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Abstract: If biomanufacturing can become a sustainable route for producing chemicals, it will
provide a critical step in reducing greenhouse gas emissions to fight climate change. However,
efforts to industrialize microbial synthesis of chemicals have met with varied success — in part due
to challenges in translating laboratory successes to industrial scales. With particular focus on
Escherichia coli, this review examines the lessons learned when studying microbial physiology
and metabolism under conditions that simulate large-scale bioreactors and methods to minimize
cellular waste through reduction of maintenance energy, optimizing the stress response, and
minimizing culture heterogeneity. With general strategies to overcome these challenges,
biomanufacturing process scale-up could be de-risked and potentially reduce the time and cost of

bringing promising syntheses to market.
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Scaling the Bioeconomy

The natural world synthesizes an impressive array of chemical structures that can be used as
medicines, solvents, materials, and fuels [1-3]. Advances in synthetic biology have dramatically
reduced the cost of DNA synthesis and expanded capability to construct vectors in high
throughput. These tools allow researchers to rapidly test metabolic engineering strategies [4] — to
the point that, with a concerted effort, almost any molecule can be synthesized in small
concentrations at laboratory scale [5]. To tackle global challenges such as climate change, focus
must now turn to translating this synthesis potential to industrial scales such that sustainable
alternatives to the modern petrochemical industry can be established [6]. Biomanufacturing, the
use of biotechnology to synthesize chemical products, has been demonstrated on industrial scales
for high-value products (e.g., therapeutic proteins, enzymes, and antibiotics) and low-value
commodities (e.g., ethanol, lactic acid, amino acids, and sweeteners) [7], but efforts to
commercialize many other attractive products have failed [8]. Scale-up, the process of translating
laboratory processes (<10 1) to commercial-sized volumes (>100,000 1), is commonly regarded as
a major risk for new bioprocesses in development [9]. To succeed at scale, a biocatalyst must
support conversions that approach theoretical yields (to minimize feedstock costs), thrive in the
presence of toxins (including desired products), reliably progress through the seed train without
losing productivity, and overcome environmental heterogeneities that are easily avoided in
laboratory-scale reactors. Notably, scale-up failure does not necessarily consider the entire
breakdown of microbial performance in large-scale. Instead, economic failures often occur that
render original break-even points non-realistic. Some examples include smaller production
volumes required to prevent intensive foaming, reduced final product titers, and increased by-

product concentrations that challenge downstream processing. Each of these issues can be studied
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on an industrial scale, but large-scale experiments are rare due to costs and access to appropriate
equipment. Instead, researchers use specialized equipment and/or combinations of experiments to
simulate, as closely as possible, industrial scale conditions in a laboratory environment. These
experiments help reduce the risks associated with developing novel processes. This review
summarizes what has been learned from studying and engineering industrial microbes grown under
conditions that simulate large-scale environments. We review methodologies for industrial strain
design considering how cells respond to simulated industrial stresses and strategies to minimize
culture heterogeneity. For simplicity, this review will focus on examples from the Gram-negative
bacteria Escherichia coli, however the methodologies discussed here can be used to study other

biomanufacturing hosts.

The Challenges of Bioprocess Engineering at Scale

The challenges facing industrial cultivation can be separated into three types of limitations,
physical, chemical, and biological. Physical limitations stem from the inability to match the
characteristic mixing times of laboratory reactors without enormous power inputs at industrial
scale. Chemical limitations result from changes in nutrient sources such as water or carbon that
may differ when a process is scaled. Finally biological limitations signify the cellular response to
both physical and chemical limitations but also the effects of industrially specific cultivations such
as seed train growth, which increase the number of cell generations before production. Due to its
accessibility, academic research has primarily focused on the physical limitations of increased
mixing time. The effects of which are microenvironmental gradients in chemical composition
(nutrients, media sterilization, pH, aeration) and physical properties (temperature variation, shear),
which impact the biological performance (growth rate, uptake rate, productivity, viability, stress

response) of the cells being cultured [10]. It should be noted that this review focuses on bioreactor
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specific challenges, but chemical and physical challenges can additionally affect processes before
and after the bioreactor culture (e.g., media sterilization and product isolation). The
inhomogeneous environment in bioreactor cultivations leads to heterogeneity in strain behavior,
often with poorer performance from cells transiently passing through non-ideal conditions. The
reduced performance can be attributed to direct impacts of the stressful environments and to
inefficient resource allocation, i.e., where cells use feedstock for unwanted activities instead of
maximizing product synthesis [9]. It is the task of the metabolic engineer to design cells that

optimize resource allocation while maintaining stable cultures that grow reliably.

Resource allocation has been modeled at genome scale [11,12], but perhaps is more easily
illustrated by simple equations such as the Pirt model of substrate utilization. Here, substrate
consumption is separated into three categories: substrate for making new cells, substrate for
making product, and substrate for driving cellular systems and functions (i.e., maintenance energy)
(Figure 1) [13]. Metabolic engineers spend most of their time designing pathways that maximize

a.

