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Abstract This paper studies distributionally robust chance constrained programs (DRCCPs), where
the uncertain constraints must be satisfied with at least a probability of a prespecified threshold for
all probability distributions from the Wasserstein ambiguity set. As DRCCPs are often nonconvex and
challenging to solve optimally, researchers have been developing various convex inner approximations.
Recently, ALSO-X has been proven to outperform the conditional value-at-risk (CVaR) approximation
of a regular chance constrained program when the deterministic set is convex. In this work, we relax
this assumption by introducing a new ALSO-X# method for solving DRCCPs. Namely, in the bilevel
reformulations of ALSO-X and CVaR approximation, we observe that the lower-level ALSO-X is a
special case of the lower-level CVaR approximation and the upper-level CVaR approximation is more
restricted than the one in ALSO-X. This observation motivates us to propose the ALSO-X#, which still
resembles a bilevel formulation —in the lower-level problem, we adopt the more general CVaR approxi-
mation, and for the upper-level one, we choose the less restricted ALSO-X. We show that ALSO-X# can
always be better than the CVaR approximation and can outperform ALSO-X under regular chance con-
strained programs and type co—Wasserstein ambiguity set. We also provide new sufficient conditions
under which ALSO-X# outputs an optimal solution to a DRCCP. We apply the proposed ALSO-X# to
a wireless communication problem and numerically demonstrate that the solution quality can be even
better than the exact method.

Keywords. Chance Constraint; CVaR; Distributionally Robust

First Author: Nan Jiang
Affiliation: Georgia Institute of Technology, Atlanta, GA
E-mail: nanjiang@gatech.edu

Corresponding Author: Weijun Xie
Affiliation: Georgia Institute of Technology, Atlanta, GA
E-mail: wxie@gatech.edu



2 Nan Jiang, Weijun Xie

1 Introduction

In this paper, we consider a Distributionally Robust Chance Constrained Program (DRCCP) of form:

(DRCCP) ov* = :Icrg)ré {cTw: %1617&]}”{5: a;(x)T€ < bi(x),Vie [I]} >1- s} . (1)
In a DRCCP, the objective is to minimize a linear objective function over a deterministic set X' and
an uncertain constraint system specified by possibly multiple linear constraints a;(z)' € < b;(x) for
all i € [I], where the uncertain constraints are required to be satisfied with probability 1 — ¢ for any
probability distribution P from an ambiguity set P. Here, the scalar ¢ € (0,1) denotes a preset risk
parameter and set P is formally defined as a subset of probability distributions P from a measurable
space ({2, F) equipped with the sigma algebra F and induced by the random parameters £ with support
set = C R™. For each uncertain constraint ¢ € [I], the affine mappings a;(xz) and b;(x) are defined as
117(58) = A;x + a; € R™ with A; € Rmxn,ai € R™ and bl(m) = BZT:B +b; € Rwith B; € Rn,bl c R.
When there is only I = 1 uncertain constraint, problem (1) is a single DRCCP and otherwise, it is a
joint DRCCP. Notably, when the ambiguity set P is a singleton (i.e., P = {P}), DRCCP (1) reduces to a
regular Chance Constrained Program (CCP).

1.1 Wasserstein Ambiguity Set

This paper studies the data-driven g—Wasserstein ambiguity set defined as
Py = {]P’: P{é e 5} = 1, W,(P,P;) < 0},

where for any g € [1, o0], the g—Wasserstein distance is

a is a joint distribution of £ and £2
W, (P1,P,) = inf [/ I3 —£2H"Q<dsl,d52>]  Qisajoint. § and & ,
SxE with marginals P; and PPy, respectively

6 > 0 is the Wasserstein radius, and P; denotes the reference distribution induced by random param-

eters . Recently, there are many exciting works on DRCCP under type q—Wasserstein ambiguity set
[11, 12, 22, 25, 26, 29, 45, 49]. Particularly, according to the equivalent reformulation in proposition 8 of
[26], we write DRCCP (1) under type co—Wasserstein ambiguity set as

v = min {ch: P{é; 0 l|a;(z)||, +ai(z) ¢ < bi(z),Vi € [1]} >1- s}. 2)

Throughout the paper, we make the following assumption:

Al The reference distribution P; is sub-Gaussian, that is, Pg{é S NI€Il > 7} < Oy exp(—Car?) for some
positive constants C', Cs.

It is worth noting that the sub-Gaussian assumption ensures the weak compactness of the Wasserstein
ambiguity set and thus enjoys the strong duality of reformulating the worst-case expectation under type
gq—Wasserstein ambiguity set. Particularly, this paper mainly focuses on empirical or elliptical reference
distributions, which clearly satisfy Assumption Al.
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1.2 Relevant Literature

Distributionally robust chance constrained programs (DRCCPs) have gained much attention recently
when the knowledge about the probability distribution is limited (see, e.g., [11, 12, 20-23, 25, 26, 29, 44,
45, 49, 50, 54]). As DRCCPs’ feasible regions are often nonconvex, some existing research has worked on
identifying conditions under which the feasible region in DRCCP (1) is convex (see, e.g., [10, 14, 16, 20,
30, 32, 40, 43, 44, 50]). For a single DRCCP (1), the authors in [44] showed that its feasible region is convex
if the reference distribution is Gaussian under type 1—Wasserstein ambiguity set. Similar convexity
results apply to a single DRCCP when the ambiguity set P comprises all probability distributions with
known first and second moments (see, e.g., [10, 16]), known support of é (see, e.g., [14]), arbitrary convex
mapping of £ (see, e.g., [50]), or the unimodality property of P (see, e.g., [20, 32]). Researchers have also
proposed convex inner approximations of the nonconvex chance constraint (e.g., [1, 9, 12, 26, 35, 36]).
For example, the well-known conditional value-at-risk (CVaR) approximation is to replace the chance
constraint in DRCCP (1) with the more conservative CVaR constraint (see the details in [35]). Recently,
ALSO-X, a convex approximation method proposed in [1], has been proven to outperform the CVaR
approximation of a regular chance constrained program (see, e.g., theorem 1 in [26]).

Despite the challenges, DRCCPs are effective in decision-making under uncertainty and have been
applied to a wide range of problems, including portfolio optimization [37, 38], energy management
[8, 46], supply chain management [17, 18], facility location problems [31], and wireless communication
network [4, 33, 34, 48]. For example, chance constraints have been used in the design and optimization
of wireless communication networks to ensure that the probability of certain operational constraints
being violated, such as capacity limits or reliability requirements, is within an acceptable limit (see, e.g.,
[33, 34]). In portfolio optimization, the objective is to maximize the expected return of the portfolio while
ensuring that the probability of portfolio losses does not exceed a specified level (see, e.g., [37, 38]). We
refer interested readers to [2] for more applications. For a comprehensive review of DRCCPs, interested
readers are referred to a recent survey from [29].

1.3 Contributions

In this paper, we study a new method, termed “ALSO-X#,” which advances the recent ALSO-X in [26]
in the following three main aspects: (a) for any closed deterministic set X, ALSO-X# is always better
than CVaR approximation under any ambiguity set; (b) ALSO-X# can be better than ALSO-X; and (c)
ALSO-X# admits new conditions under which its output solution is also optimal to DRCCPs. More
specifically,

(i) We prove that ALSO-X# is better than CVaR approximation under a general ambiguity set (beyond
Wasserstein ambiguity set) and a closed deterministic set X'. This result significantly improves that
of theorem 1 in [26]), which relies on the convexity of the deterministic set X’;

(ii) We show that under type co— Wasserstein ambiguity set, ALSO-X# is better than ALSO-X when
the lower-level ALSO-X admits a unique solution. When the reference distribution is constructed by
ii.d. samples from a continuous nondegerate distribution, or the reference distribution is continuous
and nondedegerate, the lower-level ALSO-X indeed presents a unique solution;

(iif) We present new sufficient conditions under which ALSO-X# yields an optimal solution to a DR-
CCP. For example, one sufficient condition is that for a binary DRCCP with an empirical reference
distribution; and

(iv) We extend the afromentioned results of ALSO-X# to solve a DRCCP (1) under type ¢—Wasserstein
ambiguity set with ¢ € [1,00).

Organization. The remainder of the paper is organized as follows. Section 2 reviews ALSO-X and CVaR
approximation and introduces the ALSO-X#. Section 3 shows that ALSO-X# is better than ALSO-X
and CVaR approximation. Section 4 explores conditions under which ALSO-X#: is better than ALSO-X.
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Section 5 provides the conditions under which ALSO-X# outputs an exact optimal solution. Section 6
extends ALSO-X# to solve DRCCPs under type g—Wasserstein ambiguity set with ¢ € [1, c0). Section 7
numerically illustrates the proposed methods. Section 8 concludes the paper.

Notation. The following notation is used throughout the paper. We use bold letters (e.g., «, A) to denote
vectors and matrices and use corresponding non-bold letters to denote their components. Given a vector
or matrix @, its zero norm ||z||o denotes the number of its nonzero elements. We let || - ||.. denote the
dual norm of a general norm || - ||. Given an integer n, we let [n] := {1,2,--- ,n} and use R} := {x €
R™ : x; > 0,Vi € [n]}. Given a real number 7, let (7); := max{,0}. Given a finite set /, let |I| denote
its cardinality. We let £ denote a random vector and denote its realizations by £. Given a vector € R",
let supp(x) be its support, i.e., supp(x) = {i € [n] : z; # 0}. Given a probability distribution P on
=, we use P{A} to denote P{£ : condition A(&) holds} when A(€) is a condition on &, and to denote
P{¢: € € A} when A C = is P—measurable. We use |z] to denote the largest integer y satisfying y < z,
for any = € R. We use the phrase “Better Than” to indicate “at least as good as.” Additional notations
will be introduced as needed.

2 ALSO-X#

In this section, we first review two convex approximations of DRCCP, ALSO-X and CVaR approxi-
mation. Then we present ALSO-X# for solving DRCCP (2) and show its connections to ALSO-X and
CVaR approximation. To begin with, we first introduce the notions of VaR;_.(-) and CVaR;_.(-). For a
given risk parameter ¢ and a given random variable X with probability distribution P and cumulative
distribution function Fg(-), (1 — ¢) Value-at-Risk (VaR) of X is defined as

VaRi_(X) :=min {s: Fg(s) >1—¢},

and the corresponding Conditional Value-at-Risk (CVaR) is

CVaR; . (X) := min {5 + EEP[X — B]+} .

2.1 State-of-the-art Convex Approximations

In general, solving DRCCP (2) is NP-hard (see, e.g., [51]). Thus, in this work, instead of solving DRCCP
(2) directly, we review two known convex approximations, i.e., the popular CVaR approximation and
the recent ALSO-X.

The ALSO-X method with a bilevel structure can be adapted to solve DRCCP (2). In the lower-
level ALSO-X, we solve the hinge-loss approximation with a given objective upper bound. We then
check whether its optimal solution &* satisfies the worst-case chance constraint or not. The upper-level
ALSO-X is to search the best upper bound of the objective value. Formally, ALSO-X admits the form:

v = min t,
i

st. x* € argmin sup {]E]p {max (ai(w)Té— bi(:c)> } ez < t} ,
zEX PEP. iell] +
. Eo o ()T & < b (x* . >1_
Pgl}fmﬂ”{ﬁ.al(m ) € <bi(x ),Vze[[]}fl €.
Based on the equivalent reformulation in proposition 9 of [26], we consider the following ALSO-X:

vd = mtin t, (3a)
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st. " € argmin {]E]p~ [max (9 lai(x)|, +ai(x) ¢ - bi(m)) } el < t} ) (3b)
reX ¢ il +
P{é; 0 l|a; (x|, + a;(x*) ¢ < bi(x*),Vi € [1]} >1—e. (3¢)

Under type co—Wasserstein ambiguity set P, it has been shown that when the deterministic set X’ is
convex, ALSO-X is better than CVaR approximation (see, e.g., theorem 7 in [26]). However, this result,
in general, does not hold for a DRCCP when set X is nonconvex (see example 2 in [26] with Wasserstein
radius 6 = 0). For notational convenience, let us denote v*(t) and F (z) to be the optimal value and the
objective function of the lower-level ALSO-X (3b), respectively.

The CVaR approximation has been shown to work quite well for solving DRCCPs (see, e.g., [11, 49]).
For DRCCP (2), its CVaR approximation is defined by replacing the worst-case chance constraint by the

worst-case CVaR constraint as below
B+ EEP (max (ai(ac)—rﬁ~ — bz(w)) - 5) <0p.
€ i€[I] I -

From the equivalent reformulation in proposition 9 of [26], we consider the following CVaR approxi-
mation of DRCCP (2):
<o},

Equivalently, we also recast the CVaR approximation as a bilevel program, where the upper-level prob-
lem is to search the best objective value and the lower-level problem is to minimize the left-hand of
CVaR constraint given that the objective function is upper-bounded by a given value. That is,

LCVaR
TEX PEP,, B0

= min {CTil:I sup inf

1
B+ —Ep

VAR — min {cTa:: inf c
€

zeX B<0

max (0 |a;(@)], + ai(z) "¢ — bi(z)) — 8
€[]

+

pCVak — mtint, (4a)
st (z*,8%) € argmin {Eﬁ + Ep, (max (9 lai(x)|, +ai(z)" ¢ - bi(w)) — B) 1 } ,
zeX,cl z<t, €[] 4
B<0
(4b)
eB* + Ep, ({Iéz[ml)]( (9 lai(x*)|, +ai(x*) ¢ - bz(w*)) _ B*)j <0. (4¢)

We call the objective function in the lower-level CVaR approximation (4b) “CVaR-loss.” We observe
that if we let variable 5 = 0 in the lower-level CVaR approximation (4b), then we recover the hinge-loss
approximation (3b). In other words, the lower-level ALSO-X (3b) and the lower-level CVaR approx-
imation (4b) coincide when 8 = 0. This observation inspires us to improve ALSO-X by replacing its
lower-level hinge-loss objective function with the CVaR-loss approximation, which is elaborated in the
subsequent subsections.

It is worth noting that, when the deterministic set X is discrete, CVaR approximation can outperform
ALSO-X when solving DRCCP (2), as demonstrated by the following example.

