed, an open HRC
(OHRC) system [3]. Observe that OHRC manifests a form of
open agent systems [4] through its ability to allow agents to
join or depart as needed. Open agent systems literature terms
this artifact as agent openness (AO). A noteworthy feature of
OHRC is that while the human is absent from the environment,
the robot could switch to industrial mode of operation, thereby
working at its maximum speed to optimize throughput, and
switching back to collaborative mode when the human enters
to safely team-up with them. This combines the speed of an
industrial robot, the safety and agility of a collaborative robot,
and the dexterity of a human, to enhance HRC competency.

A related paradigm that discusses flexible synergy is ad
hoc teamwork [5, 6]. However, an important distinction is that
ad hoc teamwork deals with real-time adaptation to unknown
teammates without prior coordination while OHRC focuses on
collaboration within an open environment with dynamically



changing teams. We begin by positioning OHRCS in the
context of related settings. These include viewing HRC as
a classic multiagent system and comparing and contrasting
OHRC with the related paradigm of ad hoc teamwork [5].
Since OHRC manifests open agent systems [4], we review
recent approaches for modeling and acting optimally in such
systems under agent openness. Next, we introduce human-
robot task domains where agent openness organically man-
ifests in collaboration. These motivating domains illustrate
several modeling-, behavioral-, and implementation-centric
challenges OHRC presents. Toward this, we describe these
challenges and propose potential solution approaches, aiming
to inspire future research endeavors.

II. RELATED PROBLEMS

In this section, we provide a concise overview of various
pertinent issues, previous endeavors aimed at addressing them,
and their associated constraints. We begin by examining stud-
ies that have formulated HRC as a multiagent system, along
with the models they have employed for this purpose. Subse-
quently, we delve into the concept of ad hoc teamwork, which
operates without assuming prior coordination or knowledge of
agent types. We then explore open agent systems, where team
members dynamically join and depart tasks, while goals may
evolve. Finally, we analyze why prevailing methodologies and
their adopted models are inadequately suited for OHRCS. This
paper aims to summarize the limitations of current approaches
in addressing OHRCS challenges; we refer the reader to
surveys on HRC [17], ad hoc teamwork [5], and open agent
systems [4] for a more comprehensive review of the topics.

A. Human-Robot Collaboration as Multiagent Systems

The primary aim of HRC is to develop systems that ef-
ficiently avail the combined strengths of human and robotic
agents. Robots are assigned tasks that are repetitive or phys-
ically demanding, enabling humans to focus on activities
requiring cognitive and dexterous skills. Achieving effective
collaboration in shared workspaces necessitates both human
and robotic agents to respond appropriately to each other’s
actions and environmental changes.

The selection of a suitable multiagent decision-making
model depends on the agents’ natures and objectives. For in-
stance, in scenarios where agents are competitive, the task can
be framed as a Markov game, with an equilibrium condition
ensuring the best strategy profile [18]. Conversely, if agents are
collaborative and possess complete knowledge of one another,
a fully centralized framework like multiagent MDP (MMDP)
can be employed. Alternatively, one might consider the human
agent(s)’ actions as impacting only the transition dynamics,
allowing them to be marginalized; in such cases, a single-
agent MDP suffices to learn just the robot’s behavior.

In their exploration of HRC tasks, Nikolaidis et al. 2012 [19]
and Chen et al. 2020 [20] model their HRC tasks as a
single-agent partially observable MDP (POMDP) [21]. While
Nikolaidis et al. 2015 [22] and 2017 [23] consider slightly
simpler cases where only portions of the world state are

partially observable and adopt a mixed-observability MDP
(MOMDP) [24] to model the task. Conversely, Nikolaidis
et al. 2017 [25] model their task as a two-player Markov
game, where the human adapts their behavior with evolving
expectations of the robot’s capabilities. Alternatively, Unhelkar
et al. 2020 [26] and Seo et al. 2022 [27] split their HRI
scenario into an agent model and a task model, where the
task model - MMDP, captures the task attributes and the agent
Markov model, the mental states of the other agent.

