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Abstract

Composite materials have long been used in various industries due to their superior properties
such as high strength, lightweight and corrosive resistance. Bonded composite joints are
finding increasing applications as they provide extensive structural benefits and design
flexibility. On the other hand, the failure mechanism of composite adhesive joints is not fully
understood. A model that bridges manufacturing parameters and final quality measures is
highly desired for the design and optimization of the composite adhesive joints manufacturing
process. In this study, a novel framework of physics-informed Neural Ordinary Differential
Equation (ODE) with heterogeneous control input (PINOHI) is proposed, which links the
heterogeneous manufacturing parameters to the final bonding quality of composite joints. The
proposed model structure is heavily motivated by engineering knowledge, by incorporating a
calibrated mathematical physics model into the Neural ODE framework, which can
significantly reduce the number of data samples required from costly experiments while
maintaining high prediction accuracy. The proposed PINOHI model is implemented in the
quality prediction of composite adhesive joints bonding problem. A set of experiments and
associated data analytics are conducted to demonstrate the superior property of the PINOHI
model by using both the leave-one-batch-out cross-validation and sensitivity analysis.
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1. Introduction

With the increasing use of composite materials in aviation and aerospace industries for weight reduction
and energy efficiency improvement, adhesive joining gains much more interest at an unprecedented rate as
a major manufacturing process. Composite adhesive joining uses specially designed adhesive pastes or
films to bond composite panels. Compared to traditional mechanical fasteners, such as riveted or bolted
joints, composite adhesive joining can significantly reduce weight and avoid material damage and stress

concentrations.



As shown in Figure 1 and Table 1, composite adhesive joints are made from complicated, multi-
stage manufacturing processes (MMP), involving material thawing, panel fabrication, surface treatment,
and joints curing, followed by a lap shear testing process. The input (control variables) and output for each
stage of the MMP can be multiple heterogeneous manufacturing parameters, in the form of scalar,
functional curve, matrix, and tensor, whose effects can propagate from the current stage to the downstream
stages and finally impact the bonding quality. In addition, the anisotropy of composite materials and the

chemical and physical reactions during each stage also add to the complexity.

Manufacturing
Process

Fig. 1: Multistage manufacturing processes of composite adhesive joints.

Accurate mechanical property understanding and characterization of the adhesive bonded joints,
with respect to the manufacturing process, is not only of critical safety consideration but also important in
bonding quality prediction, design optimization, and root cause diagnosis. A common metric of the bonding
quality is the bonding strength which is the output of a destructive test of lap joints. Such mechanical tests
generate load-displacement curves that characterize the mechanical property of the adhesive bonding.
Based on the load-displacement curves, one can further derive stress-strain curves, bonding strength, overall
bonding stiffness at different strain levels, total energy required to cause failure, etc. However, destructive

tests are often expensive and time-consuming.



Table 1: Heterogeneous manufacturing parameters involved in MMP of composite adhesive joints.

Heterogeneous Manufacturing Parameters

Stage Input Output Environ. Factor
Var Description Var. Description Var. Description
: N/A N/A ¢, ER gr‘r’f:lo‘;‘:dﬁirgggz[z N/A N/A
N/A N/A th, €R zr";:lo‘;“;d‘}’lisflrjzz[g N/A N/A
rfFeR Ramp-up rate [°C/s] TF(t) € Rt*2x2 TC readings [°C] TFeR  Ambient temp. [°C]
tF eR Dwelling time [s] T§,, € R¥? Avg. TC reading [°C]  HY € R Relative humidity [%]
11 TF eR Dwelling temp. [°C] pf(t) € Rt Vac. reading [Pa] N/A N/A
pf €R Vac. pressure [Pa] phia ER Min. pressure [Pa] N/A N/A
gER Sandpaper grit [-] b,ctlt, ER Geometric dim. [mm] N/A N/A
W xeon el wwens RGO
rl eR Ramp-up rate [°C/s] T/(t) € Rt/ x2x2 TC readings [°C] Te/ eR Ambient temp. [°C]
t/ eR Dwelling time [s] Tévg € R?*? Avg. TCreading [°C] H] € R Relative humidity [%)]
v T/ € R Dwelling temp. [°C] ()€ R Vac. reading [Pa] N/A N/A
p’ €ER Vac. pressure [Pa] p,ﬁlin eER Min. pressure [Pa] N/A N/A
N/A N/A Xr €{0,1,2} Categ. var. of flash [-] N/A N/A
\' seR Load rate [mm/s] F(8) € Rbtot Load-disp. curve [N] N/A N/A

In order to proceed to the downstream tasks such as design optimization and root cause diagnosis,
it is highly desirable to develop an end-to-end model that links heterogeneous manufacturing parameters in
the manufacturing processes and the output of the destructive testing process for bonding quality prediction.
Numerous efforts on physics-based modeling (Deb et al., 2008; Owens and Lee-Sullivan, 2000a;
Zimmermann et al., 2022) have been made to understand the lap shear testing process. In those studies,
assumptions are typically made that the lap shear testing process is governed by a set of ordinary/partial
differential equations (ODEs/PDEs). Computer simulations, such as finite element analysis (FEA), are
utilized to emulate the underlying relationships. However, such simulations are often computationally
expensive and suffer from over-simplified assumptions. Also, those models often take material properties

(e.g., Young’s modulus, Poisson’s ratio) and geometric dimensions as inputs, and the bonding strength or



stiffness as the output/result. These material properties are results of the upstream manufacturing stages,
which are often unknown functions of the manufacturing parameters and cannot be measured directly.
Additionally, due to the complex chemical and physical interactions and heterogeneous process parameters
during manufacturing processes, physics-based models usually restrain their scopes to the mechanical
testing stage itself.