Example 1 Consider a single DRCCP under type co—Wasserstein ambiguity set with # = 1. Assume that
the empirical distribution has 4 equiprobable scenarios (i.e., N = 4, P{¢ = ¢’} = 1/N), risk parameter
¢ = 1/2, deterministic set X = {0, 1}, function a1 (z) "¢ by () = 1o —Co, ¢} = —48, (% = ¢ = ¢ = 100,
(3 = —51,and ¢ = ¢§ = ¢§ = 100. In this example, DRCCP (2) resorts to
ot = min {=o: 1492 > 50) + 11012 < 99) + 1101z < 99) +1(101z < 99) > 2},
€0,

where CVaR approximation returns the optimal solution and ALSO-X fails to find any feasible solution
(see, example 2 in [26]). o
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2.2 What is ALSO-X#?

To overcome the limitations of ALSO-X and CVaR approximation, we introduce the new “ALSO-X#.”
As discussed in the previous subsection, the lower-level ALSO-X (3b) can be viewed as a special case of
the lower-level CVaR approximation (4b) by letting 5 = 0. Thus, one may want to replace the hinge-loss
objective function with the CVaR-loss one. On the other hand, one disadvantage of the CVaR approx-
imation (4) is that it relies on a more conservative CVaR constraint (4c) for the feasibility check. To
improve the CVaR approximation (4), we can use chance constraint (3c) for the feasibility check, lead-
ing to ALSO-X#, an integration of CVaR approximation and ALSO-X. Formally, ALSO-X# admits the
form of

vA% = min t,
i

st. (x*, ") € argmin sup {56 + Ep [max (ai(w)—rﬁ - bz(w)) - B} cele < t} ,
+

ZEX,B<0 PEPo i€[l]
. e ) * T~< ) * . >1—e
Pg%jfooE”{E.az(m) € < bi(a ),We[]]}fl E

According to the reformulations in Section 2.1, the ALSO-X# is equivalent to

vA* = mtin t, (5a)
st (x*,8%) € argmin {Eﬁ + Ep, (max (9 llai(x)], + a;(x)"¢ — b,»(a:)) — ﬁ) ] } )
zeX,c' x<t, i€[I] n
B<0
(5b)
1@{5: 0 llas (x|, + as(x*) ¢ < bi(x"),Vi € [1]} >1-c. (50)

In the proposed ALSO-X# (5), given a current objective value ¢, the lower-level ALSO-X# (5b) is to
solve the CVaR approximation first and then the upper-level ALSO-X# is to check whether the lower-
level solution satisfies the worst-case chance constraint (5¢) or not. In this way, we introduce the new
convex approximation of DRCCP (2), where we have v* < v4#,

Algorithm 1 summarizes the solution procedure of ALSO-X# (5), where for a given ¢ of the upper-
level problem, we solve the lower-level CVaR approximation (5b) with an optimal solution (x*, 5*) and
check whether x* is feasible to DRCCP (2) or not, i.e., check if «* satisfies (5¢) or not. If the answer is
YES, we decrease the value of ¢; otherwise, increase it. In the implementation, we search the optimal
t by using the binary search method with a stopping tolerance ;. The implementation details follow
similarly to algorithm 1 in [26] and the remarks therein.

Algorithm 1 The Proposed ALSO-X# Algorithm

1: Input: Let §; denote the stopping tolerance parameter, ¢;, and ¢y be the known lower and upper
bounds of the optimal value of DRCCP (2), respectively
while ty — tr, > §; do
Lett = (¢t + tv)/2 and (*, 8*) be an optimal solution of the lower-level ALSO-X# (5b)
Let t; = tif «* satisfies (5¢); otherwise, ty = ¢
end while
: Output: A feasible solution z* and its objective value 9% to DRCCP (2)

Note that we inherit the constraint 3 < 0 in the lower-level ALSO-X# (5b) from the CVaR ap-
proximation. One may want to relax this constraint and arrive at the following “weak” formulation of
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ALSO-X#, termed as ”ALSO-Xﬁ:”

vA% = rntin t, (6a)

st. (x*,8%) € argmin {56 + Ep,

zeX,c x<t,

(gré?;f (9 lai(@)], + ai(z) "¢ - bi(w)) — B) J } , (6b)

P{éz 0 |ai(z*)||, + ai(x*) ¢ < bi(x*), Vi € [1]} >1-e. (6¢)

In our numerical study, we find that ALSO-X# consistently outperforms ALSO-X#. The following
example shows that ALSO-X# can be superior to ALSO-X#, ALSO-X, ALSO-X+, and CVaR approxi-
mation. We formally prove this result in the next section.

Example 2 Consider a single DRCCP under type co—Wasserstein ambiguity set with § = 1. Assume that
the empirical distribution has 4 equiprobable scenarios (i.e., N = 4, ]P’{Q: = ¢’} = 1/N), risk parameter
e = 1/2, deterministic set X = {0,1}, function a;(x) "¢ — by(z) = Gz — (o, ( = -8, Z = = (¢ =3,
(3 =-25/2,and (3 = (3 = (3§ = 5/2. In this example, DRCCP (2) resorts to

v = min < —x:1 9x2§ +1 4x§§ +1I 4x§§ +1 4x§§ >2;.
ze{0,1} 2 2 2 2

The weak formulation of ALSO-X# v4% (6) can be written as

p — . *
v —mtln{t. ZH(SZ >0) <2,

1€[4]

23 3 3
1 1 =9+ - < s, dr — £ <osg, 4 — o <osg,
(z*,8",8%) € argmin {Zsi—ﬁz 3 2 2 2 } .
seabes iy 2 oD <s—w <t 2B vie 4]

Particularly, for any ¢t > —1, the ALSO-X# returns a solution with s} = s§ = s§ = s} = 5/2, 2* = L
Since the support size of s* is greater than 2, we have to increase the objective bound ¢ to be infinite.
However, if we enforce 5 < 0, i.e., consider the ALSO-X#, we have s] = 23/2,s5 = s§ = s} =
—3/2,8* = =3/2,2* = 0. Therefore, in this example, ALSO-X# always returns the optimal solution, but
ALSO-X# fails to find any feasible solution. Notice that in this example, ALSO-X, CVaR approximation,
and ALSO-X+ (see, e.g., section 4 in [26]) all fail to find any feasible solution. o

It is worthy of mentioning that albeit the formulation of ALSO—Xﬁ tends to be weaker, the uncon-
strained (3 variable is useful to prove the strength of ALSO-X# under an elliptical reference distribu-
tion.

3 ALSO-X# is Better Than ALSO-X and CVaR Approximation

In this section, we prove that ALSO-X# is better than ALSO-X, ALSO—Xﬁ, and CVaR approximation,
respectively.

3.1 ALSO-X# is Better Than ALSO-X

Note that ALSO-X# can be viewed as an integration of CVaR approximation and ALSO-X. In fact, if the
lower-level ALSO-X provides a feasible solution to DRCCP (2), then at least one optimal solution of the
lower-level ALSO-X# is also feasible to DRCCP (2). Particularly, under type co—Wasserstein ambiguity
set and for a given objective upper bound ¢ such that the optimal value of the lower-level ALSO-X (3b)
is positive (i.e., v2(¢) > 0), the lower-level ALSO-X (3b) has a unique optimal solution, which is feasible
to DRCCP (2). Then any optimal solution of the lower-level ALSO-X# is also feasible to DRCCP (2).
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Theorem 1 Suppose that for any objective upper bound t such that t > mingex ¢' x and vA(t) > 0, the

lower-level ALSO-X (3b) admits a unique optimal solution. Then ALSO-X# (5) is better than ALSO-X (3), i.e.,
vA# < v,

Proof It is sufficient to show that for any objective upper bound ¢, if the lower-level ALSO-X (3b) is
feasible to DRCCP (2), then the lower-level ALSO-X# (5b) is also feasible to DRCCP (2). Let (z, B)
denote an optimal solution from the lower-level ALSO-X# (5b) and let & denote an optimal solution
from the lower-level ALSO-X (3b). We split the proof into two steps by discussing v*(t) = 0 or v4(t) >
0.

Step I. When the optimal value of the lower-level ALSO-X (3b) is v*(t) = 0, since v“(t) is an upper
bound of the lower-level ALSO-X# (5b). Thus, the optimal value of the lower-level ALSO-X (3b) is less
than or equal to zero. Due to the fact that the objective value of ALSO-X# divided by ¢ less than or
equal to zero implies a conservative approximation of distributionally robust chance constraint [36], we
must have that Z is feasible to DRCCP (2).

Step II. Next, we consider the case when the optimal value from the lower-level ALSO-X (3b) is positive,
i.e., v4(t) > 0. We discuss two cases on whether B =0 or not.

Case L If 3 = 0, then the lower-level ALSO-X# (5b) and the lower-level ALSO-X (3b) coincide. Since
the lower-level ALSO-X (3b) admits a unique optimal solution, we must have & = . That is, ALSO-X#
and ALSO-X are the same. Thus, if Z is feasible to the DRCCP, i.e.,  satisfies (3¢), Z is also feasible to
DRCCP (2).

Case II. Suppose that 3 < 0. From the discussions in section 3 of [41], we have

VaRy-. {0 a;(@)]l, + a:(®)7¢ ~ bi(@), Vi € [1]} <0,
which implies that
P{C: 0llai(@)]., +a:i@) ¢ < bi(@).vie [} 21 -

Thus, ALSO-X# provides a feasible solution to DRCCP (2). Since the solution of the lower-level ALSO-X
(3b) may not be feasible to DRCCP (2), ALSO-X# is better than ALSO-X. O

We make the following remarks about Theorem 1:

(i) Different from the work [26], our proof does not require the convexity assumption of set X’;
(if) The uniqueness condition is satisfied by many DRCCPs as well as their regular counterparts, as
formally proved in the next section; and
(iif) In Example 2, the lower-level ALSO-X has a unique optimal solution when ¢t > —1, which, however,
is not feasible to the DRCCP. On the contrary, the proposed ALSO-X# can find the optimal solution,
which is better than ALSO-X according to Theorem 1.

The uniqueness assumption in Theorem 1 is, in fact, necessary. Below is an example showing that
ALSO-X# can be worse than ALSO-X.

Example 3 Consider a single DRCCP under type co—Wasserstein ambiguity set with§ = 1/2and ||-||. =
| - [l1. Assume that the empirical distribution has 3 equiprobable scenarios (i.e., N = 3, P{¢ = ¢’} =
1/N), risk parameter ¢ = 1/2, deterministic set X = [0, 10]?, function a;(z) "¢ — by(z) = —x ¢ + 1,
¢t=(5/2,7/2)T,¢% = (5/2,3/2)T,and ¢3 = (3/2,5/2) ". In this example, DRCCP (2) resorts to

v* = r[nin]2 {1+ 22: 1221 + 322 > 1) + I(221 + 2 > 1) + (a1 + 222 > 1) > 2},
z€[0,10

where the optimal value v* = 1/2. Its ALSO-X counterpart admits the following form:

A = mtin {t: Z I(s;j >0) <2,

1€[3]
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(@*,s") €  argmin {1 Z 5. 221 + 319 > 1 — 51,221 + 10 > 1 —52,}}
’ €[0,10)%,sek3 {9 [ 420> 1 —s3,m a2 <t

When ¢ = 1/2, one optimal solution of the lower-level ALSO-X is z7 = 0,25 = 1/2,s7 = 0,55 =
1/2,s5 = 0, which is feasible to the DRCCP. In this case, ALSO-X can find an optimal solution of the
DRCCP with v4 = v* = 1/2. However, when ¢t = 1/2, another optimal solution of the lower-level
ALSO-Xis 7 = 1/4,2% = 1/4,s7 = 0,s5 = 1/4,s5 = 1/4, which is infeasible to the DRCCP. Hence, it
violates the uniqueness assumption.

Now let us consider corresponding ALSO-X#:

A# — mi : * <
v mtln{t. Z]I(sl >0) <2,

i€[3]
. % o . 1 1 2z +329>1—51,201 +220 > 1— 89,
) ’ S o i TSP - n . .
(@, &% 5°) me[(?ﬁ%]r’?,ilﬂso{?’ Z%;] § Qﬂ x1+ 229 > 1 —s3,21 + 22 < t,5 > f3,Vi € [3]

When t = 1/2, one of its optimal solution is x} = 1/4,25 = 1/4,s7 = 0,85 = 1/4,s5 = 1/4,8* =0,
which is infeasible to the DRCCP. Thus, ALSO-X# may not be able to find an optimal solution of the
DRCCP. That is, we can have v4# > v when the uniqueness assumption is violated. o

3.2 ALSO-X# is Better Than ALSO-X#

In the lower-level ALSO-X# (5b), we impose the constraint 5 < 0 based on the CVaR approximation
(4). By relaxing this constraint, we obtain a weaker ALSO-X# (6). We show that when ALSO-X# pro-
vides a feasible solution to DRCCP (2), the lower-level ALSO-X# is equivalent to that of ALSO-X#.
Particularly, under type co—Wasserstein ambiguity set and for a given objective upper bound ¢, when
there exists an optimal solution from the lower-level ALSO-X# (6b) that is feasible to DRCCP (2), any
optimal solution of the lower-level ALSO-X# is also feasible to DRCCP (2).

Theorem 2 Suppose that for any objective upper bound t such that t > mingex ¢ @, ALSO-X# (5) is better
than ALSO-X# (6), i.e., v# < vA%.

Proof It is sufficient to show that for a given objective upper bound ¢, if the lower-level ALSO-X# (6b)
obtains a feasible solution to DRCCP (2), then the lower-level ALSO-X# (5b) is also feasible.

Let (, B) denote an optimal solution from the lower-level ALSO-X# (5b) and let (&, 3) denote an
optimal solution from the lower-level ALSO-X# (6b). Suppose that & is feasible to DRCCP (2), i.e.,
satisfies (3c). Now let B

5= Vi {0 ai(@)]. + (@) "¢~ bu(@). Vi € 1]} <.

According to theorem 1 in [41] (see, e.g., equation (7) in [41]), then we have that (z, 3*) is another
optimal solution to the lower-level ALSO-X# (6b). Since the only difference between the lower-level
ALSO-X# (5b) and the lower-level ALSO-X# (6b) is the constraint 8 < 0, the solution (z, 3*) is also
optimal to the lower-level ALSO-X# (5b). That is, for a given objective upper bound ¢, both lower-level
problems have the same optimal value.