specific productivity, gp, and specific yield of product (YP"/‘SX). They do so by identifying the
highest yielding biochemical pathways [14], bioprospecting or engineering enzymes to have high
specific activity [15], balancing enzyme activity across a pathway [16,17], and providing the
correct supply of ATP and required cofactors [18]. Biochemical engineers then design cultivation

strategies (e.g., fed-batch) that often consist of a “growth” phase to build up biomass followed by

a secondary “production” phase for product accumulation. Maximum specific yields of product
. . . 1 .
are achieved when the fractions of substrate used for biomass (W u) and maintenance (my).are
Xs

minimized. To maintain cell growth within the physical limitations of mass and heat transfer at
scale, often cell growth is restricted via nutrient (e.g., phosphate, carbon, or nitrogen) limitations
[19]. However intentionally limiting a nutrient to halt or reduce cell growth can also alter core
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metabolism and flux through heterologous pathways, possibly benefiting and/or harming a
bioprocess. A good example is a phosphate limited environment, where native ATP synthase
enzymes will import protons even without sufficient phosphate to regenerate ATP. As a result,
ATP production is decoupled from proton import leading to reduced energy efficiency and reduced
substrate yield. To regenerate the needed ATP, the cell will maintain an increased substrate uptake
rate and high glycolytic activity independent of cell growth. This higher glycolytic flux may
benefit a bioprocess if the goal is maximizing productivity. However, this increased metabolic
activity also leads to accumulation of NADH. To then maintain a redox balance, the cell will
compensate with overflow metabolites and utilize less efficient redox regeneration pathways,
further reducing yield [20]. While these feeding strategies are developed in laboratory scale
reactors where mixing is efficient, cells in large-scale reactors experience zones of nutrient
depletion, pH extremes, hypoxia, and temperature swings. The naturally evolved stress responses
cells used to survive these conditions expend additional resources (elevating maintenance energy)

unnecessarily as stresses are often short-lived (relative to the timescale of true cellular impact).
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Scale Down Reactors: A View into Industrial Fermentations and the Stress Response

Despite the maturity of the biomanufacturing industry, local measurements of all relevant culture
variables (pH, dissolved oxygen, glucose, etc.) can only be achieved with traditional wall mounted
sampling ports and probes. While necessary, these static sampling locations can only view a
fraction of the whole culture volume, offering a glimpse of the culture along only the wall of the
reactor. Instead, Computational Fluid Dynamics (CFD) (see Glossary) are used to model the
complex mixing regimes within reactors. These simulations provide insight into both the timescale
and the intensity of the nutrient gradients and can be validated with flow-following in situ probes

[21-23].

With the combined knowledge of large-scale mixing and modelling results, laboratory-scale
reactors can then be designed to mimic poor mixing, providing an industrial like environment to
evaluate strains before scaling up (Figure 2). These systems, referred to as Scale Down Reactors,
are commonly based on stirred tank reactors (STRs) and can be operated in either a chemostat or
fed-batch mode. To simulate poor mixing, a baseline STR is connected via pumping to additional
STRs or plug flow reactors (PFRs). This allows a fraction of the total culture to experience a
different environment (varying mixing, nutrient starvation, aeration, pH, temperature, etc.) before
returning to the main reactor. Each perturbation is intended to model transient stresses observed in
large-scale reactors. Therefore, the residence time in the “stressed” zone is set to match the typical
timescale experienced in the industrial reactor, often on the order of minutes. Sampling ports set
along the PFR allow for collection of functional genomics samples to explore the timing of gene
expression changes in response to the environmental challenge, in addition to the average response
in the base STR. Stresses within industrial reactor are often a distribution of both intensity and

time exposed [24]. To explore shorter timescales, dynamic microfluidic systems have been
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developed to mimic the macroscale systems described previously. These tools allow studying
cellular dynamics on the order of seconds, but future applications are contingent on improved

quantification sensitivity for low metabolite concentrations at low volumes [22,25-27].

Environmental Challenges and Cellular Response

Nutrient starvation is a common stress experienced by cells in zones where fresh nutrient supply
is substantially slower than local specific consumption rates. Nutrient depletion triggers the
stringent response, a coordinated metabolic and regulatory program that arrests growth, slows
nutrient utilization, and induces changes in gene expression that allows the microorganism to
survive in the now depleted environment [28]. During a stringent response, E. coli translation rates
slow leading to elevated synthesis of the alarmones guanosine tetraphosphate (ppGpp) and
guanosine pentaphosphate (pppGpp) [29], referred to hereafter as (p)ppGpp. These alarmones
alter the transcription of a wide regulon including ribosomal proteins and enzymes involved in
DNA replication, nucleotide synthesis, transcription, ribosome maturation and function, and lipid
metabolism [28,29]. The stringent response is of particular importance for both carbon (BOX 1)
and nitrogen (BOX 2) limitations, ultimately controlling how the cell throttles its metabolism to
prevent the build-up of unnecessary metabolites and wasteful consumption of ATP [29]. When the
stringent response is triggered in cells entering transient starvation zones, the altered regulation
can slow nutrient uptake, downregulate desired pathway enzymes, and expend energy expressing
unneeded proteins — all of which reduce specific productivity and/or product yield [10]. Although
not only relevant for industrial scale reactors, the metabolic cost of heterologous gene expression
can also lead to stress responses. Additional costs to the cell will also depend on the solubility of

the heterologous protein (BOX 3).
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Other industrially relevant stresses potentially stem from increased gas solubility, pH variability
and impeller sheer, with the significance of each dependent on the product and/or host of interest.
Increased gas solubility is a result of increased hydrostatic pressure in industrial reactors, leading
to increased gas transfer rates for both oxygen and carbon dioxide [30,31]. To be clear, increased
hydrostatic pressure is not likely to affect E. coli, but instead higher concentrations of oxygen and
carbon dioxide can lead to stress responses (BOX 4) [32]. Though pH is thought to not
significantly change within large-scale reactors, acidic product generation, and concentrated
alkaline addition ports can lead to local pH fluctuations [33,34]. Scale down experiments suggest,
however, that there is little effect of pH shifts when considering E. coli as a host for plasmid
production [34,35]. Finally, the action of impellers in industrial stirred tanks can create zones of
high shear. Most microbes have robust cell walls and are not impacted significantly by shear. For
example, high-shear bioreactor environments have been shown to strip the outer polysaccharide
layer from E. coli but have had no further effect on metabolism [36]. Organisms which impeller
sheer can lead to morphological changes, like filamentous fungi, may lead to decreased
productivity but direct correlations have not been noted in every case [37]. All considered, the
negative effects of increased pressure, pH variability, and sheer can vary greatly on the organism

and product of interest and should be evaluated for each scenario.
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Optimization of the Stress Response

