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Abstract—Aerial vehicles with dozens of rotors are becoming
increasingly common in important applications such as trans-
portation and construction. One challenge with building such a
system is to ensure that the system is robust against faults: as
the number of rotors increases, the likelihood of a rotor failing
during operation also increases; despite the spare thrust capacity
provided by the redundant rotors, a rotor fault can significantly
impact the motion and safety of the system.

This paper presents an efficient fault detection and isolation
(FDI) method for aerial vehicles with a large number of rotors.
Our approach relies on two key insights: First, the effect of a
faulty rotor directly affects the tracking error in roll and in pitch.
This property can be used to order our faulty rotor search space.
Second, the error in either roll or pitch is related to both the
distance from the (relevant) axis and the severity of a fault. With
these observations, we can use probe faults to isolate faulty rotors.
Evaluation results show that our technique can efficiently detect
and isolate faults in multi-rotor aerial vehicles with up to 64
rotors (8× more rotors than in existing FDI work), and that it
can help improve robustness. To the best of our knowledge, our
FDI method is the first that scales to several dozens of rotors.

I. INTRODUCTION

Multirotor aerial vehicles (MAV) with dozens of rotors are

becoming increasingly common for important applications

such as transportation [3], [8], [13]. As the number of rotors

increases, the likelihood of any rotor becoming faulty at

runtime also increases. Therefore, it is critical to efficiently and

effectively handle faults in these systems to avoid undesirable

consequences such as potential crashes [2].

The standard approach to handling faults is fault-tolerant

control, either by designing the controller to be able to stabilize

itself in the presence of a fault (passive methods) or by

isolating the fault and changing the control parameters to

adapt (active methods). While fault-tolerant control has been

explored extensively in control systems, we are not aware of

any existing work that applies to faulty rotors in multirotor

systems with dozens of rotors. A a first step towards active

fault-tolerant control for such systems, we present an efficient

method for online fault detection and isolation (FDI) of faulty

rotors in MAVs with many rotors.

Challenges. Within a MAV, rotors are bound together in a

single rigid body; thus, a fault in one rotor can impact the

motion of the entire system. Consider the examples shown in

Fig. 1. The left figure shows a non-modular chAIR system [8],

which can lift a human using a 76-rotor MAV. The right figure
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Fig. 1: (Left) The 76-rotor chAIR can lift a human [1]. (Right) ModQuad
structures with 12 and 28 rotors [18]. All vehicles have redundant rotors.

shows ModQuad [18], a modular aerial vehicle composed of

cuboid modules that are bound together (e.g., using magnets)

to form a rigid body, with each module being propelled

by a quadrotor. In both examples, a fault in one rotor can

substantially impact the motion of the structure as a whole. It

is, therefore, important to isolate the rotor that is faulty, and

to estimate how severe it is, to perform appropriate actions.

There are several challenges towards this goal, however.

First, a rotor may be partially faulty, so the fault severity lies

along a continuous scale; thus, searching over the infinitely

many possible fault severity levels would be impractical.

Second, the magnitude of the impact of a fault depends on

multiple factors, including e.g., structure shape, fault location

and fault severity. In addition, different fault scenarios may

have similar impact on the system, making them indistin-

guishable from one another; for instance, a less severe fault

in a higher-leverage rotor may cause the same error in motion

as a more severe fault in a lower-leverage rotor. Together,

these make it hard to efficiently isolate the faulty rotor and to

correctly estimate its fault severity, especially as the number

of rotors increases.

Related work. Fault-tolerant control methods have been stud-

ied extensively; for a recent survey on the topic, see [17].

Active fault-tolerant techniques [10], [15] first use an FDI

method to identify the faulty rotor, and then tune the controller

to adapt to the identified fault. Some solutions assume that an

FDI method is given [10], [21], whereas others (like ours)

focus on the FDI problem. Existing FDI methods typically

fall into two categories: model-based approaches [9], [15] and

machine learning approaches [7], [14]. The former is often

system-specific and does not scale well, whereas the latter

tends to require adding hardware and lots of data.

Recently, other data-driven FDI methods have also been

developed, but they are either too slow or do not scale to

many rotors. For example, IMU data have been used to find

faulty propellers, but it can take over 100 seconds to detect a

single fault in a quadrotor [4], [5]. Saied et al. [15] uses the

signs of orientation error vector elements to quickly identify

faulty rotors in octorotors, but their technique cannot extend

to systems with more than eight rotors.

Passive fault-tolerant methods, in contrast, do not need

an FDI method, because the controller is designed to work



even in the presence of faults. Several passive approaches

exist, including sliding mode control, backstepping, H-infinity

control, nonlinear dynamic inversion, and fractional-order

control [17]. Sliding mode control is robust, but more-than-

expected faults can exceed the fault tolerance capabilities of

the system without warning and cause the entire system to fail

abruptly [16]. Backstepping and nonlinear dynamic inversion

both require highly accurate (or even full) knowledge of state,

and H-infinity control and fractional order control are complex,

even in systems with eight or fewer rotors [17].

To the best of our knowledge, our work is the first to

consider MAVs with a single rigid body containing more than

eight rotors. Our solution only uses data from a pre-planned

trajectory and an IMU, both of which are commonly available

in robots. The insights underlying our approach also apply to

systems with fewer rotors, such as in 6-rotor VTOLs [6].

