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Heterogeneous Transfer Learning
of Electrohydrodynamic Printing
Under Zero-Gravity Toward
In-Space Manufacturing
As we continue to commercialize space and mature in-space manufacturing (ISM) pro-
cesses, there is a strong need to transfer the knowledge we learn from experiments on
the ground to zero-gravity environments. Physics-motivated manufacturing processes,
like additive manufacturing, experience a shift in fabrication parameters due to the
absence of gravity and the change of environments. Thus, we found traditional machine
learning methods are not capable of addressing this domain shift and present a transfer
learning scheme as a solution in this paper. We tested a kernel ridge regression model
built for heterogeneous transfer learning (KRR-HeITL) on data from the electrohydrody-
namic inkjet printing (EHD printing) process. EHD printing is a process that uses electrical
force to control material flows, thus achieving the fabrication of electronics without requir-
ing gravity. Our team has successfully conducted three rounds of parabolic flights to vali-
date this technology for ISM. We trained on multiple datasets built from on-ground
experiments and tested using zero-gravity printing data obtained from parabolic flight
tests. Measurements of the Taylor cone both on-ground and in zero-gravity were taken
and exploited as a part of the training data. We found that our method obtains good inter-
polation accuracy (MAPE 3.85%) compared to traditional machine learning methods
(MAPE 16.84%) for predicting the printed line width. We concluded that the KRR-HeITL
method is well suited for zero-gravity domain shifts of EHD printing parameters. This
study paves the way for future predictions of ISM parameters when there are only on-
ground experiments or very limited zero-gravity datasets for a given process.
[DOI: 10.1115/1.4066097]
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1 Introduction
Numerous ongoing research efforts aim to leverage additive man-

ufacturing for in-space applications, with significant contributions
from the in-space manufacturing (ISM) efforts led by the National
Aeronautics and Space Administration (NASA) [1]. The Additive

Manufacturing Facility has been operating aboard the International
Space Station (ISS) since 2014. Over 115 tools and components
have been created via fused filament fabrication (FFF) of polymers
[2,3]. The recent deployment of the first metal 3D printer at the
ISS further underscores the commitment to ISM [4]. Before transi-
tioning to in-space operations, all manufacturing processes must
undergo validation through zero-gravity experiments, typically con-
ducted via drop towers, parabolic flight campaigns, or sounding
rockets. Several additive manufacturing (AM) processes have
been validated using these simulated zero-gravity tests including
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material extrusion, material jetting, powder bed fusion, direct
energy deposition, and vat photopolymerization [5–14]. Conduct-
ing on-earth testing of zero-gravity environments is costly and chal-
lenging due to the limited testing time. Manned zero-gravity
experiments typically last less than 30 s [1], making it difficult to
thoroughly explore all operating conditions. There are many emerg-
ing AM technologies facing this challenge such as electron beam
freeform fabrication [15], FFF [16], and direct-ink write (DIW)
[17]. Kauzya et al. [17] studied the structural effects of DIW print-
ing in zero-gravity aboard a parabolic flight and observed differ-
ences in structural printing performance. Differences in AM
parameters between on-earth and zero-gravity environments
present itself as a challenging problem as exploration continues.
As emerging additive manufacturing technologies like electrohy-
drodynamic (EHD) printing gain traction, there is a pressing need
to transfer knowledge gained from terrestrial experiments to zero-
gravity environments, to accurately predict the printing parameters
for in-space operations.
Electrohydrodynamic inkjet printing (EHD printing), an inkjet

additive manufacturing technology, is facing this challenge, partic-
ularly in in-space environments [18,19]. The first observation of the
electrohydrodynamic effect was in the 20th century when Zeleny
studied the electrodynamic instability of water droplets under the
application of an electric field by using a camera to record images
of this phenomenon [20]. Taylor investigated the underlying
physics behind this phenomenon and concluded that the process
will reach stability when the ink forms a conical shape at the tip
of the nozzle, which he coined the “Taylor cone” [21]. The mech-
anism of EHD printing relies on electrostatic forces to locate and
precisely deposit liquid droplets onto the substrate. As an electric
field is applied to the nozzle, the electric forces will exceed the
surface tension allowing the liquid to form the Taylor cone shape
and begin jetting [22]. The formation of the Taylor cone allows
the jetted droplets to have a diameter that is much smaller than
the nozzle itself. This phenomenon facilitates high-resolution and
micro- and nanoscale patterning [23]. EHD printing accommodates
a large variety of inks and substrate materials. These materials can
be used for biomedical applications like EHD-printed living cells
and scaffolds for tissue engineering [23–25]. Conductive inks
have been proven effective for EHD-printed micro/nanoscale elec-
tronics such as electrodes, nanowires for flexible electronics [26–
28], humidity, temperature, and pressure sensors [27–30], transis-
tors, antennas, and light emitting diodes [31–33]. These advantages
of excellent compatibility with various inks and substrates while
achieving high resolution make EHD printing a promising alterna-
tive to traditional electronic manufacturing methods, including
lithography, inkjet printing, and screen printing. Additionally, the
EHD system is compact, has low energy requirements, and its man-
ufacturing process is straightforward, offering benefits in ease of
deployment and maintenance in in-space manufacturing where
cargo space and power resources are limited, particularly for fre-
quent and long-duration space missions. Furthermore, EHD print-
ing allows rapid and adaptable prototyping and production of
different electronic components while minimizing the material
waste. These advantages make EHD printing a promising candidate
for in-space manufacturing of electronics. It is important to note that
EHD printing is the first thin-film electronic manufacturing method
proven printing successfully under zero-gravity conditions.
The precise control of EHD-printed lines is crucial for electronic