In this case, for any optimal solution from the lower-level ALSO-X# (5b), it should also be optimal

to the lower-level ALSO-X# (6b). Hence, (Z, () is also optimal to the lower-level ALSO-X# (6b). Based
on theorem 1 in [41] (see, e.g., equation (7) in [41]), we have

5> VaR,_. {e lai(®@)]], + a:(@)TE — bi(&),Vi € [1]} .
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Combining with the condition that B < 0, we have
VaRy . {0]lai(@)], + a:i(@)T¢ — bi(@),vi € (11} <0,
which implies that Z satisfies (3¢), i.e., Z is also feasible to DRCCP (2). This completes the proof. O

We make the following remarks about Theorem 2:

(i) Note that in Theorem 2, we show that ALSO-X# is better than ALSO-X#; and
(i) One may expect that ALSO-X and ALSO-X# are comparable. In fact, they are not. In Example 1, we

can show that ALSO-X# returns a better solution (i.e., v# = 0 and ALSO-X fails to find any feasible
solution), while in Example 3, ALSO-X can have a better solution (i.e., v = 1/2 < vA%E =9 /3).

3.3 ALSO-X# is Better Than CVaR Approximation

Recall that the differences between ALSO-X# and CVaR approximation lie in the corresponding upper-
level and lower-level problems, where the checking condition in the upper-level CVaR approximation is
more restricted than the one in the upper-level ALSO-X#, and the lower-level ALSO-X# is a relaxation
of the lower-level CVaR approximation. As a result, we show that when CVaR approximation provides
a feasible solution to DRCCP (2), any optimal solution of the lower-level ALSO-X# must be feasible to
DRCCP (2).

Theorem 3 ALSO-X# (6) is better than CVaR approximation (4), i.e., v% < v©VaR,

Proof Notice that for a given objective upper bound ¢, the lower-level ALSO-X# is a relaxation of the
lower-level CVaR approximation. Thus, if the optimal value of the lower-level CVaR approximation is
non-positive (i.e., constraint (4c) holds), then the optimal value of the lower-level ALSO-X# must be
non-positive, which ensures that any optimal solution is feasible to the DRCCP (2) according to [36].
Therefore, for a given ¢, ALSO-X# must find a feasible solution to DRCCP (2) if CVaR approximation
finds one. This completes the proof. O

We remark that the result in Theorem 3 can be extended to any general ambiguity set, that is, ALSO-X#
is better than CVaR approximation under a general ambiguity set. However, this does not hold for The-
orem 1, since the worst-case distributions in the lower-level ALSO-X (3b) and the upper-level ALSO-X
(8¢c) may not be the same. Hence, ALSO-X# and ALSO-X are not comparable under the general ambi-
guity set. Below is an example to illustrate Theorem 3.

Example 4 Consider a single DRCCP under type co—Wasserstein ambiguity set with § = 1/2. Assume
that the empirical distribution has 3 equiprobable scenarios (i.e., N = 3, P{C = ¢’} = 1/N), risk pa-
rameter ¢ = 1/2, deterministic set ¥ = R, function a;(z) "¢ — by (z) = 2 — ¢, ¢! = 5/2,¢? = 3/2, and
¢3 = 1/2. In this example, DRCCP (2) resorts to

v* =m>igl{m: I(zx>3)+1I(zx>2)+1I(x>1)>2},
Its CVaR approximation is

1
UCVaR:xZgE%SO {x: r>3—81,r>2—50, > 1_33,3,€E[S]Si—§§075i > B,Vie [3]}7
1

and the weak formulation of ALSO-X# (6) can be written as

VA% = mtin{t: Z I(s;j >0) <2,

1€[3]
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(z*,s*,8") € argmin
z2>0,s,8

1 1
EPIRE
€3]

r>3—81,r>2—8,x>1—s3,
x <t,s; > B,Vie[3

1

By the straightforward calculation, we have v*

=9 ,UCVaR _
=2, =

8/3, vA% = 2. Therefore, in this example,

ALSO-X# returns the optimal solution, but CVaR approximation cannot.

<

3.4 Summary of Comparisons

Finally, we conclude this section by providing theoretical comparisons among the output objective val-
ues of ALSO-X#, ALSO-X#, ALSO-X, and CVaR approximation, which are shown in Figure 1.

ALSO-X
L////e/ 1 teo;én‘{\\\\
< e i 357~
DRCCP % --- f’ ALSO-X# v CVaR Approximation
~ S_ 1 é - =
]7160;\ SO l| - -~
;s | - et
ALSO-X# X - noncomparable

Fig. 1: Summary of Comparisons

4 The Optimal Solution of the Lower-level ALSO-X is Unique

This section investigates conditions under which the lower-level ALSO-X can provide a unique opti-
mal solution, a sufficient condition guaranteeing that ALSO-X# is better than ALSO-X according to
Theorem 1. Notably, we prove that the lower-level ALSO-X (3b) admits a unique optimal solution if
one of the following conditions hold: (i) empirical data are sampled from continuous nondegenerate
distributions and set X’ is arbitrary; (ii) a single DRCCP with continuous reference distribution and set
X is convex; (iii) a joint DRCCP with right-hand uncertainty, a continuous reference distribution, and a
convex set X; or (iv) a joint DRCCP with left-hand uncertainty and set X" is convex.

4.1 Uniqueness: DRCCPs with an i.i.d. Empirical Reference Distribution Sampling from a Continuous
Distribution

In this subsection, we consider the case under which lower-level ALSO-X (3b) can provide a unique
solution when the reference distribution is of finite support and is constructed by i.i.d. samples from

a continuous nondegenerate distribution. For the given i.i.d. samples of the random parameters ¢, we
consider the following ALSO-X:

vd = rntin t, (7a)

st. =¥ € argar:nin ijg;\,} max [0 la;(x)]|, +ai(z) "¢ - bi(x)] , : clx<txecXy, (7b)
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Mo {52?;]( [0 |ai()|| + ai(z") "¢7 = bi(x")], = 0} > N — | Ne]. (7¢)

JE[N]

In fact, we show that with probability 1, for any objective upper bound ¢ such that t > mingecx ¢« and
the optimal value of the lower-level ALSO-X (3b) is positive (i.e., v(t) > 0), the lower-level ALSO-X
(3b) admits a unique optimal solution. Note that if v*(¢) = 0, then any optimal solution of the lower-
level ALSO-X (3b) is feasible to DRCCP (2). Thus, we focus on the non-trivial case when v4(t) > 0.

Theorem 4 Suppose (i) for any 1, T2 € X with 1 # x4 and any pair (iy,i2) € [I] X [I], ai, (1) # a4, (x2);
(ii) the true distribution P* of the random parameters ¢ is continuous and nondegenerate; and (iii) ¢, ¢2, -+, ¢V
are i.i.d. samples of the random parameters . Then the lower-level ALSO-X (3b) admits a unique optimal solution
when t > mingey ¢! x and vA(t) > 0.

Proof We first write the lower-level ALSO-X (7b) as

F(,8:): =+ Z mas [0 las(@)]l. + ai(2) ¢’ ~ bi@)] ®)

][5]

where set S; is defined as S, = {j € [N] : 0|lai(z)|, + ai(x) ¢! — bi(x) > 0,Vi € [I]}. Suppose
there exist two different solutions x; # x2 € A& in (8). In this proof, we suppress the notations as
F(x1,51) = F(x1,S8z,) and F(x2,S2) = F(x2,Sz,). We consider F(x1,S1) = F(x2,S2) > 0 since
vA(t) > 0. We split the remaining proof into three steps based on the deterministic set .

Step L Suppose that set X is compact and discrete. Let i and i} denote the maximum pieces of the
sample j € [N] in the objective function (8) corresponding to x1, x5, respectively. There are two cases to
discuss.

Case1). When §; = S, =T C [N]and T # 0, by the definition of F(x1,S1) = F(x2,S2), we have

p* {5: F(21,81) = F(22,8) > o\fr £ 0,3,V e [N]}

<JP>*{51 > Ha (1) — “z'%(“"?)r C]}

JET

—Z[ (wz)-i—@{

JET

a,(@)

* ‘

According to the presumption (i), for any x; # x2 and any pair (i1,42) € [I] X [I], we have a; (z1) #

HT#@J{J%,WG [N]}-

a; (z2) for all j € [N]. Since the random parameters ¢ is continuous and nondegenerate (see, e.g.,
definition 24.16 in [28]), then

{e [l e ¢

JET

— Z {bi{ (1) — big (@2) +6 H

JET

] ‘T# 0.1, i2,vj € [N}} =0.
Case 2). When S; # Sy, by the definition of F'(x1,S1) = F(x2, S2), we have

p* {5: F(z1,8) = F(22,8) > 0‘31 £ 8o,V € [N]}

{8 ¥ fa@ ] ¥ fage ¢ ¥ |[age)-ayw)] ¢

j€$1\$2 jESz\Sl JES1INS:
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ool ]

=y [bi{ (®1) = by (22) + 6 H

JET

* ‘

Sy # Sy, i,V € [N]}.

Since at least one of the sets S\ Sz, S2\S1, S1NS2 is nonempty, together with the fact that the distribution
of random parameters ¢ is continuous and nondegenerate, we have

e Y o] 2 fesee]s Y |faglen-ay@)] ¢
JES1\S2 JES2\S1 JESINS,

— Z [bi{ (T1) = by (w2) + 0 H *”
jeT

a; ()

S1 # S, V) € [N]} =0.

3@, -|

Combining these two cases, for a given & # x2, we have

P*{{: F(x1,S1) = F(x2,82) > 0}
_ 3 p* {T¢®,¢{,ig,\7jeT}P*{5;F(wl,sl)zF(mQ,sg)>0’r;é@,z'{,z‘g,\7je[zv]}

TCINi €[], €[1),Vi€T

+ 3 p* {317A32,¢{,ig7weslu52}
81,82C[N],81#82,i] €,i3€82,Vj€S1 US>

p* {é: F(z1,8)) = F(,8:) > 0\31 £ S, il i, V) € [N]}
—0.

Hence, for any x; # xo € X, we further have

P* 6: U F(.’Bl,Sl):F(QIQ,SQ) >0, =0.

T1EX,T2€EX,
T £T2

Therefore, we show that when set A’ is discrete and compact, there exists a unique optimal solution in
the lower-level (8) with probability 1.

Step II. Suppose that set X' is compact but may not be discrete. Suppose set ¥ C [—M, M]". Then for
some small v > 0, by discretization, we have for any « € X, there exists y € X, such that || —y||c < v
and |X¥| < |2M/v|". Instead of optimizing over X', we consider optimizing over X” in (8). Here, we
choose v as v(1) = 2M /27,7 € N. Following the similar procedures in Step I, we assume that there exist
two different solutions (v (7)) # x2(v(7)) such that @1 (v(7)), x2(v(7)) € XY (1), F(x1(v(7)),S1) =
F(z2(v(1)),S2) > 0. For any 7 € N, we have

P ¢ U F(xi(v(1)),81) = F(22(v(7)),82) >0 p =0.
z1(v(7))EXY (7),22(V(T))EXY (T),
1 (v(7)) 22 (v (7))

When 7 increases, the number of feasible solutions increases. That is, the measurable sequence
U {F(z1(v(1)),81) = F(z2(v(7)),S2) > 0}

x1(v(1))eXY (1), 22(v(T))EXY (T),
z1(v(7))F#e2(v(7))
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is monotone nondecreasing as 7 increases. Following the Monotone Convergence Theorem for se-
quences of measurable sets (see, e.g., theorem 1.26 in [52]), when 7 — oo, the limit of this measurable
sequence exists. Thus, we have

P9 ¢ lim U F(x1(v(1)),51) = F(22(v(7)),S2) > 0
@1 (v(7) X" (7) @2 (v (1) EX" (7),

®1 (v(7))F®2 (v (7))

= lim P* ¢ ¢ U F(xi(v(1)),81) = F(x2(v(7)),82) > 0 3 = 0.
z1 (v(7))EXY (7),@2(v(7)) EXY (),
@1 (v (7)) #@2 (V(7))

Thus, when set X is compact but not discrete, there exists a unique solution of (8) with probability 1.
Step III. The result holds when set X is not compact. Let X, = XNB(0,r) withr > 0. By definition, X, is
compact. Then following the similar procedures in Step I and Step II, there exist two different solutions
x1 # x such that z,, x> € XAT, F(x1,81) = F(x2,S2) > 0. For any r > 0, since set /'?r is bounded,
according to Step II, we have

P*{ ¢ U F@.8)=F(@2,8)>0;=0.

wle‘)/(‘\r,mZe)?'rw
T £T

Due to Monotone Convergence Theorem for sequences of measurable sets (see, e.g., theorem 1.26 in
[52]), we have

P*{ ¢: lim U F(x1,81) = F(x,8,) >0

r—00 . N
T EXr, L2 EX,
T1F£T2
= lim P* é: U F(IL‘l,Sl):F(wQ,SQ) >0, =0.

T—00 e N
€1 EXy, B2 E€X,
T AT

Therefore, when set X is not compact, there exists a unique solution of (8) with probability 1. This
completes the proof. O

We make the following remarks on Theorem 4:

(i) The proof shows that any objective value of the lower-level ALSO-X is unique; and
(ii) The key of the proof is to exploit the properties of the linear uncertain constraints and continuous
nondegenerate distribution. Relaxing any of them, the result in Theorem 4 may not hold.

Sampling from a continuous distribution helps us find a unique solution of the lower-level ALSO-X
(38b). However, if the conditions in Theorem 4 were not met, there might not be a unique optimal so-
lution. For example, when the true distribution of random parameters £ is of discrete support, the
lower-level ALSO-X may not have a unique solution, i.e., in Example 3, when ¢ = 1/2, the lower-level
ALSO-X provides two optimal solutions, of which one is feasible to DRCCP (2) and another one is not.

We use the following example to show that the lower-level ALSO-X (3b) does not admit a unique
solution either when the reference distribution is continuous.
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Example 5 Consider a single DRCCP under type co—Wasserstein ambiguity set with a Gaussian distri-
bution ¢ ~ N(fi, %), and § = 1/2) withn = 3,5 = [1,1,1]T, £ = {é (?) ﬂ, risk parameter ¢ = 0.40, set

X = {0,1}? and function a;(x) "¢ — by (z) = —2 + x ' {. In this example, the lower-level ALSO-X (3b)
can be written as

x* € argmin {E]pé {9 llz]l, + Gzt + Cowo + Cyag — 2}+ D —x —x—x3 < t,x € {0, 1}3} ’

where the dual norm is || - ||2. Let ¢ = —2. A simple calculation shows that there are three optimal solu-
tions from the lower-level ALSO-X (3b) with the same positive objective value, i.e., (z!)* = (1,1,0)T,
(x%)* = (1,0,1)7, (x)* = (0,1,1)T. Therefore, in this case, there is no unique solution from the lower-
level ALSO-X. o

This motivates us to restrict set X’ to be convex when the reference distribution is continuous in the next
subsections.