On the other hand, researchers also explored data-driven models (Kang et al., 2021; Wang et al.,
2023), attempting to bridge manufacturing parameters and mechanical properties. This usually requires
massive amounts of experimental data to build a model with high confidence, especially when there are
multiple heterogeneous process parameters involved. Such methods are typically infeasible for composite
adhesive joints because costly destructive tests lead to data scarcity in practice.

To mitigate the issue of lacking labeled data for training, combining physics-based models and
data-driven methods to exploit the advantages of each technique is of significance. The lap shear testing
stage shown in Fig. 1 can be estimated as a collection of springs (Owens and Lee-Sullivan, 2000a) under a
quasi-static tensile loading with certain assumptions, which is a first-order dynamical ODE system in terms
of load with respect to displacement. With unknown system parameters determined by the manufacturing
parameters, the Neural ODE (Chen et al., 2018) will be a natural choice to model this system. However,
the original Neural ODE structure only takes the system state with its derivatives as inputs, ignoring related
manufacturing parameters in the upstream stages. In other words, it focuses on the evolution of the system
state in the testing stage, but not the relationships between those manufacturing parameters with the quality
measures of the final product. Besides, Neural ODE incorporates physics by approximating the underlying
ODE using a neural network instead of considering any known or partially known governing physical
equations.

To address these challenges of data shortage and end-to-end physics learning, a novel framework
of the Neural ODE structure with additional heterogeneous manufacturing control inputs and explicit

physical knowledge embedding (PINOHI) is proposed. It addresses those challenges and difficulties by



Integrating physics knowledge into the Neural ODE framework in addition to the ODE structure.
Generalizing the Neural ODE framework by incorporating additional upstream heterogeneous
manufacturing parameters as control inputs, such that it can leverage product quality and process
features and be used for control purposes.

Pre-determining the model structure for variable selection based on engineering domain knowledge
to reduce the amount of training data required for obtaining adequate accuracy.

Optimizing the data-driven model and the calibration process of the physics-based model in an end-
to-end fashion to obtain a better predictive performance.

The primary contribution of this article lies in the application of a novel modeling framework to

the field of composite material/structure manufacturing and maintenance, which involve complicated

processes yet lacking adequate physical understanding. Unlike existing efforts focusing only on the testing

process (stage V in Fig. 1) modeling of composite adhesive joints, the proposed PINOHI framework is an

end-to-end model that takes heterogeneous manufacturing parameters as inputs and covers both

manufacturing and testing processes (stages I-V in Fig. 1), which provides a key contribution and insight

to quality characterization and downstream manufacturing optimization. Specifically, the contributions of

this article are summarized as follows:

1.

We propose a novel modeling framework, PINOHI, for quality prediction using heterogeneous
manufacturing parameters, which is the first end-to-end model for the application of composite
adhesive joints. It is a pioneering framework of the Neural ODE structure with additional
heterogeneous manufacturing control inputs and explicit physical knowledge embedding.

The proposed PINOHI framework integrates the known/partially known physics knowledge and
the modeling capability of the Neural ODE structure in solving dynamical systems, achieving

superior predictive performance with limited experiment data.



3. The proposed PINOHI framework is extendable to general dynamical systems where the governing
equation is an ODE given physics knowledge that can be represented by an analytical model or
numerical method.

The remainder of this article is organized as follows. Section 2 gives a brief literature review of
related work. Then, the proposed PINOHI framework is introduced in Section 3. In Section 4, the
application of the proposed framework to quality prediction of composite adhesive joints is presented.

Finally, a conclusion and outline of future research directions are discussed in Section 5.

2. Related Work

The composite in this paper specifically refers to carbon fiber reinforced polymer (CFRP). The adhesive
joint configuration is the classic single-lap joint, whose modeling has been extensively studied (Banea and
da Silva, 2009). The majority of existing modeling work focuses on physics-based methods. The typical
physics-based model for the testing processes of brittle composite adhesive joints is the cohesive zone
model (CZM) (Dugdale, 1960) with a simplified bi-linear (triangular) traction-separation law and a
homogeneity assumption in FEA to emulate the evolution of fracture process. Early attempts (Pereira et al.,
2010; Song et al., 2010) were made to explore the relationship between manufacturing parameters (or
methods) and the bonding quality through an experimental or numerical way. Utilizing CZM, a parametric
numerical study was conducted by Neto et al. (2012) on single-lap joints with different adhesives and
overlap lengths to predict bonding strength. Campilho et al. (2013) compared different CZM laws with
triangular, exponential, and trapezoidal shapes for single-lap joints with brittle and ductile adhesives where
the numerical results agree with experimental data well in the linear stage but not for the following
nonlinearity in the load-displacement curve. Nastos and Zarouchas (2022) developed a stochastic finite
element model considering the uncertainties of mechanical properties of the constituent materials, focusing

on strength prediction.



In addition to finite element simulations, mechanics-based theoretical results were also explored
by researchers. Owens and Lee-Sullivan (2000a, 2000b) developed a theoretical model for the stiffness
behaviour in the adhesively bonded composite-to-aluminium single-lap joint. They modeled it as a
collection of springs which is a first-order dynamical system and verified it through an experimental study,
which generally predicts well for the stiffness change due to crack growth. Considering out-of-plane
deflection due to tensile loading and asymmetric geometry, Zimmermann et al. (2022) derived an analytical
estimate of the adhesive bonding stiffness, which offers a more comprehensive result.