components, especially considering the high-resolution require-
ments in space. Achieving stable EHD printing necessitates a metic-
ulous combination of printing parameters. However, accurately
modeling the dynamic relationship between these parameters, ink
properties, and environmental conditions remains a significant chal-
lenge for EHD printing in space. One of the key opportunities is to
effectively leverage the knowledge gained from laboratory experi-
ments and apply it to zero-gravity environments. The constraints
of zero-gravity testing platforms, characterized by their high costs
and short durations, limit the exploration of a comprehensive
range of printing parameters. As a result, there is a pressing need

for a method to transfer knowledge obtained from laboratory exper-
iments to zero-gravity conditions. Such a method would analyze
and expand on the parameters learned under zero-gravity condi-
tions, thereby bolstering confidence in new EHD-printed materials
and devices as they transition to in-space experiments.
Machine learning (ML) has played an important role in AM opti-

mization and quality enhancement [34,35]. Its algorithms can
perform both explanatory and predictive tasks allowing it to
capture the complex relationships between the printing parameters
(features) and the final output (target). ML has been used to
model design parameters, operating parameters, material character-
istics, as well as other environmental conditions on AM methods.
Several studies used machine learning algorithms to predict the
droplet diameter and ejection frequency of the EHD printing
system [36,37]. ML can also be used alongside machine vision to
facilitate defect mitigation and in situ control of AM. Machine
vision for characterization and in situ control has been implemented
in many AM technologies, such as FFF [38,39], direct-ink write
[40], and inkjet printing [41]. Machine vision has also been used
in various studies and simulations of EHD printing as well [42].
Taylor cone measurements via machine vision have assisted with
the characterization and quality of EHD printing [41–43]. Substrate
imaging has been used to implement in situ jet-speed monitoring of
EHD spraying and EHD-printed droplets [37,42]. Lies et al. used
machine vision to detect and measure EHD filament printing [44].
ML alongside machine vision allowed the classification of the
jetting status of EHD Taylor cones [45,46].
ML and machine vision offer promising ways to optimize the

printing process on the ground. However, another technology is
still needed to leverage this knowledge to zero-gravity conditions.
One method for combining knowledge across domains is transfer
learning (TL). TL is an extension of ML where ML is traditionally
performed within the data’s domain using the same features and
targets, whereas TL’s algorithms are trained on one dataset, and
that knowledge is leveraged to make predictions on a related task
[47]. Instead of starting the learning process from scratch, the
learned model is transferred and fine-tuned so that it can be
applied to a dataset where the amount of labeled data is scarce or
expensive to obtain. It aims to improve the learning performance
and reduce the computational time by training less labeled data as
well [48]. As seen in Fig. 1, the type of transfer learning method
to employ depends heavily on the characteristics of the used data.
TL problem settings are categorized according to Pan and Yang
[49] as inductive, transductive, and unsupervised. Generally speak-
ing, inductive settings indicate when labeled data is available on the
target domain. Transductive settings refer to when labeled data is
only available on the domain. Lastly, unsupervised TL refers to
when labeled data is unavailable in both source and target
domains. Methods can further be categorized as heterogeneous or
homogeneous, which refers to whether the features between
sources or between sources and targets are the same. This labeling
notation can also be used to classify whether the data sources and
target are from the same or different domains. After data character-
ization, a decision is made about what information to transfer
between data domains. These methods can be classified as instance-
based transfer, feature-representation transfer, parameter transfer,
and relational-knowledge transfer. Simply speaking, instance-based
transfer uses reweighting of the source data to determine which
observations contribute positively to the target domain. Parameter
transfer assumes the sources and target share the same or similar
distribution of model hyperparameters, so that the parameters them-
selves can be shared between datasets. Relational-knowledge trans-
fer is the sharing of logical rules or relationships between the source
and target domains. Finally, in feature-representation transfer, the
intent is to learn a feature representation so that knowledge can
be encoded to the target domain. It can be further categorized as
symmetric and asymmetric. Asymmetric methods adjust the
source features to align with the target features, while symmetric
methods aim to identify a shared latent feature space and subse-
quently transform both the source and target features into a
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unified feature representation [48,50]. Transfer learning has some
notable applications including object detection in machine vision,
aero engine fault diagnosis, autonomous driving, and healthcare
applications such as medical image analysis and disease prediction
[47–49,51,52]. Transfer learning has also been extensively studied
within the additive manufacturing field where various printing
parameters have been transferred across AM methods, materials,
and equipment [53–55].
Transfer learning holds immense potential in the context of space

exploration, particularly given the limitations of current zero-
gravity testing platforms, which are both costly and short in dura-
tion. Despite its evident value, the effectiveness of transferring
knowledge between terrestrial and in-space environments has
been inadequately studied. While Waisberg et al. [56] highlight
the potential of transfer learning in space medicine, focusing on
the scarcity of astronaut medical data, Ogundipe and Ellery [57]
delve into its application in mitigating differences between earth-
based and space-based dynamics of robotic manipulators used for
capturing space debris. Surprisingly, these are among the few pub-
lications addressing knowledge transfer from terrestrial to zero-
gravity environments.
In summary, the rapidly developing field of in-space manufactur-

