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Abstract:  If biomanufacturing can become a sustainable route for producing chemicals, it will 13 

provide a critical step in reducing greenhouse gas emissions to fight climate change. However, 14 

efforts to industrialize microbial synthesis of chemicals have met with varied success – in part due 15 

to challenges in translating laboratory successes to industrial scales. With particular focus on 16 

Escherichia coli, this review examines the lessons learned when studying microbial physiology 17 

and metabolism under conditions that simulate large-scale bioreactors and methods to minimize 18 

cellular waste through reduction of maintenance energy, optimizing the stress response, and 19 

minimizing culture heterogeneity. With general strategies to overcome these challenges, 20 

biomanufacturing process scale-up could be de-risked and potentially reduce the time and cost of 21 

bringing promising syntheses to market.  22 
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Scaling the Bioeconomy   23 

The natural world synthesizes an impressive array of chemical structures that can be used as 24 

medicines, solvents, materials, and fuels [1–3]. Advances in synthetic biology have dramatically 25 

reduced the cost of DNA synthesis and expanded capability to construct vectors in high 26 

throughput. These tools allow researchers to rapidly test metabolic engineering strategies [4] — to 27 

the point that, with a concerted effort, almost any molecule can be synthesized in small 28 

concentrations at laboratory scale [5]. To tackle global challenges such as climate change, focus 29 

must now turn to translating this synthesis potential to industrial scales such that sustainable 30 

alternatives to the modern petrochemical industry can be established [6]. Biomanufacturing, the 31 

use of biotechnology to synthesize chemical products, has been demonstrated on industrial scales 32 

for high-value products (e.g., therapeutic proteins, enzymes, and antibiotics) and low-value 33 

commodities (e.g., ethanol, lactic acid, amino acids, and sweeteners) [7], but efforts to 34 

commercialize many other attractive products have failed [8]. Scale-up, the process of translating 35 

laboratory processes (<10 l) to commercial-sized volumes (>100,000 l), is commonly regarded as 36 

a major risk for new bioprocesses in development [9]. To succeed at scale, a biocatalyst must 37 

support conversions that approach theoretical yields (to minimize feedstock costs), thrive in the 38 

presence of toxins (including desired products), reliably progress through the seed train without 39 

losing productivity, and overcome environmental heterogeneities that are easily avoided in 40 

laboratory-scale reactors. Notably, scale-up failure does not necessarily consider the entire 41 

breakdown of microbial performance in large-scale. Instead, economic failures often occur that 42 

render original break-even points non-realistic. Some examples include smaller production 43 

volumes required to prevent intensive foaming, reduced final product titers, and increased by-44 

product concentrations that challenge downstream processing. Each of these issues can be studied 45 
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on an industrial scale, but large-scale experiments are rare due to costs and access to appropriate 46 

equipment. Instead, researchers use specialized equipment and/or combinations of experiments to 47 

simulate, as closely as possible, industrial scale conditions in a laboratory environment. These 48 

experiments help reduce the risks associated with developing novel processes. This review 49 

summarizes what has been learned from studying and engineering industrial microbes grown under 50 

conditions that simulate large-scale environments. We review methodologies for industrial strain 51 

design considering how cells respond to simulated industrial stresses and strategies to minimize 52 

culture heterogeneity. For simplicity, this review will focus on examples from the Gram-negative 53 

bacteria Escherichia coli, however the methodologies discussed here can be used to study other 54 

biomanufacturing hosts. 55 

The Challenges of Bioprocess Engineering at Scale 56 

The challenges facing industrial cultivation can be separated into three types of limitations, 57 

physical, chemical, and biological. Physical limitations stem from the inability to match the 58 

characteristic mixing times of laboratory reactors without enormous power inputs at industrial 59 

scale. Chemical limitations result from changes in nutrient sources such as water or carbon that 60 

may differ when a process is scaled. Finally biological limitations signify the cellular response to 61 

both physical and chemical limitations but also the effects of industrially specific cultivations such 62 

as seed train growth, which increase the number of cell generations before production.  Due to its 63 

accessibility, academic research has primarily focused on the physical limitations of increased 64 

mixing time. The effects of which are microenvironmental gradients in chemical composition 65 

(nutrients, media sterilization, pH, aeration) and physical properties (temperature variation, shear), 66 

which impact the biological performance (growth rate, uptake rate, productivity, viability, stress 67 

response) of the cells being cultured [10]. It should be noted that this review focuses on bioreactor 68 
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specific challenges, but chemical and physical challenges can additionally affect processes before 69 

and after the bioreactor culture (e.g., media sterilization and product isolation). The 70 

inhomogeneous environment in bioreactor cultivations leads to heterogeneity in strain behavior, 71 

often with poorer performance from cells transiently passing through non-ideal conditions. The 72 

reduced performance can be attributed to direct impacts of the stressful environments and to 73 

inefficient resource allocation, i.e., where cells use feedstock for unwanted activities instead of 74 

maximizing product synthesis [9]. It is the task of the metabolic engineer to design cells that 75 

optimize resource allocation while maintaining stable cultures that grow reliably. 76 

Resource allocation has been modeled at genome scale [11,12], but perhaps is more easily 77 

illustrated by simple equations such as the Pirt model of substrate utilization. Here, substrate 78 

consumption is separated into three categories: substrate for making new cells, substrate for 79 

making product, and substrate for driving cellular systems and functions (i.e., maintenance energy) 80 

(Figure 1) [13]. Metabolic engineers spend most of their time designing pathways that maximize 81 

specific productivity, qP, and specific yield of product (𝑌𝑃/𝑆
𝑚𝑎𝑥). They do so by identifying the 82 

highest yielding biochemical pathways [14], bioprospecting or engineering enzymes to have high 83 

specific activity [15], balancing enzyme activity across a pathway [16,17], and providing the 84 

correct supply of ATP and required cofactors [18]. Biochemical engineers then design cultivation 85 

strategies (e.g., fed-batch) that often consist of a “growth” phase to build up biomass followed by 86 

a secondary “production” phase for product accumulation. Maximum specific yields of product 87 

are achieved when the fractions of substrate used for biomass (
𝟏

𝒀𝑿𝑺
𝑴𝒂𝒙 𝝁) and maintenance (𝒎𝒔).are 88 

minimized.  To maintain cell growth within the physical limitations of mass and heat transfer at 89 

scale, often cell growth is restricted via nutrient (e.g., phosphate, carbon, or nitrogen) limitations 90 

[19]. However intentionally limiting a nutrient to halt or reduce cell growth can also alter core 91 
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metabolism and flux through heterologous pathways, possibly benefiting and/or harming a 92 

bioprocess. A good example is a phosphate limited environment, where native ATP synthase 93 

enzymes will import protons even without sufficient phosphate to regenerate ATP. As a result, 94 

ATP production is decoupled from proton import leading to reduced energy efficiency and reduced 95 

substrate yield. To regenerate the needed ATP, the cell will maintain an increased substrate uptake 96 

rate and high glycolytic activity independent of cell growth. This higher glycolytic flux may 97 

benefit a bioprocess if the goal is maximizing productivity. However, this increased metabolic 98 

activity also leads to accumulation of NADH.  To then maintain a redox balance, the cell will 99 

compensate with overflow metabolites and utilize less efficient redox regeneration pathways, 100 

further reducing yield [20]. While these feeding strategies are developed in laboratory scale 101 

reactors where mixing is efficient, cells in large-scale reactors experience zones of nutrient 102 

depletion, pH extremes, hypoxia, and temperature swings. The naturally evolved stress responses 103 

cells used to survive these conditions expend additional resources (elevating maintenance energy) 104 

unnecessarily as stresses are often short-lived (relative to the timescale of true cellular impact).   105 
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Scale Down Reactors: A View into Industrial Fermentations and the Stress Response  106 

Despite the maturity of the biomanufacturing industry, local measurements of all relevant culture 107 

variables (pH, dissolved oxygen, glucose, etc.) can only be achieved with traditional wall mounted 108 

sampling ports and probes. While necessary, these static sampling locations can only view a 109 

fraction of the whole culture volume, offering a glimpse of the culture along only the wall of the 110 

reactor. Instead, Computational Fluid Dynamics (CFD) (see Glossary) are used to model the 111 

complex mixing regimes within reactors. These simulations provide insight into both the timescale 112 

and the intensity of the nutrient gradients and can be validated with flow-following in situ probes 113 

[21–23].   114 

With the combined knowledge of large-scale mixing and modelling results, laboratory-scale 115 

reactors can then be designed to mimic poor mixing, providing an industrial like environment to 116 

evaluate strains before scaling up (Figure 2). These systems, referred to as Scale Down Reactors, 117 

are commonly based on stirred tank reactors (STRs) and can be operated in either a chemostat or 118 

fed-batch mode. To simulate poor mixing, a baseline STR is connected via pumping to additional 119 

