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Duality for Nonlinear Filtering I: Observability
Jin W. Kim, Member, IEEE , and Prashant G. Mehta, Senior member, IEEE

Abstract— This paper is concerned with the develop-
ment and use of duality theory for a hidden Markov model
(HMM) with white noise observations. The main contribu-
tion of this work is to introduce a backward stochastic
differential equation (BSDE) as a dual control system. A key
outcome is that stochastic observability (resp. detectabil-
ity) of the HMM is expressed in dual terms: as controllability
(resp. stabilizability) of the dual control system. All aspects
of controllability, namely, definition of controllable space
and controllability gramian, along with their properties and
explicit formulae, are discussed. The proposed duality is
shown to be an exact extension of the classical duality in
linear systems theory. One can then relate and compare the
linear and the nonlinear systems. A side-by-side summary
of this relationship is given in a tabular form (Table II).

Index Terms— Stochastic systems; Observability; Non-
linear filtering.

I. INTRODUCTION

There is a fundamental dual relationship between estimation
and control. The dual relationship is expressed in two inter-
related manners:

• Duality between observability and controllability.
• Duality between optimal filtering and optimal control.

The second bullet means expressing one type of problem as
another type of problem. In this two-part paper, the main
interest is to convert a filtering problem into a control problem.

Duality is coeval with the origin of modern systems and
control theory: In [1], Kalman writes “The analogies [..]
between controllability and observability can be expressed
cogently by [..] the Principle of Duality”. The two manners of
dual relationships are explicitly noted in [1, (62) and (72)]. The
original papers [2], [3] describing the Kalman filter contain an
extensive mention of duality—between the optimal filter and
a certain linear quadratic optimal control problem. Notably,
duality explains why the Riccati equation is the fundamental
equation for both optimal filtering and optimal control.

Sixty years have elapsed since Kalman’s original work. One
would imagine that duality for the nonlinear stochastic systems
(hidden Markov models) is well understood by now. It is
a foundational question at the heart of modern systems and
control theory, and its modern avatars such as reinforcement
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learning. However, this is not the case. In his 2008 paper [4],
Todorov writes:“Kalman’s duality has been known for half
a century and has attracted a lot of attention. If a straight-
forward generalization to non-LQG settings was possible it
would have been discovered long ago. Indeed we will now
show that Kalman’s duality, although mathematically sound,
is an artifact of the LQG setting.”

Is this to suggest that there is no previous work to extend
duality to nonlinear systems? Au contraire! For deterministic
models, almost every definition of nonlinear observability, and
there have been several notable ones throughout the decades,
appeals to duality. Likewise, Mortensen and related minimum
energy algorithms, originally invented in 1960s, are standard
approaches to construct an estimator. For stochastic systems as
well, there have been seminal contributions, notably the work
of Mitter and co-authors [5], [6]. Having said that, several
reasons are noted in [4] on why the duality described in these
prior works are not generalizations of the original Kalman-
Bucy duality. A comprehensive account of the differences
is contained in [7, Ch. 3] and discussed throughout several
remarks in this two-part paper.

A. Summary of original contributions
We consider the stochastic filtering problem for a hidden

Markov model (HMM) with white noise observations (the
mathematical model is introduced in Sec. II). For this filtering
problem, we make two types of original contributions:

• Dual controllability characterization of stochastic observ-
ability. It is the subject of this present paper (part I).

• Dual (minimum variance) optimal control formulation of
the stochastic filtering problem. It is the subject of a com-
panion paper (part II) also submitted to this journal [8].

The focus of this paper is on the dual controllability char-
acterization of stochastic observability of an HMM with white
noise observations. The dual control system is introduced in
Sec. III. Once the dual control system has been introduced, the
ensuing considerations are entirely parallel to linear systems
theory: The solution operator of the dual control system is
used to define a linear operator whose range space is the
controllable subspace. The system is said to be controllable if
the range space is dense in a suitable function space. The con-
trollability (resp. stabilizability) of the dual system is shown
to be equivalent to stochastic observability (resp. detectability)
of the HMM. Several properties of the controllable subspace
are noted along with its explicit characterization in the finite
state-space case. A formula for the controllability gramian is
also described. An upshot of our work is that we can establish
parallels between linear and nonlinear models (Table II).
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Part II builds on the results of the part I. In particular, duality
is used to transform the minimum variance objective of the
nonlinear filtering problem into a stochastic optimal control
problem. For the latter problem, the dual control system,
introduced in this paper, is shown to arise as the constraint.

B. Relationship to literature
In basic linear systems theory, the following systems are

said to be dual to each other:

(state-output) ẋt = ATxt, x0 = ξ (1)
zt = HTxt, 0 ≤ t ≤ T

(state-input) − ẏt = Ayt +Hut, yT = 0, 0 ≤ t ≤ T (2)

The states, xt and yt for the two systems, are vector-valued,
both of dimension d (the standard dot product in Rd is denoted
by ⟨·, ·⟩Rd ). The input u := {ut ∈ Rm : 0 ≤ t ≤ T} and the
output z := {zt ∈ Rm : 0 ≤ t ≤ T} are elements of the
function space L2([0, T ];Rm) =: U equipped with the inner-
product ⟨u, v⟩U :=

∫ T

0
uT
tvt dt. For the state-input system (2),

the solution map u 7→ y0 is used to define a linear operator
L : U → Rd as follows:

Lu := y0 =

∫ T

0

eAtHut dt

Its adjoint is given by

(L†ξ)(t) = HTeA
Ttξ, 0 ≤ t ≤ T

and represents the solution map from the initial condition ξ 7→
z for the state-output system (1). Mathematically, the dual
relationship is expressed as

⟨ξ,Lu⟩Rd = ⟨L†ξ, u⟩U , ∀ ξ ∈ Rd, u ∈ U

The relationship yields the following important identity [9,
Theorem 6.6.1] (also referred to as the closed range theorem)

R(L)⊥ = N(L†)

This identity has several important consequences, e.g., control-
lability (resp. stabilizability) property of the state-input sys-
tem (2) is equivalent to the observability (resp. detectability)
property of the state-output system (1).