A recent approach by Wang et al. 2022 [28] and Van
der Spa et al. 2024 [29] model a simulated HRC handover
and combined manipulation task using an MMDP and use
inverse learning methods [30, 31] to learn collaborative joint
policies. Along the same lines, recent works by Yuan et
al. 2022 [32] and Jiang et al. 2024 [33] use a variational
inference to discover a latent strategy of the human teammate
for enhanced collaboration, and represent their task as a
decentralized scenario. Sengadu et al. 2023 [34] models their
HRC scenarios as a Dec-MDP [35] where the human and robot
are each aware of their own local state and some task attributes
only. A vector of policies (one for each agent) is learned and
the robot policy is tested on a simulated patient assistance
task [36] and a realistic collaborative produce sorting task [37].
While all these previous works solve key problems in HRC,
notice that they all use closed models to represent their HRC
scenarios and hence are unsuitable for OHRCS.

B. Ad Hoc Teamwork

A line of work that aims to address ad hoc teamwork [6]
makes related contributions. Mirsky et al. 2022 [5] defines ad
hoc teamwork as “To create an autonomous agent that is able
to efficiently and robustly collaborate with previously unknown
teammates on tasks to which they are all individually capable
of contributing as team members”. While research into ad
hoc teamwork has made great strides in the past decade, one
key difference between such teamwork and OHRC is that
the latter focuses on agents learning to collaborate within
an open, dynamically changing team that allows both human
and robotic agents to enter and exit the task as needed. For
example, the task may begin as a dyadic human-robot team
but evolve to engage more humans or vice versa. Therefore,
OHRC expands the scope of ad hoc teamwork to settings
where agents can join or leave the system while the task is
ongoing. As such, the decision-making complexity of OHRC
is considerably higher than that of ad-hoc teamwork, as we
will see in the upcoming sections.

C. Open Agent Systems

Multiagent systems with the additional relaxation of open-
ness introduce several new challenges since each agent must
now also account for: agents that have entered or exited
presently - agent openness (AO), type of agents that departed
or joined in - type openness (TO), and any changes in goals -
task openness (TaO). While prior research in multiagent sys-
tems has achieved broad success within closed systems, most
real-world domains tend to be open [4]. Hence, developing



TABLE I: Table summarizing prior works in Open Agent Systems along multiple aspects. Terminology used: Ad Hoc - working
with previously unseen teammates; Planned-CoOp - collaborating with known teammates towards a common goal; Self-interest
- optimizing agent-specific cumulative return; AO- Agent Openness, TaO - Task Openness, TO - Type Openness.

Method/Paper AO TaO TO Experiment type Task nature Key contribution
Simao et al. 2001 [7] v v X N/A Planned-CoOp Social reasoning framework
Jumadinova et al. 2013 [8] v v X Sim Ad Hoc Teacher-learner framework
Chen et al. 2015 [9] v v X Sim Ad Hoc Flexible ad hoc framework
Open-Dec-POMDP [10] v X X Sim Planned-CoOp Open agent collab model
I-PBVI [11] v X v Sim Self-Interest Posthoc & predictive planning
I-POMCP [12] v 4 X Sim Self-Interest Scalable planning framework
CI-POMCP-PF [13] v v X Sim Self-Interest Planning with communication
LIA2C [14] v v X Sim Self-Interest DTDE-MARL for open systems
GPL-SPI [15] v X X Sim Ad Hoc Graph RL for open systems
Fastap [16] X X v Sim Planned-CoOp  MARL for fast policy adaptation

sophisticated methods to model openness becomes crucial,
especially when considering realistic domains such as HRC.