STRs or plug flow reactors (PFRs). This allows a fraction of the total culture to experience a 120 

different environment (varying mixing, nutrient starvation, aeration, pH, temperature, etc.) before 121 

returning to the main reactor. Each perturbation is intended to model transient stresses observed in 122 

large-scale reactors. Therefore, the residence time in the “stressed” zone is set to match the typical 123 

timescale experienced in the industrial reactor, often on the order of minutes.  Sampling ports set 124 

along the PFR allow for collection of functional genomics samples to explore the timing of gene 125 

expression changes in response to the environmental challenge, in addition to the average response 126 

in the base STR. Stresses within industrial reactor are often a distribution of both intensity and 127 

time exposed [24]. To explore shorter timescales, dynamic microfluidic systems have been 128 
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developed to mimic the macroscale systems described previously. These tools allow studying 129 

cellular dynamics on the order of seconds, but future applications are contingent on improved 130 

quantification sensitivity for low metabolite concentrations at low volumes [22,25–27]. 131 

Environmental Challenges and Cellular Response 132 

Nutrient starvation is a common stress experienced by cells in zones where fresh nutrient supply 133 

is substantially slower than local specific consumption rates. Nutrient depletion triggers the 134 

stringent response, a coordinated metabolic and regulatory program that arrests growth, slows 135 

nutrient utilization, and induces changes in gene expression that allows the microorganism to 136 

survive in the now depleted environment [28]. During a stringent response, E. coli translation rates 137 

slow leading to elevated synthesis of the alarmones guanosine tetraphosphate (ppGpp) and 138 

guanosine pentaphosphate (pppGpp)  [29], referred to hereafter as (p)ppGpp. These alarmones 139 

alter the transcription of a wide regulon including ribosomal proteins and enzymes involved in 140 

DNA replication, nucleotide synthesis, transcription, ribosome maturation and function, and lipid 141 

metabolism [28,29]. The stringent response is of particular importance for both carbon (BOX 1) 142 

and nitrogen (BOX 2) limitations, ultimately controlling how the cell throttles its metabolism to 143 

prevent the build-up of unnecessary metabolites and wasteful consumption of ATP [29]. When the 144 

stringent response is triggered in cells entering transient starvation zones, the altered regulation 145 

can slow nutrient uptake, downregulate desired pathway enzymes, and expend energy expressing 146 

unneeded proteins – all of which reduce specific productivity and/or product yield [10]. Although 147 

not only relevant for industrial scale reactors, the metabolic cost of heterologous gene expression 148 

can also lead to stress responses. Additional costs to the cell will also depend on the solubility of 149 

the heterologous protein (BOX 3). 150 

 151 
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Other industrially relevant stresses potentially stem from increased gas solubility, pH variability 152 

and impeller sheer, with the significance of each dependent on the product and/or host of interest. 153 

Increased gas solubility is a result of increased hydrostatic pressure in industrial reactors, leading 154 

to increased gas transfer rates for both oxygen and carbon dioxide [30,31]. To be clear, increased 155 

hydrostatic pressure is not likely to affect E. coli, but instead higher concentrations of oxygen and 156 

carbon dioxide can lead to stress responses (BOX 4) [32]. Though pH is thought to not 157 

significantly change within large-scale reactors, acidic product generation, and concentrated 158 

alkaline addition ports can lead to local pH fluctuations [33,34]. Scale down experiments suggest, 159 

however, that there is little effect of pH shifts when considering E. coli as a host for plasmid 160 

production [34,35]. Finally, the action of impellers in industrial stirred tanks can create zones of 161 

high shear. Most microbes have robust cell walls and are not impacted significantly by shear. For 162 

example, high-shear bioreactor environments have been shown to strip the outer polysaccharide 163 

layer from E. coli but have had no further effect on metabolism [36]. Organisms which impeller 164 

sheer can lead to morphological changes, like filamentous fungi, may lead to decreased 165 

productivity but direct correlations have not been noted in every case [37]. All considered, the 166 

negative effects of increased pressure, pH variability, and sheer can vary greatly on the organism 167 

and product of interest and should be evaluated for each scenario.   168 
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Optimization of the Stress Response 169 

The cellular stress responses induced during large scale fermentations leads to increased 170 

maintenance energy. While some responses are required to prevent irreversible damage (i.e., ROS 171 

and DNA damage), other responses can be overly costly and could be optimized to promote cell 172 

survival rather than growth [38]. However, the cellular response is likely organism, stress, and 173 

time dependent, as cells exposed to repeated short term stress can optimize their stress response 174 

for growth [39]. Adjusting the stress response provides an opportunity to increase available 175 

resources, potentially leading to improved growth and improved heterologous protein production 176 

in transiently stressed environments. Understanding which response can be tuned or removed is a 177 

matter of rational engineering, random screening, or both.  178 

When considering major regulatory nodes in response to stress, (p)ppGpp is a clear target for 179 

controlling a wide range of metabolically expensive reactions. If the level of (p)ppGpp never 180 

increases in response to stress, then the stringent response will be avoided. (p)ppGpp synthesis is 181 

primarily controlled by the (p)ppGpp synthase RelA and the (p)ppGpp synthase/hydrolase SpoT, 182 

which in response to nutrient stress regulate (p)ppGpp levels [40]. However complete removal of 183 

RelA and SpoT creates a (p)ppGpp null strain reported to have amino acid auxotrophies and 184 

increased sensitivity to antibiotics [41,42]. This report suggests that a baseline concentration of 185 

(p)ppGpp is required for robust cellular growth and may be even more important in stressed 186 

conditions. Modulating (p)ppGpp levels however has also led to significant growth repression in 187 

minimal media with either artificially low or high ppGpp. High (p)ppGpp was found to limit 188 

ribosome synthesis and low (p)ppGpp reduced expression of catabolic and anabolic proteins, 189 

suggesting an intermediate (p)ppGpp concentration is ideal for optimal growth [43]. In one 190 

example E. coli was engineered for increased glucose uptake in nitrogen limited cultivations by 191 
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maintaining low levels of (p)ppGpp [44].  By adjusting the (p)ppGpp synthase activity of spoT 192 

through two-point mutations, and the deletion of relA, (p)ppGpp synthesis was maintained at a 193 

stable level throughout a nitrogen limited STR cultivation. An additional point mutation in aceE 194 

reduced its activity, leading to pyruvate as the terminal product [44].  The resulting strain 195 

consumed glucose three times as fast as the parent on a per-cell basis, leading to its name (high 196 

glucose throughput - HGT), but had a 40% lower maximum specific growth rate under nitrogen 197 

limited batch condition. This decreased growth rate speaks to the careful engineering required to 198 

adjust the stress response pathways without significantly affecting cell growth [44]. E. coli SR, a 199 

derivative of the HGT strain lacking the aceE mutation, displayed a muted stress response to 200 

repeated nitrogen limitation in an STR-PFR cultivation. Along the PFR, (p)ppGpp levels remained 201 

relatively low, however E. coli SR maintained nitrogen assimilation pathways during the 202 

cultivation. The diminished nitrogen stress response led to a 45% energy savings with the same 203 

biomass yield, suggesting that SR has additional energy which could be utilized for heterologous 204 

pathways and products [45].  205 

With knowledge of the metabolic and regulatory nodes critical for glucose and nitrogen 206 

limitations, engineers have been able to modify nutrient uptake to maintain desired process 207 

parameters.  For example, during nitrogen limitation the glucose transporter PtsI is normally 208 

inhibited by α-ketoglutarate accumulation. When engineers overexpressed PtsI, the resulting strain 209 

had a four-fold increase in metabolic rates in nitrogen limited cultivations. As a result, the nitrogen 210 

limited, and non-growing culture had increased fatty alcohol yield [46]. In another example, strain 211 

engineers artificially limited glucose uptake and catabolic flux by removing glucose transporters 212 

and components of the phosphoenolpyruvate sugar phosphotransferase system (downstream 213 

glucose metabolism) to minimize overflow metabolism. These mutations allowed a high glucose 214 
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concentration in the batch media to mimic a fed batch culture [47]. A similar strategy could be 215 

used at scale to avoid nutrient heterogeneity due to the typical high concentration glucose feeds.  216 
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Minimizing Heterogeneity and Cellular Adaption 217 

Titer and yield evaluation often require a sufficient volume and analyte concentration to be 218 

measurable, demanding larger volumes of culture that contain millions of individual cells. 219 

Therefore, the final titers reported represents an average output from what is likely a distribution 220 

of heterogenous cellular production phenotypes [48,49]. This Cell Culture Heterogeneity stems 221 

from natural or stress induced cellular adaptation where cells attempt to improve their fitness 222 

through genetic, transcriptional, or translational modifications and errors. Adaptive laboratory 223 

evolution (ALE), for example, takes advantage of DNA replication errors to isolate strains with 224 

improved growth and/or fitness. Conversely, within a bioprocess, it is preferred that Cell Culture 225 