The cellular stress responses induced during large scale fermentations leads to increased
maintenance energy. While some responses are required to prevent irreversible damage (i.e., ROS
and DNA damage), other responses can be overly costly and could be optimized to promote cell
survival rather than growth [38]. However, the cellular response is likely organism, stress, and
time dependent, as cells exposed to repeated short term stress can optimize their stress response
for growth [39]. Adjusting the stress response provides an opportunity to increase available
resources, potentially leading to improved growth and improved heterologous protein production
in transiently stressed environments. Understanding which response can be tuned or removed is a

matter of rational engineering, random screening, or both.

When considering major regulatory nodes in response to stress, (p)ppGpp is a clear target for
controlling a wide range of metabolically expensive reactions. If the level of (p)ppGpp never
increases in response to stress, then the stringent response will be avoided. (p)ppGpp synthesis is
primarily controlled by the (p)ppGpp synthase Rel4 and the (p)ppGpp synthase/hydrolase SpoT,
which in response to nutrient stress regulate (p)ppGpp levels [40]. However complete removal of
RelA and SpoT creates a (p)ppGpp null strain reported to have amino acid auxotrophies and
increased sensitivity to antibiotics [41,42]. This report suggests that a baseline concentration of
(p)ppGpp is required for robust cellular growth and may be even more important in stressed
conditions. Modulating (p)ppGpp levels however has also led to significant growth repression in
minimal media with either artificially low or high ppGpp. High (p)ppGpp was found to limit
ribosome synthesis and low (p)ppGpp reduced expression of catabolic and anabolic proteins,
suggesting an intermediate (p)ppGpp concentration is ideal for optimal growth [43]. In one

example E. coli was engineered for increased glucose uptake in nitrogen limited cultivations by
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maintaining low levels of (p)ppGpp [44]. By adjusting the (p)ppGpp synthase activity of spoT
through two-point mutations, and the deletion of reld, (p)ppGpp synthesis was maintained at a
stable level throughout a nitrogen limited STR cultivation. An additional point mutation in aceE
reduced its activity, leading to pyruvate as the terminal product [44]. The resulting strain
consumed glucose three times as fast as the parent on a per-cell basis, leading to its name (high
glucose throughput - HGT), but had a 40% lower maximum specific growth rate under nitrogen
limited batch condition. This decreased growth rate speaks to the careful engineering required to
adjust the stress response pathways without significantly affecting cell growth [44]. E. coli SR, a
derivative of the HGT strain lacking the aceE mutation, displayed a muted stress response to
repeated nitrogen limitation in an STR-PFR cultivation. Along the PFR, (p)ppGpp levels remained
relatively low, however E. coli SR maintained nitrogen assimilation pathways during the
cultivation. The diminished nitrogen stress response led to a 45% energy savings with the same
biomass yield, suggesting that SR has additional energy which could be utilized for heterologous

pathways and products [45].

With knowledge of the metabolic and regulatory nodes critical for glucose and nitrogen
limitations, engineers have been able to modify nutrient uptake to maintain desired process
parameters. For example, during nitrogen limitation the glucose transporter Ptsl is normally
inhibited by a-ketoglutarate accumulation. When engineers overexpressed Ptsl, the resulting strain
had a four-fold increase in metabolic rates in nitrogen limited cultivations. As a result, the nitrogen
limited, and non-growing culture had increased fatty alcohol yield [46]. In another example, strain
engineers artificially limited glucose uptake and catabolic flux by removing glucose transporters
and components of the phosphoenolpyruvate sugar phosphotransferase system (downstream

glucose metabolism) to minimize overflow metabolism. These mutations allowed a high glucose
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215  concentration in the batch media to mimic a fed batch culture [47]. A similar strategy could be

216  used at scale to avoid nutrient heterogeneity due to the typical high concentration glucose feeds.
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Minimizing Heterogeneity and Cellular Adaption

Titer and yield evaluation often require a sufficient volume and analyte concentration to be
measurable, demanding larger volumes of culture that contain millions of individual cells.
Therefore, the final titers reported represents an average output from what is likely a distribution
of heterogenous cellular production phenotypes [48,49]. This Cell Culture Heterogeneity stems
from natural or stress induced cellular adaptation where cells attempt to improve their fitness
through genetic, transcriptional, or translational modifications and errors. Adaptive laboratory
evolution (ALE), for example, takes advantage of DNA replication errors to isolate strains with
improved growth and/or fitness. Conversely, within a bioprocess, it is preferred that Cell Culture
Homogeneity is maintained such that strains do not adapt and perform consistently throughout the
cultivation. Cellular adaptation is a larger concern at scale due to the large number of generations
needed in the seed train to grow sufficient biomass for the final reactor. Industrial strains are grown
far past the number of generations typically considered in laboratory cultivations, and therefore

have greater potential to accumulate genetic errors and/or adapt [50].