This classical duality between controllability and observ-
ability is useful for both analysis and the design of esti-
mation algorithms. For example, most proofs of stability of
the Kalman filter (see e.g., [10, Ch. 9]) rely, in direct or
indirect manner, on duality theory. Specifically (i) Because
of duality, asymptotic stability of the Kalman filter is related
to asymptotic stability of the (dual) optimal control system;
(ii) necessary and sufficient conditions for the latter are
stabilizability for the control model, and (because of duality)
detectability for the filtering model; and (iii) analysis of the
optimal control problem (convergence of the value function to
its stationary limit) yields useful conclusions on stability of
the filter (convergence of the error covariance).

This has naturally spurred a large body of work related to:
• Defining observability as a dual property.
• Using the definition to investigate asymptotic stability of

optimal and sub-optimal estimators.

The second bullet has by far been the most important reason
for defining and studying observability and related concepts.
In many studies, the definition of observability is often a
sufficient condition that guarantees the stability of the esti-
mator under study, e.g., [11, Defn. 2], [12, Defn. 4.1], [13,
Assumption 2], [14, identifiability conditions A-1 and A-2].

We next provide a brief survey of observability and its use
for investigating estimator (resp. filter) stability, in the study of
deterministic (resp. stochastic) nonlinear models. These have
to be separated because the work on these two types of models
has little overlap. For deterministic models, an estimator is
defined as a dynamical system whose dimension is the same
as the dimension of the state and which operates on inputs
and outputs. An important class, which also incorporates
certain optimality properties, is the minimum energy estimator
(MEE) [12, Ch. 4]. (Relationship to MEE is discussed at length
in part II [8, Tab. I].) The two bullets above serve as guiding
principles around which the discussion is organized.

Deterministic models. In the classical paper [15], Hermann
and Krener write “duality between “controllability” and “ob-
servability” [...] is, mathematically, just the duality between
vector fields and differential forms”. Similarly, the output-
to-state stability (OSS) definitions in [16] are motivated by
Wang and Sontag as follows: “Given the central role often
played in control theory by the duality between input/state and
state/output behavior, one may reasonably ask what concept
obtains if outputs are used instead of inputs in the [input-
to-state stability (ISS)] definition”. The OSS definition is
important for the following two reasons: (i) For the linear
state-output system (1), OSS is equivalent to detectability [17,
Excercise 7.3.12]; and (ii) OSS admits a dissipative charac-
terization in terms of an OSS-storage function [16, Thm. 3].
Such characterizations are useful in the study of stability and
robustness (several variations of observability definition and
their relationship are discussed in [18], [19]). Combining ISS
and OSS yields the notion of IOSS which is shown to be
equivalent to estimating the norm of the hidden state [18,
Sec. 8.5]. Related to detectability, an important notion is the
incremental IOSS (i-IOSS) which is standard for asymptotic
stability analysis of MEE [12, Thm. 4.10]. Dissipative char-
acterizations of incremental notions are also important, e.g.,
an i-IOSS Lyapunov function is given in [20].

Stochastic models (HMMs). As in the study of deterministic
models, a major impetus to define observability/detectability
comes from the question of nonlinear filter stability (now in the
sense of asymptotic forgetting of the initial prior). Formally,
there are two main cases:

• The case where the Markov process forgets the prior and
therefore the filter “inherits” the same property;

• The case where the observation provides sufficient in-
formation about the hidden state, allowing the filter to
correct its erroneous initialization.

These two cases are referred to as the ergodic and non-
ergodic signal cases, respectively. While the two cases are
intuitively reasonable, they spurred much work during 1990-
2010 with a complete resolution appearing only at the end
of this time-period. For the ergodic case, sufficient conditions
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for filter stability that rely only on the signal model appear
in [21, Thm. 5], [22, Assumption 4.3.24], [14, Thm. 4.3], [23,
Cor. 2.3.2], [14, Thm. 4.2]. For the non-ergodic signal case,
sufficient conditions relying also on the observation model are
given in [21, Thm. 7], [14, A-1 and A-2], [24, Rem. 23.1].
All of these conditions are for the HMM with white noise
observations, a model which occupies a central place in the
nonlinear filtering theory. For a more general class of HMMs,
the fundamental definition for stochastic observability and
detectability is due to van Handel [25], [26] (see Sec. II-D).
There are two notable features: (i) the definition made rigorous
the intuition described in the two cases [27, Sec. II-B and
Sec. V]; and (ii) the definition led to meaningful conditions
that were shown to be necessary and sufficient for filter stabil-
ity [27, Thm. III.3 and Thm. V.2]. The stochastic observability
definition is entirely probabilistic and its information-theoretic
extension was given in [28], [29]. For linear stochastic sys-
tems, information-theoretic metrics such as relative entropy
had earlier been used to define observability [30] (see also [31]
where extensions for uncertain linear systems is described).
There are also a number of works where observability is
defined as a finite memory property (often referred to as
uniform observability or reconstructability) whereby only the
most recent window of observations is necessary for estimation
and/or control [13, Assumption 2], [32, Defn. 2.4] [33,
Assumption A2]. Similar considerations also inform [34], [35]
where N step observability is defined for an HMM. The
definition has many attractive features, e.g., it is relatively
easier to verify (as compared to stochastic observability) and
is useful for filter and control design. In [35, Fig. 1], the
definition is also related to several criteria for filter stability.