Physics-based models often rely on strong assumptions about material and geometric properties
which will lead to model discrepancy. In addition, they can only model the testing process, whose inputs
are usually unknown functions of manufacturing parameters. Therefore, additional modeling effort is
needed to further (i) calibrate the physical model; and (ii) bridge the end-to-end relationship between
manufacturing parameters and final quality measure. For the first point, data-driven methods are used. Gu
et al. (2021) predicted the failure load of joints using a deep neural network (DNN) with geometric and
material inputs to obtain the optimal design of the structure. Freed et al. (2022) utilized Gaussian Process
Regression (GPR) to find the optimal failure parameters trained by mixed mode bending samples simulated
by CZM. These parameters were then verified by resultant failure strength with different adhesive
thicknesses. While for models that attempt to link manufacturing parameters with final quality measures,
they are not fully explored. Preliminary efforts (Kang et al., 2021; Sommer et al., 2022; Wang et al., 2023)
were made to reveal the connection between the manufacturing parameters and mechanical properties of
the adhesive itself using machine learning methods, rather than the whole manufacturing process.
Rangaswamy et al. (2020) linked two manufacturing parameters, bonding length and adhesive thickness,
to the bonding strength using a DNN, which are only a small subset of all manufacturing parameters.

Physics-informed machine learning (PIML) has great potential to simultaneously complete the two
tasks, physical model calibration and end-to-end modeling, by seamlessly incorporating known or partially
known mathematical physics models with data (Karniadakis et al., 2021). Adopting a physics-informed loss
function to incorporate the governing PDE, Raissi et al. (2019) proposed a physics-informed neural network
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(PINN) framework for forward and inverse problems. Z. Chen et al. (2021) integrated sparse regression
with PINN to efficiently identify the key parameters from scarce data for PDE discovery from nonlinear
spatiotemporal systems. Another important innovation of PIML is the Neural ODE framework introduced
by Chen et al. (2018), which is designated to emulate the ODE dynamics end-to-end with a continuous
depth. Liu et al. (2022) preserved the PDE form in a neural network by discretizing it on a finite difference
grid and representing it by a convolutional neural network (CNN) with fixed weights. In the autoregressive
stepping of the Neural ODE framework, preserving the mathematical form of the governing PDE, even
partially, could mitigate the issue of error accumulation since it carries the underlying physics information.
Wang et al. (2022) extended the Neural ODE framework with deterministic and stochastic encoders (NP-
ODE) to build a physics-informed data-driven surrogate for FEA simulations with uncertainty
quantification. Sholokhov et al. (2023) proposed a physics-informed Neural ODE (PINODE) model by
adding an additional collocation reconstruction loss term to the ordinary loss function when building
autoencoder-based reduced-order models (ROMs).

In terms of the application of PIML to the area of composites, Tao et al. (2021) employed the
Neural ODE framework with a f-variational autoencoder (f-VAE) for feature extraction to learn the
underlying dynamics of damage accumulation mechanism that describes the stiffness degradation of
composite laminates by an ODE. Sharma et al. (2021) adopted PINNs to estimate the stresses in the tablets
and interphase of a single-lap joint based on mechanics with pre-determined material properties. Akhare et
al. (2023) developed a physics-integrated neural differentiable (PiNDiff) model where the system state is
summed with a known, or partially known, PDE and showed its efficacy in an application to the curing
process of composite prepregs.

However, these efforts did not include the end-to-end modeling of the whole manufacturing
process. In the scope of a whole MMP with mechanical testing, the aforementioned efforts only handled
parameters in certain single stages, not connecting the manufacturing process with the final quality measure.

To the best of the authors’ knowledge, the proposed PINOHI is the first work for end-to-end modeling of



the whole adhesive joint manufacturing process that bridges heterogeneous manufacturing parameters and

the final quality measure.

3. The PINOHI Methodology

This section presents the development of PINOHI, which is a generalized Neural ODE framework with
heterogeneous manufacturing controls and physical knowledge embeddings. Section 3.1 provides a brief
introduction to basic Neural ODE. Section 3.2 introduces the formulations and details of the PINOHI model

structure. Finally, section 3.3 describes the loss function for learning.

3.1 Neural ODE Introduction

Generally, Neural ODE (Chen et al., 2018) models a system of spatio-temporal ODEs/PDEs with a
governing equation,

ou(x,t)
ot

= F(u,Vu,V?u, ..; dppy), Xt € Qg (1)

and a boundary condition,

B(w,Vu,V?u,..) =0, xt€0Q,, (2)
where u(x, t) € R" is the system state vector in the space and time coordinates x, t, respectively, and
Vu, V2u, ... are its spatial derivatives; Aphy 1s the physical parameter vector/set; g, = Q X [0, T] is the
spatial-temporal domain coupled by a physical domain Q and a time span [0,T;], and 08, is the
corresponding boundary; F and B are the functions of dynamics and boundary conditions, respectively.

Neural ODE learns the system dynamics F using a neural network fg with the system state and its

spatial derivatives as input, which can be described as

ou(x,t)
at

= fo(u,Vu,V?u, ...; x, t), x,t € Qg (3)

where f is a neural network with parameter 6.

3.2 Model Structure of PINOHI



There are two unique characteristics of the composite joint manufacturing process: (i) partially known
process: as a multistage manufacturing process, the lap shear testing stage can be modeled as an ODE, while
the effects of the manufacturing stages remain implicit; and (ii) additional control actions: manufacturing
parameters control the physical process. Considering these two significant characteristics, we made a
critical generalization of the Neural ODE model. To incorporate the partially known physical knowledge,
we assume the following additive structure of the system dynamics function F, i.e.,

F)=AC)+R0O), (4)
where A is the known physics from the analytical physics model and R is the residual to be learned. This
assumption is based on the idea of residual modeling with R as the model discrepancy for “bias correction”
to correct or mitigate the gap caused by a potentially mis-specified analytical physics model A due to
partially known physics or oversimplified assumptions (Cross et al., 2022; Kennedy and O'Hagan, 2001).