During growth, E. coli is thought to modulate the diversity (and thus adaptability) of the whole
culture by balancing the error rate of the DNA replication with the potential for both beneficial
and harmful genetic errors [51,52]. This adaptation strategy is accelerated during the SOS
response, where E. coli is known to express the more mutation prone DNA polymerase IV and V.
This expression leads to increased SNPs or insertion sequences (IS) to find a favorable mutation,
even at the risks of altering an essential gene [53,54]. As a result, there is an increase in
heterogeneity, and thus overall survivability, of the culture. Industrial strains, however, may
consequently lose heterologous genes when adapting to stressed conditions. One study found that

when these error prone polymerases were removed, E. coli retained expression of a toxic
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methyltransferase with less SNPs over time compared to a wildtype control [55]. When studying
plasmid-based production of 2,3-butanediol and mevalonic acid in multiple background strains,
genetically mobile insertion sequences and SNPs were found to disrupt plasmid expression of the
heterologous enzymes over 90+ generations [50]. Removal of both error prone polymerases and
native IS in the genome reduced MDS42 strain resulted in a longer production half-life over 89
generations. However, MDS42 had lower final titer relative to wildtype, suggesting one of the
modifications was not beneficial to mevalonate production [56]. While genetic mutations offer a
view of long-term adaptation through replication, the transcriptional error rate also varies based
on gene expression level and cell fitness. More highly expressed genes with strong fitness selection
are transcribed with lower error rates in E. coli [57]. Recent research highlighted that the
translational error rate of prokaryotes is 3-4 times greater than transcription error rates [58]. In
unstressed conditions, translational errors are typically controlled based on the frequency of gene
expression with more highly expressed genes having less frequent errors [59]. However
translational error rates, like replication error, may even be intentionally increased in stressed
environments to trigger an SOS response [60,61]. When constructing strains for use in industrial
processes, it is important to consider the potentially unnecessary effects of errors in replication,
transcription, and translation. These errors could be further reduced by improving error prone

enzymes, for example modifications to DNA pol III HE [53].

Considering long term effects of adaptation, the more burdensome a heterologous gene is, the more
likely an inactivating mutation will lead to a growth benefit. Therefore, if burden is minimized,
deleterious mutations may be less likely. This line of thinking has led to methods to improve
heterogeneity by modulating the stress of heterologous expression through “host aware” strategies

which adjust expression based on available cellular resources [62]. In one experiment, a protein
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stress promoter drove expression of dCas9, creating a feedback loop for controlled expression of
mCherry. The result was a strain which produced mCherry based on a cell’s protein synthesis
capacity; leading to more biomass and higher mCherry titer [63]. This system requires further tests
in fluctuating conditions or long-term cultures to prove general robustness. Other process driven
strategies to reduce cellular burden such as oscillating heterologous expression with external

inducers and separation of growth/production phases have been reviewed in detail elsewhere [64].

An alternative method to increase homogeneity of cultures takes advantage of expression noise
through metabolic coupling. Also known as synthetic addition, this strategy couples a product
detecting biosensor or native product sensing transcriptional regulator with expression of an
essential or beneficial gene for cell growth. As a result, product synthesis confers a fitness benefit.
The first demonstrations of this methodology explored producing free fatty acids and tyrosine. In
the free fatty acid producing strains, the authors coupled production to a tetracycline resistance
marker; creating a selection pressure for fatty acids by supplementing the antibiotic to the growth
media. Using this approach, a greater proportion of cells were classified as high fatty acid
producers. Coupling the fatty acid production pathway to leucine biosynthesis in an auxotrophic
E. coli (instead of an antibiotic resistance marker), led to 21.5g/L FFA in a fed batch cultivation,
a greater than four times improvement compared to a strain without metabolic coupling [49].
Iterative flask cultivations suggested improvements were due to non-genetic variations. When high
producing cells were isolated and returned to fresh media without selection, the enhanced product
titer was not reproduced, and genome sequencing did not suggest any beneficial genetic mutations
[49]. Analogously, coupling essential gene expressions to a mevalonate biosensor a synthetically
addicted strain could maintain mevalonate production over 85 generations. The un-addicted strain

by comparison had reduced mevalonate production due to the accumulation of insertion sequences
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(IS) and single nucleotide polymorphisms (SNP) in the heterologous pathway [65]. These studies
establish that coupling a fitness benefit to flux through heterologous pathways may both take
advantage of non-genetic gene expression heterogeneity machinery and reduce deleterious genetic
modifications in the heterologous pathway. While the fitness benefit offers a clear reason for
genetic stability of heterologous pathways, it is less clear what the non-genetic improvements were.
Additionally, it is unknown how these addiction strategies function in oscillating conditions, thus

warranting further research.
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Minimize basal maintenance energy:

E. coli’s robust adaptability is a result of a proteome that anticipates many possible limitations
[66]. However, if the anticipated environment never occurs, then the additional unnecessary
maintenance cost could potentially divert substrate flux away from the intended production
pathway (Figure 1). Furthermore, given the total protein concentration is relatively constant across
conditions [29], preventing unnecessary protein production may increase resource availability for
expression of other proteins, including heterologous enzymes used in industrial strains. One
method to create efficient strains is genome reduction, which aims to create a strain with the
absolute minimum number of genes. However, this methodology often results in a strain with
significantly reduced growth rates, which is unfit for industrial applications [67]. More industrially
relevant strategies have instead focused on gene removal without significantly affecting growth.
However, only two strains (one E. coli and one P. putida) have shown improved growth and
production parameters in scale down reactors when compared to wildtype [67]. In general,
industrial strain design is centered around strategies to create and sort a diverse library of
mutations. These libraries can either be created with more rational approaches to remove both
costly and potentially unnecessary genes informed by functional genomics or randomly through
strategies like random bar code transposon-site sequencing (RB-TnSeq) or adaptive laboratory

evolution (ALE).