4.2 Uniqueness: Single DRCCPs with Continuous Reference Distributions

We consider the case when the reference distribution is continuous. For a single DRCCP (2),ie., I =1,
when the affine mappings are a;(x) = «, b1(x) = b1, the random parameters ¢ is continuous and the
deterministic set X" is convex, the lower-level ALSO-X (3b) is equivalent to

x* € argmin {Epé [9 |||, +2" ¢~ b1} ez <txc X} .
x +

Recall that F° (z) denotes the objective function in the lower-level ALSO-X (3b). In this case, we have

F(x) = Es, [e |||, + 2T ¢ — bl} .

Theorem 5 Suppose that in a single DRCCP (2), the deterministic set X is convex, the reference distribution IP;
is continuous and nondegenerate with support R", ||- ||« = || - ||, with p € (1, 00) and affine mappings a,(x) = x
and by(x) = by. Then the lower-level ALSO-X (3b) admits a unique optimal solution when t > mingex c'x
and vA(t) > 0.

Proof See Appendix A.1. O

Note that our analysis in Theorem 5 shows that the uniqueness of the lower-level ALSO-X applies to
any general continuous nondegenerate distribution. Then the following corollary shows that the lower-
level ALSO-X (3b) returns a unique optimal solution when we know the upper and lower bounds of
the support =.

Corollary 1 Suppose that in a single DRCCP (2), the deterministic set X is convex, || - ||« = || - ||, with
p € (1,00) and affine mappings a, (x) = x and by (x) = b1, and the reference distribution Pg is continuous and
nondegenerate with a closed convex support = such that

ez min {Ozl+x'¢}>b,and I €E: max  {O||z|. +x ¢} < b
zeX,cT &<t zeX,cT x<t

Then the lower-level ALSO-X (3b) admits a unique optimal solution when t > minge y ¢' @ and vA(t) > 0.

Proof Using the fact that in Part (i) of the proof of Theorem 5, we also have |, Bpu(a™) (y" 00| x|+)/0x +
y " ¢)?P(d¢) > 0 according to the presumption, the proof is almost identical to that of Theorem 5 and is
thus omitted. O

We remark that the result in Theorem 5 can also be generalized to || - ||« = || - ||, with p € {1,00}. Due
to the page limit, we refer interested readers to Appendix A.2 for the proof.
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4.3 Uniqueness: Joint DRCCPs with a Continuous Reference Distribution

In this subsection, we consider a joint DRCCP with right-hand uncertainty and a continuous reference
distribution. In particular, we assume that I = n, the uncertainty constraint is a;(z) ' ¢ —b;(z) = (; — z;,
and the random parameter (; is continuous for each i € [n]. That is, we consider the following DRCCP:

0" = min {cTa}: inf P{é: & < Vie [n]} > 15},

reEX PEP
that is,
* = 1 T N N' ~' < ; ) > -
v ar:r.lelg{c w.P{C.Q—&-Qfx“VzE[n]}fl s}. )

In this case, the lower-level ALSO-X (3b) is

zeEX i€[n]

vA(t) = min {E[pzc. [max {@ +60— xZ}J celx < t} .

Our proof idea is to show the positive definiteness of the Hessian of the objective function in the lower-
level ALSO-X (3b) to prove the uniqueness.

Theorem 6 Suppose that in a joint DRCCP (9), the deterministic set X is convex, and the reference distribution
Pz is continuous with support R™. Then the lower-level ALSO-X (3b) admits a unique optimal solution when

t > mingex ¢’ x and vA(t) > 0.

Proof Suppose that there exists an optimal solution z* to the lower-level ALSO-X (3b). We split the
proof into two steps to show that «* is the unique solution.

Step 1. We first provide the closed-form expression of the lower-level ALSO-X (3b) and its first-order
and second-order derivatives, where the objective function in the lower-level ALSO-X (3b) is F(z*) =
maX;e[n) {Gi + 0 — =7}, . According to the continuity of function f(7) = max{7,0} and theorem 1 in
[42], we can interchange the subdifferential operator and expectation, the first-order derivative for each
i € [n] of F(x*) is

OF (z*) /
=- P(d¢),
O i (@)

where p(z) ={{: +0—2, >0, +0 -z, > ¢ +0—x;,Vj € [n]\ {i}}. Let us take its second
derivative, i.e., for each ¢ € [n], the diagonal entry of the Hessian matrix Hz(x*) is

e TR Sl B )
i Hio(2*) ren\ {4} Opir(z*)
where
Opio(x) ={C: ¢ +0—2,=0>(; +60—x;,V5 € [n]\ {i}},
and

For each 7 € [n] \ {i}, the off-diagonal entry of the Hessian matrix Hz(z*) is

9?F(x*)
= P(d¢).
axiaxT /3#”(2*) (dC)
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Step II. Next, we show that the Hessian matrix Hz(x*) is strictly diagonally dominant. We split the
following proof into two parts: (i) faum(w*) P(d¢) > 0 for each i € [n]; and (ii) fauw(w*) P(d¢) > 0 for
eachi € [n]and 7 € [n] \ {i}.
Part (i). The fact that famo(w*)
and set Oy (2*) has a nonempty relative interior.

Part (ii). The fact that fau”(m*) P(d¢) > 0 for each i € [n] and 7 € [n] \ {i} is because set du;-(x*) has a
dimension of n — 1 and set dy1;-(z*) has a nonempty relative interior.

Thus, the Hessian matrix Hz(x*) is strictly diagonally dominant, i.e., the following two conditions
satisfied: (i) for each i € [n]and 7 € [n]\{i}, 02F(z*)/dz;0z, < 0;and (ii) for eachi € [n], 92 F (x*) /0x2+
D e\ O?F(x*))0x;0x, > 0. According to Gershgorin circle theorem (see, e.g., theorem 6.1.10 in
[24]), the Hessian matrix H(x*) is positive definite. Therefore, the optimal solution * is unique. [

P(d¢) > 0 for each i € [n] is because set dy;o(x*) has a dimension of n — 1

The following corollary shows that the lower-level ALSO-X (3b) returns a unique optimal solution
when = is closed and convex with mild conditions.

Corollary 2 Suppose support = of ¢ is closed and convex. When t > mingcx ¢’ and v (t) > 0, for any
x € X N{c'x <t} with a positive lower-level ALSO-X objective value, the set

has a dimension of n — 1. In a joint DRCCP (9), when the deterministic set X is convex and the reference
distribution P is continuous with support =. Then the lower-level ALSO-X (3b) admits a unique optimal

solution when t > minge y ¢’ @ and vA(t) > 0.

Proof Using the fact that similar to part (ii) in the proof of Theorem 6, we also have [, . P(d¢) >0

for each i € [n] according to the presumption, the proof is almost identical to that of Theorem 6 and is
thus omitted. O

4.4 Uniqueness: Joint DRCCPs with Left-hand Side Uncertainty

We consider the case when the reference distribution is continuous. For a joint DRCCP (2) with left-
hand side uncertainty and knapsack constraints, we assume that the affine mappings are a;(x) = «,
bi(x) = b; for each ¢ € [I], the random parameters ¢ is continuous with ¢ := [¢1,- -+, ¢1] such that ¢;
and ¢; do not overlap for each 7 # j, and the deterministic set X" is convex. That is, we consider the
following DRCCP:

* s ) T Eop T £ < b Y4 >1—
v glelg{c ©: ngx?’{f.m 51_1)1,%6[1]}_1 5},
that s,

* . T_.. ~ . T ) - o

v* = min {c x: IP{C. Ollz|, +x' ¢ <b,Vie [I]} >1 5}. (10)
In this case, the lower-level ALSO-X (3b) is

Afpy — o ) TE g T <t
v (t) mln{EPc [Ilrel?}]({GHmH*Jra: Ci bl}Jr] c a:_t}

reEX

Recall that F (x) denotes the objective function in the lower-level ALSO-X (3b). Under this circumstance,
we have

F(x) = Ep, [Ilrelf[i})]( {9 |||, + 2" & — bi}J .
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Theorem 7 Suppose that in a joint DRCCP (10), the deterministic set X' is convex, the reference distribution P;
is continuous and nondegenerate with support R", || - [l = || - ||, with p € (1, 00), affine mappings a;(x) = :c

and b;(x) = b; for each i € [I], and the random parameters C is continuous with ¢ := [C1,- -+ , (1] such that ¢;
and {; do not overlap for each i # j. Then the lower-level ALSO-X (3b) admits a unique optimal solution when
t > mingey ¢’ x and vA(t) > 0.

Proof The first-order derivative of F (az) is

Fla) = Z/(w)a llal. +" ¢] Pdc),

i€[I]

where for each i € [I], pi(z) = {¢ : Ol|z|l« + "¢ > biyx "¢ — b > x "¢ — b,V € [I]\ {i}}; and the
Hessian of F'(x) is

1 90 || ) (aew ’
i)=Y / ( - e f 4 P(de
7 ; |:|‘B||2 wi(2)N{0)|2||, +&T ¢i=b;} oz ox (d¢)

€[]

1

/ 2|z
Iz, relvi} @@ T G—bi=2T ¢ —b,}

+ G666 TRag o [ TR

The remaining proof is similar to that of Theorem 5 and is thus omitted for brevity. O

Similarly, when the upper and lower bounds of the support = are accessible, the following corollary
shows that the lower-level ALSO-X (3b) returns a unique optimal solution.

T

Corollary 3 Suppose support = of ¢ is closed and convex. When t > mingex ¢’ and vA(t) > 0, for any

rexXxn{cz< t} with a positive lower-level ALSO-X objective value, the set
opi(x)={¢eZ:0|z|,+x ¢ —b;=0>0|z|, +x"¢ —b;,Vj€ ]\ {i}}

has a dimension of n — 1. In a joint DRCCP (10), when the deterministic set X is convex and the reference
distribution Ps is continuous support =. Then the lower-level ALSO-X (3b) admits a unique optimal solution

when t > mingex ¢! x and vA(t) > 0.

5 Exactness: ALSO-X# Provides an Optimal Solution to a DRCCP

In this section, we provide sufficient conditions under which ALSO-X# provides an optimal solution
to a DRCCP under type co—Wasserstein ambiguity set. According to Theorem 2, v4# < v4%. Thus, for
ease of analysis, we focus on ALSO-X# (6). To begin with, we recast DRCCP (2) and ALSO-X# (6) in
the following forms: N o

v = :rcrg;ré {cT:c: Go (a:Th) < 0} ; (11)
and
v = mtin t, (12a)
st. " €argmin{Fy (x'h):c'z <t}, (12b)
reX
Go ((=*)Th) <0. (12¢)

We see that if both functions CA¥9(~) and Fy(-) are monotone nondecreasing, then ALSO-X# can find an
optimal solution to DRCCP. So is ALSO-X# according to Theorem 2.
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Theorem 8 Suppose that in DRCCP (11) and ALSO-X# (12), both functions Go(-) and Fy(-) are monotone
nondecreasing. Then ALSO-X# is exact.

Proof Let v1,vs be the optimal values of DRCCP (11) and ALSO-X# (12), respectively. Since ALSO-X#
(12) is a conservative approximation, we must have v; < vy. Then it remains to show that vy < v1.

Let z* be an optimal solution of DRCCP (11) and ¢* = ¢' z*. Plug t* into the lower-level ALSO-X#
and let Z be its optimal solution, that is, o

T € argmin { Fy (wTh) ce'x < t*}.
reX
Since * is feasible to the lower-level ALSO-X# with t* = ¢ «*, wemusthave Fy(z"h) < Fy((x*)"h).
According to the monotonicity assumption of the function Go(zh), we further have Gy(Z h) <
Go((x*)"h), which implies that Go(z"h) < 0. Hence, we have v, < t* = v;. That is, ALSO-X# is
exact.

According to Theorem 2, ALSO-X# is less conservative than ALSO-X#. Thus, ALSO-X# is also
exact. This completes the proof. O

Next, we identify three special families of DRCCPs satisfying the conditions in Theorem 8, namely,
single DRCCPs with elliptical, multinomial, and finite-support reference distributions, respectively.

5.1 Special Case I: Single DRCCPs with Elliptical Reference Distributions

We consider a single DRCCP when the reference distribution is elliptical. Note that an elliptical dis-
tribution Pg (i, X, 9) is described by three parameters, a location parameter p, a positive semi-definite
matrix X, and a generating function g, and its probability density function f has the following form:

Fla) =3 (5@ -0 5 - )

with a positive normalization scalar k. The probability density function of the standard univariate ellip-
tical distribution Pg (0, 1,9) is ¢(z) = kg(2?/2), and the corresponding cumulative distribution function
is ®(1) = |7__kg(2?/2)dz. For the single DRCCP (2), i.e., I = 1, when the affine mappings are a;(z) =
x, by(x) = by, the random parameters ¢ follow a joint elliptical distribution with ¢ ~ Pg(u, 3,9), and
the norm defining the Wasserstein distance is the generalized Mahalanobis norm associated with the
matrix 3, ie., |y|| = \/yT X'y, for some y € R", where X is the pseudo-inverse. According to the
reformulations in proposition 10 of [26], DRCCP (2) resorts to

vt = glel% {cT:c: u'x+ (@ '1—-e)+0) Vo TSz — b < 0},

the lower-level ALSO-X# (6b) is equivalent to

x* € argmin {/J,Tm + {5 ((@71(1 - 5))2 /2) /e + 0} VaTXe — bl} )
zeX,cT x<t
where G(7) = G(c00) — G(7) and G(7) = k [ g(2)d=.
Then we study the exactness of ALSO-X# for the following two conditions.

Condition I. For a single DRCCP under an elliptical reference distribution, suppose that £ = pp ™ and
'z >0 forany & € X. In this case, we can simplify DRCCP (2) and the lower-level ALSO-X# (6b) as

v* = min {cTa:: Go(p'x) = (1+@ '(1—¢)+0) ple—b < 0} , (13a)

reEX
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NS argn;(in {fg(uTm) = (1 +G ((@*1(1 - 5))2 /2) Je+ 9) plx—b:cx< t} , (13b)
xe

respectively. The exactness result readily follows from Theorem 8, which is summarized below.
Corollary 4 Suppose that in a single DRCCP (2), the reference distribution Py is elliptical with affine mappings
ai(z) =z, bi(x)=b, X=pu’, u'x>0foranyx € X,and 1 + & (1 —¢) + 0 > 0. Then ALSO-X# is
exact.