Considering control variables in the manufacturing process, in addition to the physical parameters,
we further incorporate the manufacturing parameters as the input for the residual part. Thus, the system

becomes as follows:

ou(x,t)

P A(w, Vu, V2, ..., Appy) + R(w, Y, V2, ..., Appy, Amrg), Xt € Qgy, (5)

where the analytical physics part A needs calibration for unknown parameters, and the learnable residual

part R can be further parameterized by a neural network fg, with parameter 6,. Then, the model will

become as

ou(x,t)

5 = o, (A(w, YV, V2u, ..., Apny, 494, ); X, t, A g)

+fo, (W, VU, VU, s X, 6,405, Aigg ) X, t € Qg (6)

where @g, is the calibration function learned by neural operators with parameter 64, the physical parameter
o T . .. . A . . .

vector/set App,, = [Aphy, Aghy] is divided into two parts: (i) A,p, is the calibrated value of the part in

Apny that needs calibration, e.g., material properties, environment-related parameters, etc.; and (ii) Aghy is

the left part which is calibration-free, e.g., geometric dimensions, physical constants, etc. Specifically, in
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addition to the physics of first-order dynamics learned by the Neural ODE structure, physics knowledge
is incorporated from three parts: (i) the first part is the analytical approximation function A to the
underlying unknown system dynamics F; (ii) the second part comes from the manufacturing parameter
vector/set Ay g in the calibration function @g, of the analytical model; and (iii) the last part is the
calibration-free physical parameter vector Aghy and manufacturing parameter vector/set 4, in both
parts. The neural network fp, is designed to mitigate the gap between analytical function and the true
dynamics. Note that the manufacturing parameter vector/set A,,¢4 here refers to those parameters not
included in the analytical function but still related to the system state of interest when modeling a complex
manufacturing process. The physical parameter vector/set 4,p,,, in general, is some unknown function of
Amgg, and its estimated value /Alp ny 1s one of the inputs in analytical physics model A.

As shown in Fig. 2, the proposed PINOHI structure follows the basic framework of Neural ODE
that leverages system dynamics by outputting the first derivative for forward time-stepping and processes
information in an autoregressive way. However, unlike conventional black-box methods, it also (i)
incorporates physical knowledge by preserving the mathematical formula of the analytical physics model
A; and (ii) takes additional heterogeneous manufacturing parameters as control input of the Neural ODE

network. The network structure is designed as follows:

11



(a) Loss

Output

Time-stepping
P®—

1 1
1 1
1 1
1 1
. 1

: [ Calib. Ana. g, H NN fa, ]I
1 1
1 1
1 1
|

r S———
Non-Tramable
Neural Operators

(3 ——r=— |
T

T
Input _[ ﬁkﬂt Aphy Amfg ]< — g

1
(b) e U [
I : Wiene 7 |
" Non-Trainable Vii 1
(71 kAF Neural v fﬂt J—)[ Neural Operator ]—’ = 1
[ Operators Uppr ! g
1 L g 1
A : Neural Operator = !
mfg | P 3 |
8
I 5 !

Neural Operator ﬁ'(k+1)M

Time-stepping

Calib. Ana.

Neural Operators
@, (A) [ P

Fig. 2: (a) Overview of the PINOHI structure, where ‘Calib. Ana.” and ‘NN’ denote the calibrated
analytical physics function g, (A) and the neural network fg,_, and Ay, = [ﬁphy, Aghy]T. (b) Detailed
structure of the iterative physics-informed unit in (a), which consists of @g, (A) and fy, where neural
operators represent linear or convolutional layers.

First, the predicted result from the last step, Uy, is fed into non-trainable operators for computing
the spatial derivatives of the system state i, at time point kAt, i.e., Viixas, V22ga, ... This can be
implemented by convolution operation using pre-defined kernels depending on the data structure of the
system state. Then, to solve the heterogeneity issue, a data fusion layer is used to fuse the extracted features

from the system state T, with its spatial derivatives Ve, ViU, ..., the calibration-free physical

0

parameter 4y,

and the heterogeneous manufacturing parameter vector/set A, .
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The neural operators marked in blue in Figure 2(b) and the embedded residual network (ResNet)
are trainable. The selection of ResNet is because it can be regarded as a discretization of a continuous ODE,

which is a natural choice in this scenario. The extracted manufacturing feature z,,r, and calibration-free
physical parameter Aghy are inputs for the calibration of the physical parameter ﬁphy. The analytical
approximation A then takes the calibrated ﬁp ny together with calibration-free physical parameter Ag hy and

system states Uyae, Vilgar, VeUgag, - as inputs. The embedded neural network is designed as stacked
convolutional or linear residual network (He et al., 2016) blocks depending on the data format of the system

state. Later, the results of the neural network fg, and the calibrated analytical physics model @g, (A) are

summed together as the first-order derivative of the system state, which is for a forward time-stepping, e.g.,

Euler or Runge-Kutta methods, with system state, to yield the next time step result & 1)a¢-
3.3 Loss Function

The loss function £(0), similar as Wang et al. (2021), is defined as

T,
1
£8) =7 > [VsLuse () + (1= ¥g) Lusee (6)], ™
$t=0
where
Luyse(0) = |[ue = c(Apny, Amsg, 9)”2 (®)
and
S ul, — L (Apny Ampar 0)]°
@) = 3 3 8= Bl 2 O o
xXEQ i=1 [uX,t]

in which Ly;5;(6) computes the mean squared error (MSE) between the prediction U, (lphy,/lmfg, 0)
using physical parameter vector/set 4,p,, manufacturing parameter vector/set Ay, f, trainable parameter
0 = [0,,0,]" and the label u; at time point t; Lyspg (@) measures the mean squared percentage error
(MSPE). Specifically, a;,t(aphy,amfg,e) is the i element in the predicted system state vector i at

spatial coordinate x and time point t using certain parameters (Aphy, lmfg,ﬂ) , and u,ic,t is its
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corresponding label; ||| is the [, norm; yg € [0,1] is adjustable weight updated with the training epoch
index [, which is a hyper-parameter balancing MSE and the MSPE. Generally, MSE can improve
prediction on large values, while MSPE works well on small values. A suitable yg helps the loss robust to
both large and small values and ensures an overall optimal functional curve prediction. Then the training

process is implemented by solving the optimization problem as follows,

0" = arg mgn L£(9), (10)

via gradient descent. Commonly used optimizers such as stochastic gradient descent (SGD) and Adam

(Kingma and Ba, 2014) can be utilized. The implementation details are discussed in Section 4.3.