ing presents increasing requirements for effective production
methods. As one of the emerging additive manufacturing technolo-
gies, EHD printing has proven to be effective for printing without
gravity and shows promise for electronics printing in space.
However, various limitations hinder optimization based solely on
zero-gravity experiments. Therefore, it is urgent and necessary to
find a method that can leverage the knowledge gained from ground-
based research to apply to in-space conditions. Thus, we proposes a
heterogeneous transfer learning method tailored for AM physics-
based parameters, aiming to predict printing outcomes in zero-
gravity environments. The organization of this paper is as
follows: Sec. 2 delves into the fundamentals of the EHD printing
process and introduces the data collected from both on-ground
and zero-gravity experiments. Section 3 highlights the incorpora-
tion of machine vision as a feature in EHD printing data analysis.
In Sec. 4, traditional machine learning approaches are explored,

followed by an explanation of the proposed transfer learning
method in Sec. 5. Finally, Sec. 6 presents the prediction results
obtained through the proposed methodology.

2 Electrohydrodynamic Printing and Validation
Experiments for In-Space Manufacturing
EHD is an inkjet additive manufacturing method in which elec-

trical force drives the liquid flow. The complex physics behind
the EHD printing process is dictated by the relationship of a large
number of parameters. The quantity of these parameters and their
interactions with each other make EHD printing a challenging
process to control. Furthermore, under zero-gravity conditions,
most of the operating conditions experience a domain shift to
achieve stable jetting. EHD printing has also been the topic of
zero-gravity-related research [18], so there is sufficient data avail-
able for transfer learning on this topic. Therefore, EHD printing is
the selected candidate for this work. The voltage of the applied elec-
tric field to the nozzle is one of the parameters that control the sta-
bility of the printing. As the voltage increases, the ink is drawn
downward into the cone shape and begins jetting. To achieve the
desirable cone-jet stage, a precise selection of printing parameters
and ink properties is crucial. EHD printing parameters include
applied voltage, duty ratio, frequency, standoff distance, nozzle dia-
meter, and pressure. Ink characteristics such as density, viscosity,
surface tension, and conductivity also play a major role. Finally,
environmental conditions, such as humidity and temperature, play
a role in the physics of EHD printing. The process parameters
include the applied voltage V, the standoff distance between the
tip of the nozzle and the substrate h, the nozzle diameter d, and
the speed of printing s. Ink properties determine how these printing
parameters interact with each other, and they include the printed line
pattern width W. A detailed report on the physics of EHD printing
can be found in our previous publication [36].
Three EHD printing experiments were completed, two of which

were completed on-ground in the lab, and the third was completed
on a parabolic flight. The EHD printer hardware consists of the

Fig. 1 The categorization of transfer learning methods
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following elements depicted in Fig. 2(a): the printhead, power
supply, x–y–z stages, ink supply, nozzle, and control software. A
syringe is used to house the ink supply and is connected to a
metal ink reservoir, which is connected to a conducting electrode,
encased by a glass nozzle. The power supply generates a high-
voltage electric field to the electrode on the nozzle. To mitigate
printing vibrations during flight, the nozzle is fixed on the X–Y
plane, and two microstages enable a maximum plotting speed of
20 mm/s within a 100 mm by 100 mm travel range. A high-speed
camera allows the viewing and recording of the nozzle tip and
Taylor cone at 20,000 frames per second (fps).
The first experiment varied the following parameters: the printing

speed, standoff distance, and applied voltage. Printing was per-
formed using a fixed nozzle diameter of 50 μm. The goal was to
investigate these parameters’ effect on the resulting line width,
which is the target of this study. Commercial silver Novacentrix
water-based nanoparticle 40 wt% ink was used in this experiment.
DC pulse was the type of voltage applied. High-speed videos also
captured the Taylor cone formation and jetting, and its height and
angle were measured (details in the next section). Table 1 summa-
rizes all experiment features and ranges. The second experiment
expands this dataset while printing via AC voltage, thus parameters
of duty ratio, frequency, and applied voltage were varied. The
nozzle diameter, standoff distance, and printing speed were kept
constant. A 35 wt% Ag nanoparticle ink was used. The goal is to
transfer knowledge that is learned from these on-ground experi-
ments to interpolate data obtained in zero gravity. The final exper-
iment was conducted on parabolic flight campaigns in December
2020. A parabolic flight test, also known as a parabolic flight cam-
paign or parabolic flight maneuver, is a method used to simulate
microgravity or zero-gravity conditions for short durations on
earth. This technique involves flying an aircraft along a parabolic
trajectory, during which the aircraft ascends steeply, levels off,

and then descends steeply, as shown in Fig. 2(b). During the
ascent phase, the aircraft generates a pull-up force that can briefly
counteract the effects of gravity, resulting in a period of weightless-
ness or reduced gravity within the cabin. This state is “zero-g” and
typically lasts for about 20 s per parabola. We assume this simulates
the full effect of zero gravity in an actual in-space manufacturing
environment. The EHD printing parameters in zero-gravity are
also summarized in Table 1. A 100-μm nozzle was used with AC
voltage, while voltage and frequency were varied. Due to the
short periods of zero gravity, a small number of successful param-
eter combinations were tested.

