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Abstract 

Composite materials have long been used in various industries due to their superior properties 
such as high strength, lightweight and corrosive resistance. Bonded composite joints are 
finding increasing applications as they provide extensive structural benefits and design 
flexibility. On the other hand, the failure mechanism of composite adhesive joints is not fully 
understood. A model that bridges manufacturing parameters and final quality measures is 
highly desired for the design and optimization of the composite adhesive joints manufacturing 
process. In this study, a novel framework of physics-informed Neural Ordinary Differential 
Equation (ODE) with heterogeneous control input (PINOHI) is proposed, which links the 
heterogeneous manufacturing parameters to the final bonding quality of composite joints. The 
proposed model structure is heavily motivated by engineering knowledge, by incorporating a 
calibrated mathematical physics model into the Neural ODE framework, which can 
significantly reduce the number of data samples required from costly experiments while 
maintaining high prediction accuracy. The proposed PINOHI model is implemented in the 
quality prediction of composite adhesive joints bonding problem. A set of experiments and 
associated data analytics are conducted to demonstrate the superior property of the PINOHI 
model by using both the leave-one-batch-out cross-validation and sensitivity analysis.  

Keywords: Composite, joining, Neural ODE, physics-informed machine learning 

1. Introduction  

With the increasing use of composite materials in aviation and aerospace industries for weight reduction 

and energy efficiency improvement, adhesive joining gains much more interest at an unprecedented rate as 

a major manufacturing process. Composite adhesive joining uses specially designed adhesive pastes or 

films to bond composite panels. Compared to traditional mechanical fasteners, such as riveted or bolted 

joints, composite adhesive joining can significantly reduce weight and avoid material damage and stress 

concentrations. 
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As shown in Figure 1 and Table 1, composite adhesive joints are made from complicated, multi-

stage manufacturing processes (MMP), involving material thawing, panel fabrication, surface treatment, 

and joints curing, followed by a lap shear testing process. The input (control variables) and output for each 

stage of the MMP can be multiple heterogeneous manufacturing parameters, in the form of scalar, 

functional curve, matrix, and tensor, whose effects can propagate from the current stage to the downstream 

stages and finally impact the bonding quality. In addition, the anisotropy of composite materials and the 

chemical and physical reactions during each stage also add to the complexity. 

 

Fig. 1: Multistage manufacturing processes of composite adhesive joints. 

Accurate mechanical property understanding and characterization of the adhesive bonded joints, 

with respect to the manufacturing process, is not only of critical safety consideration but also important in 

bonding quality prediction, design optimization, and root cause diagnosis. A common metric of the bonding 

quality is the bonding strength which is the output of a destructive test of lap joints. Such mechanical tests 

generate load-displacement curves that characterize the mechanical property of the adhesive bonding. 

Based on the load-displacement curves, one can further derive stress-strain curves, bonding strength, overall 

bonding stiffness at different strain levels, total energy required to cause failure, etc. However, destructive 

tests are often expensive and time-consuming. 
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Table 1: Heterogeneous manufacturing parameters involved in MMP of composite adhesive joints. 

Stage 

Heterogeneous Manufacturing Parameters 

Input Output Environ. Factor 

Var. Description Var. Description Var. Description 

I 
N/A N/A 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 ∈ ℝ Total out-of-freezer 

time of adherend [s] N/A N/A 

N/A N/A 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴 ∈ ℝ Total out-of-freezer 
time of adhesive [s] N/A N/A 

II 

𝑟𝑟𝐹𝐹 ∈ ℝ Ramp-up rate [°C/s] 𝑻𝑻𝐹𝐹(𝑡𝑡) ∈ ℝ𝑡𝑡𝐹𝐹×2×2 TC readings [°C] 𝑇𝑇𝑒𝑒𝐹𝐹 ∈ ℝ Ambient temp. [°C] 

𝑡𝑡𝐹𝐹 ∈ ℝ Dwelling time [s] 𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 ∈ ℝ2×2 Avg. TC reading [°C] 𝐻𝐻𝑒𝑒𝐹𝐹 ∈ ℝ Relative humidity [%] 

𝑇𝑇𝐹𝐹 ∈ ℝ Dwelling temp. [°C] 𝒑𝒑𝐹𝐹(𝑡𝑡) ∈ ℝ𝑡𝑡𝐹𝐹 Vac. reading [Pa] N/A N/A 

𝑝𝑝𝐹𝐹 ∈ ℝ Vac. pressure [Pa] 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹 ∈ ℝ Min. pressure [Pa] N/A N/A 

𝑔𝑔 ∈ ℝ Sandpaper grit [-] 𝑏𝑏, 𝑐𝑐, 𝑡𝑡, 𝑙𝑙, 𝑡𝑡𝑎𝑎 ∈ ℝ Geometric dim. [mm] N/A N/A 

III 𝑋𝑋𝐶𝐶 ∈ {0,1} Categ. var. of 
contamination [-] 𝚿𝚿𝐴𝐴,𝚿𝚿𝐵𝐵 ∈ ℝ2×2 Contact angle dist. of 

panel A, B [°] N/A N/A 

IV 

𝑟𝑟𝐽𝐽 ∈ ℝ Ramp-up rate [°C/s] 𝑻𝑻𝐽𝐽(𝑡𝑡) ∈ ℝ𝑡𝑡𝐽𝐽×2×2 TC readings [°C] 𝑇𝑇𝑒𝑒
𝐽𝐽 ∈ ℝ Ambient temp. [°C] 

𝑡𝑡𝐽𝐽 ∈ ℝ Dwelling time [s] 𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽 ∈ ℝ2×2 Avg. TC reading [°C] 𝐻𝐻𝑒𝑒

𝐽𝐽 ∈ ℝ Relative humidity [%] 

𝑇𝑇𝐽𝐽 ∈ ℝ Dwelling temp. [°C] 𝒑𝒑𝐽𝐽(𝑡𝑡) ∈ ℝ𝑡𝑡𝐽𝐽 Vac. reading [Pa] N/A N/A 

𝑝𝑝𝐽𝐽 ∈ ℝ Vac. pressure [Pa] 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽 ∈ ℝ Min. pressure [Pa] N/A N/A 

N/A N/A 𝑋𝑋𝐹𝐹 ∈ {0,1,2} Categ. var. of flash [-] N/A N/A 

V 𝑠𝑠 ∈ ℝ Load rate [mm/s] 𝑭𝑭(𝛿𝛿) ∈ ℝ𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡 Load-disp. curve [N] N/A N/A 

 

In order to proceed to the downstream tasks such as design optimization and root cause diagnosis, 

it is highly desirable to develop an end-to-end model that links heterogeneous manufacturing parameters in 

the manufacturing processes and the output of the destructive testing process for bonding quality prediction. 

Numerous efforts on physics-based modeling (Deb et al., 2008; Owens and Lee-Sullivan, 2000a; 

Zimmermann et al., 2022) have been made to understand the lap shear testing process. In those studies, 

assumptions are typically made that the lap shear testing process is governed by a set of ordinary/partial 

differential equations (ODEs/PDEs). Computer simulations, such as finite element analysis (FEA), are 

utilized to emulate the underlying relationships. However, such simulations are often computationally 

expensive and suffer from over-simplified assumptions. Also, those models often take material properties 

(e.g., Young’s modulus, Poisson’s ratio) and geometric dimensions as inputs, and the bonding strength or 
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stiffness as the output/result. These material properties are results of the upstream manufacturing stages, 

which are often unknown functions of the manufacturing parameters and cannot be measured directly. 

Additionally, due to the complex chemical and physical interactions and heterogeneous process parameters 

during manufacturing processes, physics-based models usually restrain their scopes to the mechanical 

testing stage itself. 

