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Abstract 
Energy is one of the most complex fields of study and an issue that influences nearly every aspect of 
modern life. Over the past century, combustion of fossil fuels, particularly in the transportation sector, 
has been the dominant form of energy release. Refining of petroleum and natural gas into liquid 
transportation fuels is also the centerpiece of the modern chemical industry used to produce materials, 
solvents, and other consumer goods. In the face of global climate change, the world is searching for 
alternative, sustainable means of producing energy carriers and chemical building blocks. The use of 
biofuels in engines predates modern refinery optimization and today represents a small but significant 
fraction of liquid transportation fuels burnt each year. Similarly, white biotechnology has been used to 
produce many natural products through fermentation. The evolution of recombinant DNA technology into 
modern synthetic biology has expanded the scope of biofuels and bioproducts that can be made by 
biocatalysts. This opinion examines the current trends in this research space, highlighting the substantial 
growth in computational tools and the growing influence of renewable electricity in the design of 
metabolic engineering strategies. In short, advanced biofuel and bioproduct synthesis remains a vibrant 
and critically important field of study whose focus is shifting away from the conversion of lignocellulosic 
biomass towards a broader consideration of how to reduce carbon dioxide to fuels and chemical products. 

  



Why Biofuels and Bioproducts Remain Critical to Society 
The development of inexpensive liquid transportation fuels from petroleum [1] (Figure 1a, left) in the 
early 1900’s is a clear marker on the timeline of human history. Modern lifestyles and the economic 
growth in the twentieth century would not be possible without the ability to cheaply move people and 
goods around the globe. Unfortunately, society is now seeing the cost of this advancement. Fossil fuel 
supplies are not universally distributed (Figure 1b), a fact that has led to economic inequities, price 
instability (Figure 1c), security concerns, and military conflict. Worse, the combustion of fossil fuels has 
deposited enormous volumes of carbon dioxide (Figure 1d, 100 ppm rise in less than 75 years) [2] and 
other greenhouse gases into the atmosphere leading to global climate change and associated natural and 
economic disasters [3–5]. The need to slow or reverse the rate of CO2 accumulation in the atmosphere 
provides a clear motivation for the development of alternative energy carriers that can be produced in a 
sustainable if not carbon-negative way [6] (Figure 1a, right). In addition to providing inexpensive energy 
sources, fossil fuel refining provides the source material for the petrochemical industry – an 
interconnected network of chemical reactions that produce materials, solvents, pharmaceuticals, and 
other desired products [7]. If fossil fuel refining is curtailed due the use of renewable energy sources, 
alternative means of supplying the chemical industry with functional raw materials must also be 
developed. In addition to technical challenges, a web of interconnected economic, political, and 
regulatory conflicts of interest also needs to be navigated to ensure that technologies that benefit society 
in the long run are allowed to come into being. The topic of energy supply is one of the most complex in 
academia and a comprehensive discussion is far beyond the scope of any Current Opinion. Therefore, this 
opinion will focus primarily on biotechnology advances and trends over the last five years related to 
production of advanced biofuels and bioproducts.  

  



 

 