Each agent may only have limited information at every
timestep regarding goals, active agents, their types, abilities,
and level of openness. Therefore, the first challenge becomes
modeling the task appropriately to capture such uncertain-
ties. One of the earliest works in the field, Simao et al.
2001 [7], addresses the concept of agent openness from a
social reasoning perspective that enables an agent to reason
about others when the agents’ organization is not available a
priori. They hypothesize that such a mechanism can be used
both as a basis for coalition and decision-making to adapt
to dynamic changes. On the other hand, Jumadinova et al.
2013 [8] consider distributed collaboration among multiple
agents with both TaO and AO. They use a teacher-learner
framework to decide what capabilities to learn from the other
agents and validate their model using a simulated agent-based
modeling tool [38]. They conclude that agents learning all
capabilities, regardless of usefulness, outperform others.

The work by Chen et al. 2015 [9] considers two types of
openness - AO and TaO, to ascertain how they contribute to
learning in an ad hoc setting. They assume that all agents know
the level of AO and TaO and perform simulated experiments
where agents can bid on tasks based on their knowledge level.
The authors conclude that while TaO makes it harder for
the agents to solve the tasks, AO improves the performance,
as newer agents could bring additional capabilities to help
solve the tasks. Cohen et al. 2017 [10] provide a modified
Dec-POMDP framework [35] that can be applied to open
systems by factoring in the coalition model during decision-
making. They use an offline best-response algorithm and
Monte Carlo tree search (MCTS) [39] to plan appropriate
actions under different coalitions. They validate their model
using a simulated urban firefighting domain where new agents
are called in to extinguish fires within a grid. However, in
their coalition transition model, agents make the decision to
transition to a new coalition solely based on the previous
coalition, which is unrealistic. Additionally, the methods used
for planning such as the best-response algorithm and MCTS
do not scale well to real-world domains.

Using an [IPOMDP-Lite framework, Hoang et al. 2013 [40]

and Chandrasekaran et al. 2016 [11] model an open system,
and use an agent interaction graph for post hoc reasoning. They
validate their model on the simulated wildfire-suppression do-
main and compare their learned policies with heuristic-based,
and random policies. Eck et al. 2020 [12] extend this method
to be more scalable by selectively modeling the neighboring
agents and providing theoretical bounds for the same using
regret analysis. They consider more complex scenarios of the
wildfire-suppression domain and compare their learned policy
with heuristics-based policies.

A novel model called CI-POMDP, proposed by Kakarlapudi
et al. 2022 [13], improves upon the [POMDP-Lite framework
by introducing communication between agents. They posit that
by communicating, agents can better navigate the challenges
of an open system. They use the wildfire-suppression domain
to validate their claims, compare various levels of commu-
nication, and analyze corresponding costs. Recent work by
He et al. 2023 [14] uses a multiagent reinforcement learning
(MARL) paradigm called decentralized training, decentralized
execution (DTDE) policy gradient method with an underlying
I-POMDP model to solve a simulated open-organization prob-
lem where employees can join or quit their jobs at any point.
They propose a novel method to factor partial-observability in
open agent systems. Finally, in most recent works Rahman et
al. 2023 [15] and Zhang et al. 2023 [16] use multiagent RL to
address the complexities of openness. The former proposes a
partially observable open stochastic Bayesian game to model
AO and uses a graph-based policy learning approach to
learn RL policies. The latter studies decision-making through
multiagent RL when other agents’ policies abruptly change
during the task; which could be considered TO. Both works
evaluate their method on simulated toy domains like Level-
based Foraging, WorldPack, and PredatorPrey.

Some common denominators (as summarized in Table I)
that can be considered limitations of the aforementioned
prior works are that they evaluate their methods on small,
simulated, toy domains like the urban firefighting or the open-
organization domain, and largely do not provide theoretical or
empirical analysis of convergence, regret, scalability, or sam-
ple complexity (when applicable). Methods using IPOMDPs
or Game Theory approaches do not apply to OHRCS since



they typically model competitive or self-interested scenarios.

Finally, OHRC aims to learn a human-centric solution that
prioritizes the human agent’s time and energy. Therefore, it
is essential to demonstrate the effectiveness of the proposed
methods on a physical system such as a robot in pragmatic
settings, to ascertain their applicability to OHRC. Considering
these factors, existing techniques may not be directly usable
in OHRC, although they address similar concepts.