Proof According to the reformulations (13a) and (13b) and the assumptions that u "« > 0 for any « €
Xand 1+ ®71(1 —¢)+ 60 > 0, both functions Gy(-) and Fy(-) are monotone nondecreasing. Hence,
conditions in Theorem 8 are satisfied, and we have that ALSO-X# is exact. (]

Condition II. For a single DRCCP under an elliptical reference distribution, suppose that X C {0,1}",
p > 0,and X = Diag(u). In this case, DRCCP (2) and the lower-level ALSO-X# (6b) can be simplified
as

vt = rgjirll} {CT3}: Golp'x)=p @+ (@ '1—e)+0) VuTz—b < O}, (14a)
xc{0,1;™

x* € argmin {F@(H/TIL’) =p'x+ {é (( "(1-¢)) /2) /e + 9} VpTe—b:cla< t} (14b)
ze{0,1}"

respectively. According to Theorem 8, we have the following exactness result.

Corollary 5 Suppose that in a single DRCCP (2), the reference distribution P is elliptical with affine mappings
ai(x) =z, by(x) = b, X C{0,1}", u > 0, X = Diag(p), and ®=1(1 — &) + 6 > 0. Then ALSO-X# is
exact.

Proof According to the reformulations (14a) and (14b) and the assumptions that g > 0 and ®~*(1—¢) +
6 > 0, both functions Gy (-) and Fy(-) are monotone nondecreasing. Hence, according to Theorem 8, we
have that ALSO-X# is exact. O

We remark that the results in Corollary 4 and Corollary 5 hold for general type ¢g—Wasserstein ambiguity
set, as shown in Section 6.2.

5.2 Special Case II: Single DRCCPs with i.i.d. Random Parameters and Binary Decision

In this subsection, we study the exactness of a single DRCCP (2) with the binary decision variables,
where we can provide the closed-form expression of the lower-level ALSO-X#.

Let us first consider a single packing DRCCP (2), where the deterministic set X C {0, 1} is binary,
the affine mappings are a,(x) = «, by(x) = by > 0, and support is nonnegative 5 C R’} with i.i.d.
random parameters ¢. That is, we consider the following DRCCP (2):

v' = 51612 {cT.’I;: Pier%)foo]P’{& x' €< bl} >1 —5} .

In this case, DRCCP (2) is equivalent to

v* :géig{ch: Go(e'z) = l—s—P{é: gé%%i {Z Eixi: € =], < 9} < bl} SO}. (15a)

€[n]
And the lower-level ALSO-X# (6b) is equivalent to

x* € argmin {F9(€T$) = CVaRi_. {—b1 + max [Z &xit ||€— CHP < 9] }} (15b)

zeX,cl <t ]

In this case, we can show that ALSO-X# is exact.
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Corollary 6 Consider a single DRCCP (2) with affine mappings a1(x) = x, b1 (x) = b1 > 0, the deterministic
set X C {0,1}", and the random parameters § are i.i.d. and nonnegative. Then ALSO-X# is exact.

Proof 1t is sufficient to show that functions @9(-) and Fy(-) indeed exist and share the same monotonic-
ity. We first notice that

gg%%%{Zm:us—éllpw} Z@W;ﬂ“{z&xz I€p<9}

€[n] i€[n] i€[n]

Since {@}ie[n] are i.i.d. nonnegative random parameters, for any « € X such that e '« = ¢, we have

?;%z&{Zm e - C||p<9} CZCﬁmaX{Z& ||€||p<9}

i€[n] i€l i€l

Hence, let us define

Gole @) =Go(t) =1—c—F {c géax{zgixi:||£—é||p§9}§b1}.

1€[n]

Similarly, we also define

Fy(e"x) = Fy(f) = CVaR;_. {—b1 + max [Z Gixi: ||€—C|lp < 0] } .

i€[n]

Since all the random parameters {@}ie[n] are nonnegative, we have

Z G+ max { Z &i: ||§||p<9}>ZCz+maX{Z§z 1€]lp < }

i€[it1] S Py iclg

almost surely. Thus, we have

Go(0) < Go(t+ 1), Fy(t) < Fo(€ +1).
According to Theorem 8, ALSO-X# is exact. O
We remark that the result in Corollary 6 also holds for a covering DRCCP. That is, let us consider the

following

v*:min{c—rw inf IP’{£ wT£>b1}>1—5},

xrzeEX PEP

where the random parameters {(; };c[,) are i.i.d. and nonnegative and cost vector c is nonnegative. Let
us denote 1 — y; = z; for all ¢ € [n]. Then chance constrained covering problem is equivalent to

* = i Tle—1): : TéE> >1— .
v (errg)nex{c (e—y) PénfmIP’{E( y)E_b1}_1 a}

As a result, the proof in Corollary 6 simply follows, which is summarized below.

Corollary 7 Consider a single DRCCP with affine mappings a1 (x) = —x, b1(x) = —b1 < 0, the deterministic
set X C {0,1}", and the random parameters ¢ being i.i.d. and nonnegative. Then ALSO-X# is exact.



22 Nan Jiang, Weijun Xie

5.3 Special Case III: Single DRCCPs with Empirical Reference Distribution

In this subsection, we study the exactness of a single DRCCP with empirical reference distribution,
where the affine mappings are a;(z) = «, bi(x) = b1 > 0, and the support is discrete. That is, we
consider the following DRCCP:

v*:min{cTaz:P{f:9||m||*+mTf§b1}21—5}. (16)

xreX

Corollary 8 Consider a single DRCCP (2) with affine mappings a1(x) = x, by(x) = by > 0, and the norm
|| - || is the generalized Mahalanobis norm associated with the matrix ¥ = pp" and p'x > 0 forany x € X.
Suppose the support is discrete with P{¢ = (;u} = p; > 0 for all i € [N, where Y Pi =1and 0 < G <
(o < -+ < (N arescalars. Then ALSO-X# is exact.

Proof We define K € [N]as > ,c(;c_y1pi <1—¢€,2 ,cxPi = 1 — €. By definition, we have (x > 0 and

|||« = |1 |. According to the assumption that P{¢ = ¢ip} = p; > 0 for all i € [N], DRCCP (16) can
be simplified as

* : T :A T . . . T < <
vi=minqc x Go(p ) =1—¢ _;\[]plﬂ((g—i—@u x<b)<0,,

and the corresponding lower-level ALSO-X# (6b) is equivalent to

. : —= 1 _
x* € argmin { Fo(pu'x)= - E pi—(1—¢e)| G+ E il 'z +0|ply tu e b
zeX,cT <t i€[K] JE[K+1,N]

Both functions Gy (-) and Fy(-) are monotone nondecreasing. Therefore, the conditions in Theorem 8 are
satisfied, and we conclude that ALSO-X# is exact. (]

6 Extensions: DRCCPs under Type g—Wasserstein Ambiguity Set

In this section, we extend our discussions to type g—Wasserstein ambiguity set with ¢ € [1,00). We
first provide equivalent reformulations. Then we show that under type ¢—Wasserstein ambiguity set,
ALSO-X# can provide an optimal solution to a DRCCP. The results in this section rely on the equivalent
reformulations of DRCCP, ALSO-X, CVaR approximation, and ALSO-X# under type ¢—Wasserstein
ambiguity set with ¢ € [1, c0), which are displayed in Appendix B.

6.1 Comparisons of ALSO-X#, ALSO-X#, ALSO-X, and CVaR Approximation

As mentioned in Section 3, the main result of this paper in Theorem 1 cannot be extended to type
q—Wasserstein ambiguity set with ¢ € [1,00). That is, ALSO-X and ALSO-X# are not comparable
under type g—Wasserstein ambiguity set when ¢ € [1, o). Below is an example.

Example 6 Consider a single DRCCP under type 1—Wasserstein ambiguity set with § = 1 and | - ||. =
| - [l2. Assume that the empirical distribution has 4 equiprobable scenarios (i.e., N = 4, P{¢ = ¢'} =
1/N), risk parameter ¢ = 1/2, the deterministic set ¥ = R?, ¢ = (—4,—2,-3)", function a;(z) ¢ —
bi(z) =x'¢—3,¢ = (4,6,3)7,¢2 = (5,0,3)T,¢ = (2,1,4) 7, and ¢* = (0,2,5)". In this example,
numerically, we can solve ALSO-X v, ALSO-X# v;'#, and CVaR approximation vCV2R, where the

approximated objective values are vi! = —2.4929, vi'# = —2.4369, and vCVaR = —2.033 with error

bound [-107%,1074]. o
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Albeit ALSO-X and ALSO-X# are not comparable, following the similar proofs as those of Theorem 2
and Theorem 3 in Section 3, we can prove that ALSO-X# is better than CVaR approximation and
ALSO-X# is better than ALSO-X# under type g—Wasserstein ambiguity set with ¢ € [1, 00). Interested
readers are referred to Appendix B for proofs.

Proposition 1 Under type q—Wasserstein ambiguity set with q € [1, 00), suppose that for any objective upper
bound t such that t > minge y ¢' x, ALSO-X# is better than CVaR approximation.

Proposition 2 Under type g—Wasserstein ambiguity set with q € [1,00), suppose that for any objective up-
per bound t such that t > mingecx ¢’ @ and the lower-level ALSO-X# admits a unique optimal x-solution,
ALSO-X# is better than ALSO-X#.

6.2 Exactness of ALSO-X#

In this subsection, we extend the discussion in Section 5.1 for the single DRCCP (22) under elliptical
distribution with affine mappings a1 (z) = @ and b () = b1. Due to the page limit, we refer interested
readers to Appendix B for detailed derivations. Under type ¢—Wasserstein ambiguity set with elliptical
reference distribution, DRCCP resorts to

v* :miﬁ {ch: uTern;VfL'TEm*lh SO}, (17)
xe

with

n

/" (n — 1)1 kg(t2/2)dt > 09,y > d~1(1 — 5)} .

7y = min ¢ n:
d-1(1—¢)

In this case, the lower-level ALSO-X# is equivalent to

x* € argmin {uTm + [@ ((@’1(1 - s))2 /2) /e + Hs_ﬂ VzTSz — bl} . (18)
xeX,c <t
Let us make the same assumption as that in Condition I of Section 5.1, i.e., for a single DRCCP under

an elliptical reference distribution, suppose that ¥ = pu " and "z > 0 for any € X. Then DRCCP
(17) and the lower-level ALSO-X# (18) can be simplified as

x . T ...~ T _ * T
v —9131}612{6 x: Go(p :c)—(1+77q)u :c—b1§0},

¥ € argmin {Fg(uTa:) = (1 +G ((@71(1 - 5))2 /2) /e + 95_é> plx—b:clae< t} ,
TEX
respectively. The assumptions that u'a > 0 for any « € X and 1 + 5 > 0 ensure that both functions

ég(') and Fy(-) are monotone nondecreasing. Then the exactness result directly follows from Theorem 8
and Corollary 4, which is summarized below.

Corollary 9 Suppose that in a single DRCCP (17), the reference distribution P is elliptical with affine mappings
ai(x) =z, by(x) =b, T =pu’, p x>0forany x € X, and n; > —1. Then ALSO-X# is exact.

Similarly, let us make the same assumption as that in Condition II of Section 5.1, i.e., for a single DRCCP
under an elliptical reference distribution, suppose that X C {0,1}"”, u > 0, and 3 = Diag(u). In this
case, DRCCP (17) and the lower-level ALSO-X# (18) can be simplified as

v* = min {cTa:: Go(p'z)=p'x + navVp'e—b < 0} )
@e{0,1}n
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¥ € argmin {F@(/LT.’E) =p'z+ [@ ((‘Ifl(l - s))2 /2) /e + Gs_ﬂ VipTae—b:icla < t} .

xze{0,1}"

The assumptions pu > 0 and 7; > 0 guarantee that both functions @9(-) and Fy(-) are monotone nonde-
creasing. Then we have the following exactness result.

Corollary 10 Suppose that in a single DRCCP (17), the reference distribution Py is elliptical with affine map-
pings a1(x) = x, by(x) = b1, X C {0,1}", u > 0, ¥ = Diag(p), and Ny > 0. Then ALSO-X## is exact.

7 Numerical Study

In this section, we numerically demonstrate the efficacy of the proposed methods. All the instances in
this section are executed in Python 3.9 with calls to solver Gurobi (version 9.1.1 with default settings)
on a personal PC with an Apple M1 Pro processor and 16G of memory.

7.1 Synthetic Cases

We evaluate the differences among CVaR approximation, ALSO-X, and ALSO-X# using “Improvement
from CVaR approximation” to denote the percentage of differences between the value of a proposed
algorithm and CVaR approximation, i.e.,

Improvement from CVaR approximation (%)
_ CVaR approximation value — output value of a proposed algorithm

100.
|CVaR approximation value| .

Typically, CVaR approximation is quite conservative. As a better alternative, we also use “Improvement
from ALSO-X" to denote the percentage of differences between the value of a proposed algorithm and
ALSO-X approximation, i.e.,

ALSO-X value — output value of a proposed algorithm

Improvement from ALSO-X (%) = TALSO-X value| x 100.

We compare the performances of CVaR approximation, ALSO-X, and ALSO-X# of solving a single
DRCCP with different sizes of data points N = 400, 600, 1000, varying risk level ¢ = 0.10,0.20, fixed
Wasserstein radius § = 0.05, and also different dimensions of decision variables n = 20,40, 100. In
ALSO-X and ALSO-X# algorithm, we use the optimal value from CVaR approximation as an initial
upper bound ¢y and the quantile bound from [1] as an initial lower bound t;. For each parametric
setting, we generate 5 random instances and report their average performance.

We separate our discussions into type co—Wasserstein ambiguity set and type 2—Wasserstein ambi-
guity set, respectively.
Case I. Testing a DRCCP with type co—Wasserstein ambiguity set. We split the discussions into the
continuous case and the binary case.
1.1 Continuous Case. Let us first consider the following DRCCP:

v'=minqelz:z e 01" Z]l Ollzly+ > Cay <b'| >1-¢
zeN] JE[n]

Above, we generate the samples {¢ i}ie[ ~] by assuming that the random parameters ¢ are discrete and
iid. uniformly distributed between 1 and 80. We set §; = 1072 in ALSO-X# Algorithm 1. For each
random instance, we assume the cost vector ¢ to be random integer with each entry uniformly dis-
tributed between —30 and —1. And we assume the random parameter b is discrete and i.i.d. uniformly
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distributed between 1 and 20. The numerical results are displayed in Table 1. We see that although the
computation time of ALSO-X# is comparable to that of ALSO-X, the solution quality of ALSO-X#
is around 4%-10% better than that of ALSO-X. This demonstrates the effectiveness of our proposed
ALSO-X#.