In an example of the rational engineering strategy, unessential gene targets were removed if they
had high maintenance cost under glucose limited conditions, were also orthogonal to central
metabolism, and did not affect major regulatory elements [68]. The resulting strain (RM214) had
a reduced maintenance coefficient in carbon limited STR-PFR chemostats but retained similar

growth parameters in STR chemostats. In carbon limited STR-PFR cultivations RM214
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additionally reached a 44% higher eGFP yield, likely due to excess energy available from the lower
cellular maintenance. Upon PFR connection, the fraction of high eGFP producing cells decreased
for both MG1655 and RM214, however RM214 maintained a higher proportion of producing cells
over time. So, an additional benefit of reduced maintenance was also improved culture
heterogeneity in carbon limited environments (See Minimizing Heterogeneity and Cellular
Adaption) [68]. Similar studies have suggested that relief of heterologous production load can
reduce escape rate and could improve stability of industrial strains over many generations [56].
However, the connection between a reduction in maintenance and culture heterogeneity remains

unclear.

Other gene knockout selection strategies combine transcriptional networks and resource allocation
to identify the minimal number of non-essential transcription factor knock outs to save the
maximal amount cellular resources [69,70]. The work culminated in the removal of three
transcription factors related to phosphate scavenging, flagella synthesis, and copper efflux. The
resulting strain had no growth defect and showed an improved production of violacein in minimal
media and increased yield of plasmid DNA in both rich and minimal media [69,70]. In another
rational engineering example, genes encoding effector proteins were removed if they were
upregulated in response to a stress, but had little or no regulatory effect on other genes. In this way,
genes which are at the end of a signaling pathway can be removed without significant regulatory
ramifications like RelA or SpoT. By observing heterologous protein induction stress, one study
selectively removed one or two of the terminal stress response genes (whose function may or may
not have been known). These knockouts showed an improved protein yield per unit biomass
depending on the protein expressed [71]. However, these last two strategies were not evaluated in

scale down reactors, so it is unclear how these genetic edits may affect the greater stress response.
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Future rational gene selection strategies will likely continue to improve by use of in vitro tools
[72], functional genomics [68], transcriptional network analysis [69], resource allocation models

[73], and knowledge of the optimal enzyme substrate concentrations within cells [74].

While the previously discussed genome minimization strategies rely on knowledge of gene
function and its estimated cost, non-obvious beneficial deletions can also be screened with random
gene deletion techniques. For example, RB-TnSeq which replaces a sequence within the genome
with a barcoded transposon, creates a library of identifiable knockouts.[75] RB-TnSeq has been
used to evaluate beneficial mutations at multiple scales and has even found mutations that are
unique to bioreactor cultures [76]. Furthermore, single gene deletions, although beneficial, likely
will have a minor effect on cell growth parameters individually and therefore are often combined
for more significant gains [77]. Random multigene knockout libraries offer further genotypic
diversity and can be generated with iterative plasmid-based methods. Applications of these
multigene knockout libraries show improved growth rate through genome reduction but offer
diminishing returns with each cycle [78]. Another common random mutagenesis strategy is ALE,
which takes advantage of E. coli’s natural accumulation of genetic errors to search for non-obvious
beneficial mutations [79]. ALE-derived mutations are selected purely based on growth rate and
often include genetic modifications by mobile insertion sequences (IS), gene specific single
nucleotide polymorphisms (SNP), deletions, insertions, copy number variation, or multiple base
pair substitutions [79]. ALE is frequently applied using static or increasing stress levels to improve
tolerance, growth rate, substrate utilization, titer, and yield. ALE can also be used in fluctuating
conditions like temperature shifts, demonstrating the potential for evolving strains exposed to
transient stresses [79,80]. Combined use of ALE and genome reduction has potential to overcome

some of the phenotypic issues associated with greatly reduced genomes [81]. However, over
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modification of the genome through ALE or more targeted strategies, while potentially beneficial,
is likely to have a diminishing or even negative effect if overused [78,82]. Unfortunately,
applications of RB-TnSeq and ALE select for improved strains based solely on growth rate, and
improved growth rate does not always result in improved process parameters. More efficient
strategies may combine random or rational library generation with biosensors to instead select for
both improved growth and improved product production [83]. Clearly the ability to generate strain
diversity is no longer the bottleneck, but instead our ability to screen beneficial mutations and
verify improvement in product production [84]. Regardless of the strategy used, it is vital to screen

final production strains at industrial conditions to evaluate any unintentional negative effects.
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Concluding Remarks:

Transitioning laboratory success to the industrial scale relies on predictable and consistent
performance parameters at many volumes. Scale down technology offers an excellent
methodology to study cells in a controlled environment that mimics industrial scale bioreactors
without significant capital and operational investment. With design guided by computational fluid
dynamics and industrial data, scale down reactors can accurately represent both the timescale and
severity of industrial nutrient gradients. With this information, novel strains can be designed and
tested for industrial scale challenges to evaluate their performance, and de-risk scale up. These
industrial strains must be metabolically efficient, expressing only genes which are required for
maintaining high productivity, titer, and yield. Strategies for selecting genes to remove can be
either rational or random but must be evaluated in production strains at industrial conditions to
understand their effect. Further, strains must be both capable of surviving and metabolically
impartial to transient nutrient limitations (i.e., carbon, oxygen, etc.) and stresses (i.e., high CO»,
0o, etc.) at scale. To optimize the cellular response to these environments, engineers may derive
information from functional genomics and transcriptional network analysis to select either
wasteful genes or transcriptional regulators for removal or modification. Additionally, a growing
subset of microfluidics and cell sorting strategies are expanding our understanding of culture
heterogeneity with single cell resolution. Methods like synthetic addition take advantage of this
heterogeneity to improve culture performance, reduce escape mutants, and reduce heterogenous
populations. Future studies evaluating how heterologous burden and maintenance energy interact
with transcriptional, translational, and replication error will likely offer additional opportunities
for engineering. However, adjusting the cellular response to multiple different stress has not yet

been fully evaluated in the field. Therefore, strain engineers now have the challenge to map and
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394  understand how the cell responds to multiple stresses and evaluate potential genetic interventions
395 atthe DNA, RNA, and protein level. By focusing on these outstanding questions, future industrial
396  strains will spend their resources efficiently, limit their genetic adaptation and most of all maintain