In contrast to the deterministic models, duality is conspicu-
ous by its absence both to define stochastic observability and
to use it for filter stability. Dissipative characterizations, that
are so familiar for deterministic models, are also missing.

This paper is drawn from the PhD thesis [7] of the first au-
thor. A prior conference version of this paper appeared in [36].
While the focus of conference paper was on the finite state-
space case, the present journal version includes the results
for the general case. The following additions are noted: A
novel extension to stabilizability of the dual control system is
described (Sec. III-E) and shown to be the dual to detectability
of the HMM (Cor. 2). Remarks 7, 8, and 9 are included to
clarify the choice of function spaces. The dual control system
described in our work is compared and contrasted to the
backward Zakai equation which is how duality is understood
in the theory of nonlinear filtering (Rem. 5). Finally, the results
are related to both stochastic observability (Thm. 1) and to the
linear Gaussian problem (Sec. III-F).

C. Paper outline
The outline of the remainder of this paper is as follows:

The problem formulation and background appears in Sec. II.
The dual control system is introduced in Sec. III together
with the definition of the controllability and related concepts.
The explicit formulae for the finite state space case appear
in Sec. IV. The paper closes with some conclusions and
directions for future research in Sec. V.

Remark 1: An important objective of this paper is to make
comparisons with linear systems theory. This objective informs
the organization of this paper. In particular, after introducing
the dual control system in Sec. III-C, the following sub-
sections describe the controllable subspace, controllability
gramian (in Sec. III-D), and stabilizability (in Sec. III-E). The
following Sec. IV, concerning the finite state-space model, is
organized similarly with sub-sections on dual control system
(Sec. IV-B), controllable subspace (Sec. IV-C), controllability
gramian (Sec. IV-D), and stabilizability (Sec. IV-E). Such a
choice of organizing the material is strongly influenced by how
these concepts are taught in an introductory course on linear
systems theory. The close parallels between the linear and
the nonlinear cases are illustrated in Tables I and II, and the
linear Gaussian special case is discussed in Sec. III-F. Because
of the broad appeal of observability and related concepts to
both the deterministic and stochastic control communities, it
is hoped that the organization is useful to make the paper
broadly accessible. For this reason also, the paper begins with
a self-contained background on the nonlinear filtering model
in Sec. II. For some of the more technical aspects, additional
details can be found the references noted.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notation

For a locally compact Polish space S, the following notation
is adopted:

• B(S) is the Borel σ-algebra on S.
• M(S) is the space of regular, bounded and finitely

additive signed measures (rba measures) on B(S). The
natural norm is the total variation norm denoted ∥ · ∥TV.

• P(S) is the subset of M(S) comprising of probability
measures.

• Cb(S) is the space of continuous and bounded real-valued
functions on S. The natural norm is the sup-norm ∥ · ∥∞.

• For measure space (S;B(S);λ), L2(λ) = L2(S;B(S);λ)
is the Hilbert space of real-valued functions equipped
with the inner product ⟨f, g⟩L2(λ) =

∫
S
f(x)g(x) dλ(x).

For functions f : S → R and g : S → R, the notation fg
is used to denote element-wise product of f and g, namely,
(fg)(x) := f(x)g(x) for x ∈ S. In particular, f2 = ff . The
constant function is denoted by 1 (1(x) = 1 for all x ∈ S). For
µ ∈ M(S) and f ∈ Cb(S), µ(f) :=

∫
S
f(x) dµ(x) and for

µ, ν ∈M(S) such that µ is absolutely continuous with respect
to ν (denoted µ≪ ν), the Radon-Nikodym (RN) derivative is

denoted by
dµ

dν
. For a subset B ⊂ Cb(S), the annihilator of B,

denoted by B⊥, is defined by B⊥ := {µ ∈ M(S) : µ(f) =
0 ∀f ∈ B}. For a sub σ-algebra G ⊂ B(S), the restriction of
the measure µ to G is denoted by µ|G . It is obtained from the
defining relation µ|G(B) = µ(B) for B ∈ G.

B. Hidden Markov Model

We consider continuous-time stochastic processes on a finite
time-horizon [0, T ] with a fixed T < ∞. Fix the probability
space (Ω,FT ,P) along with the filtration {Ft : 0 ≤ t ≤ T}
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with respect to which all the stochastic processes are adapted.
Of special interest is the pair (X,Z) defined as follows:

• The state process X = {Xt : Ω → S : 0 ≤ t ≤ T} is
a Feller-Markov process on the state-space S. Its initial
measure (prior) is denoted by µ ∈ P(S) and X0 ∼ µ.
The infinitesimal generator is denoted by A.

• The observation process Z = {Zt : 0 ≤ t ≤ T} satisfies
the stochastic differential equation (SDE):

Zt =

∫ t

0

h(Xs) ds+Wt, 0 ≤ t ≤ T

where h : S→ Rm is the observation function and W =
{Wt : 0 ≤ t ≤ T} is an m-dimensional Brownian motion
(B.M.). We write W is P-B.M. It is assumed that W is
independent of X .

The above is referred to as the white noise observation model
of nonlinear filtering. In the remainder of this paper, the model
is referred to as the HMM (A, h). In the case where S is
not finite, additional assumptions are typically necessary to
ensure that the model is well-posed. In applications, the most
important examples are as follows:

• S is finite with cardinality |S| = d.
• S = Rd and X is an Itô diffusion.

A historically noteworthy example of an Itô diffusion is the
linear Gaussian model.

C. Nonlinear filtering background
The canonical filtration Ft = σ

(
{(Xs,Ws) : 0 ≤ s ≤ t}

)
.