3 Data Processing: Machine Vision
In EHD printing, it has been observed that notable differences

can be seen on the Taylor cone from changes in voltage, frequency,
duty ratio, standoff distance, and the material being printed [21].
Furthermore, we have observed that the Taylor cone height and
angle are smaller in zero gravity while printing using the same
parameters. These physical differences can provide clues about
the volume of material ejected and therefore the resulting line
width [58]. To exploit these differences, we developed a machine
vision system to measure the Taylor cone profile during printing.
Because of the differences in lighting while printing, the method
is adaptable so that it extracts the highest resolution of Taylor
cone jetting possible. Various techniques using the OpenCV
library in PYTHON have been implemented and are highlighted in
the next sections.

3.1 Region of Interest Identification. The region of interest
(ROI) contains the Taylor cone and must be identified in an accurate
and consistent way. Before applying the voltage, an image of the

Fig. 2 Schematic drawing of the (a) EHD printing setup and (b) depiction of the parabolic flight maneuver

Table 1 Range of EHD printing parameters for on-ground experiments and parabolic flight experiments

Parameter Ground experiment 1 Ground experiment 2 Parabolic flight experiment
Function in

model

Voltage (V) 600, 700, 800, 900, 1000, 1100,
1200

700, 750, 800, 850, 900, 950, 1000 2100, 2150, 2200, 2550, 2850 Input

Duty ratio (%) NA 5, 10, 15, 20, 25, 30 60 Input
Frequency (Hz) NA 1, 5, 10, 70, 80, 90, 100, 150, 200,

250, 300
50, 100 Input

Nozzle diameter (μm) 50 75 100 Input
Plotting speed (mm/s) 5, 10, 15 10 2.5 Input
Standoff distance (μm) 75, 100, 125 187.5 18.12–111.74 Input
Ag ink loading (wt%) 40 35 35 Input
Taylor cone height (μm) 15.05–45.30 NA 20.39–50.66 Input
Taylor cone angle (deg) 45.19–57.74 NA 24.64–45.35 Input
Line width (μm) 14.48–149.53 30.86–60.48 41.48–120.08 Output
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nozzle without the Taylor cone is taken. The images without jetting
serve as a reference for cropping the ROI, which will only contain
the Taylor cone. We use an adaptive threshold to handle variations
of lighting and contrast to return a binary image and mitigate the
effect of noise. We then identify the nozzle tip to serve as the top
reference points to the ROI. The ROI is then identified as seen in
Fig. 3.

3.2 Measurement of Taylor Cone Height and Angle. The
feature of “drop-on-demand” in EHD indicates that the Taylor
cone will pulse over time as droplets are released. The frequency
of droplets can be upwards of hundreds/second, which usually
requires the use of a high-speed camera to effectively capture a
“jet.” The Taylor cone contour was located and its vertexes were
used to measure the Taylor cone height of each frame. The
largest height was then recorded for each period as the height of
that jet as depicted in Fig. 4. The height of the Taylor cone jets
was averaged over each set of parameters. The angle was also mea-
sured between the left-most point and the jet of the Taylor cone.
This angle is symmetric, so only one side is measured, and again
averaged over each set of parameters.

4 Traditional Machine Learning Approaches
In traditional machine learning methods, a dataset consists of data

points X ⊂ RN×D and their corresponding labels Y ⊂ RN . It is
assumed that these data points follow a distribution p(x, y) that
stays constant over time, even for new data. According to this
assumption, a model trained on X and Y should perform well on
new data as well. However, this assumption may not always hold
true. For example, a model trained to predict rainfall based on envi-
ronmental conditions in Northern California will likely not be able

to make accurate predictions for Southeast Asia even if the features
are the same. In our case, a machine learning model that is trained
on data obtained from ground experiments, will likely not perform
well on zero-gravity parabolic data because we suspect the underly-
ing distribution and range of physics-based parameters are different.
Nonetheless, as one of the pioneering works in the field of zero-
gravity transfer learning, we tested traditional machine learning
methods to prove their inadequacy for this problem. All data pro-
cessing, modeling, and analysis were performed using PYTHON.

4.1 Training Data for Traditional Machine Learning. The
ground and parabolic flight printing parameters and Taylor cone
measurements in Table 1 were used as features to predict the
target, printed line width. The set of input features of the baseline
and transfer learning models contain the operational printing param-
eters including the applied voltage, duty ratio, frequency, nozzle dia-
meter, plotting speed, standoff distance, and Ag ink loading.
Additionally, it contains Taylor cone measurements observed
during the printing process obtained via machine vision consisting
of Taylor cone height and Taylor cone angle. These inputs are
used to predict the target feature, which is the printed line width
(see Table 1). The two on-ground experiments were used as training
data and contain 254 data points. The parabolic flight experiment
contained nine data points, three of which were used for training
and the remaining 6 were used for testing. To help compensate for
the suspected domain shift between on-earth and zero-gravity print-
ing parameters, we added the minimum, median, and maximum line
width points of the parabolic flight data to the training data to assist
the model in making predictions about the new ranges of the printing
parameters in zero gravity. The remaining 6 points were used for
testing. A schematic representation of the data sources, features,
and transfer learning mechanism can be seen in Fig. 5. Prior to train-
ing, standardizationwas performed using theMinMax scaler. Avisu-
alization of the locality and spread can be seen in Fig. 6.We observed
that slightly different parameters were required to print the same
range of line widths in zero gravity.