Homogeneity is maintained such that strains do not adapt and perform consistently throughout the 226 

cultivation. Cellular adaptation is a larger concern at scale due to the large number of generations 227 

needed in the seed train to grow sufficient biomass for the final reactor. Industrial strains are grown 228 

far past the number of generations typically considered in laboratory cultivations, and therefore 229 

have greater potential to accumulate genetic errors and/or adapt [50]. 230 

During growth, E. coli is thought to modulate the diversity (and thus adaptability) of the whole 231 

culture by balancing the error rate of the DNA replication with the potential for both beneficial 232 

and harmful genetic errors [51,52]. This adaptation strategy is accelerated during the SOS 233 

response, where E. coli is known to express the more mutation prone DNA polymerase IV and V. 234 

This expression leads to increased SNPs or insertion sequences (IS) to find a favorable mutation, 235 

even at the risks of altering an essential gene [53,54]. As a result, there is an increase in 236 

heterogeneity, and thus overall survivability, of the culture. Industrial strains, however, may 237 

consequently lose heterologous genes when adapting to stressed conditions. One study found that 238 

when these error prone polymerases were removed, E. coli retained expression of a toxic 239 
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methyltransferase with less SNPs over time compared to a wildtype control [55]. When studying 240 

plasmid-based production of 2,3-butanediol and mevalonic acid in multiple background strains, 241 

genetically mobile insertion sequences and SNPs were found to disrupt plasmid expression of the 242 

heterologous enzymes over 90+ generations [50]. Removal of both error prone polymerases and 243 

native IS in the genome reduced MDS42 strain resulted in a longer production half-life over 89 244 

generations. However, MDS42 had lower final titer relative to wildtype, suggesting one of the 245 

modifications was not beneficial to mevalonate production [56]. While genetic mutations offer a 246 

view of long-term adaptation through replication, the transcriptional error rate also varies based 247 

on gene expression level and cell fitness. More highly expressed genes with strong fitness selection 248 

are transcribed with lower error rates in E. coli [57]. Recent research highlighted that the 249 

translational error rate of prokaryotes is 3-4 times greater than transcription error rates [58]. In 250 

unstressed conditions, translational errors are typically controlled based on the frequency of gene 251 

expression with more highly expressed genes having less frequent errors [59]. However 252 

translational error rates, like replication error, may even be intentionally increased in stressed 253 

environments to trigger an SOS response [60,61]. When constructing strains for use in industrial 254 

processes, it is important to consider the potentially unnecessary effects of errors in replication, 255 

transcription, and translation. These errors could be further reduced by improving error prone 256 

enzymes, for example modifications to DNA pol III HE [53].  257 

Considering long term effects of adaptation, the more burdensome a heterologous gene is, the more 258 

likely an inactivating mutation will lead to a growth benefit. Therefore, if burden is minimized, 259 

deleterious mutations may be less likely. This line of thinking has led to methods to improve 260 

heterogeneity by modulating the stress of heterologous expression through “host aware” strategies 261 

which adjust expression based on available cellular resources [62]. In one experiment, a protein 262 
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stress promoter drove expression of dCas9, creating a feedback loop for controlled expression of 263 

mCherry. The result was a strain which produced mCherry based on a cell’s protein synthesis 264 

capacity; leading to more biomass and higher mCherry titer [63]. This system requires further tests 265 

in fluctuating conditions or long-term cultures to prove general robustness. Other process driven 266 

strategies to reduce cellular burden such as oscillating heterologous expression with external 267 

inducers and separation of growth/production phases have been reviewed in detail elsewhere [64].  268 

An alternative method to increase homogeneity of cultures takes advantage of expression noise 269 

through metabolic coupling. Also known as synthetic addition, this strategy couples a product 270 

detecting biosensor or native product sensing transcriptional regulator with expression of an 271 

essential or beneficial gene for cell growth. As a result, product synthesis confers a fitness benefit. 272 

The first demonstrations of this methodology explored producing free fatty acids and tyrosine. In 273 

the free fatty acid producing strains, the authors coupled production to a tetracycline resistance 274 

marker; creating a selection pressure for fatty acids by supplementing the antibiotic to the growth 275 

media. Using this approach, a greater proportion of cells were classified as high fatty acid 276 

producers. Coupling the fatty acid production pathway to leucine biosynthesis in an auxotrophic 277 

E. coli (instead of an antibiotic resistance marker), led to 21.5g/L FFA in a fed batch cultivation, 278 

a greater than four times improvement compared to a strain without metabolic coupling [49]. 279 

Iterative flask cultivations suggested improvements were due to non-genetic variations. When high 280 

producing cells were isolated and returned to fresh media without selection, the enhanced product 281 

titer was not reproduced, and genome sequencing did not suggest any beneficial genetic mutations 282 

[49]. Analogously, coupling essential gene expressions to a mevalonate biosensor a synthetically 283 

addicted strain could maintain mevalonate production over 85 generations. The un-addicted strain 284 

by comparison had reduced mevalonate production due to the accumulation of insertion sequences 285 
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(IS) and single nucleotide polymorphisms (SNP) in the heterologous pathway [65]. These studies 286 

establish that coupling a fitness benefit to flux through heterologous pathways may both take 287 

advantage of non-genetic gene expression heterogeneity machinery and reduce deleterious genetic 288 

modifications in the heterologous pathway. While the fitness benefit offers a clear reason for 289 

genetic stability of heterologous pathway, it is less clear what the non-genetic improvements were. 290 

Additionally, it is unknown how these addiction strategies function in oscillating conditions, thus 291 

warranting further research.  292 
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Minimize basal maintenance energy:  293 

E. coli’s robust adaptability is a result of a proteome that anticipates many possible limitations 294 

[66]. However, if the anticipated environment never occurs, then the additional unnecessary 295 

maintenance cost could potentially divert substrate flux away from the intended production 296 

pathway (Figure 1). Furthermore, given the total protein concentration is relatively constant across 297 

conditions [29], preventing unnecessary protein production may increase resource availability for 298 

expression of other proteins, including heterologous enzymes used in industrial strains. One 299 

method to create efficient strains is genome reduction, which aims to create a strain with the 300 

absolute minimum number of genes. However, this methodology often results in a strain with 301 

significantly reduced growth rates, which is unfit for industrial applications [67]. More industrially 302 

relevant strategies have instead focused on gene removal without significantly affecting growth. 303 

However, only two strains (one E. coli and one P. putida) have shown improved growth and 304 

production parameters in scale down reactors when compared to wildtype [67].  In general, 305 

industrial strain design is centered around strategies to create and sort a diverse library of 306 

mutations. These libraries can either be created with more rational approaches to remove both 307 

costly and potentially unnecessary genes informed by functional genomics or randomly through 308 

strategies like random bar code transposon-site sequencing (RB-TnSeq) or adaptive laboratory 309 

evolution (ALE). 310 

In an example of the rational engineering strategy, unessential gene targets were removed if they 311 

had high maintenance cost under glucose limited conditions, were also orthogonal to central 312 

metabolism, and did not affect major regulatory elements [68]. The resulting strain (RM214) had 313 

a reduced maintenance coefficient in carbon limited STR-PFR chemostats but retained similar 314 

growth parameters in STR chemostats. In carbon limited STR-PFR cultivations RM214 315 
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additionally reached a 44% higher eGFP yield, likely due to excess energy available from the lower 316 

cellular maintenance. Upon PFR connection, the fraction of high eGFP producing cells decreased 317 

for both MG1655 and RM214, however RM214 maintained a higher proportion of producing cells 318 

over time. So, an additional benefit of reduced maintenance was also improved culture 319 

heterogeneity in carbon limited environments (See Minimizing Heterogeneity and Cellular 320 

Adaption) [68]. Similar studies have suggested that relief of heterologous production load can 321 

reduce escape rate and could improve stability of industrial strains over many generations [56]. 322 

However, the connection between a reduction in maintenance and culture heterogeneity remains 323 

unclear.  324 

Other gene knockout selection strategies combine transcriptional networks and resource allocation 325 

to identify the minimal number of non-essential transcription factor knock outs to save the 326 

maximal amount cellular resources [69,70]. The work culminated in the removal of three 327 

transcription factors related to phosphate scavenging, flagella synthesis, and copper efflux. The 328 

resulting strain had no growth defect and showed an improved production of violacein in minimal 329 

media and increased yield of plasmid DNA in both rich and minimal media [69,70]. In another 330 

rational engineering example, genes encoding effector proteins were removed if they were 331 

upregulated in response to a stress, but had little or no regulatory effect on other genes. In this way, 332 

genes which are at the end of a signaling pathway can be removed without significant regulatory 333 

ramifications like RelA or SpoT. By observing heterologous protein induction stress, one study 334 

selectively removed one or two of the terminal stress response genes (whose function may or may 335 

not have been known). These knockouts showed an improved protein yield per unit biomass 336 

depending on the protein expressed [71].  However, these last two strategies were not evaluated in 337 

scale down reactors, so it is unclear how these genetic edits may affect the greater stress response. 338 
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Future rational gene selection strategies will likely continue to improve by use of in vitro tools 339 