4. Quality Prediction of Composite Adhesive Joints

This section will present how to use the PINOHI model for bonding quality prediction of adhesively bonded
composite joints. Section 4.1 will describe the analytical physics model for lap shear load dynamics. Section
4.2 will introduce the detailed trainable component of the PINOHI model. A comprehensive experimental
study is conducted to validate the performance of the proposed method, including the leave-one-batch-out

cross-validation in Section 4.3 and sensitivity analysis of training data samples size in Section 4.4.
4.1 Analytical Physics Model for Lap Shear Load Dynamics

The lap shear testing process of a quasi-static tensile load under displacement control with a fixed rate is

modeled assuming the load as the system state and its evolution following an ODE,

dF(6)

—5— = F(F(®), Apny) = F(F(8), Amats Ageo) an

where F(8) € R is the load of a displacement-control lap shear process at displacement &, the whole

response is recognized as a functional curve but with various length, the physical parameter vector 4,,,, =
= T . . . . o . . .
[Aphy, /12 hy] is categorized into material property vector A,p, = 4,4, and geometric dimension vector

Aghy = Ageo- The analytical physics model (Zimmermann et al., 2022) is as follows:
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FZ

A(F, At Ageo) = , 12
(F Amae:Doeo) = 030, + Uy + 0 42
where
g, = L[ _EC Jl( ")) d +lt(F)2 (13)
LT 2R |12 -2 J, W W be) |
u, = ¢ (14)
27 3Ebt’
U, = Fot, (15)
@ 4G,bc’
in which

! 3
f (W”(x))zdx = 'l% [2u11(A% — B?) + (A% + B?) sinh(2uy 1) + 24;B;(cosh(2uy 1) — 1)],  (16)
0

t+t
A =— > 2 — (I +¢)By, 17)
t+ ty s t+t,1
1= =y Ce + 3 (2CiCe + 1 SiS0), (18)
N =y CSc + p5,Cc — uy (L + ) (UG Ce + 1 S;Se), (19)

F
w = /5 for i =1,2, (20)
l

with C, = cosh(u,c), C; = cosh(uyl), S, = sinh(u,c), S; = sinh(uy 1), D; = Et3b/12(1 —v?), and
D, = 8D;.

In the analytical physics model cA(F  Amat lgeo), the material property vector d,,q; = [E, v, Gg]"
involves elastic modulus of adherend E' [MPa], Poisson’s ratio of adherend v [-], and shear modulus of
adhesive G, [MPa]; the geometric dimension vector 4., = [b, ¢, t,1, to]T contains joint width b [mm],
half-length of bonded region ¢ [mm], thickness of adherend t [mm], length of unbonded region [ [mm)],
and thickness of adhesive t, [mm]. Specifically, each of the material properties is considered as some
unknown function of manufacturing parameter vector/set 4,, 7. Note that these three material properties

assume that both adhesive and adherend material are isotropic. In conclusion, the analytical physics model
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provides an ideal value of the load dynamics in terms of displacement given a simplified assumption of

isotropic material.

4.2 Trainable Neural Operators and Embedded Residual Network in PINOHI

The geometric dimension vector 4., = [b, ¢, t,1, t,]7 here, as one of the inputs, is direct physical
measurements of lap joint samples. The manufacturing parameter vector/set 4,4 is divided into two parts:
(i) manufacturing parameter vector/set for panel fabrication Asq;, (stage II in Figure 1); and (ii)
manufacturing parameter vector/set for lap joining 4,4, (stage IV in Figure 1). Both two manufacturing
parameters include controllable variables, process characterizations, and environmental factors involved in
the manufacturing processes of composite adhesive lap joints. Namely, they are dwelling temperature

distribution averaged over time during fabrication (superscript with F) and lap joining (superscript with J)
cure process TZ,,g, Té,,g € R?*2 [°C], contact angle distribution on the bonding area of both adherends
Y, W, € R?*2 [°], total out-of-freezer time of adherend (superscript with C) and adhesive (superscript
with A) t$,;, t4,: [s], minimum vacuum pressure during fabrication and lap joining cure process ph;,, prjm-n
[Pa], ramp-up rate and dwelling time of lap joining cure process r/ [°C/s] and t/ [s], flashes along bonding
edges Xy [-], ambient temperature TS, Te] [°C], and environment relative humidity HZ, He] [%]. Among
them, the nominal value of the curing parameters, i.e., ramp-up rate and dwelling time v/, t/, dwelling
temperature TY, T/ and vacuum pressure p, p/, are controllable variables for the design of experiments,
but some of the corresponding measurements Tgvg, Tiwg, . prjm-n are considered as process
characterizations for model training and testing; contact angle distribution ¥4, W5 on the bonding area of
each adherend is surface characterization; total out-of-freezer time of adherend and adhesive t$,;, t4,, are
controllable variables; T, Te] JHE H e] are environmental factors that are typically uncontrollable; and lastly,
flashes along bonding edges Xr is a categorical variable representing the state of flashes, i.e., no flashes,

flashes on one side, and flashes on both sides. Those parameters are summarized in Table 1.
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Fig. 3: (a) Detailed scheme of the iterative physics-informed unit for lap shear process. (b) Architecture

of the embedded residual network.
As shown in Figure 3(a), the neural operators following the dwelling temperature distribution

Tg,,g, Té,,g and contact angle distribution ¥4, Wy are defined as a convolutional layer with a 2X2 kernel.