4.2 Evaluation Metrics. To evaluate the performance of each
model we will compute the root mean squared error (RMSE), coef-
ficient of determination (R2), mean squared error (MSE), and mean
absolute percentage error (MAPE) between the actual and predicted
line widths of the training and testing data:

RMSE =

�����������������∑n
i =1 ( yi − ŷi)

2

n

√
(1)

R2 =
∑n

i=1 ( yi − �yi)( ŷi − ŷi)����������������∑n
i=1 ( yi − �yi)

2
√ ����������������∑n

i=1 ( ŷi − ŷi)
2

√
⎛⎜⎝

⎞⎟⎠
2

(2)

MSE =
1
n

∑n
i=1

( yi − ŷi)
2 (3)

MAPE =
1
n

∑n
i=1

yi − ŷi
yi

∣∣∣∣ ∣∣∣∣ × 100% (4)

Note that the subscripts are all “i” in Eqs. (1)–(4), though some
looked like “l.”
Here, n represents the number of samples, yi and ŷi are the target

and model outputs, �yi is the mean of the target line widths, and ŷl is
the mean of the predicted line widths. RMSE is measured in μm as
the EHD-printed lines are in the microscale.

4.3 Baseline Machine Learning Models. In this study, three
artificial neural network (ANN) models using 3, 5, and 10 layers

Fig. 3 (a) ROI identification during no jetting phase and
(b) Taylor cone and jetting captured. Reflective nozzle images
were in the view because the printing was on glass substrates.

Fig. 4 Measurements of the height and angle of the Taylor cone
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Fig. 5 A schematic of the data sources, features, and transfer learning mechanism

Fig. 6 Boxplot of scaled features of the ground experiments (green) and the parabolic flight experiment (orange)
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were tested. We used the Hyperopt package to optimize the hyper-
parameters of each individual model by minimizing the RMSE. All
machine learning was performed using scikit-learn v1.3.1. The fol-
lowing methods were employed: linear regression (LR), ridge
regression (RR), support vector regression (SVR), random forest
regression (RFR), gradient boosting regression (GBR), and ANN.
Each method is briefly described: (1) LR is a simple statistical
model used to predict a continuous target variable by fitting a
linear relationship between the input features and the target.
(2) RR is a linear regression technique that adds a penalty term to
the ordinary least squares method, helping to mitigate multicolli-
nearity and overfitting by shrinking the coefficients toward zero.
(3) SVR is a supervised learning algorithm used for regression
tasks that aims to find the optimal hyperplane in a high-dimensional
space to minimize the error between the predicted and actual values.
(4) RFR is an ensemble learning method that builds multiple deci-
sion trees during training and outputs the average prediction of the
individual trees, providing robustness against overfitting with high
prediction accuracy. (5) GBR is an ensemble learning technique that
builds a series of weak learners (here we use decision trees) sequen-
tially, with each tree trained to correct the errors of its predecessor,
resulting in high predictive accuracy. (6) ANN is a computational
model consisting of interconnected nodes (neurons) organized in
layers, used to learn complex patterns and relationships in data
for regression tasks.

4.4 Results of Baseline Machine Learning Models. The
results of the baseline models could be seen in Fig. 7. It can be
observed that the models did not perform well on the zero-gravity
data. The best models were LR and the 10-layer ANN which had
RMSE and MAPE values of 14.52% and 16.84% and 8.66% and
21.57%, respectively. In the context of our problem, we targeted
a MAPE below 10% based on other reported research on transfer
learning in the AM domain [53,54]. Furthermore, the R2 values
for all models were negative indicating that the models are poorly
fit and fail to explain the variance within the data. This can be attrib-
uted to the dataset shift of the physics-based features that are not
being adequately treated within the traditional machine learning
models. Thus, transfer learning was utilized to address this problem.

5 Transfer Learning Approach
As mentioned above, we observed a dataset shift in feature spaces

from on-earth to zero-gravity data. Mathematically speaking, the
distribution of the on-earth (or E) data was different from the distri-
bution of the zero-gravity, “in-space” (or S) data in the covariate x
and dependent variable y: pE(x, y) ≠ pS(x, y). We assumed that the
distributions of the E data and the S data are similar to a certain

extent; however, compensating for this difference with a small
number of S data points was challenging. In other words, the chal-
lenge faced by all ISM processes is how we could leverage a large
amount of on-earth data from a certain domain with a small amount
of in-space data from a different domain to make predictions. Our
data contained labels in the source and target domains; however,
the domains themselves were different; this was defined as a hetero-
geneous, inductive transfer learning (HeITL) problem [59]. Several
models could be selected to address this problem. The Supervised
Heterogeneous Transfer Learning model by Sukhija and Krishnan
[60] could be a candidate; however, we did not wish to apply
labels to our data, since our testing data is so scarce. For the
same reason, we did not wish to unify different feature spaces
like Shi et al. [61] did in the Heterogeneous Spectral Mapping trans-
fer learning model. Finally, the dimensionality of our data did not
call for a deep learning model nor one specialized for high-
dimensional data such as image classification or the Oracle Trans-
Lasso model by Li et al. [62]. The model we employed was
weighted kernel ridge regression (KRR) for HeITL and a full
derivation could be found by Garcke and Vanck [59]. An instance-
based transfer approach was selected because it is adaptable to mul-
tisource training data that contains different features among them.
Typical regression models do not allow the sharing of different
feature spaces. Thus, we employed importance-based weights to
allow the transfer of information between multiple different data
sources that contain different features. Each instance of the E data
was assigned a weight based on its perceived value in predicting
the S target. The optimized weights were then used in a ridge regres-
sion model, which used the E data and some of the S data to inter-
polate the remaining S targets. This model was selected because of
its three characteristics: it can utilize datasets that contain different
features, it can compensate for the domain shifts among those fea-
tures, and data from future experiments can be added sequentially to
support training the model.