Table 1: Numerical Results of a DRCCP under Type co—Wasserstein Ambiguity Set with § = 0.05

R N " CVaR ALSO-X ALSO-X#

Time (s) | Time (s) Improvement from Time (s) Improvement from

me s me (s CVaR approximation (%) me (s ALSO-X (%)
20 0.15 1.53 13.28 1.56 8.73
400 40 0.29 3.26 11.29 2.73 5.86
100 0.73 9.12 14.59 13.62 6.77
20 0.39 2.27 8.48 2.78 6.06
0.10 600 40 0.35 4.64 9.22 4.41 6.38
100 0.78 11.82 9.79 12.73 5.69
20 0.25 4.77 10.76 4.81 9.16
1000 40 0.72 7.20 9.16 7.35 5.10
100 1.62 20.15 6.31 21.98 3.38
20 0.22 2.75 12.94 243 9.20
400 40 04T 2.74 13.53 234 6.28
100 0.66 4.79 5.39 5.51 6.02
20 0.49 3.49 6.49 3.24 7.91
0.20 | 600 40 0.54 6.18 5.33 4.07 5.97
100 1.43 12.87 3.82 10.66 7.76
20 0.52 6.50 8.59 5.26 5.76
1000 40 0.84 7.68 4.21 7.53 5.09
100 2.38 21.92 4.76 18.47 3.73

1.2 Binary Case. Let us first consider the following DRCCP:

1 ) )
* s T,.. n Lo g —
v =min{ e x:xe{0,1} ,E[N]]l 9|:B||1—|-E[]ijjﬁb >1-¢
1€ JEINn

Above, we generate the samples {¢ "}ie[ ~] by assuming that the random parameters ¢ are discrete and
iid. uniformly distributed between —10 and 20. We set §; = 0.5 in ALSO-X# Algorithm 1. For each
random instance, we assume the cost vector ¢ to be random integer, with each entry uniformly dis-
tributed between —10 and —1. And we assume the random parameter b is discrete and i.i.d. uniformly
distributed between 1 and 200. The numerical results for this case are displayed in Table 2. Similar to the
results in Table 1, we conclude that ALSO-X# enhances the solution quality from ALSO-X by around
3%-7% improvement with a comparable computation time.

Case II. Testing a DRCCP with type 2—Wasserstein ambiguity set. We split the discussions into the
continuous case and the binary case.

2.1 Continuous Case. Let us first consider the following DRCCP:

* . T n - Te
v :mén{c x:z € 0,1] ,PlengzP{ﬁz xz' €< b} > 1—5}.
Note that this DRCCP may not have an MIP reformulation (see, e.g., [27]). Above, we generate the sam-
ples {¢};e(n) by assuming that the random parameters ¢ are discrete and i.i.d. uniformly distributed
between 1 and 80. We set §; = 1072 in ALSO-X# Algorithm 1. For each random instance, we assume
b = 10 and assume the cost vector c to be random integer with each entry uniformly distributed between
—20 and —1. The numerical results are displayed in Table 3. We show that ALSO-X# yields around 5%-
11% improvement. We also notice that ALSO-X can improve the solution of CVaR approximation.

2.2 Binary Case. Let us first consider the following DRCCP:

* . T . n o ~: T~< >1_ .
v rrgn{c xz:x e {0,1} ,PléngP{E T Efb}fl 5}
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Table 2: Numerical Results of a Binary DRCCP under Type co—Wasserstein Ambiguity Set with § = 0.05

R N " CVaR ALSO-X ALSO-X#

Time (s) | Time (5) Improvement from Time (s) Improvement from

me (s me s CVaR approximation (%) me (s ALSO-X (%)
20 0.30 1.97 5.16 2.54 6.67
400 40 031 5.65 8.03 8.34 7.10
100 0.24 7.09 3.09 7.97 4.36
20 0.31 5.28 7.49 4.75 5.33
0.10 600 40 1.29 12.18 511 15.50 7.14
100 1.35 14.35 5.19 16.23 5.56
20 0.95 5.82 3.51 6.29 2.78
1000 40 0.52 16.13 3.63 17.48 2.83
100 0.61 24.69 4.82 26.11 3.19
20 0.40 5.75 4.73 5.59 7.35
400 40 0.57 8.14 4.27 9.43 7.32
100 0.64 9.34 4.04 11.48 541
20 0.42 5.58 4.79 524 5.08
0.20 | 600 40 0.80 16.92 337 14.95 6.92
100 1.45 21.12 4.58 21.06 6.36
20 1.04 751 3.49 745 6.25
1000 40 1.26 24.39 4.12 22.99 6.24
100 2.70 32.93 2.87 33.65 5.56

Table 3: Numerical Results of a DRCCP under Type 2—Wasserstein Ambiguity Set with # = 0.50

R N " CVaR ALSO-X ALSO-X#
Time (s) | Time (s) Improvement from Time (s) Improvement from
mets me s CVaR approximation (%) mets CVaR approximation (%)
20 0.09 0.90 7.21 0.81 7.22
400 40 0.25 242 6.43 2.06 6.54
100 0.55 5.76 473 3.97 4.73
20 0.20 1.40 8.60 1.12 8.60
0.10 600 40 0.38 3.83 6.92 2.72 6.92
100 1.16 12.46 527 8.96 527
20 0.23 224 8.78 1.88 8.82
1000 40 0.76 5.62 7.82 4.39 7.94
100 1.48 18.82 5.82 13.36 5.87
20 0.25 0.93 10.45 0.82 10.61
400 40 0.45 2.89 10.17 2.16 10.24
100 0.66 6.17 6.14 4.03 6.32
20 0.13 1.41 10.10 1.19 10.10
0.20 | 600 40 0.32 3.93 8.46 2.83 8.62
100 1.14 13.38 6.77 9.30 6.76
20 0.28 235 10.70 2.05 10.70
1000 40 0.56 5.67 10.33 4.29 10.33
100 1.83 20.0T 6.82 14.30 6.92

Above, we generate the samples {¢ i}ie[ ~] by assuming that the random parameters ¢ are discrete and
iid. uniformly distributed between —20 and 50. We set §; = 0.5 in ALSO-X# Algorithm 1. For each
random instance, we assume b = 400 and assume the cost vector ¢ to be random integer, with each
entry uniformly distributed between —20 and —10. In this numerical experiment, we suppose the di-
mensions of decision variables n = 20,40. The numerical results for this case are displayed in Table 4.
We conclude that ALSO-X# enhances the solution quality from CVaR approximation by around 5-10%
improvement.

7.2 Application: Resource Allocation in Wireless Communication

We compare ALSO-X# and the exact method in the wireless communication network problem, where
we can use ALSO-X# to minimize the energy consumed. Specifically, we consider a predictive resource
allocation problem for energy-efficient video streaming (see, e.g., [3, 4]), where chance constraints are
employed to ensure a high quality of service for each user. The objective of this problem is to mini-
mize the energy consumption in transmitting the video content to the users while satisfying the chance
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Table 4: Numerical Results of a Binary DRCCP under Type 2—Wasserstein Ambiguity Set with § = 0.20

. N " CVaR ALSO-X ALSO-X#
Time (s) | Time (s) Improvement from Time (s) Improvement from
me s me s CVaR approximation (%) mets CVaR approximation (%)
20 0.23 1.55 5.80 1.43 6.02
400 40 2.81 34.11 8.23 25.23 7.10
20 0.36 2.60 5.19 2.69 5.19
600 | 40 5.77 57.60 9.81 55.39 10.19
0.10 20 1.44 529 7.92 4.78 8.19
1000 | 40 12.45 86.86 9.67 85.98 9.67
20 0.24 1.80 7.67 1.65 7.67
400 40 3.49 35.70 9.46 27.71 9.46
20 0.57 3.14 7.73 3.08 7.82
600 | 40 13.85 60.79 9.82 74.74 11.50
0.20 20 1.01 5.61 7.26 4.97 7.66
1000 | 40 16.48 82.65 8.73 87.72 9.87

constraints. The problem is formally formulated as

min Z Z Tit: i€r713fx]P’ £ Z 57;7,5/:17,;7t/ >D;,Vte[T]p >1—¢,Vie[n],

2116 0 1|nxT
] te[T] i€n) ' €lt]

> i <1LVEE[T]y, (21)

1€[n]

where z; ; denotes resource allocation decision at time slot ¢ to user 4, n denotes the number of all users,
T denotes the number of time slots, and D; ; denotes the demand for each user i € [n] up to time ¢ € [T].
The random parameter &; ; denotes the random amount of available rate for user i € [n] at time slot ¢.

Above, we generate the samples {¢'};c(n] by assuming that the random parameters ¢ are discrete
and i.i.d. uniformly distributed between 20 and 40. We set 6; = 10! in ALSO-X# Algorithm 1. And
we assume for each user i € [n] up to time ¢t € [T}, the demand D, ; is D, , = tD with D = 1.0,1.5. We
consider the number of data samples N = 56, 72, the risk level ¢ = 0.20,0.30, the Wasserstein radius
6 = 0.50, the number of users n = 8, and the number of time slots 7' = 60. We generate 5 random
instances to find their average performance.

The proposed ALSO-X# can effectively identify better feasible solutions than the exact Big-M model
with a much shorter solution time, which is typically required in many wireless communication appli-
cations. Since we consider the number of time slots T = 60s, for a fair comparison, we set the time
limit of each instance to 60s (i.e., 1 minute), and we use “UB” and “LB” to denote the best upper bound
and the best lower bound found by the Big-M model within the one-minute time limit. Since we may
not be able to solve the Big-M model to optimality in one minute, we use GAP to denote its optimality
gap as GAP (%) = (JUB — LB|)/(|LB|) x 100, and we use the term “Improvement from Big-M model”
to denote the solution quality improvement of ALSO-X#, i.e., Improvement from Big-M model (%) =
(UB — ALSO-X# value)/(|UB|) x 100. The numerical results for this case are displayed in Table 5. We
find that ALSO-X# can provide better solutions than the Big-M model in a much shorter time, which
validates the efficacy of our proposed methods. We remark that we can design real-time algorithms by
using ALSO-X# as a future study (see, e.g., [4-6]).

Subsequently, we demonstrate how to use the ALSO-X# result to save energy-consuming. For il-
lustration, we consider the following parametric setting D = 1.0, N = 56, ¢ = 0.20, and n = 8. We
first numerically choose a proper Wasserstein radius. We use generated data to solve the DRCCP with
ALSO-X#, the DRCCP with Big-M model, and the regular CCP counterpart (i.e., § = 0) with ALSO-X#,
respectively. Then we generate new samples with the same sample size and obtain 95% confidence in-
tervals by plugging the solutions in the regular CCP to calculate the corresponding probability that the
constraints are satisfied. We repeat the same procedure for a list of 6 values and select the smallest ¢
that the confidence interval of the violation probability in the DRCCP is beyond that of the regular CCP.
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Table 5: Comparisons of ALSO-X# and Big-M Model in Resource Allocation Problem (21)

D R N Big-M Model ALSO-X#
. Improvement from .

Gap (%) | Time (s) Bif; M model (%) Time (s)
0.20 56 19.05 60 0.10 21.41
1.0 ) 72 19.88 60 0.12 36.48
’ 0.30 56 25.53 60 0.10 25.35
i 72 28.13 60 0.21 37.07
0.20 56 19.60 60 0.14 34.19
15 i 72 20.68 60 0.19 41.42
) 0.30 56 27.50 60 0.23 36.93
) 72 28.84 60 0.39 42.06

Specifically, to select the smallest §, we take the following steps: (i) for each # € {0.1,0.2,---,0.9,1.0},
we generate N = 56 scenarios and solve the DRCCP and its regular CCP counterpart; (ii) generate
N = 56 new scenarios with the same parameters; (iii) plug the solution from part (i) into the newly
generated scenarios and calculate the probability that the constraints are satisfied; (iv) repeat previous
procedures 50 times and output the 95% confidence intervals; and (v) choose the smallest ¢ such that
the confidence interval of the DRCCP is entirely above that of the regular CCP counterpart. The result
is shown in Figure 2a. The DRCCP using ALSO-X# with Wasserstein radius 6 = 0.7 can guarantee that
the chance constraints are satisfied with a high probability. In contrast, the best Wasserstein radius is
6 = 1.0 when applying the result from the Big-M model. In this way, we conclude that compared with
the Big-M model, the average energy saving using the ALSO-X# is 1.93%.

With the best-tuned Wasserstein radius, we compare the performances of the solutions from the
Big-M model and ALSO-X# by generating 100 new scenarios to evaluate the probability that the con-
straints are satisfied and output the corresponding 95% confidence intervals. The testing setting is the
same as that of the training setting above, except that we assume that random parameters ¢ are discrete
and i.i.d. uniformly distributed between 20 x (1 — 1.8p) and 40 x (1 4 0.4p) with p € [0.02,0.20], where
the value p represents the noise level in the training distribution. The result is displayed in Figure 2b. It
is seen that compared with the Big-M model, ALSO-X# yields ideal lower constraint violations. Specif-
ically, when the noise level is small, i.e.,, 0.02 < p < 0.16 in Figure 2b, ALSO-X# often guarantees a
lower violation of constraints. However, when the noise level is large, i.e., p = 0.20 in Figure 2b, both
ALSO-X# and Big-M model cannot provide the chance constraint guarantee. This result further demon-
strates that using ALSO-X# with the best-tune Wasserstein radius can be better or at least achieve the
similar constraint violation probability as the Big-M model. As mentioned in the previous paragraph,
ALSO-X# provides a better solution with lower energy consumption. This demonstrates the better
solution quality of ALSO-X# compared to the Big-M model.