[72], functional genomics [68], transcriptional network analysis [69], resource allocation models 340 

[73], and knowledge of the optimal enzyme substrate concentrations within cells [74]. 341 

While the previously discussed genome minimization strategies rely on knowledge of gene 342 

function and its estimated cost, non-obvious beneficial deletions can also be screened with random 343 

gene deletion techniques. For example, RB-TnSeq which replaces a sequence within the genome 344 

with a barcoded transposon, creates a library of identifiable knockouts.[75] RB-TnSeq has been 345 

used to evaluate beneficial mutations at multiple scales and has even found mutations that are 346 

unique to bioreactor cultures [76]. Furthermore, single gene deletions, although beneficial, likely 347 

will have a minor effect on cell growth parameters individually and therefore are often combined 348 

for more significant gains [77]. Random multigene knockout libraries offer further genotypic 349 

diversity and can be generated with iterative plasmid-based methods. Applications of these 350 

multigene knockout libraries show improved growth rate through genome reduction but offer 351 

diminishing returns with each cycle [78]. Another common random mutagenesis strategy is ALE, 352 

which takes advantage of E. coli’s natural accumulation of genetic errors to search for non-obvious 353 

beneficial mutations [79].  ALE-derived mutations are selected purely based on growth rate and 354 

often include genetic modifications by mobile insertion sequences (IS), gene specific single 355 

nucleotide polymorphisms (SNP), deletions, insertions, copy number variation, or multiple base 356 

pair substitutions [79]. ALE is frequently applied using static or increasing stress levels to improve 357 

tolerance, growth rate, substrate utilization, titer, and yield. ALE can also be used in fluctuating 358 

conditions like temperature shifts, demonstrating the potential for evolving strains exposed to 359 

transient stresses [79,80]. Combined use of ALE and genome reduction has potential to overcome 360 

some of the phenotypic issues associated with greatly reduced genomes [81]. However, over 361 
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modification of the genome through ALE or more targeted strategies, while potentially beneficial, 362 

is likely to have a diminishing or even negative effect if overused [78,82]. Unfortunately, 363 

applications of RB-TnSeq and ALE select for improved strains based solely on growth rate, and 364 

improved growth rate does not always result in improved process parameters. More efficient 365 

strategies may combine random or rational library generation with biosensors to instead select for 366 

both improved growth and improved product production [83]. Clearly the ability to generate strain 367 

diversity is no longer the bottleneck, but instead our ability to screen beneficial mutations and 368 

verify improvement in product production [84]. Regardless of the strategy used, it is vital to screen 369 

final production strains at industrial conditions to evaluate any unintentional negative effects.   370 
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Concluding Remarks: 371 

Transitioning laboratory success to the industrial scale relies on predictable and consistent 372 

performance parameters at many volumes. Scale down technology offers an excellent 373 

methodology to study cells in a controlled environment that mimics industrial scale bioreactors 374 

without significant capital and operational investment. With design guided by computational fluid 375 

dynamics and industrial data, scale down reactors can accurately represent both the timescale and 376 

severity of industrial nutrient gradients. With this information, novel strains can be designed and 377 

tested for industrial scale challenges to evaluate their performance, and de-risk scale up. These 378 

industrial strains must be metabolically efficient, expressing only genes which are required for 379 

maintaining high productivity, titer, and yield. Strategies for selecting genes to remove can be 380 

either rational or random but must be evaluated in production strains at industrial conditions to 381 

understand their effect. Further, strains must be both capable of surviving and metabolically 382 

impartial to transient nutrient limitations (i.e., carbon, oxygen, etc.) and stresses (i.e., high CO2, 383 

O2, etc.) at scale. To optimize the cellular response to these environments, engineers may derive 384 

information from functional genomics and transcriptional network analysis to select either 385 

wasteful genes or transcriptional regulators for removal or modification. Additionally, a growing 386 

subset of microfluidics and cell sorting strategies are expanding our understanding of culture 387 

heterogeneity with single cell resolution.  Methods like synthetic addition take advantage of this 388 

heterogeneity to improve culture performance, reduce escape mutants, and reduce heterogenous 389 

populations. Future studies evaluating how heterologous burden and maintenance energy interact 390 

with transcriptional, translational, and replication error will likely offer additional opportunities 391 

for engineering. However, adjusting the cellular response to multiple different stress has not yet 392 

been fully evaluated in the field. Therefore, strain engineers now have the challenge to map and 393 
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understand how the cell responds to multiple stresses and evaluate potential genetic interventions 394 

at the DNA, RNA, and protein level. By focusing on these outstanding questions, future industrial 395 

strains will spend their resources efficiently, limit their genetic adaptation and most of all maintain 396 

production at scale.  397 
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Glossary 398 

Cell Culture Heterogeneity: Refers to the variation in cellular metabolism at a single cell level. 399 

Naturally cells evolve over time, utilizing errors in DNA replication to diversify the population of 400 

cells and thus increase its survivability. On shorter timescales. cells are likely to achieve additional 401 

survivability through errors and variations in both translation and transcription. Often this can lead 402 

to changes in process parameters (e.g., titer, rate, and yield) as the culture is scaled to larger 403 

volumes. This may be due to longer seed trains requiring more doublings for larger volumes, or 404 

stresses induced at large scales which is often not captured in laboratory cultivations. 405 

Cell Culture Homogeneity: In general, this term represents a population of cells which produce 406 

a product more similarly on a single cell level. Potential areas that can improve culture 407 

homogeneity include reducing cellular maintenance, reducing heterologous burden, removing 408 

error prone polymerases, and utilizing burden aware or synthetically coupled heterologous gene 409 

expression strategies. Increased culture homogeneity may improve process parameters like titer, 410 

rates, and yield at various scales. 411 

Cell Free: A methodology utilizing cytosol isolated from cells to express proteins in an in vitro 412 

setting, typically used for balancing enzyme expression of heterologous pathways. 413 

Computational Fluid Dynamics: A computational method to model the fluid flow in various 414 

geometries to estimate nonideal mixing conditions. 415 

Microfluidics: A culturing technique relying on small channels with a characteristic heigh or 416 

width on the scale of micrometers. Constructed typically with soft polymers (like 417 

polydimethylsiloxane), these lab-on-a-chip devices can rapidly flow small volumes of media to 418 

shift conditions within the channels. Each channel can grow individual groups of cells for 419 
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experimentation. Cultures are often visualized with an external microscope to evaluate growth 420 

parameters. 421 

RpoS Mediated Stress Response: Controlled by the levels of the RpoS sigma factor, this stress 422 

response is typically activated upon reaching stationary phase and various other stressed 423 

conditions. RpoS is an adaptive response regulator known to regulate expression of over 1000 424 

genes, allowing cells to respond to starvation or unfavorable external conditions.  425 

Scale Down: Culturing techniques which are modeled after large scale reactors intended to mimic 426 

non ideal mixing conditions at a laboratory scale, including stirred tank reactors and microfluidics. 427 

SOS response: Induced upon sudden DNA Damage (like from reactive oxygen species), the 428 

regulator RecA binds to single stranded DNA, and is activated. The activated RecA then 429 

encourages self-cleavage of the LexA protein repressor lowering its affinity for DNA and allowing 430 

expression of SOS genes. Depending on the severity of the DNA damage, various DNA damage 431 

repair enzymes may be expressed until the DNA damage is repaired.   432 

Stringent response: In response to a nutrient limitation, the signaling molecule (p)ppGpp 433 

accumulates leading to a reduced growth rate and metabolism in accordance with the severity of 434 

the limitation. Some examples of starvation events include lacking amino acids, carbon, iron, 435 

phosphate, nitrogen, and fatty acids.   436 
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FIGURE 1: Pirt visualization of cellular expenditures during cultivation.  437 

Represented as a Sankey diagram, substrate uptake rate (𝒒𝒔 ) can be dividing into new cell 438 

generation (
𝟏

𝒀𝑿𝑺
𝑴𝒂𝒙 𝝁) , the cost of the heterologous production pathway (

𝟏

𝒀𝑿𝑷
𝑴𝒂𝒙 𝒒𝒑), and cellular 439 

maintenance (𝒎𝒔) [13]. Note that this is a simplified steady state representation to illustrate 440 

cellular expenditures. Substrate uptake rate, new cell generation, pathway cost, and maintenance 441 

will vary based on the growth rate and environmental stresses. Illustrated with a gradient of stress 442 

typically seen in industrial fermentations, with red as high stress and blue as low stress, the total 443 

substrate uptake as well as the distribution of expenditures can shift depending on the culture 444 

conditions. 445 

  446 
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FIGURE 2: Transition from small scale cultivations to industrial scale.  447 