The filtration generated by the observation is denoted by Z :=
{Zt : 0 ≤ t ≤ T} where Zt = σ

(
{Zs : 0 ≤ s ≤ t}

)
. The

nonlinear (or stochastic) filtering problem is to compute the
conditional expectation for a given test function f ∈ Cb(S):

πt(f) := E
(
f(Xt) | Zt

)
, 0 ≤ t ≤ T

The measure-valued process π = {πt : 0 ≤ t ≤ T} is referred
to as the nonlinear filter.

A standard approach is based upon the Girsanov change of
measure. Suppose the model satisfies the Novikov’s condition:
E
(
exp

(
1
2

∫ T

0
|h(Xt)|2 dt

))
<∞. Define a new measure P̃ on

(Ω,FT ) as follows:

dP̃

dP
= exp

(
−
∫ T

0

hT(Xt) dWt− 1
2

∫ T

0

|h(Xt)|2 dt
)
=: D−1

T

Then it can be shown that the probability law for X is
unchanged but Z is a P̃-B.M. that is independent of X [23,
Lem. 1.1.5]. The expectation with respect to P̃ is denoted
by Ẽ(·). The un-normalized filter is a measure-valued process
σ = {σt : 0 ≤ t ≤ T} defined by

σt(f) := Ẽ
(
Dtf(Xt)|Zt

)
, f ∈ Cb(S)

Because Z is a P̃-B.M., the equation is unnormalized filter is
easily obtained and is in fact the celebrated Zakai equation of
nonlinear filtering [10, Thm. 5.5]:

σt(f) = µ(f)+

∫ t

0

σs(hf)
T dZt+

∫ t

0

σs(Af) ds, 0 ≤ t ≤ T

(3)

Upon normalization, the nonlinear filter

πt(f) =
σt(f)

σt(1)
, 0 ≤ t ≤ T (4)

This ratio is referred to as the Kallianpur-Striebel formula [10,
Thm. 5.3]. Using (3), the equation for the nonlinear filter is
readily obtained by a simple application of the Itô formula to
the ratio [10, Thm. 5.7].

D. Stochastic observability

In problems concerned with observability of the model
(A, h) or filter stability, the symbol µ is used to denote the
true but possibly unknown prior and the symbol ν is used
to denote the prior that is used to compute the filter. If µ is
exactly known then µ = ν. In all other cases, it is assumed
that µ≪ ν.

To stress the dependence on the initial measure µ, we use
the superscript notation Pµ to denote the probability measure
P when X0 ∼ µ. The expectation operator is denoted by
Eµ(·) and the nonlinear filter πµ

t (f) = Eµ
(
f(Xt)|Zt

)
. On

the common measurable space (Ω,FT ), Pν is used to denote
another probability measure such that the transition law of
(X,Z) are identical but X0 ∼ ν. (For an explicit construction
of Pµ and Pν , see [37, Sec. 2.2].) The associated expectation
operator is denoted by Eν(·) and πν

t (f) = Eν
(
f(Xt)|Zt

)
.

The respective un-normalized filters are denoted by σµ
t and σν

t .
These are solution of the Zakai equation (3) with initialization
σµ
0 = µ and σν

0 = ν, respectively.
The following definition of stochastic observability is intro-

duced in [25]. Although it is identical for a general class of
HMMs, we state it for the model (A, h):

Definition 1 (Defn. 2 in [25]): The model (A, h) is ob-
servable if

Pµ|ZT
= Pν |ZT

=⇒ µ = ν, ∀µ, ν ∈ P(S)

Remark 2: The definition is contrasted with the defini-
tion of observability for deterministic nonlinear models [17,
Defn. 6.1.4]. For deterministic models, observability is defined
as a property of the map from initial condition to output
trajectory. In contrast, stochastic observability is a property
of the map from the initial prior to the probability law of the
output process.

Consider an equivalence relation on P(S) as follows:

µ ≃ ν if Pµ|ZT
= Pν |ZT

The following definition naturally arises from this notation:

Definition 2 (Defn. 3 in [25]): The space of observable
functions O = {f ∈ Cb(S) : µ(f) = ν(f) ∀µ ≃ ν}. The
space of unobservable measures N = {c(µ − ν) ∈ M(S) :
c ∈ R, µ, ν ∈ P(S) s.t. µ ≃ ν}.

Remark 3: An HMM is observable if and only if N = {0},
and because O⊥ = N , an HMM is observable if and only if
O is dense in Cb(S) [25, p. 42]. Because 1 ∈ O, the space of
observable functions O is always non-trivial. This also means
N ⊆M0(S) := {µ ∈M(S) : µ(1) = 0}.
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III. DUAL CONTROL SYSTEM

A. Function spaces

It is noted that Z is a P̃-B.M.. For a ZT -measurable random
vector, the following definition of Hilbert space is standard:
L2
ZT

(Ω;Rm) := L2(Ω;ZT ; dP̃) [38, Ch. 5.1.1]. For a Z-
adapted vector-valued stochastic process, the Hilbert space is
L2
Z
(
[0, T ];Rm

)
:= L2

(
Ω×[0, T ];Z⊗B([0, T ]); dP̃ dt

)
where

B([0, T ]) is the Borel sigma-algebra on [0, T ], Z ⊗ B([0, T ])
is the product sigma-algebra and dP̃ dt denotes the product
measure on it. The inner product for these spaces are

⟨F,G⟩L2
ZT

= Ẽ
(
F TG

)
, ⟨U, V ⟩L2

Z
= Ẽ

(∫ T

0

U T
tVt dt

)
These Hilbert spaces suffice if the state-space S is finite. In
general settings, let Y denote a suitable Banach space of real-
valued functions on S, equipped with the norm ∥ · ∥Y . Then

• For a random function, the Banach space L2
ZT

(Ω;Y) :={
F : Ω→ Y : F is ZT -measurable, Ẽ

(
∥F∥2Y

)
<∞

}
.