8 Conclusion

In this work, we proposed ALSO-X# for solving distributionally robust chance constrained programs
(DRCCPs) by integrating ALSO-X and CVaR approximation. We proved that ALSO-X# is better than
CVaR approximation even when this deterministic set is nonconvex. We provided sufficient conditions
that ALSO-X# always outperforms ALSO-X, i.e., when ALSO-X admits a unique optimal solution.
We showed that ALSO-X# can deliver an optimal solution to a DRCCP and also extended the discus-
sions to the general Wasserstein ambiguity set. Our numerical studies demonstrated the effectiveness
of ALSO-X#. For a future study, it will be interesting to implement the ALSO-X# algorithm in real-
time for wireless communication problems. Another interesting direction is to study the approximation
guarantees of ALSO-X# when solving a DRCCP.
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Confidence Interval o Evaluations
T ALSO-X# with 9=0.7

95% C.I. for Regular CCP.

3 95% C.I. for DRCCP using ALSO-X# % % 08 Big-M Model with 8=1.0
08 95% C.I. for DRCCP using Big-M % .
| e
BEARER ; :
2o Som Firgogp
> g o 3
079 k)
om0
Wasserstein Radius 6 Noise Level p
(a) Comparisons of Tuning Wasserstein Radii (b) Evaluations of ALSO-X# and Big-M Model with the Best-

tuned Wasserstein Radii

Fig. 2: Tuning Wasserstein Radius and Comparing the ALSO-X# and Big-M Model Solutions in Re-
source Allocation (21)
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A Proofs
A.1 Proof of Theorem 5

Theorem 5 Suppose that in a single DRCCP (2), the deterministic set X is convex, the reference distribution P
is continuous and nondegenerate with support R™, ||- ||« = || ||, withp € (1, 00) and affine mappings a,(x) = x
and by (x) = by. Then the lower-level ALSO-X (3b) admits a unique optimal solution when t > mingecx ¢'
and vA(t) > 0.

Proof We split the proof into two parts by discussing whether there exists an optimal solution * to the
lower-level ALSO-X (3b) such that supp(z*) = n.

(i) Suppose that there exists an optimal solution * to the lower-level ALSO-X such that supp(z*) = n.
First, for any « with supp(x) = n, according to the continuity of function f(r) = max{r,0} and
theorem 1 in [42], we can interchange the subdifferential operator and expectation, the first-order
derivative F'(z) is

-, P
)= "5 = [ gl vt B

where pu(z) = {¢ : 0]z« + "¢ > b1} with its boundary du(z) = {¢ : 0||z|« + "¢ = b1 }.
According to equation (4) in [47], the Hessian of F'(x) is

2y = ! 90 |, ><ae||w|* >TM o[ Plelp,
Hi () ||w||2/aﬂ<m>< Joll o) (P2l ¢) e + /m) 12 plac).

Recall that «* is optimal to the lower-level ALSO-X (3b) and * # 0. To show that =* is the unique
optimal solution, it suffices to show that its corresponding Hessian Hz(x) is positive definite (PD).
For any y € R" and y # 0, we have

1 90 ||z||, )2 T (8293*)
TH- T 4y T ) P(d 60 Z ) yP(de).
y Hgp(z)y /é?u(m) (y 5w TY ) B+ /M(m)y 52 ) YE(dC)

=l

For ||z|/+« = ||z||, with p € (1, 00), for each i € [n], we have

14
Ollp _ . _ .
(%cip = sign(x;)|z|P Z ;[P , Vi € [n],

jE(n]
and
%—2
&z . |
Tl 2] S | 0= [ S| vieh)
¢ Jen\ {7} JjE[n]
19
0%z . . _ ! . .
Pllle _ Gon(e) oo~ sign(an) e (1 —p) | 3 ey | Vi€ ke o]\ fa).
Ox;0xy st
That is,
52 |z P2
Plzl. o (e
Ox2 = Ox2 L= (p_ 1) Z |xj|p Z |xj|p Diag :
jein) jeln] o |2
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sign(z)|z1[P~1\  /sign(zy)|z P

sign(, )|z, P71 sign(a, )|z, P71

Here, 82||z|,/0x? is a positive semidefinite (PSD) matrix of rank n — 1. This implies that (i) the
value y ' (9%|z||./0x?)y = 0 if and only if y = 7 with 7 # 0 (recall that we have y # 0); and
(ii) if z is an alternative optimal solution, then we must have z = fx*. Hence, if y « x*, then we
must have y ' (02| z*||./0z?)y > 0, which implies that the Hessian H(z*) is PD, which confirms
the uniqueness of the optimal solution a*. It remains to show that if the solution «* is not unique,
all optimal solutions should be proportional to *. We split the proof into two steps by the sign of
by.

Step I. When b; # 0, we show that the Hessian Hz(x*) is PD. That is, it suffices to show that if
y = lx* with £ # 0, we must have

0 ||z* 2
/ <yTa|(|;”* + ch> P(d¢) > 0.
Op(z*) T

Indeed, we notice that

90 ||z~ ||
T2
y oz

T 00 [j="|,

+y' = (") —g

+ (b)) ¢ =0[0]|lz, + (z*)T¢] = by # 0.

Hence,

o0 ||x* 2
/ <yT8”* +yTC) P(d¢) :/ CHiP(dC) > 0,
ou(x*) €T ou(z*)

which implies that y " Hz(x*)y > 0.

Step II. When b; = 0, we show that =* must be the unique solution. Suppose that there exists
another optimal solution z. Then we must have z = {z* such that £ # 1 according to the statement
at the beginning of the proof. Three subcases remain to be discussed:

Subcase (i) When 0 < £ < 1, according to the homogeneity of the objective function in the lower-level
ALSO-X (3b), i.e.,

Er, [0zl +27¢] | = Ee [l16a’] + (=) {] | = o).

Hence, z = (z* yields a strict better objective value than that of z* as v (t) > 0, a contradiction;
Subcase (ii) Similarly, when ¢ > 1, the current optimal solution =* is strict better than z, a contradic-
tion;

Subcase (iii) When ¢ < 0, since the objective function in the lower-level ALSO-X (3b) and the feasible
region is convex, any convex combination of * and z = {x* is also an optimal solution. That is, if
we choose

—{ 1

1t T =0

then 0 is one optimal solution with objective value 0, which is strictly less than that of *, a contra-
diction. Thus, we have that * with |supp(z*)| = n is the unique optimal solution since we have
vA(t) > 0.

Hence, the objective function of the lower-level ALSO-X(3b) admits a unique solution.



ALSO-X# 35

(ii) Suppose that there does not exist an optimal solution * to the lower-level ALSO-X (3b) such that
|supp(z*)| = n. Let * be an optimal solution that has the largest support. If z is another optimal
solution to the lower-level ALSO-X (3b) and supp(z*) = supp(z), then following the proof in Part
(i), we must have * = z. Thus, supp(x*) # supp(z). Now let us define

min{|z}]| : 7 € supp(x*)}
min{|x}| : ¢ € supp(x*)} + max{|z;| : ¢ € supp(z)}’

1
773

Then z := (1 — v)z* + vz is another optimal solution, according to the convexity of the feasible set
of the lower-level ALSO-X. However, |supp(Z)| > |supp(x*)| + 1, a contradiction that «* has the
largest support. This completes the proof. O

A.2 Proof of Theorem 5 with ¢ € {1, 00}

Lemma 1 Suppose that in a single DRCCP (2), the deterministic set X is convex, the reference distribution Pg
is continuous with support R™, || - ||« = || - ||, with p € {1, 0o} and affine mappings a,(x) = x and by (x) = bs.
Then the lower-level ALSO-X (3b) admits a unique optimal solution when t > minge y ¢ @ and v (t) > 0.

Proof We split the proof into two cases based on the value of p.
Case L. p = 1. We split the proof into two parts by discussing whether there exists an optimal solution
x* to the lower-level ALSO-X (3b) such that supp(z*) = n.

(i) Suppose that there exists an optimal solution «* to the lower-level ALSO-X such that supp(x*) = n.
Recall that F'(x) denotes the objective function in the lower-level ALSO-X (3b) with the Hessian

(z) = - o |1z, >(09w|1 >T s [ Pl

For function ||z||; with supp(x) = n, we have

2
agih — sign(a:), Vi € [n]; gm!zﬂ; —0,Vi € [n],] € [n].
Here, with the assumption that supp(z*) = n, we have 9?||z*||;/0x?> = 0, which implies that

y ' (0?||x||1/022)y = 0. Following the similar proof of Theorem 5, we have

o0 ||z 2
/ <yT”“’1 n ch> P(d¢) > 0.
Op(x*) ox

(ii) The case when | supp(x*)| < n is identical to part (ii) in the proof of Theorem 5 and is thus omitted.

Case II. p = co. We split the proof into two parts by discussing whether there exists an optimal solution
x* to the lower-level ALSO-X (3b) such that supp(z*) = n.

(i) Suppose that there exists an optimal solution * to the lower-level ALSO-X such that supp(z*) = n.
We split the following proof into two steps.
Step 1. We denote S to be an index set corresponding to the largest absolute-value component, that
is, for any subset S C [n], we assume |z]| = ||x*|« for each i € S. For the fixed subset S and
function ||x||» with supp(x) = n, we have

8”(3”00 _ {Sign(xi)a i€ 87 Vi € [n],

Ox; 0, i¢S’



36 Nan Jiang, Weijun Xie

and
||z

D01, =0,Vi € [n],k € [n].

Here, with the presumptions, we have 9?||z*||»/0x? = 0, which implies that y " (0?|z||o./0x*)y =
0. Following the similar proof of Theorem 5, we have

o0 ||z~ 2
/ <yT”wH°"+yTC> P(d¢) > 0.
Ou(x*) ox

Thus, given a subset S, the optimal solution is unique.

Step II. It remains to prove that for any subset S, the optimal solution is unique, where S is an index
set corresponding to the largest absolute-value components of *. Suppose that «* has the smallest
size of the largest absolute-value components. Assume z # x* is another optimal solution to the
lower-level ALSO-X (3b) with &; being its corresponding index set with the largest absolute-value
components. According to our assumption, we must have |S;| > |S|. Now let us define

1 min{|z}| : i € supp(x*)}
~ 2min{|z}| : i € supp(z*)} + max{|z}| : i € supp(z*)}

v

Then the convexity of the feasible set of the lower-level ALSO-X implies that & := (1 —)z* +~v2* is
another optimal solution. However, the new solution Z either «* is the unique solution of the lower-
level ALSO-X or contradicts that * has the smallest size of the largest absolute-value components.

(ii) The case when |supp(z*)| < n is identical to part (ii) in the proof of Theorem 5 and is thus omitted.
O

B Equivalent Reformulations for DRCCPs under Type g—Wasserstein Ambiguity Set

Under type g—Wasserstein ambiguity set with ¢ € [1, c0), the DRCCP (1) can be written as
* = 1 T N 1 N' ; T¢ < ; ] > —
vy = min {c x: plengqu’{ﬁ. a;(x) € <bi(x),Vie [I]} >1 5}. (22)

For the notational convenience, we denote the decision space induced by the worst-case chance con-
straint in DRCCP (22) as the following Distributionally Robust Chance Constrained (DRCC) set

Zy: = {a: €R": inf P{é: ai(x)T€ < by(x),Vi € [1]} >1 s}. (23)

PEP,

B.1 Equivalent Reformulations of DRCCPs
We can generalize the existing work in [49] on the equivalent formulation of DRCC set Z, (23) for any
q € [1,00) and any reference distribution P;.

Proposition 3 (A generalization of corollary 1 in [49]) Under type g—Wasserstein ambiguity set, DRCC set Z,
(23) is equivalent to

§9c=1 4+ CVaR,_, [—f(cc, &)q] <0,

Zq = T c RnZ ~ (24)
0%~ + VaRy—. | f(.0)"] <0
where e oo
: . bi(x) —a;(x)' ¢ + ) }
x,() = min min , MIN Xig: b (a x)p,
J@.¢) {ie[f]\f(w) llai(z)|l, 1o () A bi )<0} ()

and Z(xz) = 0 if a;(x) # 0 and Z(x) = [I].
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Proof We split our proof into two cases by discussing whether § = 0 or not.

Case 1 When 6 = 0, DRCC set Z, reduces to the regular CCP under reference distribution P, i.e.,
Z, = {:c € R": P{é: ai(x) "¢ —bi(x) <0,Vie [I]} >1- 5} .

On the other hand, in (24), the first constraint is redundant when § = 0. Hence, the statement follows.
Case 2 When § > 0, the fact that the decision space induced by the first constraint in (24) is equivalent to

DRCC set Z, follows directly from the proof of corollary 1 in [49]. Thus, in this case, the second con-

straint in (24) is redundant since for any random variable X, we have CVaR; _.[X] > VaR; _.[X].

O

The reformulation in Proposition 3 can be simplified if ||a;(z)|« = ||a1(x)|| for all ¢ € [I], in which
the condition can be viewed as a generalization of a1 (z) = a;(x) for all i € [I], which has been discussed
in the DRCCP literature (see, e.g., [11, 49]). Notice that this condition always holds for a single DRCCP,
where I = 1.

Proposition 4 Suppose that ||a;(x)||« = ||a1(z)||« for all i € [I]. Then DRCC set Z, (23) can be simplified to

07! |ai(z)||? + CVaR; _. [— min (bz(m) — ai(a:)—ré)q} <0,
i€(1] +

Zy={x cR": (25)

P {5; ai(x)T¢ — bi(x) <0,Vi e [1]} >1-¢
Proof We split our proof into two cases by discussing whether ||a;(x)|. = 0 or not.
Case 1 When ||a:i(x)||« = 0(@.e., ai(x) = 0), according to (24), set Z,N{x € R" : ||a1(x)||« = 0} is equivalent
to the set

{z eR": [lai()], = 0,bi(z) > 0,Vi € [I]},

which is equivalent to the right-hand side of (25) intersecting with set {x € R™ : ||a;(x)||. = 0} since
its first constraint is redundant.
Case 2 When ||a1(z)||+« > 0, according to Proposition 3, the function f(x, {) becomes

bi(x) —a;(x)T
f(x, ):min( (=) () C)+

i€[1] lai(z)],

According to the positive homogeneity of the coherent risk measure CVaR, set Z, N {x € R" :
lla1(z)]l« > 0} is equivalent to the set

lay ()], >0,

v R 09 lay (@) + CVaR, . [— min (bi@) - ai(az)Té)

| <o
i€[I]

P {5; ai(x)T¢ —bi(z) <0,Vie [I]} >1-¢
This completes the proof. O
As a direct corollary of Proposition 4, we remark that for the single DRCCP (i.e., I = 1) with the elliptical

reference distribution P; (see the discussions in Section 5.1), DRCC set Z; admits a simple representa-
tion.
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Corollary 11 For the single DRCCP (22), when the affine mappings are a,(x) = x, bi(x) = by, the random
parameters ¢ follow a joint elliptical distribution with ¢ ~ Pg(u, X, ), and the norm defining the Wasserstein
distance is the generalized Mahalanobis norm associated with the matrix X, DRCC set Z, (23) becomes

Zy = {:B ER": by(x) — p'ay(x) > Mg al(w)TEal(:c)} ) (26a)

and ny is the unique minimizer of

/ L g 2> 00,y > a7 _5)} . (26b)

Ny = min ¢ n:
n d—1(1—¢)

Proof We note that if a; () = 0, according to Proposition 4, set Z, N {x € R™: a1(x) = 0} becomes
{x e R": ay(x) = 0,by(x) > 0},

which is equivalent to the right-hand side of (26a) intersecting with set {x € R™: a;(x) = 0}. Thus,
without loss of generality, we assume that a1 (x) # 0.