The geometric parameter vector Ag., = [b,c,t,1, t,]” and sub-manufacturing vectors & fab =
T T .
[66uts Do, TE HE| and &1y = [thye v/, t), 01, TS HL, XE ], composed of ramp-up rate and dwelling

flashes Xp,

time r/,t/, total out-of-freezer time tS,,, t&,,, minimum vacuum pressure phy,, pl .
environmental temperature and humidity T, Te] JHIH e] , are fed into a linear neural operator respectively.
Both the convolutional channel and output size of linear layers are defined as a feature size of 16. Thus, the

output of each feature extraction neural operator is a 16-dimensional vector, and they are stacked to form a

feature matrix z,,rg4 € R5%16_ To be consistent with the structure of analytical function, the non-trainable
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neural operator for taking derivatives of the load F is not included in the model for quality prediction of
composite adhesive lap joint. The displacement & is a scalar. A linear layer with output size of 16 is used
to transform Fy,,s into a feature vector sg € R®. Then the feature matrix z,, g and the feature vector 55
are multiplied for data fusion as the input into the embedded residual network.

In the part of calibration for the analytical physics model, every entry of material property vector
Amar = [E,v,G,]T is set as the output of a linear layer with output size of 1. The calibrated values of
E, ¥, G, will be the inputs for the analytical model together with current load Fj o5 and geometric dimension
vector Age, of the analytical function. Specifically, (i) the Young’s modulus E and Poisson ratio v of
adherend are determined by the manufacturing parameter vector/set in the curing process for panel
fabrication (A54p); and (ii) the shear modulus of adhesive G, is determined by the manufacturing parameter
vector/set in the curing process for lap joining (445). This is because that the mechanical properties of
adherend (E,v) are only dependent on the panel fabrication stage and will not be influenced by the
downstream joints curing. Note that the geometric dimension vector 44, is not used for calibration since
they are not relevant to material properties. The output linear layer after the analytical model is a 1-to-1
transformation for scaling. This variable selection is engineering-domain-knowledge-driven which
efficiently reduced the degree of freedom of the model, thus decreasing the required training samples to
mitigate the issue of data scarcity.

The details of the embedded residual network are shown in Figure 3(b), where it is modeled as 5
stacked residual blocks. The output dimension is set the same as the input, which equals 5 since z,f -
ss € R®. The neural operator after this neural network is a 5-to-1 linear layer. All the hidden size in the
residual blocks is h = 128. The activation functions of linear layers for the calibration of analytical function
are softplus functions with a default parameter value of 1 to ensure positivity. These layers are further
clamped within the range of 50% to 150% of their nominal values. All the remaining activation functions

are leaky rectified linear units (Leaky ReLU) with negative slope of 0.01.

4.3 Testing Experiments and Leave-One-Batch-Out Cross-Validation
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The testing experiments include a total of 15 batches of 77 lap joint samples that were made through the
MMP described in Figure 1. Specifically, 11-ply CFRP panels were fabricated under the manufacturer’s
recommended cure cycle using an out-of-autoclave curing system. CFRP panels were then cut into
(I +2c¢) x b =101.6 [mm] X 25.4 [mm] pieces for surface treatment and characterization. The surface
treatment is to apply artificial contamination on selected CFRP pieces. Lap joint samples were made of two
CFRP pieces with 2¢c X b = 25.4 [mm] X 25.4 [mm] overlapping area that are bonded by an adhesive film
after a secondary curing. These dimensions are per ASTM D5868-01. The adhesive film is with a nominal
thickness of t, = 0.2413 [mm)]. The secondary curing is for joining. Lap shear testing was later conducted
on the cured lap joint samples with a digital image correlation (DIC) system measuring the relative
displacement. The load-displacement curves were exported afterwards.

In these 15 batches, the first 6 batches which contain 20 pristine and 6 contaminated samples are
made per the manufacturer’s recommended cure cycle of the secondary curing. The remaining 9 batches
are manufactured according to the design of experiment result with 25 pristine and 26 contaminated samples
in total. In detail, lap joining cure parameters v/, t/, p/, T/ are considered as multilevel factors to formulate
an orthogonal main-effect plan (Addelman, 1962). To keep a balanced dataset for the leave-one-batch-out
cross-validation, from the set of manufacturer’s recommended cure cycle, batch #6 is randomly selected.
Thus, batch #6-15 were used in the leave-one-batch-out cross-validation.

The quality measure of composite adhesive lap joints is selected as the load-displacement curve
F(6) for 6 from O to the break value. Compared to a single value of the maximum load, the load-
displacement curve contains more information, such as the overall stiffness of the adhesive joints at
different strain levels and the total energy required to cause failure. The boundary condition of this specific
case is

B(F(8)) =F(0) =0, (21)
which is also an initial condition. This is intuitive since there will be no load exerted on the joints if it has

no displacement.
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In the training process, adjusting weight yz was set to 0.5 due to the similar magnitude of MSE and

MSPE. The Adam optimizer was used with the initial learning rate of 0.001 and the coefficient of weight
decay of 0.0001. A reduce-learning-rate-on-plateau scheduler was defined with a reducing factor of 0.5 and
a waiting patience of 20. Also, 5 repetitions were carried out for each scenario and the average error with
corresponding standard deviation are reported. The convergence is determined by an early stop criterion
|L/; —Lg_4 | / Lg_1 <0.001 to avoid overfitting. All the training and testing processes were implemented

by PyTorch in Python on NVIDIA GeForce RTX 3060 Laptop GPU. The average training and inference
time are 2831.93 [s] and 0.50387 [s], respectively.