On the other hand, researchers also explored data-driven models (Kang et al., 2021; Wang et al., 

2023), attempting to bridge manufacturing parameters and mechanical properties. This usually requires 

massive amounts of experimental data to build a model with high confidence, especially when there are 

multiple heterogeneous process parameters involved. Such methods are typically infeasible for composite 

adhesive joints because costly destructive tests lead to data scarcity in practice. 

To mitigate the issue of lacking labeled data for training, combining physics-based models and 

data-driven methods to exploit the advantages of each technique is of significance. The lap shear testing 

stage shown in Fig. 1 can be estimated as a collection of springs (Owens and Lee-Sullivan, 2000a) under a 

quasi-static tensile loading with certain assumptions, which is a first-order dynamical ODE system in terms 

of load with respect to displacement. With unknown system parameters determined by the manufacturing 

parameters, the Neural ODE (Chen et al., 2018) will be a natural choice to model this system. However, 

the original Neural ODE structure only takes the system state with its derivatives as inputs, ignoring related 

manufacturing parameters in the upstream stages. In other words, it focuses on the evolution of the system 

state in the testing stage, but not the relationships between those manufacturing parameters with the quality 

measures of the final product. Besides, Neural ODE incorporates physics by approximating the underlying 

ODE using a neural network instead of considering any known or partially known governing physical 

equations. 

To address these challenges of data shortage and end-to-end physics learning, a novel framework 

of the Neural ODE structure with additional heterogeneous manufacturing control inputs and explicit 

physical knowledge embedding (PINOHI) is proposed. It addresses those challenges and difficulties by 
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1. Integrating physics knowledge into the Neural ODE framework in addition to the ODE structure. 

2. Generalizing the Neural ODE framework by incorporating additional upstream heterogeneous 

manufacturing parameters as control inputs, such that it can leverage product quality and process 

features and be used for control purposes. 

3. Pre-determining the model structure for variable selection based on engineering domain knowledge 

to reduce the amount of training data required for obtaining adequate accuracy. 

4. Optimizing the data-driven model and the calibration process of the physics-based model in an end-

to-end fashion to obtain a better predictive performance. 

The primary contribution of this article lies in the application of a novel modeling framework to 

the field of composite material/structure manufacturing and maintenance, which involve complicated 

processes yet lacking adequate physical understanding. Unlike existing efforts focusing only on the testing 

process (stage V in Fig. 1) modeling of composite adhesive joints, the proposed PINOHI framework is an 

end-to-end model that takes heterogeneous manufacturing parameters as inputs and covers both 

manufacturing and testing processes (stages I-V in Fig. 1), which provides a key contribution and insight 

to quality characterization and downstream manufacturing optimization. Specifically, the contributions of 

this article are summarized as follows: 

1. We propose a novel modeling framework, PINOHI, for quality prediction using heterogeneous 

manufacturing parameters, which is the first end-to-end model for the application of composite 

adhesive joints. It is a pioneering framework of the Neural ODE structure with additional 

heterogeneous manufacturing control inputs and explicit physical knowledge embedding. 

2. The proposed PINOHI framework integrates the known/partially known physics knowledge and 

the modeling capability of the Neural ODE structure in solving dynamical systems, achieving 

superior predictive performance with limited experiment data. 
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3. The proposed PINOHI framework is extendable to general dynamical systems where the governing 

equation is an ODE given physics knowledge that can be represented by an analytical model or 

numerical method. 

The remainder of this article is organized as follows. Section 2 gives a brief literature review of 

related work. Then, the proposed PINOHI framework is introduced in Section 3. In Section 4, the 

application of the proposed framework to quality prediction of composite adhesive joints is presented. 

Finally, a conclusion and outline of future research directions are discussed in Section 5. 

 

2. Related Work 

The composite in this paper specifically refers to carbon fiber reinforced polymer (CFRP). The adhesive 

joint configuration is the classic single-lap joint, whose modeling has been extensively studied (Banea and 

da Silva, 2009). The majority of existing modeling work focuses on physics-based methods. The typical 

physics-based model for the testing processes of brittle composite adhesive joints is the cohesive zone 

model (CZM) (Dugdale, 1960) with a simplified bi-linear (triangular) traction-separation law and a 

homogeneity assumption in FEA to emulate the evolution of fracture process. Early attempts (Pereira et al., 

2010; Song et al., 2010) were made to explore the relationship between manufacturing parameters (or 

methods) and the bonding quality through an experimental or numerical way. Utilizing CZM, a parametric 

numerical study was conducted by Neto et al. (2012) on single-lap joints with different adhesives and 

overlap lengths to predict bonding strength. Campilho et al. (2013) compared different CZM laws with 

triangular, exponential, and trapezoidal shapes for single-lap joints with brittle and ductile adhesives where 

the numerical results agree with experimental data well in the linear stage but not for the following 

nonlinearity in the load-displacement curve. Nastos and Zarouchas (2022) developed a stochastic finite 

element model considering the uncertainties of mechanical properties of the constituent materials, focusing 

on strength prediction.  
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In addition to finite element simulations, mechanics-based theoretical results were also explored 

by researchers. Owens and Lee-Sullivan (2000a, 2000b) developed a theoretical model for the stiffness 

behaviour in the adhesively bonded composite-to-aluminium single-lap joint. They modeled it as a 

collection of springs which is a first-order dynamical system and verified it through an experimental study, 

which generally predicts well for the stiffness change due to crack growth. Considering out-of-plane 

deflection due to tensile loading and asymmetric geometry, Zimmermann et al. (2022) derived an analytical 

estimate of the adhesive bonding stiffness, which offers a more comprehensive result. 

Physics-based models often rely on strong assumptions about material and geometric properties 

which will lead to model discrepancy. In addition, they can only model the testing process, whose inputs 

are usually unknown functions of manufacturing parameters. Therefore, additional modeling effort is 

needed to further (i) calibrate the physical model; and (ii) bridge the end-to-end relationship between 

manufacturing parameters and final quality measure. For the first point, data-driven methods are used. Gu 

et al. (2021) predicted the failure load of joints using a deep neural network (DNN) with geometric and 

material inputs to obtain the optimal design of the structure. Freed et al. (2022) utilized Gaussian Process 

Regression (GPR) to find the optimal failure parameters trained by mixed mode bending samples simulated 

by CZM. These parameters were then verified by resultant failure strength with different adhesive 

thicknesses. While for models that attempt to link manufacturing parameters with final quality measures, 

they are not fully explored. Preliminary efforts (Kang et al., 2021; Sommer et al., 2022; Wang et al., 2023) 

were made to reveal the connection between the manufacturing parameters and mechanical properties of 

the adhesive itself using machine learning methods, rather than the whole manufacturing process. 

Rangaswamy et al. (2020) linked two manufacturing parameters, bonding length and adhesive thickness, 

to the bonding strength using a DNN, which are only a small subset of all manufacturing parameters. 

Physics-informed machine learning (PIML) has great potential to simultaneously complete the two 

tasks, physical model calibration and end-to-end modeling, by seamlessly incorporating known or partially 

known mathematical physics models with data (Karniadakis et al., 2021). Adopting a physics-informed loss 

function to incorporate the governing PDE, Raissi et al. (2019) proposed a physics-informed neural network 
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(PINN) framework for forward and inverse problems. Z. Chen et al. (2021) integrated sparse regression 

with PINN to efficiently identify the key parameters from scarce data for PDE discovery from nonlinear 

spatiotemporal systems. Another important innovation of PIML is the Neural ODE framework introduced 

by Chen et al. (2018), which is designated to emulate the ODE dynamics end-to-end with a continuous 

depth. Liu et al. (2022) preserved the PDE form in a neural network by discretizing it on a finite difference 

grid and representing it by a convolutional neural network (CNN) with fixed weights. In the autoregressive 

stepping of the Neural ODE framework, preserving the mathematical form of the governing PDE, even 

partially, could mitigate the issue of error accumulation since it carries the underlying physics information. 