III. OPEN HUMAN-ROBOT COLLABORATIONS

Open HRC (OHRC) refers to the paradigm of modeling
HRC with agent openness (AO), where agents (human and
robotic) can join or leave the task at any point. In this paper,
we only analyze AO, however, certain HRC scenarios may
manifest type openness (TO) and task openness (TaO) as well.
In OHRC, new agents join the task either when called in by a
currently active agent or of their own volition, and any agent
can choose to leave the task at any point. To explicate this,
we start by classifying OHRC broadly into two categories:

« Collaboration-for-efficiency (CE): Whereas tasks can be
completed by the robotic agent alone, collaborating with
human(s) could improve task efficiency. An example of
CE would be tasks like line-sorting and packing [34],
where both precision and recall need to be maximized.

« Collaboration-due-to-requirement (CR): This pertains
to tasks that contain subtasks that a robotic agent cannot
complete alone. An example of CR would be when the
task involves highly dexterous manipulation or when the
subtask requires multiple agents collaborating simultane-
ously to complete (see Fig. 2b).

These two categories will be illustrated in the context of each
domain of interest in the following sections.

A. Use-Inspired Domains for Motivation

In order to tether the concepts of OHRCS to realistic exam-
ples, we provide two motivating domains: Collaborative robots
in manufacturing, and assistive robotics. In both domains, we
discuss cases where CE and CR may be applicable and how
they can be addressed.

1) Collaborative Robots in Manufacturing: Consider the
task of collaborative furniture assembly [3] as shown in
Fig. 2a. The goal of this task is to assemble a table consisting
of multiple parts: base, leg-supportl, leg-support2, legl, leg2,
two screws for each leg-support to connect them to the base,
and two screws for each leg to screw them into their respective
supports, as shown in Fig. 2c. The task can be completed in
multiple valid orders. For instance, one may position both leg-
supports on the base and screw them in before positioning their
corresponding legs and screwing the legs into their respective
supports. Alternatively, one may position leg-supportl, screw
it into the base, place the legl, screw it into the leg-supportl,
and analogously repeat the sequence for the other parts to
complete the assembly. Notice that the simple positioning
actions can be done independently by the robot, while the
screwing action requires the assistance of a human.
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Fig. 2: A wooden table assembly task involving placing and
screwing actions. (a) The assembled table. (b) The human
screws one of the legs in while the robot holds it in place.
(c) The base, supports and screws, and legs of the table.

¢ CE: In this furniture assembly example, the robot can
independently position all the parts on the base at their
respective locations. However, if a human is present
in the environment, they can assemble parts in paral-
lel, thus completing the positioning sooner. Nonetheless,
availing a human’s help for trivial positioning tasks is
an ineffective use of their time and energy. Therefore,
it is imperative to optimize the available resources to
enhance task efficiency while minimizing human effort.
Only if the task is time-sensitive or safety-critical can the
robot engage the human’s services from the beginning to
speedily complete it.

o CR: Once the positioning of the supports is complete,
the supports need to be screwed into the base before
assembling the legs of the table. This screwing subtask
requires dexterous manipulation and another agent to
hold the part aligned with the screw holes. Even if the
robot could screw in the part, since the part requires
another hand to hold it in place, collaborating with a
human is crucial. However, as mentioned before, since the
assembly can be performed in multiple orders, the robot,
in addition to learning the optimal method to assemble
the parts, needs to learn when to call the human for help,
and how to collaborate with them.

e Other complexities: Since human agents have limited
time and energy, they may decide to leave after com-
pleting a subtask to focus on other tasks. Specifically, in
the furniture assembly case, if the robot calls the human
after positioning the first support, the human may arrive
to assist with screwing the support in but may leave after
that. In that case, the robot must call the human again



after placing the second support. Alternatively, the human
may position the first leg alongside its support while
the robot positions the second support. Since these sub-
tasks may take different durations, if one agent finishes
their subtask sooner and needs assistance, the other may
choose to complete their current subtask before assisting
them or disregard their current subtask and assist them
immediately. Lastly, there may be a case where the human
is forced to wait a few timesteps due to the unavailability
of valid subtasks; leaving and rejoining at that point may
be inefficient. For example, consider the case where the
only subtasks left are positioning and screwing the last
leg in place. Until the robot positions the leg, the human
cannot screw it in, and exiting at this point only to rejoin
shortly after may not be worthwhile.