Figure 1. Motivation for producing biofuels. a.) Compare (left) the linear flow of carbon from 
petroleum and natural gas through refineries to gasoline, diesel, and jet fuel to the circular (right) flow 
from CO2, through photosynthesis to primary energy carriers that can be deconstructed and converted 
in biorefineries to biofuels. The same comparison can be made for petrochemicals derived from oil and 
natural gas to bioproducts made from refining of energy carriers. b.) Petroleum and liquid hydrocarbons 
production is not universally distributed across the world (source: EIA). c.) The average annual price of 
petroleum has fluctuated widely over the last 20 years (source: EIA). d.) CO2 is accumulating in the 
atmosphere as measured at the Mauna Loa Observatory (Source: Scripps Institution of Oceanography 
at UC San Diego, NOAA). Production of current biofuels e.) ethanol and f.) biodiesel occurs in only a few 
countries but has grown steadily over the last 20 years. Ethanol has grown in part due to a policy shift 
in the USA enacted in 2005 that required the use of 10% ethanol in gasoline as an oxygenate. 
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What molecules can we make via biotechnology  
Biofuels and bioproducts can be defined functionally as molecules that are either made from a biological 
source or produced with a biotechnology. Biofuels are combustible molecules used primarily as liquid 
transportation fuels. Bioproducts are petrochemical replacements used throughout the chemical 
industry. Exemplary molecules from both classifications, e.g. ethanol and acetone, have been produced 
for centuries, and now advances in synthetic biology allow metabolic engineers to develop strategies for 
producing a much wider portfolio of compounds [8] including natural products [9,10], terpenoids [11,12], 
amino acids [13], fusel alcohols [14], flavonoids [15], oleochemicals [16], alkaloids [17], and bioplastics 
[18–20]. Programs like DARPA’s 1000 Molecule program demonstrated that the field is capable of 
designing, building, and testing first generation biocatalysts that produce lab-scale quantities of nearly 
any molecule [21]. Unfortunately, translating these initial successes to industrial scale has not been 
common because industrial scale cultures are challenged with technical mixing limits, the need to achieve 
high-yield, environmental heterogeneity, and additional stresses not encountered in the laboratory. The 
white biotechnology industry has commercialized many bioproducts including amino acids, lactic acid, 
and 1,3-propanediol, but many other ventures have failed to gain market share (e.g. succinic acid, 3-
hydroxypropionic acid) [22]. The enormous transportation fuel market motivated analogous commercial 
forays into advanced biofuel synthesis (e.g. isobutanol [23] and farnescene [24]), particularly as 
production of the first widely-available biofuels, ethanol and biodiesel, continued to grow (Figure 1e-g). 
Advanced biofuels are broadly defined as organic molecules, beyond ethanol that are capable of being 
blended with traditional transportation fuels or burned directly in engines. Advanced biofuels are 
promoted because of properties that overcome the many disadvantages of ethanol (high hygroscopicity, 
low energy density, costly purification) and plant-based biodiesel (high cloud point, tropical 
deforestation). Advanced biofuels can be produced by microorganisms [25], or by chemical upgrading of 
biologically produced intermediates e.g., catalytic upgrading of terpenoids to jet fuel [26]. The latter 
processing can overcome inherent toxicity of advanced biofuels [27] as well as difficult terminal reactions 
[28–31] required for producing hydrocarbons. Interest in processes that integrate the strengths of 
biological and thermal catalysis [32–34] are displacing the historical competition between the fields and 
motivating searches for bio-privileged molecules [35], i.e., platform compounds produced biologically in 
high yield that can be catalytically upgraded to a range of higher-value products. While the concept is 
attractive, technical hurdles, such as catalyst poisoning, intermediate purification, and heat integration 
must be overcome to pass intermediates between each type of catalysis [36,37].  

Most of the enzymes and metabolic pathways needed to produce advanced biofuels were discovered and 
first engineered in the last two decades. Early efforts developed platform organisms for producing 
oleochemicals, terpenes, fusel alcohols, and natural products by optimizing flux to core intermediates in 
each pathway and expressing terminal enzymes capable of generating desired chemical products. The 
discovery trend has slowed as the field exhausts known natural compounds [38], but recent exploration 
has yielded exciting new compounds such as polycyclopropanated polyketides [39] that could serve as jet 
fuels. The discovery trend may soon be reversed as the boundaries of known biochemical space are 
expanded with the design and/or engineering/evolution of enzymes capable of catalyzing unnatural 
biochemistries [40,41]. Initial demonstrations of new enzymatic conversions almost always possess poor 
catalytic performance that researchers hope to improve with protein engineering and directed evolution 
[42]. These approaches have been augmented with artificial intelligence and machine learning methods 
[43–47] to increase the frequency of beneficial mutations tested. Similarly, structure-guided mutagenesis 
methods have improved [48–51] and are likely become more broadly useful with the increased availability 
of accurate structure predictions coming from AI-tools such as AlphaFold [52] and RoseTTAFold [53]. 
Success in protein engineering will open similar opportunities to develop novel pathways [54] to produce 
advanced biofuels and bioproducts from feedstocks not considered today. Tools for broadly mapping 