Wang et al. (2022) extended the Neural ODE framework with deterministic and stochastic encoders (NP-

ODE) to build a physics-informed data-driven surrogate for FEA simulations with uncertainty 

quantification. Sholokhov et al. (2023) proposed a physics-informed Neural ODE (PINODE) model by 

adding an additional collocation reconstruction loss term to the ordinary loss function when building 

autoencoder-based reduced-order models (ROMs).  

In terms of the application of PIML to the area of composites, Tao et al. (2021) employed the 

Neural ODE framework with a 𝛽𝛽-variational autoencoder (𝛽𝛽-VAE) for feature extraction to learn the 

underlying dynamics of damage accumulation mechanism that describes the stiffness degradation of 

composite laminates by an ODE. Sharma et al. (2021) adopted PINNs to estimate the stresses in the tablets 

and interphase of a single-lap joint based on mechanics with pre-determined material properties. Akhare et 

al. (2023) developed a physics-integrated neural differentiable (PiNDiff) model where the system state is 

summed with a known, or partially known, PDE and showed its efficacy in an application to the curing 

process of composite prepregs.  

However, these efforts did not include the end-to-end modeling of the whole manufacturing 

process. In the scope of a whole MMP with mechanical testing, the aforementioned efforts only handled 

parameters in certain single stages, not connecting the manufacturing process with the final quality measure. 

To the best of the authors’ knowledge, the proposed PINOHI is the first work for end-to-end modeling of 
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the whole adhesive joint manufacturing process that bridges heterogeneous manufacturing parameters and 

the final quality measure. 

 

3. The PINOHI Methodology 

This section presents the development of PINOHI, which is a generalized Neural ODE framework with 

heterogeneous manufacturing controls and physical knowledge embeddings. Section 3.1 provides a brief 

introduction to basic Neural ODE. Section 3.2 introduces the formulations and details of the PINOHI model 

structure. Finally, section 3.3 describes the loss function for learning. 

3.1 Neural ODE Introduction 

Generally, Neural ODE (Chen et al., 2018) models a system of spatio-temporal ODEs/PDEs with a 

governing equation, 

𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= ℱ�𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ;𝝀𝝀𝑝𝑝ℎ𝑦𝑦�, 𝒙𝒙, 𝑡𝑡 ∈ Ω𝑠𝑠,𝑡𝑡, (1) 

and a boundary condition, 

ℬ(𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ) = 0, 𝒙𝒙, 𝑡𝑡 ∈ ∂Ω𝑠𝑠,𝑡𝑡, (2) 

where 𝒖𝒖(𝒙𝒙, 𝑡𝑡) ∈ ℝ𝑛𝑛 is the system state vector in the space and time coordinates 𝒙𝒙, 𝑡𝑡, respectively, and 

∇𝒖𝒖,∇2𝒖𝒖, … are its spatial derivatives; 𝝀𝝀𝑝𝑝ℎ𝑦𝑦 is the physical parameter vector/set; Ω𝑠𝑠,𝑡𝑡 = Ω × [0,𝑇𝑇𝑠𝑠] is the 

spatial-temporal domain coupled by a physical domain Ω  and a time span [0,𝑇𝑇𝑠𝑠] , and ∂Ω𝑠𝑠,𝑡𝑡  is the 

corresponding boundary; ℱ and ℬ are the functions of dynamics and boundary conditions, respectively. 

Neural ODE learns the system dynamics ℱ using a neural network 𝑓𝑓𝜽𝜽 with the system state and its 

spatial derivatives as input, which can be described as  

𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝑓𝑓𝜽𝜽(𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ;𝒙𝒙, 𝑡𝑡), 𝒙𝒙, 𝑡𝑡 ∈ Ω𝑠𝑠,𝑡𝑡, (3) 

where 𝑓𝑓 is a neural network with parameter 𝜽𝜽. 

3.2 Model Structure of PINOHI 
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There are two unique characteristics of the composite joint manufacturing process: (i) partially known 

process: as a multistage manufacturing process, the lap shear testing stage can be modeled as an ODE, while 

the effects of the manufacturing stages remain implicit; and (ii) additional control actions: manufacturing 

parameters control the physical process. Considering these two significant characteristics, we made a 

critical generalization of the Neural ODE model. To incorporate the partially known physical knowledge, 

we assume the following additive structure of the system dynamics function ℱ, i.e.,  

ℱ(⋅) = 𝒜𝒜(⋅) +ℛ(⋅), (4) 

where 𝒜𝒜 is the known physics from the analytical physics model and ℛ is the residual to be learned. This 

assumption is based on the idea of residual modeling with ℛ as the model discrepancy for “bias correction” 

to correct or mitigate the gap caused by a potentially mis-specified analytical physics model 𝒜𝒜 due to 

partially known physics or oversimplified assumptions (Cross et al., 2022; Kennedy and O'Hagan, 2001). 

Considering control variables in the manufacturing process, in addition to the physical parameters, 

we further incorporate the manufacturing parameters as the input for the residual part. Thus, the system 

becomes as follows:  

𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝒜𝒜�𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ,𝝀𝝀𝑝𝑝ℎ𝑦𝑦�+ ℛ�𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ,𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚�, 𝒙𝒙, 𝑡𝑡 ∈ Ω𝑠𝑠,𝑡𝑡, (5) 

where the analytical physics part 𝒜𝒜 needs calibration for unknown parameters, and the learnable residual 

part ℛ  can be further parameterized by a neural network 𝑓𝑓𝜽𝜽2with parameter 𝜽𝜽2 . Then, the model will 

become as 

𝜕𝜕𝒖𝒖(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝜑𝜑𝜽𝜽1�𝒜𝒜�𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ,𝝀𝝀�𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 �;𝒙𝒙, 𝑡𝑡,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚�          

                                  +𝑓𝑓𝜽𝜽2�𝒖𝒖,∇𝒖𝒖,∇2𝒖𝒖, … ;𝒙𝒙, 𝑡𝑡,𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 ,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚�,𝒙𝒙, 𝑡𝑡 ∈ Ω𝑠𝑠,𝑡𝑡 , (6)
 

where 𝜑𝜑𝜽𝜽1 is the calibration function learned by neural operators with parameter 𝜽𝜽1, the physical parameter 

vector/set 𝝀𝝀𝑝𝑝ℎ𝑦𝑦 ≔ �𝝀𝝀�𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 �
𝑇𝑇

 is divided into two parts: (i) 𝝀𝝀�𝑝𝑝ℎ𝑦𝑦 is the calibrated value of the part in 

𝝀𝝀𝑝𝑝ℎ𝑦𝑦 that needs calibration, e.g., material properties, environment-related parameters, etc.; and (ii) 𝝀𝝀𝑝𝑝ℎ𝑦𝑦0  is 

the left part which is calibration-free, e.g., geometric dimensions, physical constants, etc. Specifically, in 
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addition to the physics of first-order dynamics learned by the Neural ODE structure, physics knowledge 

is incorporated from three parts: (i) the first part is the analytical approximation function 𝒜𝒜  to the 

underlying unknown system dynamics ℱ; (ii) the second part  comes from the manufacturing parameter 

vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚  in the calibration function 𝜑𝜑𝜽𝜽1  of the analytical model; and (iii) the last part is the 

calibration-free physical parameter vector 𝝀𝝀𝑝𝑝ℎ𝑦𝑦0  and manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚  in both 

parts. The neural network 𝑓𝑓𝜽𝜽2  is designed to mitigate the gap between analytical function and the true 

dynamics. Note that the manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚  here refers to those parameters not 

included in the analytical function but still related to the system state of interest when modeling a complex 

manufacturing process. The physical parameter vector/set 𝝀𝝀𝑝𝑝ℎ𝑦𝑦, in general, is some unknown function of 

𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚, and its estimated value 𝝀𝝀�𝑝𝑝ℎ𝑦𝑦 is one of the inputs in analytical physics model 𝒜𝒜. 