From single cell to lab scale bioreactors, titer, rate, and yield is often quantified in an ideal or well 448 

mixed environment in which nutrients are readily available. Gradients modeled in large scale 449 

reactors however show that nutrient availability can vary from excess to starvation at a timescale 450 

from seconds to minutes [21–23]. With their increased risk and capital cost along with their low 451 

throughput, large-scale reactors are often excluded from strain evaluation. Scale down reactors 452 

offer an alternative with a relatively higher throughput and lower cost. These reactors can mimic 453 

individual and combined stresses with the added benefit of product quantification and functional 454 

genomics on a minute timescale [85]. Samples, however, will show the average cellular response 455 

and may not be able to capture individual cell variations unless cell sorting is utilized. Scale down 456 

microfluidics, however, can allow observations of single cells with fluorescent microscopy-based 457 

measurements on a timescale of seconds [85]. The frequency of the stress fluctuations is limited 458 

only by the speed of media flushing in the microfluidic design. However quantitative analysis is 459 

primarily limited by low analytic concentrations and low volumes making product quantification 460 

and functional genomics difficult, if not impossible, with current methods [22,27]. 461 

  462 
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BOX 1: Carbon dependent response 463 

 464 

Figure I: Simplification of carbon metabolism and signaling in E. coli. Note that larger 465 

chemical or signaling pathways (TCA, FAB, stringent response, etc.) are underlined for clarity. 466 

Enzymes and proteins are represented by ovals and individual chemicals are represented as text. 467 

Positive regulation is represented with a dotted green arrow and negative regulation is represented 468 

with a dotted red line. Columns represented by color and boxed header (High, Nominal, Low, and 469 

Competing carbon) show the signaling pathway for each condition. The levels of core signaling 470 

molecules are boxed at the bottom of each condition, in this case cAMP-Crp levels. 471 

 472 

Transporters and catabolic enzymes responsible for carbon assimilation are regulated by both 473 

substrate-specific (e.g., XylR sensing of xylose) and global (e.g., cyclic-AMP-CRP) regulation 474 

mechanisms (Figure I). Glucose as a preferred carbon source is imported into the cell from the 475 

periplasm via the EllABC transporter at the cost of 1 ATP. The EllA component is not membrane 476 

bound and allows for sensing glucose availability. When cells sense a lack of preferred carbon 477 

sources, the activity of adenylate cyclase (AC) is upregulated, increasing cyclic-AMP (cAMP) 478 

synthesis. Conversely, cAMP synthesis is negatively regulated by accumulation of α-keto acids, 479 

(e.g., α-ketoglutarate, pyruvate, and oxaloacetate) hallmarks of abundant catabolic flux or reduced 480 

synthesis of amino acids and other biomass precursors. The latter mechanism connects regulation 481 

of catabolic flux in fatty acid biosynthesis (FAB) via acetyl-CoA carboxylase (ACC) and the 482 

tricarboxylic acid (TCA) cycle to the stringent response. A complex (cAMP-CRP) of cAMP with 483 

its cognate receptor protein (CRP) activates transcription of promoters associated with secondary 484 

carbon uptake pathways. These pathways are typically positively regulated by the presence of 485 
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cognate carbon sources (e.g., XylR) to ensure that pathways are expressed only when the carbon-486 

source is present [29,86]. The absence of cAMP-CRP returns transcription of regulons to basal, 487 

often very low, levels. In addition to direct regulation, increased expression of the cAMP-CRP 488 

regulon decreases the pool of available cellular resources and indirectly downregulate genes 489 

outside the regulon [29]. Conversely, downregulating the cAMP-CRP regulon makes resources 490 

available for translating other proteins. These global effects are because a cell’s translation 491 

capacity is finite. 492 

In scale down reactors, glucose starvation quickly (over about 2 hours) induces expression of the 493 

cAMP-CRP regulon including sugar transporters and the outer membrane porin OmpF to improve 494 

carbon uptake [87]. In continuous STR-PFR experiments, when exposed to a glucose excess along 495 

the PFR, cells showed a rapid, short-term metabolic response leading to byproducts such as acetate 496 

and lactate. A function of overflow metabolism, these metabolic by-products negatively affect the 497 

substrate to biomass yield [88]. When instead cells are starved of glucose along a PFR, cells 498 

experience a decrease in the adenylate energy charge (a measure of energy availability in the cell) 499 

and an accumulation of ppGpp accumulation (signaling the stringent response) [77]. After 110s of 500 

glucose starvation, 400-600 genes were up- or downregulation by at least 1.5-fold. Carbohydrate 501 

and amino acid metabolism, glucose transport, post translational modification, protein turnover 502 

and folding were among the upregulated genes and translation, ribosomal structure, replication, 503 

recombination, and repair genes were on average downregulated. After 28 hours of intermittent 504 

glucose starvation, E. coli expressed genes associated with amino acids biosynthesis/metabolism, 505 

the general stress response and stationary phase growth [77,89].  506 
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BOX 2: Nitrogen dependent response 507 

 508 

Figure II: Simplification of nitrogen signaling pathway and metabolism in E. coli. Note that 509 

larger chemical or signaling pathways (stringent response) are underlined for clarity. Enzymes and 510 

proteins are represented by ovals and individual chemicals are represented as text. Glutamine is 511 

simplified to Gln and glutamate to Glu. Positive regulation is represented with a dotted green arrow 512 

and negative regulation is represented with a dotted red line. Columns represented by color and 513 

boxed description show the signaling pathway for each condition at the top of the figure. Boxed 514 

description of core signaling molecules, in this case glutamine levels and the ratio of glutamine to 515 

α-ketoglutarate are located within each column. 516 

 517 

Like carbon stress, nitrogen extremes can be caused by concentrated nitrogen feeds or poor mixing. 518 

Summarized in Figure II, nitrogen availability is primarily sensed by internal levels of glutamine 519 

and α-ketoglutarate in E. coli. This is achieved by the uridylyl-transferase/uridylyl-removing 520 

enzyme (GlnD) which, depending on the glutamine concentration, determines the uridylayation 521 

state of the PII homologs GlnK and GlnB. In nitrogen limited conditions or low glutamine levels, 522 

uridylated GlnK and GlnB accumulate. Uridylation of GlnK reduces its affinity for the AmtB 523 

transporter, allowing increased ammonia uptake. Whereas uridylated GlnB has two effects to 524 

increase nitrogen uptake. First, uridylated GlnB encourages de-adenylation of glutamine synthase 525 

(GS), increasing its activity and encouraging nitrogen assimilation. Second, uridylation of GlnB 526 

inhibits its interaction with the histidine kinase NtrB and maintaining the phosphorylate the 527 

nitrogen response transcriptional regulator NtrC. While phosphorylated, NtrC increases expression 528 

of σ54 and RelA leading to a coordinated expression of nitrogen assimilation genes and the stringent 529 
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response [90,91]. α-ketoglutarate additionally regulates nitrogen assimilation through direct 530 

binding to the GlnB protein. High concentrations of α-ketoglutarate lead to direct binding of α-531 

ketoglutarate to GlnB, encouraging uridylation of GlnB, and deadenylation and thus activation of 532 

GS.  High α-ketoglutarate also maintains a phosphorylated NtrC by reducing binding of GlnB to 533 

NtrB, in general acting antagonistically to glutamine concentrations. In relation to carbon flux, 534 

GlnB binds to and inhibits the initiating enzyme of the fatty acid biosynthesis pathway, acetyl-535 

CoA carboxylase (ACC). The Uridylation of GlnB reduces this inhibitory binding, and increases 536 

flux through the fatty acid biosynthesis pathway, allowing carbon flux in nitrogen limited 537 

conditions. α-ketoglutarate binding to GlnB also encourages dissociation from ACC, increasing 538 

ACC activity. In this way GlnB and α-ketoglutarate allow full ACC activity depending on both 539 

carbon and nitrogen availability [92]. Additional modes of α-ketoglutarate, ATP, and glutamine 540 

regulation have been reviewed elsewhere [93]. With excess glutamine (high nitrogen 541 

concentrations), GlnD will deuridylayate PII homologs GlnB and GlnK, preventing the nitrogen 542 

stress response summarized above. In nitrogen excess, diffusion of ammonia is thought to be the 543 

primary nitrogen transport method rather than any transporters. Under normal growth conditions 544 

glutamate dehydrogenase (GDH) acts as the primary assimilation pathway with glutamine 545 

synthase (GS) and glutamate synthase (GOGAT) is primarily used under nitrogen limitation 546 

requiring ATP [87].  547 

When observing a STR shifting from nitrogen limitation to carbon limitation and finally dual 548 

nitrogen and carbon limitation, α-ketoglutarate was again shown to balance carbon and nitrogen 549 

utilization. In this case, α-ketoglutarate only remains high with carbon excess, but decreases under 550 

carbon limitations and dual carbon-nitrogen limitations. Thereby maintaining nitrogen 551 

assimilation pathways only if carbon was available [87]. In nitrogen limited STR-PFR cultivations, 552 
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(p)ppGpp accumulated along the PFR (128 seconds), corresponding with the stringent response 553 

and NtrC mediated regulation of genes. After 5 minutes and 28 hours of cultivation, genes related 554 

to translation, nucleotide metabolism, and ribosomal structure and biogenesis were downregulated 555 

showing the expected nitrogen starvation response occurs even with transient limitations [45].  556 
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BOX 3: Exploring Protein Expression Stress 557 