2) Assistive Robotics: With the recent advances in robotics,
assistive robots have become an increasingly necessary tool to
provide care and assistance to the elderly and people with
motor impairments. An assistive robot may aid them in daily
activities such as bed-bathing, itch-scratching, feeding, etc., as
shown in Fig. 3. As such, usually, one robot interacts with the
subject to aid them; however, certain subtasks, such as bed-
bathing, may require collaboration with additional agents to
be accomplished. For example, to assist a patient in bathing,
the robot may need to stand them up or turn them over and
may require a hand on either side to lift them and turn them
around. Evidently, this is an OHRC, and modeling it as a
closed system may diminish the quality of patient care.

Fig. 3: Illustration of a few assistive tasks that could be
performed by a collaborative robot such as itch-scratching,
changing, feeding, bed-bathing, etc. Image credit: Assistive
Gym [36].

e CE: In certain cases, multiple subtasks could be per-
formed in parallel to enhance assistance, for example, the
person could be feeling cold while the robot is engaged
in feeding them. In this case, the robot could either stop
feeding them to cover them with a blanket or finish
feeding them before covering them with a blanket. Since
these subtasks could be completed in parallel with another
agent on the scene, a new agent (human or robotic) could
arrive, cover the subject with a blanket, and then leave to
attend to other tasks.

o CR: Alternatively, the robot could accomplish all other
tasks on its own but when it reaches the bed-bathing

scenario, as mentioned before, the subject may need to be
held on both sides and flipped over. In this case, the robot
may call another human or robot for assistance. Once the
subject has bathed, the new agent could leave to attend
to other tasks.

B. Novel Challenges of OHRC

In order to systematically characterize the challenges in
OHRC, we classify them into three overarching categories:

1) Modeling challenges: The first important challenge to
address in OHRCS is establishing an efficient way to
model openness in HRC. Since HRC by definition is
collaborative, typically the model has a single reward
function designed toward the common goal. However,
since the agents involved in HRC cannot perfectly ob-
serve all the attributes of the other agents (for example,
human joint angles), the model has to support a decen-
tralized execution approach. Models such as decentral-
ized Markov decision processes (Dec-MDP) [35] can be
extended to model agent openness. The global state and
global action at a given timestep can be formed using
the pooled states and pooled actions of the agents active
at that timestep, thus incorporating openness. This would
require the learning paradigm to accept inputs of states
and actions that vary in size at every timestep based
on the currently active agents. This global state, global
action, and a common reward function can be used for
training, to obtain decentralized policies (one for each
agent that participated in the task during training). These
decentralized policies would map the agent’s local state
to their local action and factor in the current team of that
agent, to learn the appropriate action mapping.

Certain modeling challenges of HRC may also manifest
in OHRC, such as designing an appropriate reward func-
tion. However, this becomes more challenging in OHRC
since multiple combinations of teams may accomplish
the task similarly. Additionally, AO may be stochastic,
where the agent may enter and exit the task with a
certain probability, further increasing the decision-making
complexity. Different confounding factors like sensor
noise may render determining the presence or absence
of a human uncertain.

Finally, a critical challenge in navigating a shared
workspace is recognizing and correctly modeling the
necessary interactions. For instance, in the furniture as-
sembly domain, the screwing subtask requires the robot to
hold the part in place while the human screws it in. Such
interactions can be termed necessary interactions. On the
contrary, if both the robot and human are positioning
parts in parallel and both agents try to position a part
at the same location simultaneously, these can be termed
as adverse interactions.