As shown in Fig. 2, the proposed PINOHI structure follows the basic framework of Neural ODE 

that leverages system dynamics by outputting the first derivative for forward time-stepping and processes 

information in an autoregressive way. However, unlike conventional black-box methods, it also (i) 

incorporates physical knowledge by preserving the mathematical formula of the analytical physics model 

𝒜𝒜; and (ii) takes additional heterogeneous manufacturing parameters as control input of the Neural ODE 

network. The network structure is designed as follows: 
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Fig. 2: (a) Overview of the PINOHI structure, where ‘Calib. Ana.’ and ‘NN’ denote the calibrated 

analytical physics function 𝜑𝜑𝜽𝜽1(𝒜𝒜) and the neural network 𝑓𝑓𝜽𝜽2, and 𝝀𝝀𝑝𝑝ℎ𝑦𝑦 = �𝝀𝝀�𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 �
𝑇𝑇
. (b) Detailed 

structure of the iterative physics-informed unit in (a), which consists of 𝜑𝜑𝜽𝜽1(𝒜𝒜) and 𝑓𝑓𝜽𝜽2 where neural 

operators represent linear or convolutional layers. 

First, the predicted result from the last step, 𝒖𝒖�𝑘𝑘Δ𝑡𝑡 is fed into non-trainable operators for computing 

the spatial derivatives of the system state 𝒖𝒖�𝑘𝑘Δ𝑡𝑡  at time point 𝑘𝑘Δ𝑡𝑡 , i.e., ∇𝒖𝒖�𝑘𝑘Δ𝑡𝑡,∇2𝒖𝒖�𝑘𝑘Δ𝑡𝑡, …. This can be 

implemented by convolution operation using pre-defined kernels depending on the data structure of the 

system state. Then, to solve the heterogeneity issue, a data fusion layer is used to fuse the extracted features 

from the system state 𝒖𝒖�𝑘𝑘Δ𝑡𝑡  with its spatial derivatives ∇𝒖𝒖�𝑘𝑘Δ𝑡𝑡,∇2𝒖𝒖�𝑘𝑘Δ𝑡𝑡, …, the calibration-free physical 

parameter 𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 , and the heterogeneous manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚. 
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The neural operators marked in blue in Figure 2(b) and the embedded residual network (ResNet) 

are trainable. The selection of ResNet is because it can be regarded as a discretization of a continuous ODE, 

which is a natural choice in this scenario. The extracted manufacturing feature 𝒛𝒛𝑚𝑚𝑚𝑚𝑚𝑚 and calibration-free 

physical parameter 𝝀𝝀𝑝𝑝ℎ𝑦𝑦0  are inputs for the calibration of the physical parameter 𝝀𝝀�𝑝𝑝ℎ𝑦𝑦 . The analytical 

approximation 𝒜𝒜 then takes the calibrated 𝝀𝝀�𝑝𝑝ℎ𝑦𝑦 together with calibration-free physical parameter 𝝀𝝀𝑝𝑝ℎ𝑦𝑦0  and 

system states 𝒖𝒖�𝑘𝑘Δ𝑡𝑡,∇𝒖𝒖�𝑘𝑘Δ𝑡𝑡,∇2𝒖𝒖�𝑘𝑘Δ𝑡𝑡, …  as inputs. The embedded neural network is designed as stacked 

convolutional or linear residual network (He et al., 2016) blocks depending on the data format of the system 

state. Later, the results of the neural network 𝑓𝑓𝜽𝜽2 and the calibrated analytical physics model 𝜑𝜑𝜽𝜽1(𝒜𝒜) are 

summed together as the first-order derivative of the system state, which is for a forward time-stepping, e.g., 

Euler or Runge-Kutta methods, with system state, to yield the next time step result 𝒖𝒖�(𝑘𝑘+1)Δ𝑡𝑡. 

3.3 Loss Function 

The loss function ℒ(𝜽𝜽), similar as Wang et al. (2021), is defined as 

ℒ(𝜽𝜽) =
1
𝑇𝑇𝑠𝑠
��𝛾𝛾𝛽𝛽ℒ𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽) + �1 − 𝛾𝛾𝛽𝛽�ℒ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽)�
𝑇𝑇𝑠𝑠

𝑡𝑡=0

, (7) 

where 

ℒ𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽) = �𝒖𝒖𝑡𝑡 − 𝒖𝒖�𝑡𝑡�𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝜽𝜽��
2
2, (8) 

and 

ℒ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽) = ��
�𝑢𝑢𝒙𝒙,𝑡𝑡

𝑖𝑖 − 𝑢𝑢�𝒙𝒙,𝑡𝑡
𝑖𝑖 �𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝜽𝜽��2

�𝑢𝑢𝒙𝒙,𝑡𝑡
𝑖𝑖 �

2

𝑛𝑛

𝑖𝑖=1𝒙𝒙∈Ω

, (9) 

in which ℒ𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽) computes the mean squared error (MSE) between the prediction 𝒖𝒖�𝑡𝑡�𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝜽𝜽� 

using physical parameter vector/set 𝝀𝝀𝑝𝑝ℎ𝑦𝑦, manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚, trainable parameter 

𝜽𝜽 = [𝜽𝜽1,𝜽𝜽2]𝑇𝑇  and the label 𝒖𝒖𝑡𝑡  at time point 𝑡𝑡; ℒ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜽𝜽) measures the mean squared percentage error 

(MSPE). Specifically, 𝑢𝑢�𝒙𝒙,𝑡𝑡
𝑖𝑖 �𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝜽𝜽�  is the 𝑖𝑖th  element in the predicted system state vector 𝒖𝒖�  at 

spatial coordinate 𝒙𝒙  and time point 𝑡𝑡  using certain parameters �𝝀𝝀𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝜽𝜽� , and 𝑢𝑢𝒙𝒙,𝑡𝑡
𝑖𝑖  is its 
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corresponding label; ‖⋅‖2 is the 𝑙𝑙2 norm; 𝛾𝛾𝛽𝛽 ∈ [0,1] is adjustable weight updated with the training epoch 

index 𝛽𝛽 , which is a hyper-parameter balancing MSE and the MSPE. Generally, MSE can improve 

prediction on large values, while MSPE works well on small values. A suitable 𝛾𝛾𝛽𝛽 helps the loss robust to 

both large and small values and ensures an overall optimal functional curve prediction. Then the training 

process is implemented by solving the optimization problem as follows, 

𝜽𝜽∗ = arg min
𝜽𝜽
ℒ(𝜽𝜽) , (10) 

via gradient descent. Commonly used optimizers such as stochastic gradient descent (SGD) and Adam 

(Kingma and Ba, 2014) can be utilized. The implementation details are discussed in Section 4.3. 

 

4. Quality Prediction of Composite Adhesive Joints  

This section will present how to use the PINOHI model for bonding quality prediction of adhesively bonded 

composite joints. Section 4.1 will describe the analytical physics model for lap shear load dynamics. Section 

4.2 will introduce the detailed trainable component of the PINOHI model. A comprehensive experimental 

study is conducted to validate the performance of the proposed method, including the leave-one-batch-out 

cross-validation in Section 4.3 and sensitivity analysis of training data samples size in Section 4.4. 