The mean absolute relative error (MARE) metrics (J. Chen et al., 2021) is selected as the error
metric for each load-displacement curve since it computes the relative error in terms of the area under one
curve, in this specific case of composite adhesive joints, naturally reflecting the total energy needed to break
one joint, which is a mechanical characterization of the overall joint property, defined as,

[|F(8) — F(8)|ds
JIF(®)1ds ~

MARE = (22)

where F(8) and F(8) are experimental and predicted loads at displacement level §. Since MARE is
designed for a single sample, the mean value over the testing set, i.e., nMARE, is computed and its average
value over 5 repetitions is used for evaluation in each scenario in the cross-validation. The results of leave-
one-batch-out cross-validation are compared among the following models, and summarized in Table 2,
Figures 4:
1. PINOHI: The proposed model which combines analytical physics part @g, (A) and neural
network fg, with heterogeneous manufacturing parameter vector/set 4., ¢4 as control inputs.
2. Neural ODE + Mfg.: A generalization of Neural ODE fy by incorporating heterogeneous
manufacturing parameter vector/set 4,,¢4 as control inputs, which is equivalent to the proposed

model PINOHI without the analytical physics part ¢g, (A).
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3. Calib. Ana.: Only the calibrated analytical physics model @q (A) using heterogeneous

manufacturing parameter vector/set A, for calibration but without neural network fg, and

feature extractor.

4. Neural ODE: Only the neural ODE structure fg, without: (i) the analytical physics function

®g, (A); and (ii) heterogeneous manufacturing parameter vector/set 4,7 4.

Table 2: Results of leave-one-batch-out cross-validation of PINOHI vs. different ablated models.

mMARE (Average 1+ Std.) Over 5 Repetitions

Models

Scenario Index

1

2

3

4

5

6

PINOHI

0.2052 + 0.0082

0.1131 + 0.0051

0.1203 + 0.0094

0.0772 + 0.0188

0.0910 + 0.0010

0.0724 £+ 0.0050

Neural ODE + Mfg.

0.2238 + 0.0332

0.1289 + 0.0100

0.1495 + 0.0228

0.1151 £ 0.0192

0.0950 & 0.0047

0.0986 + 0.0130

Calib. Ana.

0.2765 + 0.0006

0.1565 + 0.0033

0.1688 + 0.0012

0.1864 + 0.0032

0.1010 % 0.0001

0.0844 + 0.0003

Neural ODE

0.2517 £ 0.0016

0.1269 %+ 0.0075

0.1349 + 0.0070

0.1581 + 0.0186

0.0955 + 0.0054

0.1056 + 0.0057

Models

Scenario Index

7

8

9

10

Total Mean

PINOHI

0.0627 + 0.0081

0.1069 + 0.0110

0.0840 + 0.0006

0.1091 + 0.0127

0.1042 + 0.0382

Neural ODE + Mfg.

0.0883 + 0.0131

0.1654 + 0.0184

0.1471 £+ 0.0362

0.1660 + 0.0189

0.1378 + 0.0395

Calib. Ana.

0.0687 + 0.0004

0.1133 £ 0.0108

0.0910 % 0.0009

0.1594 + 0.0006

0.1406 + 0.0592

Neural ODE

0.0751 £ 0.0118

0.1433 £+ 0.0081

0.0899 + 0.0156

0.1468 + 0.0014

0.1328 + 0.0474
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Fig. 4: Boxplots of average mMARE for all models in leave-one-batch-out cross-validation.
According to the results listed in Table 2, the proposed PINOHI model achieves the best average
mMARE in each scenario of the leave-one-batch-out cross-validation. We provide a detailed analysis of
the cross-validation study as follows:

1. As illustrated in Figure 4, in terms of the overall performance in the leave-one-batch-out cross-
validation, PINOHI obtains the minimum total mean, median, and range of average mMARE,
showing a superior performance over the other three ablated models.

2. The analytical model calibrated by heterogeneous manufacturing parameters (Calib. Ana.) is a
common practice using physics-based models, which achieves the worst overall performance

(Figure 4). This reflects the complexity of the system and the inadequacy of the simplified physical

modeling assumptions.
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3. On the other hand, PINOHI outperforms the data-driven methods (Neural ODE and Neural ODE +
Mfg.), as shown in Figure 4, indicating that the inclusion of physics knowledge can significantly
improve predictive accuracy in a complex system.

Overall, the proposed PINOHI method achieves the best performance which indicates that
integration of heterogeneous manufacturing parameters and analytical physics equation can help the Neural

ODE structure in greater prediction accuracy and a better generalization ability.
4.4 Sensitivity Analysis of Samples in Training

In addition to the leave-one-batch-out cross-validation, a sensitivity analysis of samples in training was
performed to explore the minimum amount of data in training set required to achieve an adequately accurate
prediction of the load-displacement curve in lap shear testing process. This is of great industrial interest and
significance because the training data is time-consuming and expensive to collect due to its nature of the
destructive testing methods.