Expression of heterologous proteins at high levels can pull resources from native cellular 558 

processes. In flasks, expression of 45 different genes in E. coli showed a general trend balancing 559 

its proteome though the RpoS mediated response and translation related machinery [94]. In the 560 

same study, protein expression levels correlated with metal homeostasis genes likely due to a loss 561 

redox balance, the RpoH mediated heat shock response depending on the foldability of the protein 562 

expressed, and increased expression of nucleotide and amino acid biosynthetic pathways to support 563 

plasmid and protein production [94]. When observing a carbon limited fed batch at high growth 564 

rates, high recombinant protein expression leads to a significant reduction in CRP-cAMP and a 565 

significant increase in expression of the transcriptional regulator ArcA. This results in decreased 566 

glucose uptake, reduced TCA cycle activity, and lower cellular respiration likely influenced by 567 

accumulation of intermediate metabolites like pyruvate or α-ketoglutarate [95]. In total, the 568 

response to sudden protein production was down regulation of glucose catabolism in an attempt to 569 

match the anabolism of plasmid and protein production while minimizing accumulation of 570 

byproducts, similar to an excess carbon response [96]. Industrial reactors are often used in a fed 571 

batch mode, so the observed glucose overfeeding response may be more relevant. From gene to 572 

protein, the majority of the energetic cost is in protein translation and amino acid generation [97]. 573 

However additional cellular burden may depend also on either untranslatable RNA or the 574 

formation of inclusion bodies depending on the sequence and protein produced [98]. Finally, while 575 

the burden of heterologous gene expression can be estimated a priori [77,97], these strategies do 576 

not always consider variability in actual RNA and protein produced. An alternative in vitro cell 577 

free assay can estimate expression cost of an operon and separate out metabolic burden from 578 

expression burden in a single snapshot [72]. Advances in mass spectroscopy have also shown the 579 



32 

 

ability to accurately quantify the proteome in various stressed conditions, allowing more accurate 580 

predictions of protein production cost [99].  581 
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BOX 4: The effect of Pressure, Oxygen, and Carbon Dioxide on Cells 582 

Elevated pressure in bioreactors is known to cause increased concentrations of gases at scale, 583 

affecting the maximum concentrations of oxygen and carbon dioxide cells experience. For 584 

example, mild hydrostatic pressure (1 MPa) is known to trigger an oxidative stress response due 585 

to increased oxygen concentrations and the formation of reactive oxygen species (ROS). These 586 

conditions have been shown to initiate the SOS stress response [100,101]. Oxidative stress 587 

additionally leads to rapid depletion of NADPH (a result of glutathione pathway defense for ROS) 588 

that must be recovered by the reserve flux capacity in the oxidative branch of the pentose phosphate 589 

pathway [102]. This decrease in reduction power may negatively influence cellular growth and 590 

product production, particularly if a heterologous pathway is dependent on NADPH as a co-factor. 591 

If oxygen is instead lacking, shifting to anaerobic conditions (over about ~13 seconds) reduces 592 

growth rate and recombinant protein production, and activates anerobic metabolism leading to 593 

organic acid production [103]. Cells could be engineered for better uptake of oxygen, such as 594 

expression of oxygen transporters [104], but may need to be balanced with the cells’ ability to 595 

tolerate additional ROS.  596 

For E. coli, carbon dioxide concentrations are not typically considered to be a critical variable in 597 

laboratory cultivations. However, industrial reactors can accumulate significantly more CO2 due 598 

to the height of the reactors and high cell density cultures. Growth in consistently high CO2 599 

conditions has been shown to induce expression of amino acid pH resistance systems and down 600 

regulation of the tricarboxylic acid (TCA) cycle leading to a decrease in cell biomass, growth 601 

rate, and heterologous protein production [105,106]. Oscillatory dCO2 concentrations, however, 602 

were not found to have a significant effect on cells in an STR-STR reactor mimicking industrial 603 

mixing times, suggesting high CO2 environments on their own do not lead to significant 604 



34 

 

metabolic cost [105,106]. In a recent fed batch study, cells grown with CO2 concentrations 605 

modeled after a 450m3 tank only showed reduced productivity when increased CO2 606 

concentrations were combined with carbon and nitrogen limitations [107]. However, CO2 607 

enrichment was implemented by a constant feed of gas and is thus unable to completely mimic 608 

the fluctuating concentrations seen in large scale reactors [107]. Constant high CO2 enrichment 609 

did however lead to premature termination of the culture due to acidification [107]. In total, the 610 

results suggest that carbon dioxide is unlikely to be the primary stress for industrial 611 

fermentations, but in combination with other limitations may affect core process parameters like 612 

biomass yield [107]. It is important to stress that while CO2 may not be a significant factor for E. 613 

coli, the effect varies extremely by host [108,109]. 614 

Acknowledgements: 615 

The viewpoints expressed in this review are solely those of the authors. At the time of writing, 616 

Prof. Pfleger was a visiting scholar at the IBVT at the University of Stuttgart supported by a 617 

Bessel Research Award from the Alexander von Humboldt Foundation. Prof. Pfleger’s opinions 618 

are based on research conducted in his laboratory with support from the US National Science 619 

Foundation (EFRI-2132036), the US Department of Agriculture (NIFA-2020-67021-31140), and 620 

the US Department of Energy (DE-AR0001503, DE-SC0022207, DE-SC0018420, DE-621 

SC0018409). William Cordell was supported by a Fenton May Fellowship from the Department 622 

of Chemical and Biological Engineering at the University of Wisconsin-Madison.  623 



35 

 

Bibliography: 624 

1. MohammadiPeyhani, H. et al. (2022) Expanding biochemical knowledge and illuminating 625 

metabolic dark matter with ATLASx. Nat Commun 13, 1560 626 

2. Voigt, C.A. (2020) Synthetic biology 2020–2030: six commercially-available products that 627 

are changing our world. Nat Commun 11, 6379 628 

3. Lee, S.Y. et al. (2019) A comprehensive metabolic map for production of bio-based 629 

chemicals. Nat Catal 2, 18–33 630 

4. Nielsen, J. and Keasling, J.D. (2016) Engineering Cellular Metabolism. Cell 164, 1185–631 

1197 632 

5. Casini, A. et al. (2018) A Pressure Test to Make 10 Molecules in 90 Days: External 633 

Evaluation of Methods to Engineer Biology. J Am Chem Soc 140, 4302–4316 634 

6. Biggs, B.W. et al. (2021) Enabling commercial success of industrial biotechnology. Science 635 

(1979) 374, 1563–1565 636 

7. Jullesson, D. et al. (2015) Impact of synthetic biology and metabolic engineering on 637 

industrial production of fine chemicals. Biotechnol Adv 33, 1395–1402 638 

8. Kampers, L.F.C. et al. (2021) From Innovation to Application: Bridging the Valley of Death 639 

in Industrial Biotechnology. Trends Biotechnol 39, 1240–1242 640 

9. Crater, J.S. and Lievense, J.C. (2018) Scale-up of industrial microbial processes. FEMS 641 

Microbiol Lett 365, fny138 642 

10. Zieringer, J. et al. (2021) Data-driven in silico prediction of regulation heterogeneity and 643 

ATP demands of Escherichia coli in large-scale bioreactors. Biotechnol Bioeng 118, 265–644 

278 645 



36 

 

11. Yang, L. et al. (2018) Modeling the multi-scale mechanisms of macromolecular resource 646 

allocation. Curr Opin Microbiol 45, 8–15 647 

12. Chen, K. et al. (2021) Bacterial fitness landscapes stratify based on proteome allocation 648 

associated with discrete aero-types. PLoS Comput Biol 17, e1008596 649 

13. Pirt, S.J. (1965) The maintenance energy of bacteria in growing cultures. Proceedings of 650 

the Royal Society of London Biology 163, 224–231 651 

14. Hafner, J. et al. (2020) Updated ATLAS of Biochemistry with New Metabolites and 652 

Improved Enzyme Prediction Power. ACS Synth Biol 9, 1479–1482 653 

15. Hicks, M.A. and Prather, K.L.J. (2014) Bioprospecting in the Genomic Age. In Advances 654 

in Applied Microbiology 87, pp. 111–146, Academic Press Inc. 655 

16. Dueber, J.E. et al. (2009) Synthetic protein scaffolds provide modular control over 656 

metabolic flux. Nat Biotechnol 27, 753–759 657 

17. Pfleger, B.F. et al. (2006) Combinatorial engineering of intergenic regions in operons tunes 658 

expression of multiple genes. Nat Biotechnol 24, 1027–1032 659 

18. Montaño López, J. et al. (2022) Physiological limitations and opportunities in microbial 660 

metabolic engineering. Nat Rev Microbiol 20, 35–48 661 

19. Rajpurohit, H. and Eiteman, M.A. (2022) Nutrient-Limited Operational Strategies for the 662 

Microbial Production of Biochemicals. Microorganisms 10, 2226 663 

20. Menacho-Melgar, R. et al. (2021) Optimization of phosphate-limited autoinduction broth 664 

for two-stage heterologous protein expression in Escherichia coli. Biotechniques 71, 566–665 