4.1 Analytical Physics Model for Lap Shear Load Dynamics 

The lap shear testing process of a quasi-static tensile load under displacement control with a fixed rate is 

modeled assuming the load as the system state and its evolution following an ODE, 

d𝐹𝐹(𝛿𝛿)
d𝛿𝛿

= ℱ�𝐹𝐹(𝛿𝛿),𝝀𝝀𝑝𝑝ℎ𝑦𝑦� = ℱ�𝐹𝐹(𝛿𝛿),𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔�, (11) 

where 𝐹𝐹(𝛿𝛿) ∈ ℝ is the load of a displacement-control lap shear process at displacement 𝛿𝛿 , the whole 

response is recognized as a functional curve but with various length, the physical parameter vector 𝝀𝝀𝑝𝑝ℎ𝑦𝑦 =

�𝝀𝝀�𝑝𝑝ℎ𝑦𝑦,𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 �
𝑇𝑇

 is categorized into material property vector 𝝀𝝀�𝑝𝑝ℎ𝑦𝑦 ≔ 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 and geometric dimension vector 

𝝀𝝀𝑝𝑝ℎ𝑦𝑦0 ≔ 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔. The analytical physics model (Zimmermann et al., 2022) is as follows:  
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𝒜𝒜�𝐹𝐹,𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔� =
𝐹𝐹2

2[2(𝑈𝑈1 + 𝑈𝑈2) + 𝑈𝑈𝑎𝑎] , (12) 

where 

𝑈𝑈1 =
𝑏𝑏

2𝐸𝐸
�

𝐸𝐸2𝑡𝑡3

12(1 − 𝜈𝜈2)2 � �𝑤𝑤′′(𝑥𝑥)�2d𝑥𝑥
𝑙𝑙

0
+ 𝑙𝑙𝑙𝑙 �

𝐹𝐹
𝑏𝑏𝑏𝑏
�
2
� , (13) 

𝑈𝑈2 =
𝐹𝐹2𝑐𝑐

3𝐸𝐸𝐸𝐸𝐸𝐸
, (14) 

𝑈𝑈𝑎𝑎 =
𝐹𝐹2𝑡𝑡𝑎𝑎

4𝐺𝐺𝑎𝑎𝑏𝑏𝑏𝑏
, (15) 

in which 

� �𝑤𝑤′′(𝑥𝑥)�2d𝑥𝑥
𝑙𝑙

0
=
𝜇𝜇13

4
[2𝜇𝜇1𝑙𝑙(𝐴𝐴12 − 𝐵𝐵12) + (𝐴𝐴12 + 𝐵𝐵12) sinh(2𝜇𝜇1𝑙𝑙) + 2𝐴𝐴1𝐵𝐵1(cosh(2𝜇𝜇1𝑙𝑙) − 1)], (16) 

𝐴𝐴1 = −
𝑡𝑡 + 𝑡𝑡𝑎𝑎

2
− 𝜇𝜇1(𝑙𝑙 + 𝑐𝑐)𝐵𝐵1, (17) 

𝐵𝐵1 = −
𝑡𝑡 + 𝑡𝑡𝑎𝑎

2
𝜇𝜇2
𝑁𝑁
𝐶𝐶𝑐𝑐 +

𝑡𝑡 + 𝑡𝑡𝑎𝑎
2

1
𝑁𝑁

(𝜇𝜇2𝐶𝐶𝑙𝑙𝐶𝐶𝑐𝑐 + 𝜇𝜇1𝑆𝑆𝑙𝑙𝑆𝑆𝑐𝑐), (18) 

𝑁𝑁 = 𝜇𝜇1𝐶𝐶𝑙𝑙𝑆𝑆𝑐𝑐 + 𝜇𝜇2𝑆𝑆𝑙𝑙𝐶𝐶𝑐𝑐 − 𝜇𝜇1(𝑙𝑙 + 𝑐𝑐)(𝜇𝜇2𝐶𝐶𝑙𝑙𝐶𝐶𝑐𝑐 + 𝜇𝜇1𝑆𝑆𝑙𝑙𝑆𝑆𝑐𝑐), (19) 

𝜇𝜇𝑖𝑖 = �
𝐹𝐹
𝐷𝐷𝑖𝑖

  for  𝑖𝑖 = 1,2, (20) 

with 𝐶𝐶𝑐𝑐 = cosh(𝜇𝜇2𝑐𝑐) , 𝐶𝐶𝑙𝑙 = cosh(𝜇𝜇1𝑙𝑙) , 𝑆𝑆𝑐𝑐 = sinh(𝜇𝜇2𝑐𝑐) , 𝑆𝑆𝑙𝑙 = sinh(𝜇𝜇1𝑙𝑙) , 𝐷𝐷1 = 𝐸𝐸𝑡𝑡3𝑏𝑏/12(1 − 𝜈𝜈2) , and 

𝐷𝐷2 = 8𝐷𝐷1. 

In the analytical physics model 𝒜𝒜�𝐹𝐹, 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚,𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔�, the material property vector 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 ≔ [𝐸𝐸, 𝜈𝜈,𝐺𝐺𝑎𝑎]𝑇𝑇 

involves elastic modulus of adherend 𝐸𝐸 [MPa], Poisson’s ratio of adherend 𝜈𝜈 [-], and shear modulus of 

adhesive 𝐺𝐺𝑎𝑎 [MPa]; the geometric dimension vector 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔 ≔ [𝑏𝑏, 𝑐𝑐, 𝑡𝑡, 𝑙𝑙, 𝑡𝑡𝑎𝑎]𝑇𝑇 contains joint width 𝑏𝑏 [mm], 

half-length of bonded region 𝑐𝑐 [mm], thickness of adherend 𝑡𝑡 [mm], length of unbonded region 𝑙𝑙 [mm], 

and thickness of adhesive 𝑡𝑡𝑎𝑎  [mm]. Specifically, each of the material properties is considered as some 

unknown function of manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚. Note that these three material properties 

assume that both adhesive and adherend material are isotropic. In conclusion, the analytical physics model 
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provides an ideal value of the load dynamics in terms of displacement given a simplified assumption of 

isotropic material. 

4.2 Trainable Neural Operators and Embedded Residual Network in PINOHI 

The geometric dimension vector 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔 = [𝑏𝑏, 𝑐𝑐, 𝑡𝑡, 𝑙𝑙, 𝑡𝑡𝑎𝑎]𝑇𝑇  here, as one of the inputs, is direct physical 

measurements of lap joint samples. The manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 is divided into two parts: 

(i) manufacturing parameter vector/set for panel fabrication 𝝀𝝀𝑓𝑓𝑓𝑓𝑓𝑓  (stage II in Figure 1); and (ii) 

manufacturing parameter vector/set for lap joining 𝝀𝝀𝑙𝑙𝑙𝑙𝑙𝑙 (stage IV in Figure 1). Both two manufacturing 

parameters include controllable variables, process characterizations, and environmental factors involved in 

the manufacturing processes of composite adhesive lap joints. Namely, they are dwelling temperature 

distribution averaged over time during fabrication (superscript with 𝐹𝐹) and lap joining (superscript with 𝐽𝐽) 

cure process 𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 ,𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽 ∈ ℝ2×2 [°C], contact angle distribution on the bonding area of both adherends 

𝚿𝚿𝐴𝐴,𝚿𝚿𝐵𝐵 ∈ ℝ2×2 [°], total out-of-freezer time of adherend  (superscript with 𝐶𝐶) and adhesive  (superscript 

with 𝐴𝐴) 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 , 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴  [s], minimum vacuum pressure during fabrication and lap joining cure process 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝐽𝐽  