• For a function-valued stochastic process, the Banach
space is L2

Z([0, T ];Y) :=
{
Y : Ω × [0, T ] → Y :

Y is Z-adapted, Ẽ
( ∫ T

0
∥Yt∥2Y dt

)
<∞

}
.

In this paper, examples of Y are: (i) Cb(S) equipped with sup
norm denoted by ∥ · ∥∞, and (ii) L2(λ) where λ is a positive
reference measure on S.

B. Stochastic observability and Zakai equation

For a white noise observation model, a quantitative analysis
of stochastic observability is possible based on the following
formula for relative entropy [37, Thm. 3.1]:

D
(
Pµ|ZT

| Pν |ZT

)
= 1

2E
µ
(∫ T

0

|πµ
t (h)− πν

t (h)|2 dt
)

(5)

where D(· | ·) is the Kullback-Leibler (KL) divergence. The
formula is used to obtain the following result:

Theorem 1: T.F.A.E.:
1) The model (A, h) is observable.
2) For µ, ν ∈ P(S),

πµ
t (h) = πν

t (h), t-a.e., Pµ|ZT
-a.s. =⇒ µ = ν

3) For µ, ν ∈ P(S),

σµ
t (h) = σν

t (h), t-a.e., Pµ|ZT
-a.s. =⇒ µ = ν

Proof: See Appendix A.

The value of Thm. 1 is that the un-normalized filter is the
solution to the Zakai equation which is linear. A linear operator
L† :M(S)→ L2

Z
(
[0, T ];Rm

)
× R is defined as follows:

L†µ =
(
{σµ

t (h) : 0 ≤ t ≤ T}, µ(1)
)

(6)

The notation is suggestive: In this paper, we will define a linear
operator L such that the operator defined by (6) is its adjoint.

Corollary 1: The model (A, h) is observable if and only if
N(L†) = {0}.

Remark 4: N(L†) is identical to the space of unobservable
measure (see Defn. 2). Suppose N(L†) is not trivial and let
µ̃ ∈ N(L†) be a non-zero element. For µ ∈ P(S), and then
choose ϵ ̸= 0 such that ν = µ+ϵµ̃ ∈ P(S). Then owing to the
linearity of (3), σµ

t (h) = σν
t (h) for 0 ≤ t ≤ T . From Thm. 1

then Pµ|ZT
= Pν |ZT

.

Remark 5 (Prior work on adjoint of the Zakai equation):
Because the Zakai equation is linear, its adjoint has previously
been considered in literature. There are two types of equivalent
constructions:

• The most direct route relies on the pathwise or the
robust representation of the nonlinear filter. In this ap-
proach, by using a log transformation, the stochastic
partial differential equation (PDE) is transformed into a
linear deterministic PDE with random coefficients [39,
Ch. VI.11]. Because the transformed PDE is determin-
istic, the formula for its adjoint is obtained by standard
means [40, Eq. 4.17-4.18].

• The second type of adjoint is the backward Zakai equa-
tion

− dηt(x) = (Aηt)(x) dt+ (hηt)(x)
←−−
dZt

ηT (x) = f(x), x ∈ S
(7)

where
←−−
dZt denotes the backward Itô integral: its con-

struction is based on choosing the right-endpoints in the
partial sum approximation of the stochastic integral [41,
Rem. 3.3]. The backward and forward Zakai equation
are said to be dual because of the following formula [42,
Thm. 4.7.5]:

σT (f) = µ(η0)

The formula is used to prove the uniqueness of the
solution to the (forward) Zakai equation [10, Sec. 6.5].

The two constructions are equivalent because, using the log
transformation, the backward Zakai equation is transformed to
the pathwise adjoint [43, Sec. 2.3]. In nonlinear filtering, the
forward and backward Zakai equation are both classical [44].
The two equations together yield the solution of the smoothing
problem [41, Thm. 3.8].

Despite the well known duality between forward and back-
ward Zakai equations, it is distinct from the controllability–
observability duality (in linear systems theory) because of the
following aspects:

• The dual equation (7) does not have a control input term.
• The stochastic process η = {ηt : 0 ≤ t ≤ T} is not

adapted to any forward-in-time filtration. In particular,
η0 is a ZT -measurable random variable.

The dual control system described in the following section is
original and distinct from these prior adjoints.

C. Dual control system

The goal is to define a linear operator L whose adjoint L†

is given by (6). Because L† :M(S) → L2
Z
(
[0, T ];Rm

)
× R,

the domain of L is L2
Z
(
[0, T ];Rm

)
× R. We set U :=

L2
Z
(
[0, T ];Rm

)
and refer to it as the space of admissible
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control inputs. Next, because of duality pairing between Cb(S)
and M(S), the co-domain of L is Cb(S). We set Y = Cb(S).

The main result (Thm. 2 below) is to show that the operator
L : U×R→ Y is defined by the solution operator of the linear
backward stochastic differential equation (BSDE):

− dYt(x) =
(
(AYt)(x) + hT(x)(Ut + Vt(x))

)
dt− V T

t (x) dZt

(8a)
YT (x) = c, ∀x ∈ S (8b)

where the control input U := {Ut : 0 ≤ t ≤ T} ∈ U and
c ∈ R is a deterministic constant. The solution of the BSDE
(Y, V ) := {(Yt, Vt) : 0 ≤ t ≤ T} ∈ L2

Z
(
[0, T ];Y × Ym

)
is (forward) adapted to the filtration Z . Existence, unique-
ness, and regularity theory for linear BSDEs is standard and
throughout the paper, we assume that the solution of BSDE
(Y, V ) is uniquely determined in L2

Z
(
[0, T ];Y×Ym

)
for each

given YT ∈ L2
ZT

(Ω;Y) and U ∈ L2
Z
(
[0, T ];Rm

)
. The well-

posedness results for finite state-space can be found in [45,
Ch. 7] and for the Euclidean state space in [46] (see also
Rem. 8 below).