5.1 Weighted Kernel Ridge Regression for HeITL. We
introduce the two datasets (XE, YE), the E data collected on-earth,
and (XS, YS), the S data collected in zero-gravity “space.” These
are given by

(XE, YE) ∼ pE(x, y) and (XS, YS) ∼ pS(x, y) (5)

where |XS| < <|XE|, i.e., M <<N , and M represents a small subset
of S data that will be used in training denoted by Sr . The remaining
subset will be used for testing, denoted by St . The distributions of
both sets of data were assumed to be related but not equal, i.e.,
pE(x, y) ≠ pS(x, y).
First, only using the E data, we learned the model coefficients aE

for normal kernel ridge regression by minimizing the regularized

Fig. 7 Results of traditional (baseline) machine learning models
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squared loss function:

min
f∈H

1
N

∑N
j=1

( yj − f (xj))
2 + λ|| f ||2H (6)

by using the kernel trick and taking the dual:

min
aE

1
N
(aTEKa − 2aTEy + yTy) + λaTEKa (7)

where λ represents the regularization parameter, and the
kernel used is the Gaussian radial basis function (RBF), i.e.,
k(x, y) = exp (−(||x − y||2/2σ2)), where σ denotes the bandwidth
hyperparameter. Using the estimated model coefficients aE obtained
only using the E data, we estimated the weights ŵ of each point j in
N via a linear combination of Gaussian kernels:

ŵaE
j (xEj , y

E
j ) = aEj exp −

||(xSr , ySr ) − (xEj , y
E
j )||2

2η2

( )
(8)

where η is the kernel width parameter and (xSr , ySr ) is a data point
from the training set Sr . The weights form the diagonal matrix
Ŵ ∈ R(N+M)×(N+M):

Ŵ : = IN+M
0

0
diag (ŵ(xE1 , y

E
1 ),...,ŵ(x

E
N ,y

E
N ),̂w(x

Sr
1 ,ySr1 ),....,ŵ(xSrM ,ySrM ))

[ ]
(9)

for each training point i in Sr . The prediction function could now be
derived using the discriminative case of a standard machine learning
model:

ŷ⋆ = argmaxyp( y|x⋆) (10)

where x⋆ represents a new data point we want to predict, in our case
from a testing set St , and ŷ⋆ is the prediction. To estimate ŷ⋆ , we
use Gaussian kernel ridge regression:

argmaxyp( y|x⋆) ≈ f (x⋆) = atk(x⋆) (11)

where k(x⋆): = (k(x1, x⋆), . . . , k(xN+M , x⋆))t is the kernel map of x⋆

on the training data E and Sr, and a is a vector of coefficients. The
approximation could now be taken as a function of the weights:

argmaxy(ŵ(x
⋆, y)p( y|x⋆)) ≈ fŵ(x⋆ ,y)(x

⋆) = atŴ(x⋆, y)k(x⋆) (12)

plugging this into the regularized squared loss function, and replac-
ing (x⋆, y) with a point from the features space we want to predict
Sr we obtain the following convex optimization problem:

min
α≥0

∑M
i =1

(ySri − at Ŵ
α
(xSri , y

Sr
i )k(xSri ))

2
+ γ||α||2 (13)

λ again represents the regularization parameter. The λ values repre-
sent regularization parameters, and they are optimized relative to
each equation (e.g., λ values in Eqs. (7) and (13) are optimized sepa-
rately). The optimized coefficient vector α defines the weights ŵ,
which will be used in the final modified ridge regression model:

J(θ)=
1
2

∑M
i=1

(θtϕ(xSri )− ySri

( )2

+
∑N
j=1

ŵj(θ
tϕ(xEj )−yEj )

2)+
λ

2

∑D
d=1

θ2d

(14)

where θ denotes the model parameters, ϕ is the feature map, λ is the
regularization parameter, and D is the number of features. As
already implied, the E and Sr datasets are vertically concatenated
as well as the Gaussian kernel matrix, K:

XESr = (XE|XSr ) and YESr = (YE|YSr ) (15)

K=ϕ(XESr )tϕ(XESr ) (16)

where XE ∈RN×D,XSr ∈RM×D and labels YE ∈RN , YSr ∈RM .
Taking the dual we obtain

1
2
atKWKa−atKŴYESr +

1
2
YESr +

λ

2
atKa (17)

The Gaussian RBF is used here; the bandwidth hyperparameter is
denoted by σ. Once the optimal model parameters a have been
found, a new prediction on the test set ŷSt can be found using

ŷSt =
∑N+M
l=1

alylk(x
ESr
l , xSt ) (18)

The supervised KRR-HeITL approach required the estimation of
bandwidth parameters η and σ and regularization parameters λ and
γ. The additional regularization term allows higher control of the
optimization across combined datasets. Additionally, KRR-HeTL
heavily leverages Sr labels to compensate for the dataset shift result-
ing in robust predictions of St .