[Pa], ramp-up rate and dwelling time of lap joining cure process 𝑟𝑟𝐽𝐽 [°C/s] and 𝑡𝑡𝐽𝐽 [s], flashes along bonding 

edges 𝑋𝑋𝐹𝐹  [-], ambient temperature 𝑇𝑇𝑒𝑒𝐹𝐹 ,𝑇𝑇𝑒𝑒
𝐽𝐽  [°C], and environment relative humidity 𝐻𝐻𝑒𝑒𝑇𝑇 ,𝐻𝐻𝑒𝑒

𝐽𝐽  [%]. Among 

them, the nominal value of the curing parameters, i.e., ramp-up rate and dwelling time 𝑟𝑟𝐽𝐽, 𝑡𝑡𝐽𝐽, dwelling 

temperature 𝑇𝑇𝐹𝐹 ,𝑇𝑇𝐽𝐽 and vacuum pressure 𝑝𝑝𝐹𝐹 ,𝑝𝑝𝐽𝐽, are controllable variables for the design of experiments, 

but some of the corresponding measurements 𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 ,𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽  are considered as process 

characterizations for model training and testing; contact angle distribution 𝚿𝚿𝐴𝐴,𝚿𝚿𝐵𝐵 on the bonding area of 

each adherend is surface characterization; total out-of-freezer time of adherend and adhesive 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 , 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴  are 

controllable variables; 𝑇𝑇𝑒𝑒𝐹𝐹 ,𝑇𝑇𝑒𝑒
𝐽𝐽,𝐻𝐻𝑒𝑒𝐹𝐹 ,𝐻𝐻𝑒𝑒

𝐽𝐽 are environmental factors that are typically uncontrollable; and lastly, 

flashes along bonding edges 𝑋𝑋𝐹𝐹 is a categorical variable representing the state of flashes, i.e., no flashes, 

flashes on one side, and flashes on both sides. Those parameters are summarized in Table 1. 



17 
 

 

Fig. 3: (a) Detailed scheme of the iterative physics-informed unit for lap shear process. (b) Architecture 

of the embedded residual network. 

As shown in Figure 3(a), the neural operators following the dwelling temperature distribution 

𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 ,𝑻𝑻𝑎𝑎𝑎𝑎𝑎𝑎
𝐽𝐽  and contact angle distribution 𝚿𝚿𝐴𝐴,𝚿𝚿𝐵𝐵 are defined as a convolutional layer with a 2×2 kernel. 

The geometric parameter vector 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔 = [𝑏𝑏, 𝑐𝑐, 𝑡𝑡, 𝑙𝑙, 𝑡𝑡𝑎𝑎]𝑇𝑇  and sub-manufacturing vectors 𝝃𝝃𝑓𝑓𝑓𝑓𝑓𝑓 ≔

�𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹 ,𝑇𝑇𝑒𝑒𝐹𝐹 ,𝐻𝐻𝑒𝑒𝐹𝐹�

𝑇𝑇 and 𝝃𝝃𝑙𝑙𝑙𝑙𝑙𝑙 ≔ �𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴 , 𝑟𝑟𝐽𝐽, 𝑡𝑡𝐽𝐽 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐽𝐽 ,𝑇𝑇𝑒𝑒

𝐽𝐽,𝐻𝐻𝑒𝑒
𝐽𝐽,𝑋𝑋𝐹𝐹�

𝑇𝑇
, composed of ramp-up rate and dwelling 

time 𝑟𝑟𝐽𝐽, 𝑡𝑡𝐽𝐽 , total out-of-freezer time 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 , 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴 , minimum vacuum pressure 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹 ,𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝐽𝐽 , flashes  𝑋𝑋𝐹𝐹 , 

environmental temperature and humidity 𝑇𝑇𝑒𝑒𝐹𝐹 ,𝑇𝑇𝑒𝑒
𝐽𝐽,𝐻𝐻𝑒𝑒𝑇𝑇 ,𝐻𝐻𝑒𝑒

𝐽𝐽, are fed into a linear neural operator respectively. 

Both the convolutional channel and output size of linear layers are defined as a feature size of 16. Thus, the 

output of each feature extraction neural operator is a 16-dimensional vector, and they are stacked to form a 

feature matrix 𝒛𝒛𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ℝ5×16. To be consistent with the structure of analytical function, the non-trainable 
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neural operator for taking derivatives of the load 𝐹𝐹 is not included in the model for quality prediction of 

composite adhesive lap joint. The displacement 𝛿𝛿 is a scalar. A linear layer with output size of 16 is used 

to transform 𝐹𝐹�𝑘𝑘Δ𝛿𝛿  into a feature vector 𝒔𝒔𝛿𝛿 ∈ ℝ16. Then the feature matrix 𝒛𝒛𝑚𝑚𝑚𝑚𝑚𝑚 and the feature vector 𝒔𝒔𝛿𝛿 

are multiplied for data fusion as the input into the embedded residual network. 

In the part of calibration for the analytical physics model, every entry of material property vector 

𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 = [𝐸𝐸, 𝜈𝜈,𝐺𝐺𝑎𝑎]𝑇𝑇 is set as the output of a linear layer with output size of 1. The calibrated values of 

𝐸𝐸� , 𝜈̂𝜈,𝐺𝐺�𝑎𝑎 will be the inputs for the analytical model together with current load 𝐹𝐹�𝑘𝑘Δ𝛿𝛿 and geometric dimension 

vector 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔  of the analytical function. Specifically, (i) the Young’s modulus 𝐸𝐸  and Poisson ratio 𝜈𝜈  of 

adherend are determined by the manufacturing parameter vector/set in the curing process for panel 

fabrication (𝝀𝝀𝑓𝑓𝑓𝑓𝑓𝑓); and (ii) the shear modulus of adhesive 𝐺𝐺𝑎𝑎 is determined by the manufacturing parameter 

vector/set in the curing process for lap joining (𝝀𝝀𝑙𝑙𝑙𝑙𝑙𝑙). This is because that the mechanical properties of 

adherend (𝐸𝐸, 𝜈𝜈 ) are only dependent on the panel fabrication stage and will not be influenced by the 

downstream joints curing. Note that the geometric dimension vector 𝝀𝝀𝑔𝑔𝑔𝑔𝑔𝑔 is not used for calibration since 

they are not relevant to material properties. The output linear layer after the analytical model is a 1-to-1 

transformation for scaling. This variable selection is engineering-domain-knowledge-driven which 

efficiently reduced the degree of freedom of the model, thus decreasing the required training samples to 

mitigate the issue of data scarcity. 

The details of the embedded residual network are shown in Figure 3(b), where it is modeled as 5 

stacked residual blocks. The output dimension is set the same as the input, which equals 5 since 𝒛𝒛𝑚𝑚𝑚𝑚𝑚𝑚 ⋅

𝒔𝒔𝛿𝛿 ∈ ℝ5. The neural operator after this neural network is a 5-to-1 linear layer. All the hidden size in the 

residual blocks is ℎ = 128. The activation functions of linear layers for the calibration of analytical function 

are softplus functions with a default parameter value of 1 to ensure positivity. These layers are further 

clamped within the range of 50% to 150% of their nominal values. All the remaining activation functions 

are leaky rectified linear units (Leaky ReLU) with negative slope of 0.01. 