397  production at scale.
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Glossary

Cell Culture Heterogeneity: Refers to the variation in cellular metabolism at a single cell level.
Naturally cells evolve over time, utilizing errors in DNA replication to diversify the population of
cells and thus increase its survivability. On shorter timescales. cells are likely to achieve additional
survivability through errors and variations in both translation and transcription. Often this can lead
to changes in process parameters (e.g., titer, rate, and yield) as the culture is scaled to larger
volumes. This may be due to longer seed trains requiring more doublings for larger volumes, or

stresses induced at large scales which is often not captured in laboratory cultivations.

Cell Culture Homogeneity: In general, this term represents a population of cells which produce
a product more similarly on a single cell level. Potential areas that can improve culture
homogeneity include reducing cellular maintenance, reducing heterologous burden, removing
error prone polymerases, and utilizing burden aware or synthetically coupled heterologous gene
expression strategies. Increased culture homogeneity may improve process parameters like titer,

rates, and yield at various scales.

Cell Free: A methodology utilizing cytosol isolated from cells to express proteins in an in vitro

setting, typically used for balancing enzyme expression of heterologous pathways.

Computational Fluid Dynamics: A computational method to model the fluid flow in various

geometries to estimate nonideal mixing conditions.

Microfluidics: A culturing technique relying on small channels with a characteristic heigh or
width on the scale of micrometers. Constructed typically with soft polymers (like
polydimethylsiloxane), these lab-on-a-chip devices can rapidly flow small volumes of media to

shift conditions within the channels. Each channel can grow individual groups of cells for
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experimentation. Cultures are often visualized with an external microscope to evaluate growth

parameters.

RpoS Mediated Stress Response: Controlled by the levels of the RpoS sigma factor, this stress
response is typically activated upon reaching stationary phase and various other stressed
conditions. RpoS is an adaptive response regulator known to regulate expression of over 1000

genes, allowing cells to respond to starvation or unfavorable external conditions.

Scale Down: Culturing techniques which are modeled after large scale reactors intended to mimic

non ideal mixing conditions at a laboratory scale, including stirred tank reactors and microfluidics.

SOS response: Induced upon sudden DNA Damage (like from reactive oxygen species), the
regulator RecA binds to single stranded DNA, and is activated. The activated RecA then
encourages self-cleavage of the LexA protein repressor lowering its affinity for DNA and allowing
expression of SOS genes. Depending on the severity of the DNA damage, various DNA damage

repair enzymes may be expressed until the DNA damage is repaired.

Stringent response: In response to a nutrient limitation, the signaling molecule (p)ppGpp
accumulates leading to a reduced growth rate and metabolism in accordance with the severity of
the limitation. Some examples of starvation events include lacking amino acids, carbon, iron,

phosphate, nitrogen, and fatty acids.
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FIGURE 1: Pirt visualization of cellular expenditures during cultivation.

Represented as a Sankey diagram, substrate uptake rate (g ) can be dividing into new cell
generation (ﬁ [,t) , the cost of the heterologous production pathway (ﬁ qp), and cellular
Xs XpP

maintenance (my) [13]. Note that this is a simplified steady state representation to illustrate
cellular expenditures. Substrate uptake rate, new cell generation, pathway cost, and maintenance
will vary based on the growth rate and environmental stresses. [llustrated with a gradient of stress
typically seen in industrial fermentations, with red as high stress and blue as low stress, the total
substrate uptake as well as the distribution of expenditures can shift depending on the culture

conditions.
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FIGURE 2: Transition from small scale cultivations to industrial scale.

From single cell to lab scale bioreactors, titer, rate, and yield is often quantified in an ideal or well
mixed environment in which nutrients are readily available. Gradients modeled in large scale
reactors however show that nutrient availability can vary from excess to starvation at a timescale
from seconds to minutes [21-23]. With their increased risk and capital cost along with their low
throughput, large-scale reactors are often excluded from strain evaluation. Scale down reactors
offer an alternative with a relatively higher throughput and lower cost. These reactors can mimic
individual and combined stresses with the added benefit of product quantification and functional
genomics on a minute timescale [85]. Samples, however, will show the average cellular response
and may not be able to capture individual cell variations unless cell sorting is utilized. Scale down
microfluidics, however, can allow observations of single cells with fluorescent microscopy-based
measurements on a timescale of seconds [85]. The frequency of the stress fluctuations is limited
only by the speed of media flushing in the microfluidic design. However quantitative analysis is
primarily limited by low analytic concentrations and low volumes making product quantification

and functional genomics difficult, if not impossible, with current methods [22,27].
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BOX 1: Carbon dependent response

Figure I: Simplification of carbon metabolism and signaling in E. coli. Note that larger
chemical or signaling pathways (TCA, FAB, stringent response, etc.) are underlined for clarity.
Enzymes and proteins are represented by ovals and individual chemicals are represented as text.
Positive regulation is represented with a dotted green arrow and negative regulation is represented
with a dotted red line. Columns represented by color and boxed header (High, Nominal, Low, and
Competing carbon) show the signaling pathway for each condition. The levels of core signaling

molecules are boxed at the bottom of each condition, in this case cAMP-Crp levels.