chemical transformations have been developed [55] and used to identify bio-privileged [56] molecules 
and novel biochemical routes between a desired feedstock and product [57]. Systematic searches can 
generate comprehensive lists of pathways and analytical tools can then rank them according to 
thermodynamics, availability of enzymes, number of (novel) steps, feasibility, efficiency, or any other 
desired metric; helping researchers prioritize efforts in the laboratory [58–61]. Novel pathways have been 
created to fix carbon [62,63], metabolize glucose to acetyl-CoA in 100% carbon yield [64,65], and produce 
novel chemical building blocks [66]. Regardless of whether a pathway is natural or unnatural, once it is 
established in a host, it must be engineered to efficiently convert a low-cost feedstock to a desired 
product. The low cost of fossil fuels and petrochemicals and relatively comparable costs of traditional 
biotechnology substrates leave little margin for loss. Maximizing yield in the laboratory remains a 
laborious endeavor, one that is only made more challenging when cells are asked to perform in the non-
ideal environments of industrial scale bioreactors or use complex hydrolysates as feedstocks. The relative 
costs of feedstocks and products and the resulting requirement for high yields distinguish the biosynthesis 
of biofuels and bioproducts from the more lucrative synthesis of biopharmaceuticals and therapeutic 
proteins in the red biotechnology sector.  

Biomass – a plentiful but still recalcitrant feedstock 
The vast majority of biofuels and bioproducts are derived from sucrose, starch, and plant oils respectively 
– termed first generation biofuels. Second generation processes that leverage waste or lignocellulosic 
feedstocks and third generation fuels that directly reduce CO2 remain in development despite substantial 
investment of academic and industrial resources. Lignocellulosic biomass contains three major fractions 
– cellulose, hemicellulose, and lignin. The first two are sugar polymers that can be degraded chemically or 
enzymatically to sugar hydrolysates that are feedstocks for biological or catalytic upgrading. Production 
of sugar hydrolysates has been viewed as the sustainable replacement of starch-based feedstocks, but 
widespread availability remains to be seen. Three US-based cellulosic ethanol plants were launched in the 
early 2010s but all have been closed, sold, and/or converted to other processes [67]. Many of the original 
barriers to 2nd generation biofuels, including recalcitrant breakdown of biomass polymers, generation of 
microbial inhibitors, and reduced conversion relative to model substrates, remain obstacles to 
implementing processes on large scale despite recent academic progress [68,69]. In addition, daily 
handling and processing of lignocellulosic materials collected from farmlands hampered its utilization, 
making 2nd generation procedures much more laborious than 1st generation approaches.  

Lignin, the third biomass component, is a heterogenous polymer of aromatics that has received 
substantial attention as a feedstock in recent years. Lignin catabolism has been described as biological 
funneling [70], where the polymer is broken and the heterogenous mixture of resulting aromatics are 
enzymatically converted to a small subset of organic molecules that can serve as products or feedstocks 
for further upgrading. Recent studies have demonstrated conversion of lignin streams to molecules such 
as β-ketoadipate [71], PHA [72], mucconate [73], itaconate [74], and 2-pyrone-4,6-dicarboxylic acid 
(PDCA) [75,76], using engineered microbes. Pseudomonas putida has emerged as a favorite 
microorganism for this metabolism due to its native repertoire of aromatic catabolism pathways and its 
tolerance to the aromatic feedstocks and related toxins [77]. A wide range of genetic tools have been 
developed for P. putida including genome engineering techniques [78], promoters [79], CRISPRi [80,81], 
reduced genome strains, metabolic models [82] and genome-wide fitness association datasets [83]. Many 
of the approaches for lignin processing are also now being applied to up-cycling of aromatic components 
of plastic waste [84].  

The promise of biofuels comes from the ability to harvest solar energy to reduce carbon dioxide and 
produce energy carriers, usually through a photosynthetically synthesized carbohydrate or lipid 
intermediate. Conversely, third generation biofuels are molecules produced directly from CO2 using 



renewable electrons, often by photosynthetic organisms or chemoautotrophs. Direct photosynthetic 
production of biofuels and bioproducts remains an active area of research [85]. Genetic engineering tools 
for algae and cyanobacteria have grown substantially in the last decade [86,87]. These tools have been 
used to engineer production of novel biofuels and bioproducts in several fast-growing species [88–90] and 
enhance the titer of natural lipids. That said, many commercial efforts to grow algae for oils that can be 
converted to biodiesel have come and gone. Unfortunately, algae cultivation is plagued by volumetric light 
limitations, slow growth, contamination (pond crash), low biomass and oil titers, and the challenge of co-
locating the light, water, carbon dioxide and nutrient sources needed for maximizing production[91]. 
While directly producing biofuels and bioproducts in phototrophs remains challenged, the algal biomass 
itself could alternatively be used as a feedstock for heterotrophic biofuel and bioproduct synthesis [92,93] 
– taking advantage of the organism’s large areal productivity relative to common terrestrial plants. A 
similar areal argument can be made for using solar cells to convert photons into electricity, a process that 
captures a larger fraction of the energy in a photon than photosynthesis [94]. The growing Interest in 
using electricity as an intermediate in producing third generation biofuels and bioproducts is one example 
of how energy research is shifting.   