Contributions. As the first step towards active fault-tolerant

control for MAVs, we present an online FDI method that can

be used to efficiently isolate rotor faults in multirotor vehicles

with dozens of rotors. We make three main contributions: First,

we establish that roll error and pitch error magnitudes are

consistently related to each other for each individual rotor in

a MAV, independent of fault severity, planned trajectory, and

even structure shape. This can be used to order the faulty

rotor search space. Second, we introduce a bivariate quadratic

model to relate the faulty rotor location, fault severity, and the

magnitude of error in roll and pitch. Given a candidate faulty

rotor, we can compute by what severity it must have failed if it

is indeed the faulty rotor. Third, we present a way to use probe

faults to determine whether a candidate faulty rotor with a

candidate fault severity, computed using our bivariate quadratic

model, is the faulty rotor. Our evaluation in CoppeliaSim using

ModQuad shows that our method can efficiently detect and

isolate faults in MAVs with up to sixty-four rotors (8× more

than the state of the art). Furthermore, by enabling prompt

mitigating actions, our real-time detection can help increase

the system’s robustness against future faults (even when using

just a simple mitigation strategy).

II. MODEL AND APPROACH OVERVIEW

Our approach is designed for any MAV with many rotors;

however, for concreteness we present our solution based on

ModQuad [18], [19]. In ModQuad, a module is a cuboid pro-

pelled by a quadrotor. Modules can self-assemble to produce

a larger MAV. A set of rigidly attached modules is called a

structure; two example structures are shown in the right image

in Fig. 1. For simplicity, we focus on settings without external

disturbances such as wind, but – as we will show in Section V

– our technique is robust to thrust noise. The dynamics model

we use is largely based on [18]; however, our fault model and

FDI approach are completely new.

A. Dynamics of MAV

The standard basis in R
3 is given by the three unit vectors

b̂1 = [1,0,0]⊤, b̂2 = [0,1,0]⊤, and b̂3 = [0,0,1]⊤. The fixed

world coordinate frame, in which the z-axis points up, is

denoted by {W}. The set of rigidly attached modules that form

a particular structure are associated with a structure coordinate

frame {S}. Within a structure, the jth module has a module

reference frame {M j} with its origin at the module’s center

of mass. The unit vectors of the bases of module frames are

parallel and identically oriented to those of {S}. The location

and orientation of {S} in {W} is specified by vector r ∈ R
3

and rotation matrix W RS ∈ SO(3).

The four propellers associated with each respective module

are coplanar on the xy-plane. The kth propeller of the jth

module generates force f jk = f jkĥ jk, where f jk is less than

or equal to the maximum producible thrust fmax and we

define for compactness ĥ jk =
SRM j

M j Rkb̂3. The torque due to

propeller drag is given by τττd

jk = f jk(−1) j+k
(

km
k f

)

ĥ jk, where

km and k f are experimentally obtained constants. The total

force can be represented by the vector sum fT = ∑ jk f jk and

τττT =∑ jk τττ f

jk+τττd

jk. Here, τττ f

jk = p jk×f jk is the torque generated

by the thrust force of the kth propeller in the jth module, where

p jk ∈ R
3 is the position of each propeller in {S}.

The control vector, denoted by u= [f11, f12, . . . , fN4]
⊤, where

N is the number of modules, represents the thrust commanded

to be outputted from each rotor in the system. Together

with the design matrix A (see [20, Sec. III]), this can be

used to produce the wrench vector w = Au in {S}, where

A =

[

. . . ĥ jk . . .

. . . p jk × ĥ jk +(−1) j+k
(

km
k f

)

ĥ jk . . .

]

.

The dynamics of the structure can be represented by the

Lagrangian for robot motion [11], [12]

M

[

r̈

ω̇ωω

]

+C

[

ṙ

ωωω

]

+g = Bw (1)

where r̈ is the linear acceleration, ṙ is the linear velocity,

ω̇ωω is the angular acceleration, ωωω is the angular velocity,

M =

[

mI3 0

0 J

]

, C =

[

0 0

0 ωωω×J

]

, g=

[

mgb̂3

0

]

, and B=

[

W RS 0

0 I3

]

. Here,

M collects the mass m and inertia tensor J of the structure, C is

the Coriolis matrix and the operator (.)× converts a vector into

its skew-symmetrix matrix form, g is the gravitational force

vector (g is gravitational acceleration), B maps the wrench

vector w from {S} to {W}, and I3 is the 3×3 identity matrix.

Faults and errors. A rotor’s current ‘fault level’ can be

quantified as a severity s jk ∈ [0,1], where ( j,k) is the index of

the rotor. For notational convenience, we additionally define

Γ jk = 1− s jk, and we coaelesce these quantities acrosss all

rotors in the structure into the vector ΓΓΓ = [Γ11,Γ12, . . . ,ΓN4]
⊤.

An individual rotor’s thrust can now be redefined as u′jk =
min{Γ jku jk,Γ jkfmax}, where u jk is the thrust commanded for

this rotor by the control algorithm. We consider a single rotor

fault at a time; however, multiple rotors can become faulty

sequentially, in which case we assume that a subsequent fault

only occurs after the current one has been isolated.

The trajectory planner for the structure outputs a desired

state, and we can extract orientation information by using a

gyroscope to measure angular velocity. Since our approach is

mainly concerned with roll and pitch, we define a limited state

error vector e = [eφ ,eθ ]
⊤ consisting of roll angle error eφ and