Transporters and catabolic enzymes responsible for carbon assimilation are regulated by both
substrate-specific (e.g., XyIR sensing of xylose) and global (e.g., cyclic-AMP-CRP) regulation
mechanisms (Figure I). Glucose as a preferred carbon source is imported into the cell from the
periplasm via the EIIABC transporter at the cost of 1 ATP. The ElIA component is not membrane
bound and allows for sensing glucose availability. When cells sense a lack of preferred carbon
sources, the activity of adenylate cyclase (AC) is upregulated, increasing cyclic-AMP (cAMP)
synthesis. Conversely, cAMP synthesis is negatively regulated by accumulation of a-keto acids,
(e.g., a-ketoglutarate, pyruvate, and oxaloacetate) hallmarks of abundant catabolic flux or reduced
synthesis of amino acids and other biomass precursors. The latter mechanism connects regulation
of catabolic flux in fatty acid biosynthesis (FAB) via acetyl-CoA carboxylase (ACC) and the
tricarboxylic acid (TCA) cycle to the stringent response. A complex (CAMP-CRP) of cAMP with
its cognate receptor protein (CRP) activates transcription of promoters associated with secondary

carbon uptake pathways. These pathways are typically positively regulated by the presence of
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cognate carbon sources (e.g., XyIR) to ensure that pathways are expressed only when the carbon-
source is present [29,86]. The absence of cAMP-CRP returns transcription of regulons to basal,
often very low, levels. In addition to direct regulation, increased expression of the cAMP-CRP
regulon decreases the pool of available cellular resources and indirectly downregulate genes
outside the regulon [29]. Conversely, downregulating the cAMP-CRP regulon makes resources
available for translating other proteins. These global effects are because a cell’s translation

capacity is finite.

In scale down reactors, glucose starvation quickly (over about 2 hours) induces expression of the
cAMP-CRP regulon including sugar transporters and the outer membrane porin OmpF to improve
carbon uptake [87]. In continuous STR-PFR experiments, when exposed to a glucose excess along
the PFR, cells showed a rapid, short-term metabolic response leading to byproducts such as acetate
and lactate. A function of overflow metabolism, these metabolic by-products negatively affect the
substrate to biomass yield [88]. When instead cells are starved of glucose along a PFR, cells
experience a decrease in the adenylate energy charge (a measure of energy availability in the cell)
and an accumulation of ppGpp accumulation (signaling the stringent response) [77]. After 110s of
glucose starvation, 400-600 genes were up- or downregulation by at least 1.5-fold. Carbohydrate
and amino acid metabolism, glucose transport, post translational modification, protein turnover
and folding were among the upregulated genes and translation, ribosomal structure, replication,
recombination, and repair genes were on average downregulated. After 28 hours of intermittent
glucose starvation, E. coli expressed genes associated with amino acids biosynthesis/metabolism,

the general stress response and stationary phase growth [77,89].
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BOX 2: Nitrogen dependent response

Figure II: Simplification of nitrogen signaling pathway and metabolism in E. coli. Note that
larger chemical or signaling pathways (stringent response) are underlined for clarity. Enzymes and
proteins are represented by ovals and individual chemicals are represented as text. Glutamine is
simplified to Gln and glutamate to Glu. Positive regulation is represented with a dotted green arrow
and negative regulation is represented with a dotted red line. Columns represented by color and
boxed description show the signaling pathway for each condition at the top of the figure. Boxed
description of core signaling molecules, in this case glutamine levels and the ratio of glutamine to

a-ketoglutarate are located within each column.

Like carbon stress, nitrogen extremes can be caused by concentrated nitrogen feeds or poor mixing.
Summarized in Figure II, nitrogen availability is primarily sensed by internal levels of glutamine
and o-ketoglutarate in E. coli. This is achieved by the uridylyl-transferase/uridylyl-removing
enzyme (GInD) which, depending on the glutamine concentration, determines the uridylayation
state of the PII homologs GInK and GInB. In nitrogen limited conditions or low glutamine levels,
uridylated GInK and GInB accumulate. Uridylation of GInK reduces its affinity for the AmtB
transporter, allowing increased ammonia uptake. Whereas uridylated GInB has two effects to
increase nitrogen uptake. First, uridylated GInB encourages de-adenylation of glutamine synthase
(GS), increasing its activity and encouraging nitrogen assimilation. Second, uridylation of GInB
inhibits its interaction with the histidine kinase NtrB and maintaining the phosphorylate the
nitrogen response transcriptional regulator NtrC. While phosphorylated, NtrC increases expression

of 6°*and RelA leading to a coordinated expression of nitrogen assimilation genes and the stringent
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response [90,91]. a-ketoglutarate additionally regulates nitrogen assimilation through direct
binding to the GInB protein. High concentrations of a-ketoglutarate lead to direct binding of a-
ketoglutarate to GInB, encouraging uridylation of GInB, and deadenylation and thus activation of
GS. High a-ketoglutarate also maintains a phosphorylated NtrC by reducing binding of GInB to
NtrB, in general acting antagonistically to glutamine concentrations. In relation to carbon flux,
GInB binds to and inhibits the initiating enzyme of the fatty acid biosynthesis pathway, acetyl-
CoA carboxylase (ACC). The Uridylation of GInB reduces this inhibitory binding, and increases
flux through the fatty acid biosynthesis pathway, allowing carbon flux in nitrogen limited
conditions. a-ketoglutarate binding to GInB also encourages dissociation from ACC, increasing
ACC activity. In this way GInB and a-ketoglutarate allow full ACC activity depending on both
carbon and nitrogen availability [92]. Additional modes of a-ketoglutarate, ATP, and glutamine
regulation have been reviewed elsewhere [93]. With excess glutamine (high nitrogen
concentrations), GInD will deuridylayate PII homologs GInB and GInK, preventing the nitrogen
stress response summarized above. In nitrogen excess, diffusion of ammonia is thought to be the
primary nitrogen transport method rather than any transporters. Under normal growth conditions
glutamate dehydrogenase (GDH) acts as the primary assimilation pathway with glutamine
synthase (GS) and glutamate synthase (GOGAT) is primarily used under nitrogen limitation

requiring ATP [87].