The energy landscape is changing  
Since 2000, when first-generation production accelerated, biofuels have been promoted as the future for 
all forms of travel – personal, long-haul freight, and flight. Ethanol and biodiesel are available in the 
marketplace for personal travel and trucking but make up only a small fraction of the fuels used in this 
industry. The first demonstrations of transcontinental flight and naval operations (i.e. great green fleet) 
using biofuels have been made, but at costs substantially above petroleum-derived alternatives. Here, 
biofuels were produced by gasification of biogenic material followed by Fischer-Tropsch synthesis. In the 
same period, renewable sources of electricity, such as wind and solar, have become more prominent, 
offering a low-cost source of sustainable electrons. The low cost provides the opportunity to have electric 
vehicles deliver local transportation for a large fraction of people and goods, assuming battery 
technologies become sufficiently inexpensive and widely available. Inexpensive electricity (typically below 
5 cent/KWh [95]) also creates opportunities to reduce CO2 and generate energy carriers (Figure 2), with 
hydrogen being one of the most attractive. Hydrogen can be used by many microbes as an electron donor 
to respiration or to reduce C1-gases (carbon dioxide, carbon monoxide) through the Wood-Ljungdahl 
pathway into acetate, ethanol, and other small molecules, that could be used as biofuels or building blocks 
for other bioproducts [96,97]. In one noteworthy example, a Clostridium species was engineered to 
convert Wood-Ljungdahl derived acetyl-CoA into hexanol via a reversed β-oxidation pathway [98]. 
Upgrading C1 gases is attractive because the carbon could be derived from gasification of waste materials 
(e.g. biogas), stranded natural gas (via steam reforming and water gas shift), waste gases (e.g. steel mill, 
fermentation off-gas), or potentially from atmospheric capture if economically viable technologies 
become available. Beyond hydrogen, electrochemistry offers the chance to provide other electron carriers 
to cells such as formate [62,63,99–102], methanol [103], ammonia, urea, reduced metals [104], and other 
organic electron shuttles [105]. These carriers can be used to enhance yields, balance redox, and generate 
energy in strains engineered to produce advanced biofuels and bioproducts. The availability of these 
feedstocks is creating a paradigm shift away from single, polysaccharide dominant feedstocks, to a 
strategy where carbon, electrons, and energy can potentially come from different molecules. This 
paradigm shift, sometimes referred to as electrofuels, provides a unique opportunity for metabolic 
engineers to design sustainable pathways for producing bioproducts in high yields.  



 

Figure 2. The landscape of technologies for producing biofuels and bioproducts is far more complex 

today. The presence of renewable electricity from wind and solar provides routes to produce hydrogen 

and other reduced energy carriers that can be fed to bioprocesses, so called electrofuels (blue arrows at 

top). Starch and lignocellulosic biomass in all its forms remain a large reserve of fixed carbon that could 

be used to displace petroleum as a source of fuels and chemical products either through traditional 

deconstruction to sugar hydrolysates and lignin derived aromatics or via gasification and upgrading of 

synthesis gas. Municipal wastes and stranded natural gases could be processed in the same way. 

Biological conversion of C1 gases, CO, CO2, CH4, offers the ability to directly produce biofuels and 

bioproducts or building blocks (e.g. acetate) that can be fed to downstream bioprocesses with additional 

energy carriers. Third generation biofuels and bioproducts are produced by directly reducing CO2. 

Historically, this research focused on photoautotrophs grown in raceway ponds and photobioreactors, 

but now chemoautotrophic and electrofuel strategies should also be included.  