572 666 



37 

 

21. Bisgaard, J. et al. (2021) Automated compartment model development based on data from 667 

flow-following sensor devices. Processes 9, 1651 668 

22. Haringa, C. et al. (2018) From industrial fermentor to CFD-guided downscaling: what have 669 

we learned? Biochem Eng J 140, 57–71 670 

23. Nadal-Rey, G. et al. (2022) Computational fluid dynamics modelling of hydrodynamics, 671 

mixing and oxygen transfer in industrial bioreactors with Newtonian broths. Biochem Eng 672 

J 177, 108265 673 

24. Olughu, W. et al. (2019) Insight into the large-scale upstream fermentation environment 674 

using scaled-down models. Journal of Chemical Technology and Biotechnology 94, 647–675 

657 676 

25. Ho, P. et al. (2019) Reproduction of large-scale bioreactor conditions on microfluidic chips. 677 

Microorganisms 7, 105 678 

26. Täuber, S. et al. (2020) DMSCC: A microfluidic platform for microbial single-cell 679 

cultivation of: Corynebacterium glutamicum under dynamic environmental medium 680 

conditions. Lab Chip 20, 4442–4455 681 

27. Ho, P. et al. (2022) Microfluidic Reproduction of Dynamic Bioreactor Environment Based 682 

on Computational Lifelines. Frontiers in Chemical Engineering 4, 826485 683 

28. Irving, S.E. et al. (2021) The stringent response and physiological roles of (pp)pGpp in 684 

bacteria. Nat Rev Microbiol 19, 256–271 685 

29. Scott, M. and Hwa, T. (2022) Shaping bacterial gene expression by physiological and 686 

proteome allocation constraints. Nat Rev Microbiol 21, 327–342 687 

30. Doran, P. (2013) Bioprocess Engineering Principles. In (Second.), pp. 428, Elsevier 688 



38 

 

31. Wilkinson, P.M. et al. (1994) MASS TRANSFER AND BUBBLE SIZE IN A BUBBLE 689 

COLUMN UNDER PRESSURE. Chem Eng Sci 49, 1417–1427 690 

32. Follonier, S. et al. (2012) Pressure to kill or pressure to boost: A review on the various 691 

effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol 692 

Biotechnol 93, 1805–1815 693 

33. Spann, R. et al. (2019) CFD predicted pH gradients in lactic acid bacteria cultivations. 694 

Biotechnol Bioeng 116, 769–780 695 

34. Cort es, J.T. et al. (2016) Physiological effects of pH gradients on Escherichia coli during 696 

plasmid DNA production. Biotechnol. Bioeng 113, 598–611 697 

35. Paul, K. et al. (2020) Investigation of cell line specific responses to pH inhomogeneity and 698 

consequences for process design. Eng Life Sci 20, 412–421 699 

36. Hewitt, C.J. et al. (1998) The Use of Flow Cytometry to Study the Impact of Fluid 700 

Mechanical Stress on Escherichia coli W3110 During Continuous Cultivation in an Agitated 701 

Bioreactor. Biotechnol Bioeng 59, 612–620 702 

37. Gomes, D.G. et al. (2023) Bioreactors and engineering of filamentous fungi cultivation. In 703 

Current Developments in Biotechnology and Bioengineering, pp. 219–250, Elsevier 704 

38. Balakrishnan, R. et al. (2021) Suboptimal resource allocation in changing environments 705 

constrains response and growth in bacteria. Mol Syst Biol 17 706 

39. Minden, S. et al. (2023) Performing in spite of starvation: How Saccharomyces cerevisiae 707 

maintains robust growth when facing famine zones in industrial bioreactors. Microb 708 

Biotechnol 16, 148–168 709 



39 

 

40. Magnusson, L.U. et al. (2005) ppGpp: A global regulator in Escherichia coli. Trends 710 

Microbiol 13, 236–242 711 

41. Hobbs, J.K. and Boraston, A.B. (2019) (p)ppGpp and the Stringent Response: An Emerging 712 

Threat to Antibiotic Therapy. ACS Infect Dis 5, 1505–1517 713 

42. Xiao, H. et al. (1991) Residual Guanosine 3’,5’-Bispyrophosphate Synthetic Activity of 714 

relA Null Mutants Can Be Eliminated by spoT Null Mutations*. J Biol Chem 266, 5980–715 

5990 716 

43. Zhu, M. and Dai, X. (2019) Growth suppression by altered (p)ppGpp levels results from 717 

non-optimal resource allocation in Escherichia coli. Nucleic Acids Res 47, 4684–4693 718 

44. Michalowski, A. et al. (2017) Escherichia coli HGT: Engineered for high glucose 719 

throughput even under slowly growing or resting conditions. Metab Eng 40, 93–103 720 

45. Ziegler, M. et al. (2021) Transcriptional profiling of the stringent response mutant strain 721 

E. coli SR reveals enhanced robustness to large-scale conditions. Microb Biotechnol 14, 722 

993–1010 723 

46. Chubukov, V. et al. (2017) Engineering glucose metabolism of Escherichia coli under 724 

nitrogen starvation. NPJ Syst Biol Appl 3, 16035 725 

47. Velazquez, D. et al. (2022) Glucose transport engineering allows mimicking fed-batch 726 

performance in batch mode and selection of superior producer strains. Microb Cell Fact 21, 727 

183 728 

48. Heins, A.L. et al. (2019) Quantitative flow cytometry to understand population 729 

heterogeneity in response to changes in substrate availability in Escherichia coli and 730 

Saccharomyces cerevisiae chemostats. Front Bioeng Biotechnol 7, 187 731 



40 

 

49. Xiao, Y. et al. (2016) Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. 732 

Nat Chem Biol 12, 339–344 733 

50. Rugbjerg, P. et al. (2021) Short and long-read ultra-deep sequencing profiles emerging 734 

heterogeneity across five platform Escherichia coli strains. Metab Eng 65, 197–206 735 

51. Woo, A.C. et al. (2018) Heterogeneity of spontaneous DNA replication errors in single 736 

isogenic Escherichia coli cells. Sci. Adv 4, eaat1608 737 

52. Sprouffske, K. et al. (2018) High mutation rates limit evolutionary adaptation in Escherichia 738 

coli. PLoS Genet 14, e1007324 739 

53. Fijalkowska, I.J. et al. (2012) DNA replication fidelity in Escherichia coli: A multi-DNA 740 

polymerase affair. FEMS Microbiol Rev 36, 1105–1121 741 

54. Consuegra, J. et al. (2021) Insertion-sequence-mediated mutations both promote and 742 

constrain evolvability during a long-term experiment with bacteria. Nat Commun 12, 980 743 

55. Csörgo, B. et al. (2012) Low-mutation-rate, reduced-genome Escherichia coli: An improved 744 

host for faithful maintenance of engineered genetic constructs. Microb Cell Fact 11, 11 745 

56. Rugbjerg, P. et al. (2018) Diverse genetic error modes constrain large-scale bio-based 746 

production. Nat Commun 9, 787 747 

57. Meer, K.M. et al. (2019) High Transcriptional Error Rates Vary as a Function of Gene 748 

Expression Level. Genome Biol Evol 12, 3754–3761 749 

58. Li, W. and Lynch, M. (2020) Universally high transcript error rates in bacteria. Elife 9, 750 

e5489 751 



41 

 

59. Mordret, E. et al. (2019) Systematic Detection of Amino Acid Substitutions in Proteomes 752 

Reveals Mechanistic Basis of Ribosome Errors and Selection for Translation Fidelity. Mol 753 

Cell 75, 427-441.e5 754 

60. Evans, C.R. et al. (2019) Increased mistranslation protects E. coli from protein misfolding 755 

stress due to activation of a RpoS-dependent heat shock response. FEBS Lett 593, 3220–756 