4.3 Testing Experiments and Leave-One-Batch-Out Cross-Validation 



19 
 

The testing experiments include a total of 15 batches of 77 lap joint samples that were made through the 

MMP described in Figure 1. Specifically, 11-ply CFRP panels were fabricated under the manufacturer’s 

recommended cure cycle using an out-of-autoclave curing system. CFRP panels were then cut into 

(𝑙𝑙 + 2𝑐𝑐) × 𝑏𝑏 = 101.6 [mm] × 25.4 [mm] pieces for surface treatment and characterization. The surface 

treatment is to apply artificial contamination on selected CFRP pieces. Lap joint samples were made of two 

CFRP pieces with 2𝑐𝑐 × 𝑏𝑏 = 25.4 [mm] × 25.4 [mm] overlapping area that are bonded by an adhesive film 

after a secondary curing. These dimensions are per ASTM D5868-01. The adhesive film is with a nominal 

thickness of 𝑡𝑡𝑎𝑎 = 0.2413 [mm]. The secondary curing is for joining. Lap shear testing was later conducted 

on the cured lap joint samples with a digital image correlation (DIC) system measuring the relative 

displacement. The load-displacement curves were exported afterwards. 

In these 15 batches, the first 6 batches which contain 20 pristine and 6 contaminated samples are 

made per the manufacturer’s recommended cure cycle of the secondary curing. The remaining 9 batches 

are manufactured according to the design of experiment result with 25 pristine and 26 contaminated samples 

in total. In detail, lap joining cure parameters 𝑟𝑟𝐽𝐽, 𝑡𝑡𝐽𝐽 ,𝑝𝑝𝐽𝐽,𝑇𝑇𝐽𝐽 are considered as multilevel factors to formulate 

an orthogonal main-effect plan (Addelman, 1962). To keep a balanced dataset for the leave-one-batch-out 

cross-validation, from the set of manufacturer’s recommended cure cycle, batch #6 is randomly selected. 

Thus, batch #6-15 were used in the leave-one-batch-out cross-validation. 

The quality measure of composite adhesive lap joints is selected as the load-displacement curve 

𝑭𝑭(𝛿𝛿)  for 𝛿𝛿  from 0 to the break value. Compared to a single value of the maximum load, the load-

displacement curve contains more information, such as the overall stiffness of the adhesive joints at 

different strain levels and the total energy required to cause failure. The boundary condition of this specific 

case is 

ℬ�𝐹𝐹(𝛿𝛿)� = 𝐹𝐹(0) = 0, (21) 

which is also an initial condition. This is intuitive since there will be no load exerted on the joints if it has 

no displacement. 
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In the training process, adjusting weight 𝛾𝛾𝛽𝛽 was set to 0.5 due to the similar magnitude of MSE and 

MSPE. The Adam optimizer was used with the initial learning rate of 0.001 and the coefficient of weight 

decay of 0.0001. A reduce-learning-rate-on-plateau scheduler was defined with a reducing factor of 0.5 and 

a waiting patience of 20. Also, 5 repetitions were carried out for each scenario and the average error with 

corresponding standard deviation are reported. The convergence is determined by an early stop criterion 

�ℒ𝛽𝛽 − ℒ𝛽𝛽−1� ℒ𝛽𝛽−1� ≤ 0.001 to avoid overfitting. All the training and testing processes were implemented 

by PyTorch in Python on NVIDIA GeForce RTX 3060 Laptop GPU. The average training and inference 

time are 2831.93 [s] and 0.50387 [s], respectively. 

The mean absolute relative error (MARE) metrics (J. Chen et al., 2021) is selected as the error 

metric for each load-displacement curve since it computes the relative error in terms of the area under one 

curve, in this specific case of composite adhesive joints, naturally reflecting the total energy needed to break 

one joint, which is a mechanical characterization of the overall joint property, defined as, 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∫�𝐹𝐹(𝛿𝛿) − 𝐹𝐹�(δ)�d𝛿𝛿

∫|𝐹𝐹(𝛿𝛿)| d𝛿𝛿
, (22) 

where 𝐹𝐹(𝛿𝛿)  and 𝐹𝐹�(𝛿𝛿)  are experimental and predicted loads at displacement level 𝛿𝛿 . Since MARE is 

designed for a single sample, the mean value over the testing set, i.e., mMARE, is computed and its average 

value over 5 repetitions is used for evaluation in each scenario in the cross-validation. The results of leave-

one-batch-out cross-validation are compared among the following models, and summarized in Table 2, 

Figures 4: 

1. PINOHI: The proposed model which combines analytical physics part 𝜑𝜑𝜽𝜽1(𝒜𝒜)  and neural 

network 𝑓𝑓𝜽𝜽2 with heterogeneous manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 as control inputs. 

2. Neural ODE + Mfg.: A generalization of Neural ODE 𝑓𝑓𝜽𝜽2 by incorporating heterogeneous 

manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚 as control inputs, which is equivalent to the proposed 

model PINOHI without the analytical physics part 𝜑𝜑𝜽𝜽1(𝒜𝒜). 
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3. Calib. Ana.: Only the calibrated analytical physics model 𝜑𝜑𝜽𝜽1(𝒜𝒜)  using heterogeneous 

manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚  for calibration but without neural network 𝑓𝑓𝜽𝜽2  and 

feature extractor. 

4. Neural ODE: Only the neural ODE structure 𝑓𝑓𝜽𝜽2  without: (i) the analytical physics function 

𝜑𝜑𝜽𝜽1(𝒜𝒜); and (ii) heterogeneous manufacturing parameter vector/set 𝝀𝝀𝑚𝑚𝑚𝑚𝑚𝑚. 

Table 2: Results of leave-one-batch-out cross-validation of PINOHI vs. different ablated models. 

mMARE (Average ± Std.) Over 5 Repetitions 

Models 
Scenario Index 

1 2 3 4 5 6 

PINOHI 0.2052 ± 0.0082 0.1131 ± 0.0051 0.1203 ± 0.0094 0.0772 ± 0.0188 0.0910 ± 0.0010 0.0724 ± 0.0050 

Neural ODE + Mfg. 0.2238 ± 0.0332 0.1289 ± 0.0100 0.1495 ± 0.0228 0.1151 ± 0.0192 0.0950 ± 0.0047 0.0986 ± 0.0130 

Calib. Ana. 0.2765 ± 0.0006 0.1565 ± 0.0033 0.1688 ± 0.0012 0.1864 ± 0.0032 0.1010 ± 0.0001 0.0844 ± 0.0003 

Neural ODE 0.2517 ± 0.0016 0.1269 ± 0.0075 0.1349 ± 0.0070 0.1581 ± 0.0186 0.0955 ± 0.0054 0.1056 ± 0.0057 

Models 
Scenario Index 

7 8 9 10 Total Mean  

PINOHI 0.0627 ± 0.0081 0.1069 ± 0.0110 0.0840 ± 0.0006 0.1091 ± 0.0127 0.1042 ± 0.0382  

Neural ODE + Mfg. 0.0883 ± 0.0131 0.1654 ± 0.0184 0.1471 ± 0.0362 0.1660 ± 0.0189 0.1378 ± 0.0395  

Calib. Ana. 0.0687 ± 0.0004 0.1133 ± 0.0108 0.0910 ± 0.0009 0.1594 ± 0.0006 0.1406 ± 0.0592  

Neural ODE 0.0751 ± 0.0118 0.1433 ± 0.0081 0.0899 ± 0.0156 0.1468 ± 0.0014 0.1328 ± 0.0474  
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Fig. 4: Boxplots of average mMARE for all models in leave-one-batch-out cross-validation. 