5.2 Data for KRR-HeITL. To test the effectiveness of the
transfer learning model on the zero-gravity data, we considered 4
different sets of training data. All included the on-ground experi-
ment data, but the number of zero-gravity data points differed.
The first was the same as the baselines in Sec. 4.1: we included
the minimum, median, and maximum points of the zero-gravity
data in our training set [Min, Max, Med]. We tested only including
the minimum and maximum points [Min, Max], only including
median [Med], and using the tertiles [Tert]. The Med and Tert
models were used to test how our model performs on extrapolating
the data, while the others were tested on interpolation. By giving the
model a range of which parameters are shifted and by how much,
the model can better interpolate the remaining points.
Naturally, there is a large imbalance in the number of points in

training and testing sets since we are testing the model on data col-
lected during parabolic flight tests (254 points to train and only 9
points to test). A commonly used method to deal with data imbal-
ance is to oversample our noncomplete dataset to rebalance it
[63]. However, such oversampling usually requires a thorough
understanding of the correlation, uncertainty, and the structure of
the dataset [64]. Otherwise, the rebalancing performance will be
impaired. Unfortunately, the transfer learning between on-ground
and in-space EHD printing is an emerging research topic, and the
required understanding is not satisfied. This explains why we
directly deal with the imbalanced dataset to test the KRR-HeITL
model. Nevertheless, in the future, this model may be used to inter-
polate more points than the quantity obtained via parabolic flight
tests. To broaden our results to larger amounts of testing data and
address this imbalance, some commonly used data augmentation
methods were tested as benchmarks. Three data simulation tech-
niques were tested: the Generative Adversarial Network (GAN),
Wasserstein GAN (WGAN), and Variational Autoencoder (VAE).
Each was used to simulate 100 new data points for testing. These
new data imitate a nearly 70% and 30% training testing split. The
GAN is a common and effective way of generating new data by
using competing neural networks to create realistic simulated data
from small training sets. The VAE can learn the distribution of
the data and generate new points based on sampling from the
learned latent space. In this case, the parabolic flight data are
input, and the simulators are used to produce 100 new data points
from the zero-gravity distribution for use as the simulated test set.
Ten sets of simulated data are generated and the average MAPE,
MSE, RMSE, and R2 values of the KRR-HeITL model are reported
in Table 2.

5.3 KRR-HeITL Results and Discussion. This section pre-
sents the results of the transfer learning model, KRR-HeITL, and
compares it to the baseline machine learning models presented
above on the original, unmodified parabolic flight test data. The

121002-8 / Vol. 146, DECEMBER 2024 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/146/12/121002/7381258/m
anu_146_12_121002.pdf by U

niversity O
f W

isconsin M
adison user on 26 June 2025



results of the KRR-HeITL model on the four different training data-
sets can be found in Fig. 8. Directly comparing the results of train-
ing on the [Min, Max, Med] dataset, the best MAPE was 16.84%
using the baseline LR model, while the KRR-HeITL model
obtained 3.85%. The smallest RMSE of the baseline models was
8.66 μm by the 10-layer ANN, while KRR-HeITL obtained
2.88 μm. However, when comparing these results, it is important
to note that the baseline models all had negative R2 values indicat-
ing they did not explain the variability exhibited by the zero-gravity
data. The KRR-HeITL model obtained an R2 value of 0.82,
meaning 82% of the variability in the zero-gravity data was explain-
able by the model. This marked a significant improvement over the
baseline machine learning models, which did a poor job of explain-
ing the shift in the feature domains.
Next, we compared the performance of the KRR-HeITL model

across different sets of training data to understand its limitations.
The [Min, Max] training set obtained comparable results to the
[Min, Max, Med] training set, with an RMSE of 2.92 μm and a
MAPE of 4.05%. The R2 was slightly lower at 0.78. Both [Min,
Max, Med] and [Min, Max] training sets achieved a MAPE of
less than 5%, and we consider this to be acceptable for use in prac-
tice. As mentioned above, the EHD printing process depended on
environmental factors as well, such as temperature and humidity,
so even while using the same ink and printing parameters, the
printed line widths may be slightly different. Based on our experi-
ments, we found that the variability between day-to-day printed line
widths was around 5%, thus validating the success of the