The linear operator L : U × R→ Y is defined as follows:

L(U, c) = Y0 (9)

where Y0 ∈ Y is the solution at time 0 to the BSDE (8). Note
that Y0 is a deterministic function.

Controllability is now defined in the same way as linear
systems theory. Note however that the target set (at time T )
is the space of constant functions (see also Rem. 7).

Definition 3: For the BSDE (8), the controllable subspace
CT := R(L). Explicitly,

CT =
{
y0 ∈ Y : ∃ c ∈ R and U ∈ U s.t. Y0 = y0 and YT = c1

}
(10)

The BSDE (8) is said to be controllable if CT is dense in Y .

Remark 6: If the control input U is deterministic then
V = 0. If U is stochastic then V must be non-zero to
obtain an adapted Y . It is possible to relate V to Y in
terms of a certain Malliavin derivative (see [47, Sec. 5] for
the finite state-space case and [46, Sec. 7] for the Euclidean
case). However, such formulae are not particularly intuitive
or computationally tractable. Additional insight may well be
possible in the optimal control setting of the problem (which
is the subject of the part II of this paper). However, as of yet,
both the meaning of the process V and its relationship to the
process Y remains an important topic of future study.

The duality between observability of the model (A, h)
and the controllability of the BSDE (8) is described in the
following theorem:

Theorem 2: L† is the adjoint operator of L. Consequently,
the HMM (A, h) is observable if and only if the BSDE (8) is
controllable.

Proof: See Appendix B.

We refer to the BSDE (8) as the dual control system for
the HMM (A, h). We make some remarks on function and
measure spaces.

Remark 7: In the definition of L, the domain space is
L2
Z
(
[0, T ];Rm

)
× R. For the purposes of this study, it also

suffices to consider a restriction of L† on the subspace
M0(S) (for example, the null-space of L† is a subspace of
M0(S)). An advantage of considering such a restriction is
that the co-domain space for L†, and therefore the domain
of L, now is L2

Z
(
[0, T ];Rm

)
. The dual space of M0(S)

is the quotient space Cb(S)/{c1 : c ∈ R} and therefore
L : L2

Z
(
[0, T ];Rm

)
→ Cb(S)/{c1 : c ∈ R}. Although

such a change will make duality between controllability and
observability somewhat terser, we prefer to keep the measure
space as M(S) and the function space as Cb(S). This has
an advantage of not having to deal with the solutions of the
BSDE on the quotient space.

Remark 8: The choice of function space Y = Cb(S) is
guided by duality pairing between Cb(S) and measure space
M(S) [48, Thm. IV.6.2]. An important reason is to relate
with [25] who defines observable functions as a subspace of
Cb(S). However, this may place restriction on the model (e.g.,
S is finite or compact) for the linear operator L : U ×R→ Y
to be bounded. Alternatively, one may consider linear operator
on a suitable Hilbert space. An important case is when a S
admits a positive reference measure λ. In this case, provided
these are well-defined, one may consider

L : U × R→ L2(λ), L† : L2(λ)→ U × R

where the domain for the adjoint L† is the space of absolutely

continuous measures ν ∈ M(S) whose density
dν

dλ
∈ L2(λ).

Examples are (i) finite state-space where λ is the counting
measure; and (ii) the Euclidean state-space where λ is the
Lebesgue measure. In fact, the well-posedness results for the
BSDE in Euclidean settings are for Y = L2(λ) [46]. For linear
Gaussian problems, one may take λ to be the Gaussian prior.

Remark 9: If S is finite, Cb(S) and M(S) are isomorphic
to Rd and the controllability definition reduces to R(L) = Y .
If S = Rd, Y is an infinite-dimensional space. In the study of
infinite-dimensional linear control systems, it is known that the
range space of an integral solution operator L : U×R→ Y can
never be the entire space Y [49, Thm. 4.1.5]. Therefore, the
best one can hope for is R(L) = Y which is how controllability
is defined (see also [25, Rem. 5]).

In the remainder of this paper, we let Y to be a suitable
function space and Y† is the dual space. A reader may replace
Y = Cb(S) and Y† = M(S) and such a choice is always
possible if S is finite or compact.

D. Controllable subspace and controllability gramian
The following proposition describes an important property

of the controllable subspace which is useful for computations.
Proposition 1: The controllable subspace CT is the smallest

such subspace C ⊂ Y that satisfies the following two proper-
ties:

1) The constant function 1 ∈ C; and
2) If g ∈ C then Ag ∈ C and gh ∈ C.

Proof: See Appendix C.
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The controllability gramian W : Y† → Y is a deterministic
linear operator defined as follows:

W := LL†

Explicitly, for a measure µ ∈ Y†, Wµ = Y0 where Y0 is
obtained for solving the BSDE

− dYt(x) =
(
AYt(x) + hT(x)(σµ

t (h) + Vt(x))
)
dt− V T

t (x) dZt

YT (x) = µ(1), x ∈ S

The gramian yields an explicit control input as follows:

Proposition 2: Suppose f ∈ R(W), i.e., there exists µ ∈ Y†

such that f = Wµ. Then the control

Ut = σµ
t (h), 0 ≤ t ≤ T

transfers the system (8) from YT = µ(1)1 to Y0 = f . Suppose
Ũ is another control which also transfers YT = c1 to Y0 = f
for some c ∈ R. Then

Ẽ
(∫ T

0

|Ũt|2 dt
)
+ c2 ≥ Ẽ

(∫ T

0

|Ut|2 dt
)
+
(
µ(1)

)2
(11)

Proof: See Appendix D.