OHRC further complicates such interactions due to agent
openness. The robot needs to factor in the human’s
presence or absence first and then decide on a strategy
to navigate potential interactions. Therefore, designing a



model that can appropriately handle the challenges and
complexities of OHRC is an avenue for future research.

2) Behavioral challenges: Learning behavioral policies for
agents involved in OHRC is an ambitious task. These
agent policies have to account for: the currently active
agents in the environment, actively collaborating agents,
when new agents are needed, and when the current
agent(s) must exit the task. A popular approach used
in multiagent reinforcement learning [41] is centralized
training and decentralized execution, which could be
extended to consider agent-openness, to learn OHRC
policies. Additional factors such as partial observability
and stochasticity may complicate behavioral policy learn-
ing by providing noisy and uncertain feedback about the
currently active agents and the environment.
Agent-based modeling techniques [26, 42, 43], Theory of
Mind [44, 45] or Prospect Theory [46] could be incorpo-
rated to learn the entry and exit pattern of an agent, based
on prior experience, their current energy level, level of
rationality, etc. Such latent decision-making factors may
also manifest in other forms of openness, such as task-
openness (TaO) or type-openness (TO). For example, the
human, upon joining the task may decide to focus on a
different subtask than the one initially intended. The robot
must be capable of recognizing and adapting to such TaO.
Furthermore, humans may modify their behavior mid-task
by, say, becoming less collaborative due to fatigue, and
such TO must be handled by the robot’s policy.

3) Implementation challenges: While all the modeling
and learning challenges are quite complex, implementing
learned policies in the real world and achieving seamless
collaboration in OHRC may be the most challenging of
all. Depending on the robot and the task itself, several
unforeseen challenges may arise. For example, physical
limitations such as dynamic environmental occlusions or
abruptly malfunctioning sensors may make it difficult
to assess the presence of a particular agent, further
complicating the decision to call a new agent.
Furthermore, due to limited signal strength or environ-
mental distractions, agents may not receive the call to
join the task (say a loud machine on the factory floor
prevents the human from noticing the robot’s call for
help). Humans may also decide to abruptly exit the
task due to an emergency, or their shift ending, which
may throw off the learned policy since it may not have
happened during training. Sensing such abnormalities and
adapting accordingly is one of the major implementation
challenges. A data-driven model that learns from human-
human team experiences (e.g. inverse learning meth-
ods [47, 48]) combined with feedback-based improve-
ment (such as active learning [49] or using clarification
requests [50]) could mitigate such difficulties.

IV. CONCLUDING REMARKS AND FUTURE WORK

Navigating the multifaceted challenges of OHRC and trans-
lating its principles into practical applications underscores

the necessity of addressing these challenges. While achieving
seamless OHRC may prove challenging, integrating agent-
openness shows promise in unlocking a plethora of appli-
cations for effective human-robot collaboration. By enabling
agents to enter and exit the system as needed, OHRC not only
enhances collaboration but also empowers humans to engage
in multiple tasks simultaneously. By combining an industrial
robot’s expeditiousness, with a collaborative robot’s safety and
agility, and a human’s dexterity, OHRC nurtures a symbiotic
relationship that dynamically adapts to evolving demands.

A. Future work

As the first work that discusses agent-openness from a
HRC perspective, we assert that most real-world HRC do-
mains ought to be modeled as OHRC to capture the richness
and flexibility of real-world collaborations. By systematically
addressing the challenges presented, the potential of OHRC
to revolutionize industries such as manufacturing, healthcare,
and service robotics can be fully realized. Future research must
focus on refining the protocols that govern OHRCS, ensuring
robustness and efficiency. We expect that by empirically and
theoretically analyzing the complexity and effectiveness of
OHRC compared to HRC, future works will bolster our claim
and move towards open collaboration. Ultimately, our work
aims to inspire further exploration and innovation, setting a
foundation for a new era of human-robot collaboration that is
as flexible and dynamic as the challenges it seeks to overcome.
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