KRR-HeITL model for interpolating on-ground knowledge to
zero gravity for EHD physics-based parameters. The Med and
Tert training sets test the model’s ability to extrapolate EHD-printed
line widths beyond what the model was trained on. The Med and
Tert models obtained a MAPE of 53% and 51%, respectively,
showing that they cannot adequately predict line widths beyond
the range of zero-gravity data they are trained on. In this study,
we concluded the KRR-HeITL model performs well for interpola-
tion of zero-gravity line width data, but it cannot extrapolate its pre-
dictions accurately.
Next, we simulate more testing data for the [Min, Med, Max]

method using the GAN, WGAN, and VAE since the quantity of
our zero-gravity data is limited. The results can be found in
Table 2. Using 100 simulated test points across 10 folds, the
KRR-HeITL model achieved the best average MAPE of 8.82%,
an MSE of 108.42 μm2, an RMSE of 10.41 μm, and an R2 of
0.59 using WGAN simulated data. This performance is worse
using simulated data than using the real zero-gravity data. We
suspect this could be due to several factors. First, the data simulators
may produce data that lacks the finer details, complexities, and pat-
terns that may be difficult to replicate. Furthermore, GANs have
been reported to introduce bias in small training samples [65].
The model also may contribute noise that does not exist in the
real data, specifically in instances where some features are margin-
ally or jointly distributed, such has been reported in other physics-
motivated processes [66]. Although the model does not perform as
well on GAN-simulated data, to draw a proper conclusion, we

Table 2 RMSE, R2, MAPE, and MSE of the model tested on the original parabolic flight data ([Min, Med, Max], [Min, Max], [Med], and
[Tert]) and of the model tested on simulated data using GAN, WGAN, and VAE

Training data Model RMSE R2 MAPE MSE

Original parabolic flight data [Min, Med, Max] 2.88 0.82 8.27 3.85
[Min, Max] 2.92 0.78 8.53 4.05
[Med] 44.75 −3.07 2002.9 53.00
[Tert] 45.24 −2.86 2016.8 51.16

Simulated data GAN+ [Min, Med, Max] 11.60 0.54 12.71 134.64
WGAN+ [Min, Med, Max] 10.41 0.59 8.82 108.42
VAE+ [Min, Med, Max] 25.00 −0.75 27.72 625.09

Fig. 8 Results of the transfer learning model on training groups (Min, Max, Med), (Min, Max), Med, and Tert
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recommend the following research topics as future works: a thor-
ough study of the correlation, uncertainty, and distribution of the
data so that an oversampling technique can be properly applied,
and the use of a simulation specifically designed for EHD physics
to fabricate more samples.
To improve the accuracy and R2 of our model, we plan to add

new on-ground data to the training set as more data from experi-
ments is collected. A strength of our instance-based model was
that data can be added iteratively and reweighted according to its
relevance to the zero-gravity data. In the future, we would like to
gather EHD printing data from existing publications to further
expand the training data. As more parabolic and in-space data
become available, we will perform further testing on this model
to verify its accuracy. Of all the transfer learning strategies that
have been published, we selected one and demonstrated its effec-
tiveness on the ground-to-space transfer. However, many other
models may be acceptable and would likely out-perform
KRR-HeITL. KRR-HeITL is an instance-based transfer of data,
but the domain shifts of the features also suggest a feature-based
approach may perform well too. There is also great potential for
transfer learning models that are developed with the sole purpose
of ground-to-space transfer of physics knowledge. To our knowl-
edge, this study is one of the first steps in realizing transfer learning
for the transfer of terrestrial data to “in-space” applications. We
gladly invite more research on this topic as we see the growing com-
mercialization of space.

6 Conclusion
This research explores the potential of transfer learning to be used

for predicting EHD-printed line widths under zero-gravity condi-
tions. The EHD printing process is dominated by physics, so its
printing parameters experience a domain shift under zero-gravity
conditions. We demonstrate that traditional machine learning
methods cannot compensate for this domain shift, so we test a trans-
fer learning method, KRR-HeITL, built for handling heterogeneous
data. Using two EHD printing datasets collected from on-ground
experiments, and the maximum and minimum points from a para-
bolic flight experiment as training, we find the KRR-HeITL
model can obtain a MAPE of <5% on zero-gravity data. We con-
clude that the KRR-HeITL model performs well on interpolation
of zero-gravity data but falls short when predicting points outside
of the range it was trained on. This study validates that transfer
learning can be used as an effective way to transfer physics-based
parameters from on-ground to “in-space” experiments. The
KRR-HeITL model could be a valuable tool for exploring other
domain shifts in AM such as electron beam freeform fabrication,
FFF, and DIW since they have been studied for their applicability
in zero gravity [15,16,18], and the application of KRR-HeITL to
these fields could further validate and enhance the model. Transfer
learning’s use in the development phase has the potential to accel-
erate material, mechanical, and chemical testing, especially since
our means for zero-gravity experiments stay limited. We anticipate
that this research will motivate researchers to use transfer learning
in more in-space manufacturing applications.
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Nomenclature
k = Gaussian RBF kernel
E = set of data collected “on earth” via laboratory

experiments
S = set of data collected “in space” via parabolic flight tests
M = number of Sr training data points
N = number of E data points
D = number of features
ŵ = weight function
Ŵ = the diagonal matrix containing ŵ
aE = model coefficients for normal kernel ridge regression

on E data
yi = target—printed line width
ŷi = model output—predicted line width
�yi = mean of the target line widths
ŷi = mean of the predicted line widths
Sr = subset of S data to be used for training
St = subset of S data to be used for testing
ŷ⋆ = prediction of new data x⋆

(x⋆, y⋆) = a new data point
γ = regularization parameter of squared loss function
η = kernel width hyperparameter of ŵaE

θ = modified ridge regression model parameters
λ = regularization parameter of the modified ridge

regression model
σ = kernel width hyperparameter of k
ϕ = feature map of the modified ridge regression model
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