E. Stabilizability and detectability
Consider the solution {µt ∈ Y† : t ≥ 0} to the forward

Kolmogorov equation:

µt(f) = µ0(f) +

∫ t

0

µs

(
Af

)
ds, t ≥ 0

The stable complement of A is defined as follows:

Ss :=
{
µ0 ∈ Y† : µT (f) → 0 as T →∞, ∀ f ∈ Y

}
Observe that a constant function is A-invariant and therefore
µT (1) = µ0(1). Consequently, Ss ⊂ M0(S). It is natural
to define stabilizability and detectability as dual properties as
follows:

Definition 4: The BSDE (8) is stabilizable if R(L)⊥ ⊂ Ss.

Definition 5: The HMM (A, h) is detectable if N(L†) ⊂
Ss.

Corollary 2: The HMM (A, h) is detectable if and only if
the BSDE (8) is stabilizable.

Remark 10: We compare with the detectability definition
in [27, Definition V.1]. An HMM is said to be detectable if
for any µ, ν ∈ P(S),

Either Pµ|ZT
̸= Pν |ZT

or ∥µT − νT ∥TV

(T→∞)−→ 0

By Thm. 1, this statement is identical to the Def. 5.

Remark 11: A Markov process is said to be ergodic if there
exists an invariant measure µ̄ such that for all µ0 ∈ P(S),
∥µT − µ̄∥TV

(T→∞)−→ 0. For an ergodic process, consider µ̃0 ∈
M0(S) and pick µ

(1)
0 , µ

(2)
0 ∈ P(S) and c ∈ R such that µ̃0 =

c(µ
(1)
0 − µ

(2)
0 ). Then

∥µ̃T ∥TV ≤ c∥µ(1)
T − µ̄∥TV + c∥µ(2)

T − µ̄∥TV

(T→∞)−→ 0

Therefore, if the state process is ergodic then Ss = M0(S)
and the BSDE is stabilizable (and from duality the HMM is
detectable) irrespective of the observation function h.

F. Linear Gaussian model

Consider the linear Gaussian model:

dXt = ATXt dt+ σ dBt, X0 ∼ N(m0,Σ0) (12a)
dZt = HTXt dt+ dWt (12b)

where the prior N(m0,Σ0) is a Gaussian density with mean
m0 ∈ Rd and variance Σ0 ⪰ 0, and the process noise B =
{Bt : 0 ≤ t ≤ T} is a B.M. It is assumed that X0, B,W
are mutually independent. The model parameters A ∈ Rd×d,
H ∈ Rd×m, and σ ∈ Rd×n.

We impose the following restrictions:
• The control input U = u is restricted to be a deterministic

function of time. In particular, it does not depend upon
the observations. For such a control input, the solution
Y = y of the BSDE is a deterministic function of time,
and V = 0. The BSDE becomes a PDE:

−∂yt
∂t

(x) = (Ayt)(x) + xTHut, yT = c1 (13)

where the lower-case notation is used to stress the fact
that u and y are now deterministic functions of time.

• Consider a finite (d-) dimensional space of linear func-
tions:

L := {f : Rd → R : f(x) = xTf̃ where f̃ ∈ Rd}

Then L is an invariant subspace for the dynamics (13).
On L, expressing yt(x) = xTỹt, the PDE reduces to an
ODE:

− dyt
dt

= Ayt +Hut, yT = 0 (14)

where we have dropped the tilde for notational ease.
The terminal condition is set to 0 because it is the only
constant function which is also linear.

In this manner, we have recovered the dual control sys-
tem (2) familiar from the linear systems theory (and discussed
in Sec. I). The only assumption in going from BSDE (8) to
the ODE (14) is that the control U is deterministic. Evidently,
such a choice suffices for the purposes of linear Gaussian
estimation. A detailed explanation of why this is the case
appears in the companion paper [8, Sec. III-C].

Remark 12: In the stability analysis of the Kalman filter,
detectability of the deterministic state-output model (1) is
a standard condition used in proofs: The condition is both
necessary and sufficient to show that the solution of the
DRE converges [50, Thm. 3.7]. Because the two models are
different (compare (1) and (12)), the fact that detectability of
the deterministic model is also the appropriate condition for
the stochastic model is somewhat curious. The above provides
an explanation by showing that the dual control systems for
the two models are the same (compare (2) and (14)).

G. Comparison between linear and nonlinear systems

For pedagogical reasons, it is useful to draw parallels
between the linear deterministic and the nonlinear stochastic
cases. In both cases, controllability (resp. observability) is a
property of the range space (resp. null space) of a certain
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TABLE I
LINEAR OPERATORS AND THEIR ADJOINTS FOR DETERMINISTIC (TOP) AND STOCHASTIC (BOTTOM) SYSTEMS

(state-output system Eq. (1)) (initial condition at t = 0) ξ ∈ Rd L†
−→ {zt : 0 ≤ t ≤ T} ∈ L2

(
[0, T ];Rm

)
(output)

(state-input system Eq. (2)) (initial condition at t = 0) y0 ∈ Rd L←− {ut : 0 ≤ t ≤ T} ∈ L2
(
[0, T ];Rm

)
(control input)

(Zakai Eq. (3)) (measure at t = 0) µ ∈M(S) L†
−→ {σµ

t (h) : 0 ≤ t ≤ T} ∈ L2
Z
(
[0, T ];Rm

)
(un-norm. filter)

(BSDE Eq. (8)) (function at t = 0) Y0 ∈ Cb(S)
L←− {Ut : 0 ≤ t ≤ T} ∈ L2

Z
(
[0, T ];Rm

)
(control input)

linear operator (resp. the adjoint operator). Table I provides a
comparison of the linear operators together with the domain
and the co-domain spaces. Based on these definitions, Table II
provides a side-by-side comparison of the controllability-
observability duality in the two cases.