When observing a STR shifting from nitrogen limitation to carbon limitation and finally dual
nitrogen and carbon limitation, a-ketoglutarate was again shown to balance carbon and nitrogen
utilization. In this case, a-ketoglutarate only remains high with carbon excess, but decreases under
carbon limitations and dual carbon-nitrogen limitations. Thereby maintaining nitrogen

assimilation pathways only if carbon was available [87]. In nitrogen limited STR-PFR cultivations,
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553  (p)ppGpp accumulated along the PFR (128 seconds), corresponding with the stringent response
554  and NtrC mediated regulation of genes. After 5 minutes and 28 hours of cultivation, genes related
555  to translation, nucleotide metabolism, and ribosomal structure and biogenesis were downregulated

556  showing the expected nitrogen starvation response occurs even with transient limitations [45].
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BOX 3: Exploring Protein Expression Stress

Expression of heterologous proteins at high levels can pull resources from native cellular
processes. In flasks, expression of 45 different genes in E. coli showed a general trend balancing
its proteome though the RpoS mediated response and translation related machinery [94]. In the
same study, protein expression levels correlated with metal homeostasis genes likely due to a loss
redox balance, the RpoH mediated heat shock response depending on the foldability of the protein
expressed, and increased expression of nucleotide and amino acid biosynthetic pathways to support
plasmid and protein production [94]. When observing a carbon limited fed batch at high growth
rates, high recombinant protein expression leads to a significant reduction in CRP-cAMP and a
significant increase in expression of the transcriptional regulator ArcA. This results in decreased
glucose uptake, reduced TCA cycle activity, and lower cellular respiration likely influenced by
accumulation of intermediate metabolites like pyruvate or a-ketoglutarate [95]. In total, the
response to sudden protein production was down regulation of glucose catabolism in an attempt to
match the anabolism of plasmid and protein production while minimizing accumulation of
byproducts, similar to an excess carbon response [96]. Industrial reactors are often used in a fed
batch mode, so the observed glucose overfeeding response may be more relevant. From gene to
protein, the majority of the energetic cost is in protein translation and amino acid generation [97].
However additional cellular burden may depend also on either untranslatable RNA or the
formation of inclusion bodies depending on the sequence and protein produced [98]. Finally, while
the burden of heterologous gene expression can be estimated a priori [77,97], these strategies do
not always consider variability in actual RNA and protein produced. An alternative in vitro cell
free assay can estimate expression cost of an operon and separate out metabolic burden from

expression burden in a single snapshot [72]. Advances in mass spectroscopy have also shown the
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580 ability to accurately quantify the proteome in various stressed conditions, allowing more accurate

581  predictions of protein production cost [99].

32



582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

BOX 4: The effect of Pressure, Oxygen, and Carbon Dioxide on Cells

Elevated pressure in bioreactors is known to cause increased concentrations of gases at scale,
affecting the maximum concentrations of oxygen and carbon dioxide cells experience. For
example, mild hydrostatic pressure (1 MPa) is known to trigger an oxidative stress response due
to increased oxygen concentrations and the formation of reactive oxygen species (ROS). These
conditions have been shown to initiate the SOS stress response [100,101]. Oxidative stress
additionally leads to rapid depletion of NADPH (a result of glutathione pathway defense for ROS)
that must be recovered by the reserve flux capacity in the oxidative branch of the pentose phosphate
pathway [102]. This decrease in reduction power may negatively influence cellular growth and
product production, particularly if a heterologous pathway is dependent on NADPH as a co-factor.
If oxygen is instead lacking, shifting to anaerobic conditions (over about ~13 seconds) reduces
growth rate and recombinant protein production, and activates anerobic metabolism leading to
organic acid production [103]. Cells could be engineered for better uptake of oxygen, such as
expression of oxygen transporters [104], but may need to be balanced with the cells’ ability to

tolerate additional ROS.

For E. coli, carbon dioxide concentrations are not typically considered to be a critical variable in
laboratory cultivations. However, industrial reactors can accumulate significantly more CO2 due
to the height of the reactors and high cell density cultures. Growth in consistently high CO>
conditions has been shown to induce expression of amino acid pH resistance systems and down
regulation of the tricarboxylic acid (TCA) cycle leading to a decrease in cell biomass, growth
rate, and heterologous protein production [105,106]. Oscillatory dCO> concentrations, however,
were not found to have a significant effect on cells in an STR-STR reactor mimicking industrial

mixing times, suggesting high CO2 environments on their own do not lead to significant
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metabolic cost [105,106]. In a recent fed batch study, cells grown with CO; concentrations
modeled after a 450m? tank only showed reduced productivity when increased CO:
concentrations were combined with carbon and nitrogen limitations [107]. However, CO»
enrichment was implemented by a constant feed of gas and is thus unable to completely mimic
the fluctuating concentrations seen in large scale reactors [107]. Constant high CO» enrichment
did however lead to premature termination of the culture due to acidification [107]. In total, the
results suggest that carbon dioxide is unlikely to be the primary stress for industrial
fermentations, but in combination with other limitations may affect core process parameters like
biomass yield [107]. It is important to stress that while CO2 may not be a significant factor for E.

coli, the effect varies extremely by host [108,109].
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