Where do we go from here? 
The role of traditional biofuels and the structure of the chemical industry are topics that deserve closer 
inspection now that competing forms of renewable transportation are emerging. From the perspective of 
climate protection, the reduction of greenhouse gas emissions from fossil resources is a conditio sine qua 
non. In this sense, (bio)processes utilizing renewable resources should replace fossil production routes for 
commodities and fine chemicals on large production scale to maximize climate benefits. Not all existing 
fuels and chemical products need “bio”-replacements, so perhaps it is time to focus research on the 
biomanufacturing of fuels that lack viable alternatives, e.g., commercial and military jet fuel, and products 
that displace the largest volumes of fossil resources. Establishment of such a circular bioeconomy is a 
large, disruptive change where the chemical industry will become based on oxidized instead of reduced 
carbon. The change is essential to save living standards for future generations but will not happen 
overnight. Instead, there will be a long-lasting competition guided by technical, economic, environmental, 
and geopolitical constraints. For example, ethanol fermentation has satisfied the technical and 
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environmental demand for oxygenated gasoline, but not displaced gasoline as the primary personal 
transportation fuel in the United States. This failure is in part due to the fact that 1st and 2nd generation 
resources are insufficient to meet demand for all feed, food, fuel, and materials needed today, let alone 
the growing population of developed nations. That said, sugars can be used to produce a subset of perhaps 
the most critical chemical products, if high carbon-yields can be achieved. High yields are essential 
because novel bio-production routes must immediately compete with optimally-networked, fully-
depreciated industrial sites that are the successful result of a century of optimization. Steady research has 
managed to push microbial producers of some compounds to their theoretical limits and industrial 
viability, but many more are produced at levels far from a viable carbon economy. Furthermore, biological 
production of an individual chemical is decoupled from all others, meaning companies have a choice to 
enter into any market. This contrasts a petroleum refinery where fuel production is subsidized by the 
synthesis of high-value petrochemicals because all molecules in a barrel of crude must be processed. For 
this reason, feedstocks and products need to be matched to ensure the maximum carbon efficiency. For 
example, converting lignin to aromatics and related diacids is more carbon efficient than breaking down 
biomass to fermentable substrates and respiring some of the resulting sugars to produce the energy 
needed to synthesize the same aromatics. The availability of low-cost electricity and corresponding energy 
carriers will provide opportunities to find novel feedstock-product pairs that maximize carbon and energy 
yield and support a new bioeconomy.  

Traditional biofuels, bioproducts, and their feedstocks will have a role in the new chemical industry, but 
to meet all demand, other carbon sources, such as CO2, will need to be used to produce the products of 
tomorrow. As discussed above, CO2 can be incorporated directly into biosynthesis pathways or reduced 
to other energy carriers that can be fed to industrial biotechnologies. In the short term, high concentration 
CO2 sources such as cement production, waste combustion, biogenic syngas formation, fermentation, etc. 
are available as starting points. In the long-run, carbon capture technologies will be needed to off-set the 
historical CO2 release from combustion of fossil fuels. The success of such chemistry heavily relies on the 
availability of vast amounts of green electricity and hydrogen. For instance, zero CO2 emissions of the 
entire German chemical industry will require more than 600 TWh/a by 2050 [106]. Hence, novel 
(bio)chemical production sites are likely to be built around the globe making use of locally produced green 
energy from wind, solar power, and geothermal sources to keep electricity cost within the economically 
attractive range below 3-5 cent/KWh [95]. If successful, the net incorporation of CO2 into chemical 
products will be of dual benefit: not only will greenhouse gas emissions be reduced but also extra costs 
for releasing CO2 into the atmosphere will be prevented (e.g. 55 €/tonCO2 in Germany in 2025). This 
advantage is all the better as the fossil production will not vanish from one day to the next. 

Conclusions 
In summary, advanced biofuel and bioproduct synthesis remains a vibrant and critically-important field of 
study. However, the landscape is shifting with expansion of available feedstocks, energy sources, 
biochemistries, synthetic biology tools, modeling approaches, and competing technologies. Irrespective 
of whether pathways are engineered in mono-cultures or microbial consortia [107], it is the task of 
systems metabolic engineering to provide strains and sustainable processes that efficiently produce fuels 
and chemical products from renewable feedstocks. Production of highly functionalized molecules with 
small production volumes and high EBIT margin will likely remain based on traditional sugars to leverage 
existing technologies for strain engineering and fermentation. For biotechnologies to contribute to a new 
circular chemical economy, the field must now identify efficient pathways for incorporating CO2 and other 
waste carbon into feedstocks industrial microbes can efficiently use to produce advanced biofuels and 
bioproducts. Renewed investment in classical biochemical engineering research and training [108] will 
then bring these processes to market with the goals of saving the planet and maintaining modern 
lifestyles.  
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