In the sensitivity study, the testing set was randomly selected as batch #7 that contains 3 pristine
and 2 contaminated samples. The remaining 72 samples formed the training set. In this sensitivity analysis,
the amount of data in the training set starts from a small sample setting that only has 10 samples, and then
increases with a step of 10 up to 60. The training samples were randomly sampled from the whole training
set of 72 samples while keeping a balance between pristine and contaminated samples. For each case, 5
repetitions were conducted to mitigate the randomness of learning. Besides, this whole process was repeated
3 times to exploit the training space and to mitigate the randomness of selecting training sets. In other
words, with batch #7 as the testing set, in total 3 rounds of sensitivity analysis of samples in training were
carried out, in which 5 repetitions were run for each of the cases with the number of training samples
varying from 10 to 72. The hyperparameters and error metric were set to be identical to those in the leave-
one-batch-out cross-validation, and the average mMARE with its standard deviation over 3 rounds of 5
repetitions for each case is reported. The results of the sensitivity analysis are summarized in Table 3,

Figures 5 and 6.
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Table 3: Results of sensitivity analysis of PINOHI vs. different ablated models.

mMARE (Average + Std.) Over 15 Repetitions (3 Rounds of 5 Repetitions)

Samples in Training

Models
72 60 50 40
PINOHI 0.1003 £ 0.0112 0.1087 £ 0.0060 0.1092 + 0.0068 0.1078 %+ 0.0065
Neural ODE + Mfg. 0.1223 £+ 0.0201 0.1137 £ 0.0089 0.1203 £+ 0.0102 0.1268 £+ 0.0247
Calib. Ana. 0.1147 £ 0.0017 0.1153 £ 0.0019 0.1146 £ 0.0035 0.1213 £ 0.0045
Neural ODE 0.1339 £+ 0.0030 0.1370 £ 0.0037 0.1384 £ 0.0031 0.1387 £ 0.0035
Samples in Training
Models
30 20 10
PINOHI 0.1119 + 0.0086 0.1115 + 0.0124 0.1123 + 0.0179
Neural ODE + Mfg. 0.1291 £ 0.0187 0.1344 £+ 0.0253 0.1868 £+ 0.0613
Calib. Ana. 0.1265 £ 0.0122 0.1725 £ 0.0341 0.1780 £ 0.0116
Neural ODE 0.1452 £ 0.0045 0.1394 £ 0.0038 0.1531 £ 0.0236
02 T T T T T T
—E&— PINOHI
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Fig. 5: Average mMARE of all models over different numbers of samples in training.
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Fig. 6: Boxplots of mMARE for PINOHI vs. best competing model Neural ODE + Mfg. in the sensitivity
analysis.

In each case in the sensitivity analysis, as shown in Table 3 and Figure 5, the average mMARE
over 3 rounds of 5 repetitions achieved by PINOHI is consistently smaller than those of the competing
models, maintaining a minimum variation across different training set sizes. Furthermore, a significant gap
can be observed when the training set is small, i.e., equal to 10, which shows the advantage of PINOHI in
the small sample scenario. This is because of the incorporation of analytical model into Neural ODE
framework and the engineering-domain-knowledge-driven variable selection, which reduces the degree of
freedom of the model. Moreover, the Calib. Ana. has a worse performance compared to PINOHI due to a
lack of flexibility and over-simplified assumptions. In addition, the data-driven benchmark Neural ODE

also remains a small variation with respect to the training set size, but it is significantly worse than PINOHI,
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indicating the naive Neural ODE structure cannot capture the complex dynamics without manufacturing
parameters.

Besides the average performance, a more detailed comparison of the variability in different cases
was explored by showing the boxplot of mMARE for PINOHI and the best competing model Neural ODE
+ Mfg. in Figure 6. Comparing with Neural ODE + Mfg., PINOHI has either smaller median mMARE or
less variation or both in each case, indicating the analytical structure in PINOHI improves the robustness
with respect to the number of samples in training.

In summary, PINOHI outperformed the other three competing modelling methods in each scenario
of the sensitivity analysis and maintained a minimum variation, which demonstrates its superiority in

predictive accuracy and robustness to the training set size.

5. Conclusion

Despite various efforts in the development of physics-based and data-driven models and methods for
predicting the quality of composite adhesive joints, the complicated multi-stage manufacturing process
hinders the accurate estimation of bonding quality. The bonding quality contains not only bonding strength,
but also other important mechanical characterizations, e.g., stress-strain curves, overall bonding stiffness at
different strain levels, total energy required to cause failure, etc.

In this study, a novel framework of physics-informed Neural ODE structure with heterogeneous
manufacturing control inputs and physical knowledge embedding (PINOHI) is proposed for the quality
prediction of composite adhesive joints. Compared with those models in the literature, PINOHI outputs the
load-displacement curve in an autoregressive way from which the aforementioned mechanical
characterizations can be derived easily. PINOHI incorporates additional physics knowledge and
heterogeneous manufacturing parameters with an engineering domain knowledge-driven variable selection
structure to mitigate the issue of data scarcity in the case of composite adhesive joints and improve

predictive performance. Its superior performance on predicting load-displacement curves of the lap shearing
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test is demonstrated in the leave-one-batch-out cross-validation compared to three ablated models, showing
the benefits of adding the manufacturing controls and analytical function. A sensitivity analysis of samples
in training is further explored to show the robustness of PINOHI with respect to the number of samples in
training.

There are still rooms for improving the proposed PINOHI and its applications in to composite
joining processes. First, an automatic stopping criterion can be added to the PINOHI framework rather than
a user-defined stopping point to meet industrial demands in a one-stop fashion. Second, the current
analytical model in PINOHI for the lap shearing process mainly focuses on the test stage, with an
assumption that material is isotropic. Incorporating more advanced physics-based analytical or numerical
models depicting the physics of different stages is expected to improve the predictive performance.
Moreover, the data fusion method and embedded residual network in PINOHI can be substituted for
different application cases. In conclusion, PINOHI provides a valid prototype of incorporating an analytical
model into the neural ODE framework for the prediction of dynamics of complex physical processes, which

has the potential for further extensions both methodologically and practically.
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