According to the results listed in Table 2, the proposed PINOHI model achieves the best average 

mMARE in each scenario of the leave-one-batch-out cross-validation. We provide a detailed analysis of 

the cross-validation study as follows: 

1. As illustrated in Figure 4, in terms of the overall performance in the leave-one-batch-out cross-

validation, PINOHI obtains the minimum total mean, median, and range of average mMARE, 

showing a superior performance over the other three ablated models. 

2. The analytical model calibrated by heterogeneous manufacturing parameters (Calib. Ana.) is a 

common practice using physics-based models, which achieves the worst overall performance 

(Figure 4). This reflects the complexity of the system and the inadequacy of the simplified physical 

modeling assumptions. 
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3. On the other hand, PINOHI outperforms the data-driven methods (Neural ODE and Neural ODE + 

Mfg.), as shown in Figure 4, indicating that the inclusion of physics knowledge can significantly 

improve predictive accuracy in a complex system. 

Overall, the proposed PINOHI method achieves the best performance which indicates that 

integration of heterogeneous manufacturing parameters and analytical physics equation can help the Neural 

ODE structure in greater prediction accuracy and a better generalization ability.   

4.4 Sensitivity Analysis of Samples in Training 

In addition to the leave-one-batch-out cross-validation, a sensitivity analysis of samples in training was 

performed to explore the minimum amount of data in training set required to achieve an adequately accurate 

prediction of the load-displacement curve in lap shear testing process. This is of great industrial interest and 

significance because the training data is time-consuming and expensive to collect due to its nature of the 

destructive testing methods. 

In the sensitivity study, the testing set was randomly selected as batch #7 that contains 3 pristine 

and 2 contaminated samples. The remaining 72 samples formed the training set. In this sensitivity analysis, 

the amount of data in the training set starts from a small sample setting that only has 10 samples, and then 

increases with a step of 10 up to 60. The training samples were randomly sampled from the whole training 

set of 72 samples while keeping a balance between pristine and contaminated samples. For each case, 5 

repetitions were conducted to mitigate the randomness of learning. Besides, this whole process was repeated 

3 times to exploit the training space and to mitigate the randomness of selecting training sets. In other 

words, with batch #7 as the testing set, in total 3 rounds of sensitivity analysis of samples in training were 

carried out, in which 5 repetitions were run for each of the cases with the number of training samples 

varying from 10 to 72. The hyperparameters and error metric were set to be identical to those in the leave-

one-batch-out cross-validation, and the average mMARE with its standard deviation over 3 rounds of 5 

repetitions for each case is reported. The results of the sensitivity analysis are summarized in Table 3, 

Figures 5 and 6. 
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Table 3: Results of sensitivity analysis of PINOHI vs. different ablated models. 

mMARE (Average ± Std.) Over 15 Repetitions (3 Rounds of 5 Repetitions) 

Models 
Samples in Training 

72 60 50 40 

PINOHI 0.1003 ± 0.0112 0.1087 ± 0.0060 0.1092 ± 0.0068 0.1078 ± 0.0065 

Neural ODE + Mfg. 0.1223 ± 0.0201 0.1137 ± 0.0089 0.1203 ± 0.0102 0.1268 ± 0.0247 

Calib. Ana. 0.1147 ± 0.0017 0.1153 ± 0.0019 0.1146 ± 0.0035 0.1213 ± 0.0045 

Neural ODE 0.1339 ± 0.0030 0.1370 ± 0.0037 0.1384 ± 0.0031 0.1387 ± 0.0035 

Models 
Samples in Training 

30 20 10  

PINOHI 0.1119 ± 0.0086 0.1115 ± 0.0124 0.1123 ± 0.0179  

Neural ODE + Mfg. 0.1291 ± 0.0187 0.1344 ± 0.0253 0.1868 ± 0.0613  

Calib. Ana. 0.1265 ± 0.0122 0.1725 ± 0.0341 0.1780 ± 0.0116  

Neural ODE 0.1452 ± 0.0045 0.1394 ± 0.0038 0.1531 ± 0.0236  

 

  

Fig. 5: Average mMARE of all models over different numbers of samples in training. 
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Fig. 6: Boxplots of mMARE for PINOHI vs. best competing model Neural ODE + Mfg. in the sensitivity 

analysis. 

In each case in the sensitivity analysis, as shown in Table 3 and Figure 5, the average mMARE 

over 3 rounds of 5 repetitions achieved by PINOHI is consistently smaller than those of the competing 

models, maintaining a minimum variation across different training set sizes. Furthermore, a significant gap 

can be observed when the training set is small, i.e., equal to 10, which shows the advantage of PINOHI in 

the small sample scenario. This is because of the incorporation of analytical model into Neural ODE 

framework and the engineering-domain-knowledge-driven variable selection, which reduces the degree of 

freedom of the model. Moreover, the Calib. Ana. has a worse performance compared to PINOHI due to a 

lack of flexibility and over-simplified assumptions. In addition, the data-driven benchmark Neural ODE 

also remains a small variation with respect to the training set size, but it is significantly worse than PINOHI, 
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indicating the naïve Neural ODE structure cannot capture the complex dynamics without manufacturing 

parameters. 

Besides the average performance, a more detailed comparison of the variability in different cases 

was explored by showing the boxplot of mMARE for PINOHI and the best competing model Neural ODE 

+ Mfg. in Figure 6. Comparing with Neural ODE + Mfg., PINOHI has either smaller median mMARE or 

less variation or both in each case, indicating the analytical structure in PINOHI improves the robustness 

with respect to the number of samples in training. 

In summary, PINOHI outperformed the other three competing modelling methods in each scenario 

of the sensitivity analysis and maintained a minimum variation, which demonstrates its superiority in 

predictive accuracy and robustness to the training set size. 

 

5. Conclusion 

Despite various efforts in the development of physics-based and data-driven models and methods for 

predicting the quality of composite adhesive joints, the complicated multi-stage manufacturing process 

hinders the accurate estimation of bonding quality. The bonding quality contains not only bonding strength, 

but also other important mechanical characterizations, e.g., stress-strain curves, overall bonding stiffness at 

different strain levels, total energy required to cause failure, etc. 

In this study, a novel framework of physics-informed Neural ODE structure with heterogeneous 

manufacturing control inputs and physical knowledge embedding (PINOHI) is proposed for the quality 

prediction of composite adhesive joints. Compared with those models in the literature, PINOHI outputs the 

load-displacement curve in an autoregressive way from which the aforementioned mechanical 

characterizations can be derived easily. PINOHI incorporates additional physics knowledge and 

heterogeneous manufacturing parameters with an engineering domain knowledge-driven variable selection 

structure to mitigate the issue of data scarcity in the case of composite adhesive joints and improve 

predictive performance. Its superior performance on predicting load-displacement curves of the lap shearing 
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test is demonstrated in the leave-one-batch-out cross-validation compared to three ablated models, showing 

the benefits of adding the manufacturing controls and analytical function. A sensitivity analysis of samples 

in training is further explored to show the robustness of PINOHI with respect to the number of samples in 

training. 

There are still rooms for improving the proposed PINOHI and its applications in to composite 

joining processes. First, an automatic stopping criterion can be added to the PINOHI framework rather than 

a user-defined stopping point to meet industrial demands in a one-stop fashion. Second, the current 

analytical model in PINOHI for the lap shearing process mainly focuses on the test stage, with an 

assumption that material is isotropic. Incorporating more advanced physics-based analytical or numerical 

models depicting the physics of different stages is expected to improve the predictive performance. 

Moreover, the data fusion method and embedded residual network in PINOHI can be substituted for 

different application cases. In conclusion, PINOHI provides a valid prototype of incorporating an analytical 

model into the neural ODE framework for the prediction of dynamics of complex physical processes, which 

has the potential for further extensions both methodologically and practically. 
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