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Abstract—The deployment of computationally intensive work-
loads, such as Large Language Models (LLMs), at the edge
presents significant challenges due to resource constraints and
limited computing power. State-of-the-art edge platforms address
this with integrated high-performance accelerators optimized for
machine learning workloads. While numerous high-performance
edge platforms are now available in the market, there is limited
exploration of methods to maximize performance and optimize
resource utilization at the edge. Our work aims to address this
gap by proposing methodologies for maximizing performance
through the distribution of model inference on a heterogeneous
edge platform. This poster presents preliminary findings from our
ongoing research project funded by NSF IUCRC IDEAS Center.
The Center is focused on Edge Intelligence and applications that
can be potentially mapped to Edge platforms.

Index Terms—Edge Computing, LLM Inference, SoC

I. INTRODUCTION

The deployment of LLMs on edge platforms is gaining
significant importance as it not only reduces communication
latencies but also enhances data privacy. Several vendors
are developing System-on-Chips (SoCs) to support compute-
intensive Al workloads. Examples include Intel’s AI PCs
(featuring Meteor Lake processors) [1] and AMD’s Al PCs
(based on Ryzen processors) [2]. These advanced processors
typically integrate multi-core CPUs, GPUs, and specialized Al
accelerators like Neural Processing Units (NPUs).

However, despite the availability of complex SoCs, edge
platforms have challenges due to limited processing power
and memory bandwidth compared to data centers. Also, the
computational demands of LLM inference often exceed the
capabilities of a single computing device on edge platforms.
Previous works addressed these limitations by either per-
forming an edge-server collaborative inference [3], [4] or,
distributing the inference across homogeneous compute units
on multiple edge platforms [5]. In contrast, we propose an
efficient mapping of computations across multiple cores of
an integrated heterogeneous platform to effectively manage
demanding workloads. The main contributions are as follows:

o We propose a framework for efficient mapping of LLM
inference across heterogeneous compute units with opti-
mal memory management.

o We analyze the compute-bound and memory-bound char-
acteristics of LLM inference.

o We present an initial analysis of LLM performance on an
integrated heterogeneous platform.

II. BACKGROUND

Edge heterogeneous platforms have multicore CPUs inte-
grated with GPUs and specialized accelerators such as NPUs.
Integrated cores in edge platforms have a uniform shared
memory architecture and are connected via a common inter-
connection network. Cores are equipped with Direct Memory
Access (DMA) units to boost memory bandwidth.
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Fig. 1. Proposed Workflow of Prefill and Decode stages

III. PROPOSED METHODOLOGY

We analyze the compute stages, prefill and decode, of
generative LLM inference based on their performance on each
available core to perform a core-stage mapping. The primary
criteria while mapping is the compute-bound and memory-
bound characteristics of the stages. This is static mapping as
the mapping is done only once.

During LLM inference, a Key-Value(KV) cache [6] is gen-
erated to optimize memory utilization in self-attention layers
across multiple decoding steps. The KV cache size increases
linearly with context length, posing challenges for limited on-
chip memory and bandwidth on edge platforms. Due to the
limited on-chip memory bandwidth, the transfer of the entire
KV cache from the prefill unit to the decode unit creates
unnecessary wait cycles in the decode unit. To mitigate this
overhead, we propose to segment the prefill stage by splitting
the prompt into multiple fixed-size segments and processing
them in parallel, as shown in Fig. 1, resulting in blocks of
KV cache. Blocked KV cache processing will reduce memory
fragmentation along with decreasing the latency in accessing
past tokens and their values. During the decode stage, KV
cache blocks are read sequentially, with the processing of



TABLE I
PROFILING RESULTS OF LLM MODELS !
(BATCH SIZE: 1, PRECISION: INT4, PROMPT LENGTH: 128 TOKENS)

TinyLlama-1B Llama3-8B
Metric CPU | GPU CPU | GPU
Prefill Time (s) 4.95 0.18 31.00 | 1.07
Time per Output Token (Sec/Token) 0.20 0.06 1.18 0.22
Throughput (Tokens/Sec) 448 15.60 0.47 3.94

previously read blocks executed in parallel with the reading
of new blocks, resulting in an asynchronous overlap of com-
putation and communication in the decode unit. At the end of
each iteration, the key and value vectors are updated to the KV
cache. For determining optimal block size, we perform an of-
fline design-space exploration by profiling the performance of
the compute units and the platform interconnect on a range of
block sizes to analyze their compute and communication times
and find an optimal block size with minimal communication,
resulting in zero wait cycles in the decode unit.
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Fig. 2. Device Interaction on Intel AI PC

IV. PRELIMINARY RESULTS

This section presents preliminary results from our experi-
mental evaluation. The target hardware for our experiments is
the Intel Core Ultra 7 165H Processor that consists of a CPU
integrated with a GPU and NPU.

1) Peak Performance: In order to perform efficient mapping
of stages on the heterogeneous platform, we analyzed the
GPU and NPU based on their raw computing power. The
peak performance of GPU [7]for both FP16 operations (32.8
TFLOPS) and Int8 operations (66 TOPS) supersedes NPU’s
performance (4 TFLOPS and 8 TOPS, respectively), making
it a preferred choice for compute-intensive operations. NPU’s
architecture [8] supports DMA, improving memory bandwidth.
Since all the cores are connected via a common interconnect,
the performance of NPU, due to DMA, can potentially see a
boost in memory-intensive operations.

2) LLM Computational Characteristics: The major stages
in LLM inference are the prefill stage and the decode stage.
The prefill stage processes the complete prompt, where the
major operation is matrix multiplication, making it a compute-
bound stage. In the decode stage, one token is generated at a

'Note: Profiling results may vary across different software stack and
configurations. The preliminary results presented here are specific to the
evaluation framework used in this study for representative academic purpose.

time autoregressively, and the main operation here is matrix-
vector multiplication, making it a memory-bound stage.

3) Static Mapping of LLM Inference: Considering the map-
ping of LLM inference on the available cores, we performed
an initial analysis on the CPU and the integrated GPU. For
our analysis, we considered the TinyLlama model having
1B parameters and the Llama3 model with 8B parameters.
From Table I, it is evident that the performance of the
GPU is better than the CPU for both the prefill and the
decode stages, as indicated by the Time Per Output Token.
It should also be noted that the GPU performance degrades
in Llama3-8B in comparison to TinyLlama-1B. Since the
model is larger, there will be an increase in the number
of layers, leading to lower throughput. Along with this, for
larger models, the computation becomes memory-bandwidth
intensive, potentially affecting GPU’s performance. In short,
in an environment that has only a CPU and GPU, it is preferred
to perform inference on GPU.

V. CONCLUSION

In this poster, we addressed the requirement for mapping
LLM inference on the edge heterogeneous platform and pre-
sented our ongoing work on developing a framework for effi-
cient LLM inference. We briefly discussed the initial profiling
results on two popular LLMs. We target the Llama 3 model
family for further analysis and experiments.
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