Note that the linear function a; (z) ' ¢ is still elliptically distributed (see, e.g., [19]). For ease of nota-
tion, we denote the distribution of the linear function a; (z) " ¢ as Pg (i, 0z, ) and denote its probabil-

ity density function as
_ k. ((y— )
h(y) = ptl < 502 )

where ji, = p"ay(x) and 0, = /a1 ()T Za,(z).

According to Proposition 4, DRCC set Z,, is

et lar(@)]? + ViR |- (n(e) - (@)7¢) | <0,
Zg=qxeR":

11»{5; ar(@)T¢ — bi(x) < o} >1-¢

Following the similar derivation in theorem 7 [13] and according to the definition of CVaR (see, e.g.,
[41]), set Z, is equivalent to

by (x) "
Zy = {a: cR": 1/ (bi(x) — y)?h(y)dy > g1 llai(z)||?,b1(x) > VaRy_. {al(az)—r(} } .

€ JvaRi_.[a1(2)T¢]

According to theorem 3 in [39], we have
VaR,_. [al(:c)—ré] =l + P71 — €)og.

Now lett = (y — ta)/0x,y = tog + piz and n = (b1(x) — pz)/0x, and then DRCC set Z,, is further equal
to

n

Z, = {a: ER": bi(x) — pz > nom,/

. )(770:,3 —t05)h(tog + pg)dt > 090271 n > &1 — 5)} )
“1(1-e

where we use the fact that ||a;(x)||. = 0,. We see that set Z, expands as 1 decreases, and thus, we can
replace it by the minimal 7, defined (26b). Substituting the generating function g(-), we arrive at (26a).
Finally, we note that [, (1—¢) (n — t)7kg(t?/2)dt is monotone increasing in 7, which demonstrates the
uniqueness of 7;. O
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B.2 Equivalent Reformulations of ALSO-X

Similar to ALSO-X (3), we extend the ALSO-X under type g—Wasserstein ambiguity set. For any ¢ €
[1,00), ALSO-X is formally defined as

A .
Ug = min t, (27a)
* : T¢ AT
s.t. x* € argmin sup {E]p {max (ai(a:) ¢ - bi(w)) } e x< t} , (27b)
xzeX PeP, i€[l] +
x* € Z,. (27¢)

We then derive an equivalent reformulation of the hinge-loss approximation (27b) under type g—Wasserstein
ambiguity set.

Proposition 5 Under type q—Wasserstein ambiguity set with ¢ € [1,00), hinge-loss approximation (27b) is
equivalent to

Ay s q ) TF_p. ) cele <
vy (1) "%I%{M +Ep, [?é?}f (al(a:) ¢ bl(w)—ﬁ—Pqﬂ(w,)\))J e :ct}, (28)

where for each i € [I], Pyi(x,\) = (||ai(@)|.) T TA" T 1q" a1 (q — 1) with its limit being

e . __1 __4a
lim P i(x,\) = lim (lai(z)],)TA 5 Tq¢ a7 (¢ — 1) = X(rn:|a;i (@) <A} (T)-

q—1y q—1y

Proof According to theorem 1in [15] or theorem 1 in [7], the inner supremum suppep, Ep [max;e(r(ai(x )Ts—
bi(x))+] in (27b) can be reformulated as

min_ A07 — Ep, [irgf {A e~ ¢]" - max(aite) e - bi(a:))+}:| .

TEX A>0 ie[l]

Next, we split the proof into two steps.
Step 1. We first reformulate the term infe {\||€ — ¢[|9 — max;e(r)(ai(x) "€ — b;(x)) 4 }. Moving the minus
sign into the maximum operators, we have

inf{mlnmm{)\Hﬁ CH —ai(x) €+ bi(x >‘H£ CH }}

13 i€l

Then interchange the minimum and infimum, we obtain

min min {i%f {)\ Hf — él‘q —a;(x) €+ bz(m)} ,iIElf)\ HE - é”q} )

€[]

Note that infg A[|€ — ¢||? = 0 and it remains to simplify infe {\[|€ — || —a;(x) "€ +b;(x)} for each i € [I].
Letting ¢ = & — ¢, we have

iIEIf {)\ H§ - 5Hq —ai(z) &+ bl(:c)} = i%f {)\ HEHQ - ai(w)TZ} —ai(x) ¢+ bi(x).
According to Holder’s inequality and the fact that infimum is attainable, we have
irclf{ (a})TE} = i%f{ 3 }
= (Jai(@)].) 7T A" 7T 7T (1 - g).
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Note that when ¢ — 1., the hinge-loss approximation reduces to
. 9 __1_ __4q_
Jim (lay(@) )7 AT T (@~ 1) = Xgenagol, <) (@),

Step 2. According to Step 1, the hinge-loss approximation (27b) becomes

Ay : q_ cmin (—as ()T & . _ ) TN T T (g .
it = i {307 e, [mininin (~ai() 7€+ (@)~ (las(@))7A g (g - 1.0) |
cTar:St}.

Moving the minus sign inside the expectation, we arrive at the conclusion. O

B.3 Equivalent Reformulations of CVaR Approximation

For DRCCP (22), its CVaR approximation is defined as

B+ éEP K%% (ai(w)Tg_ bi(:c)) — 5) +H < o} .

Since the ambiguity set P, is weakly compact according to Assumption Al and theorem 1 in [53], we
can interchange the infimum with the supremum and multiply both sides by ¢. Then for any ¢ € [1, c0),

CVaR approximation can be formulated as
() € —b; - ) <0y,
(gé?;f (a (@) & ,(w)) B NG

Following similar derivations as those of Proposition 3 and Proposition 5, we obtain the equivalent
reformulation of CVaR approximation for DRCCP (22).

CVaR
'Uq

=min{c'x: sup inf
xrcX PeP, B<0

,UCVaR

p = min {cch: inf sup |ef8 + Ep

reX B<0 PeP,

Proposition 6 Under type g—Wasserstein ambiguity set, CVaR approximation of DRCCP (22) is equivalent to

,UCVaR _

p e D {cTw: ef + A0 + Ep, {max (ai(w)Té —bi(x) + Pyi(x, \) — 5) J < 0} , (30)

i€ll]
where for each i € [I], P, ;(x, \) is defined in Proposition 5.

Proof According to the similar derivations in Proposition 3 and Proposition 5, we have

v(?vaR = grgrgg {cTa}: éréfo {65 + A07 + Ep, |:IZIéE[),I)]( (ai(m)Té —bi(x) + Pyi(xz,\) — 5) J } <0,A> O} .

Note that the infimum is achievable since the left-hand function is continuous and convex in 5 and
when 8 — —o0, the left-hand function goes to positive infinity. This completes the proof. O

Equivalently, we also recast the CVaR approximation (30) as a bilevel program. That is,

vgvaR = mtin t, (31a)

st (x*,\*, ") € argmin {sﬁ + A09 + Epc. [max (ai(w)—ré —bi(x) + Pyi(xz,\) — 6) J } , (31b)

zeX ¢ x<t, i€[l]
A>0,8<0
ef* + \"07 + Ep, {?é?}f (ai(w*)Té —bi(x*) + Pyi(z*,\*) — 5) J <0. (31¢)

In the following result, we observe that under the same premise as Proposition 4, the CVaR approx-
imation (30) can be simplified.
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Proposition 7 Suppose that ||a;(x)||« = ||ai(x)|« for all i € [I]. Then CVaR approximation (30) is
CVaR _ T 0% ()T E — b <
v, min {c x: 0”4 ||lar(z)]], + CVaR1_. {?é?}]({al(m) ¢ bz(m)}} < O} . (32)

Proof Since ||a;(x)||« = ||a1 ()|« for all ¢ € [I], we must have P, ;(x,\) = P, 1(x, \), for all ¢ € [I]. Then
CVaR approximation is equivalent to

A7 + Ep. J(x) ¢ — b P A —(1-¢)8<0
,UgVaR: min clx: + Pe {max{%?ﬁ{a(m) C (CC)+ Q71(m7 )}?IB}] ( 5)5_ )
zEX N8

A>0

Subtracting the j in the inner maximum operator and redefining 5 := 8 — P, 1(x, \), we have

ovar _ ) 7 AP (@A) +ef + Ep, [maX{m(m)Tébi(m)ﬁ}J <0,

€[]

A>0

Replacing the existence of § and A > 0 by the minimum operator over § and A > 0 in the left-hand side
of the first constraint, we arrive at

UgjvaR = ar:I»lEIE {cTw: I;lzlg {N0? +¢eP;1(x,\)} +eCVaR;_. [?é?l)}( {ai(w)"—{- - bl(m)}} < O} .

Note that for any given x, the function A\0? + P, 1 (x, \) is convex in A over the domain X € [0, c0). Let
us take its first-order derivative with respect to A, and set it to be 0, which has a nonnegative root
V=T Jan ()], 7107 > 0.

Thus, A* solves miny>o {\0? + e P, 1 (x, A) }. Substituting \* into CVaR approximation, we arrive at the
equivalent representation (30). (]

B.4 Equivalent Reformulations of ALSO-X# and ALSO-X#

According to the reformulations above, under type g—Wasserstein ambiguity set with ¢ € [1,00),
ALSO-X# admits the form of

v;‘# = mtin t, (33a)

st (z7,A%,6%) € argmin {65+A9q +Ep, [max (ai(w)Té—bi(m) + Pyi(x, \) —5) }} (33b)
zeX, e x<t, ¢ Liel +
A20,6<0

x* € Z,. (330)

Under type g—Wasserstein ambiguity set with ¢ € [1, 00), we show that ALSO-X# is better than CVaR
approximation.

Proposition 1 Under type q—Wasserstein ambiguity set with q € [1, 00), suppose that for any objective upper
bound t such that t > mingex ¢' &, ALSO-X# is better than CVaR approximation.

Proof For a given objective upper bound ¢, if the solution of lower-level CVaR approximation (31b)
satisfies (31c), it is feasible to the DRCCP. Since the lower-level ALSO-X# (33b) and the lower-level
CVaR approximation (31b) coincide, then ALSO-X# finds a feasible solution to the DRCCP if the CVaR
approximation is able to find one. This completes the proof. O
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Similarly, we introduce the ALSO-X# by dropping the constraint 3 < 0 in the lower-level ALSO-X#
(33b), which has the following formulation:

v?ﬁ = mtin t, (34a)
st. (x*,\*, %) € argmin {56 + 207+ Ep, [max (ai(m)Té —bi(x) + Pyi(z,\) — ﬂ) } } , (34b)
mGX,chSt, ¢ ic({] +
2>0.,8
x* € Z,. (34c¢)

Following the similar proof in Theorem 2, we can prove that ALSO-X# is better than ALSO-X#
under type g—Wasserstein ambiguity set with g € [1, c0).

Proposition 2 Under type q—Wasserstein ambiguity set with g € [1,00), suppose that for any objective up-
per bound t such that t > mingex c"x and the lower-level ALSO-X# admits a unique optimal x-solution,
ALSO-X# is better than ALSO-X#.

Proof 1t is sufficient to show that for a given objective upper bound ¢, if the lower-level ALSO-X#
(34b) yields a feasible solution to DRCCD, i.e., satisfying (34c), then the lower-level ALSO-X# (33b) will

also provide a feasible solution. Let (, 3) denote an optimal solution from the lower-level ALSO-X#
(33b) and let (x, ) denote an optimal solution from the lower-level ALSO-X# (34b). Suppose that

is feasible to DRCCP (23), i.e, € € Z, (24). Now let P* denote the worst-case distribution of £ in the
lower-level ALSO-X# (34b) and let

B* :=P*-VaR;_. {max a;(z) € - bl(w)} < supP-VaR,_. {max a;(z)" € - bl(a:)} <0.
iell] PeP icld]
Then according to theorem 1 in [41] (see, e.g., equation (7) in [41]) and the discussions in Theorem 2, we
have that (Z, %) is another optimal solution to the lower-level ALSO-X# (34b). Since the only difference
between the lower-level ALSO-X# (33b) and the lower-level ALSO-X# (34b) is the constraint 3 < 0,
with the assumption that the lower-level ALSO-X# (34b) admits a unique optimal solution of =, we
must have £ = Z. That is, for a given objective upper bound ¢, both lower-level problems have the
same optimal value and optimal x-solution. This implies that the lower-level ALSO-X# (33b) yields a
feasible solution to DRCCP. ]

We remark that the uniqueness of the lower-level ALSO-X# can be achieved in many DRCCPs. For
example, one condition is that the affine mappings are a(x) =z, b (z) = b1, the random parameters
¢ follow a joint elliptical distribution with ¢ ~ Pr(p, X,9), and the norm defining the Wasserstein
distance is the generalized Mahalanobis norm associated with the positive definite matrix 3. Under
this setting, the lower-level ALSO-X# can be written as

¥ € argmin {F(m) =p'x+ {é((@‘l(l —5))2/2) /5—1—95_%} VT Xz — bl},

xz€X,cT <t

and its first-order and second-order derivatives are

a];ff) =pu {é ((@*1(1 - a))2/2) /a+95—%] s’
% - [é((quu - s))2/2) Je+ 95—%} > - 0.

Hence, the lower-level ALSO-X# admits a unique solution whenever set X" is convex.

We conclude this section by providing theoretical comparisons among the output objective values
of ALSO-X#, ALSO-X#, ALSO-X, and CVaR approximation under type g—Wasserstein ambiguity set
with ¢ € [1,00), which are shown in Figure 3.
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Fig. 3: Summary of Comparisons under Type ¢—Wasserstein ambiguity set with ¢ € [1, c0)
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