3227 757 

61. Samhita, L. et al. (2020) Global mistranslation increases cell survival under stress in 758 

Escherichia coli. PLoS Genet 16, e1008654 759 

62. Boo, A. et al. (2019) Host-aware synthetic biology. Curr Opin Syst Biol 14, 66–72 760 

63. Ceroni, F. et al. (2018) Burden-driven feedback control of gene expression. Nat Methods 761 

15, 387–393 762 

64. Bertaux, F. et al. (2021) External control of microbial populations for bioproduction: A 763 

modeling and optimization viewpoint. Curr Opin Syst Biol 28, 100394 764 

65. Rugbjerg, P. et al. (2018) Synthetic addiction extends the productive life time of engineered 765 

Escherichia coli populations. Proc Natl Acad Sci U S A 115, 2347–2352 766 

66. Mori, M. et al. (2017) Quantifying the benefit of a proteome reserve in fluctuating 767 

environments. Nat Commun 8, 1225 768 

67. Ziegler, M. and Takors, R. (2020) Minimal Cells: Design, Construction, Biotechnological 769 

Applicationspp. 1–32 770 

68. Ziegler, M. et al. (2021) Engineering of a robust Escherichia coli chassis and exploitation 771 

for large-scale production processes. Metab Eng 67, 75–87 772 



42 

 

69. Lastiri-Pancardo, G. et al. (2020) A quantitative method for proteome reallocation using 773 

minimal regulatory interventions. Nat Chem Biol 16, 1026–1033 774 

70. de la Cruz, M. et al. (2020) Plasmid DNA production in proteome-reduced Escherichia coli. 775 

Microorganisms 8, 1444 776 

71. Sharma, A.K. et al. (2020) A novel knock out strategy to enhance recombinant protein 777 

expression in Escherichia coli. Microb Cell Fact 19, 148 778 

72. Borkowski, O. et al. (2018) Cell-free prediction of protein expression costs for growing 779 

cells. Nat Commun 9, 1457 780 

73. Yang, L. et al. (2018) Modeling the multi-scale mechanisms of macromolecular resource 781 

allocation. Curr Opin Microbiol 45, 8–15 782 

74. Dourado, H. et al. (2021) On the optimality of the enzyme–substrate relationship in bacteria. 783 

PLoS Biol 19, e3001416 784 

75. Wetmore, K.M. et al. (2015) Rapid quantification of mutant fitness in diverse bacteria by 785 

sequencing randomly bar-coded transposons. mBio 6, e00306-15 786 

76. Eng, T. et al. (2021) Engineering Pseudomonas putida for efficient aromatic conversion to 787 

bioproduct using high throughput screening in a bioreactor. Metab Eng 66, 229–238 788 

77. Löffler, M. et al. (2016) Engineering E. coli for large-scale production – Strategies 789 

considering ATP expenses and transcriptional responses. Metab Eng 38, 73–85 790 

78. Vernyik, V. et al. (2020) Exploring the fitness benefits of genome reduction in Escherichia 791 

coli by a selection-driven approach. Sci Rep 10, 7345 792 



43 

 

79. Sandberg, T.E. et al. (2019) The emergence of adaptive laboratory evolution as an efficient 793 

tool for biological discovery and industrial biotechnology. Metab Eng 56, 1–16 794 

80. Lambros, M. et al. (2021) Emerging Adaptive Strategies Under Temperature Fluctuations 795 

in a Laboratory Evolution Experiment of Escherichia Coli. Front Microbiol 12, 724982 796 

81. Choe, D. et al. (2019) Adaptive laboratory evolution of a genome-reduced Escherichia coli. 797 

Nat Commun 10, 935 798 

82. Phaneuf, P. v. et al. (2021) Escherichia coli Data-Driven Strain Design Using Aggregated 799 

Adaptive Laboratory Evolution Mutational Data. ACS Synth Biol 10, 3379–3395 800 

83. Koch, M. et al. (2019) Custom-made transcriptional biosensors for metabolic engineering. 801 

Curr Opin Biotechnol 59, 78–84 802 

84. Wehrs, M. et al. (2020) You get what you screen for: on the value of fermentation 803 

characterization in high-throughput strain improvements in industrial settings. J Ind 804 

Microbiol Biotechnol 47, 913–927 805 

85. Haringa, C. et al. (2016) Euler-Lagrange computational fluid dynamics for (bio)reactor 806 

scale down: An analysis of organism lifelines. Eng Life Sci 16, 652–663 807 

86. Sievert, C. et al. (2017) Experimental evolution reveals an effective avenue to release 808 

catabolite repression via mutations in XylR. Proc Natl Acad Sci U S A 114, 7349–7354 809 

87. Löffler, M. et al. (2017) Switching between nitrogen and glucose limitation: Unraveling 810 

transcriptional dynamics in Escherichia coli. J Biotechnol 258, 2–12 811 

88. Neubauer, P. et al. (1995) Influence of substrate oscillations on acetate formation and 812 

growth yield in Escherichia coli glucose limited fed‐batch cultivations. Biotechnol Bioeng 813 

47, 139–146 814 



44 

 

89. Schellhorn, H.E. (2020) Function, Evolution, and Composition of the RpoS Regulon in 815 

Escherichia coli. Front Microbiol 11, 560099 816 

90. Sanchuki, H.B.S. et al. (2017) Dynamics of the Escherichia coli proteome in response to 817 

nitrogen starvation and entry into the stationary phase. Biochim Biophys Acta Proteins 818 

Proteom 1865, 344–352 819 

91. Switzer, A. et al. (2018) New insights into the adaptive transcriptional response to nitrogen 820 

starvation in Escherichia coli. Biochem Soc Trans 46, 1721–1728 821 

92. Gerhardt, E.C.M. et al. (2015) The Bacterial signal transduction protein GlnB regulates the 822 

committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of 823 

acetyl-CoA carboxylase. Mol Microbiol 95, 1025–1035 824 

93. Huergo, L.F. et al. (2013) PII signal transduction proteins: Nitrogen regulation and beyond. 825 

FEMS Microbiol Rev 37, 251–283 826 

94. Tan, J. et al. (2020) Independent component analysis of E. coli’s transcriptome reveals the 827 

cellular processes that respond to heterologous gene expression. Metab Eng 61, 360–368 828 

95. Li, Z. et al. (2021) Transcriptional network analysis identifies key elements governing the 829 

recombinant protein production provoked reprogramming of carbon and energy metabolism 830 

in Escherichia coli BL21 (DE3). Engineering Reports 3, e12393 831 

96. Li, Z. and Rinas, U. (2021) Recombinant protein production-associated metabolic burden 832 

reflects anabolic constraints and reveals similarities to a carbon overfeeding response. 833 

Biotechnol Bioeng 118, 94–105 834 

97. Lynch, M. and Marinov, G.K. (2015) The bioenergetic costs of a gene. Proc Natl Acad Sci 835 

U S A 112, 15690–15695 836 



45 

 

98. Li, Z. and Rinas, U. (2020) Recombinant protein production associated growth inhibition 837 

results mainly from transcription and not from translation. Microb Cell Fact 19, 83 838 

99. Mori, M. et al. (2021) From coarse to fine: the absolute Escherichia coli proteome under 839 

diverse growth conditions. Mol Syst Biol 17, e9536 840 

100. Guyet, A. et al. (2018) Mild hydrostatic pressure triggers oxidative responses in Escherichia 841 

coli. PLoS One 13, e0200660 842 

101. Maslowska, K.H. et al. (2019) The SOS system: A complex and tightly regulated response 843 

to DNA damage. Environ Mol Mutagen 60, 368–384 844 

102. Christodoulou, D. et al. (2018) Reserve Flux Capacity in the Pentose Phosphate Pathway 845 

Enables Escherichia coli’s Rapid Response to Oxidative Stress. Cell Syst 6, 569-578.e7 846 

103. Sandoval-Basurto, E.A. et al. (2005) Culture of Escherichia coli under dissolved oxygen 847 

gradients simulated in a two-compartment scale-down system: Metabolic response and 848 

production of recombinant protein. Biotechnol Bioeng 89, 453–463 849 

104. Liu, D. et al. (2017) Enhancing fatty acid production in Escherichia coli by Vitreoscilla 850 

hemoglobin overexpression. Biotechnol. Bioeng 114, 463–467 851 

105. Baez, A. et al. (2011) Simulation of dissolved CO2 gradients in a scale-down system: A 852 

metabolic and transcriptional study of recombinant Escherichia coli. Biotechnol J 6, 959–853 

967 854 

106. Baez, A. et al. (2009) Metabolic and transcriptional response of recombinant Escherichia 855 

coli to elevated dissolved carbon dioxide concentrations. Biotechnol Bioeng 104, 102–110 856 



46 

 

107. Gecse, G. et al. (2022) Impact of Elevated Levels of Dissolved CO2 on Performance and 857 

Proteome Response of an Industrial 2′-Fucosyllactose Producing Escherichia coli Strain. 858 

Microorganisms 10, 1145 859 

108. Morales, M. et al. (2018) The impact of environmental factors on carbon dioxide fixation 860 

by microalgae. FEMS Microbiol Lett 365, fnx262 861 

109. Blombach, B. and Takors, R. (2015) CO2 - intrinsic product, essential substrate, and 862 

regulatory trigger of microbial and mammalian production processes. Front Bioeng 863 

Biotechnol 3, 108 864 

  865 