IV. EXPLICIT FORMULAE FOR FINITE STATE-SPACE

A. Notation

The state-space S is finite, namely S = {1, 2, . . . , d}. In
this case, the space Cb(S) and M(S) are both isomorphic
to Rd: a real-valued function f (resp. a measure µ) are both
identified with a column vector in Rd where the ith element
of the vector represents f(i) (resp. µ(i)), and µ(f) = µTf . In
this manner, the observation function h is also identified with
a matrix H ∈ Rd×m. We denote the jth column and the ith

row of the matrix H by Hj and Hi, respectively.
The generator A of the Markov process is identified with

a row-stochastic rate matrix A ∈ Rd×d (the non-diagonal
elements of A are non-negative and the row sum is zero).
It acts on a function through: A : f 7→ Af . Its adjoint A† acts
on measures through: A† : µ 7→ ATµ where AT is the matrix
transpose.

B. Dual control system

The dual processes Y and V are Rd and Rd×m-valued,
respectively. The BSDE (8) is finite-dimensional as follows:

− dYt =
(
AYt +HUt +

m∑
j=1

diag(Hj)V j
t

)
dt− Vt dZt,

YT = c1 (15)

where 1 is now the d-dimensional column vector of all ones,
diag(Hj) is a diagonal matrix formed from the jth column
of the matrix H , and V j

t denotes the jth column of the
matrix Vt. The solution pair is (Y, V ) ∈ L2

Z([0, T ];Rd) ×
L2
Z([0, T ];Rd×m).
We refer to the BSDE (15) as the nonlinear model (A,H)

and the ODE (2) as the linear model (A,H).

C. Controllable subspace

The controllable space C is a subspace of Rd. Note that if
U is deterministic then V = 0 and the BSDE (15) reduces to
the ODE (2). This means that the controllable subspace for

the linear model span{H, AH, A2H, . . .} ⊂ C. Directly by
applying Prop. 1,

C = span
{
1, H, AH, A2H, A3H, . . . ,

H ·H, A(H ·H), H · (AH), A2(H ·H), . . . ,

H · (H ·H), (AH) · (H ·H), . . .
}

(16)
where the dot notation denotes the element-wise (Hadamard)
product between two matrices. Again, one observes that the
first row {H,AH,A2H, . . .} is the same as the controllability
matrix of the linear model (A,H). Therefore, if (A,H) is
controllable in the sense of linear systems theory then the
nonlinear model is also controllable (from duality the HMM
is then observable.) The presence of additional entries in (16)
means that the nonlinear model (A,H) may be controllable
even though the linear model (A,H) is not. To highlight
the difference, the following proposition gives a sufficient
condition for controllability which does not depend upon A.

Proposition 3: The nonlinear model (A,H) is controllable
if H is an injective map from S into Rm (the map is injective
if and only if Hi ̸= Hj for all i ̸= j). If A = 0 then the
injective property is also necessary for controllability.

Proof: See Appendix E.

Remark 13: In [25], a test for stochastic observability is
given for the white noise observation model in the finite state-
space settings. The test is given in terms of the dimension of
the space of observable functions (Def. 2). Since the notation
is somewhat different, we recall that [25] denotes the set of
distinct possible values of noise-free observations by h(S) :=
{h1, . . . , hr} (the value hi should not to be confused with
h(i)). Note r ≤ d with equality holds when h(i) ̸= h(j) for
all i ̸= j. Next for each hk ∈ h(S), a diagonal projection
matrix Phk

∈ Rd×d is defined whose non-zero elements are
Phk

(i, j) = 1 if h(i) = hk and i = j. In terms of these
matrices, the space of observable functions is shown to be [25,
Lemma 9]

O = span
{
Pn0APn1APn2 · · ·APnk

1 : k ≥ 0, ni ∈ h(S)
}

It is shown in Appendix F that O = C (formula in (16)).

D. Controllability gramian

For the nonlinear model (A,H), the controllability gramian
W is most directly expressed in terms of the solution operator
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TABLE II
COMPARISON OF THE CONTROLLABILITY–OBSERVABILITY DUALITY FOR LINEAR AND NONLINEAR SYSTEMS

Linear deterministic systems Nonlinear stochastic systems

Function space for
inputs and outputs

U = L2([0, T ];Rm)

⟨u, v⟩ =
∫ T

0
uT
tvt dt

U = L2
Z(Ω× [0, T ];Rm)

⟨U, V ⟩ = Ẽ
(∫ T

0
U T
tVt dt

)
Function space for
the dual state

Y = Rd

⟨x, y⟩ = xTy

Y = Cb(S), Y† = M(S)
⟨µ, y⟩ = µ(y)

Linear operators L : U → Y , u 7→ y0 by ODE (2)
L† : Y → U ,

x0 7→ {zt : 0 ≤ t ≤ T} by ODE (1)

L : U × R → Y , (U, c) 7→ Y0 by BSDE (8)
L† : Y† → U × R,

µ 7→ ({σt(h) : 0 ≤ t ≤ T}, µ(1)) by Zakai Eq. (3)

Controllability R(L) = Rd R(L) = Y

Observability N(L†) = {0} N(L†) = {0}

Duality R(L)⊥ = N(L†) =⇒ A state-output system is observable iff the dual control system is controllable.

of the Zakai equation defined as follows:

dΨt = ATΨt dt+
m∑
j=1

diag(Hj)Ψt dZ
j
t , Ψ0 = Id

where Id is the d × d identity matrix. In Appendix G, it is
shown that

W = 11T + Ẽ
(∫ T

0

ΨT
tHHTΨt dt

)
(17)

Since W is a deterministic matrix, controllability admits to a
rank condition test:

(A,H) is controllable ⇐⇒ W is full rank

E. Stabilizability
Because A is a stochastic matrix, a simple application of

the Geršgorin circle theorem shows that the eigenvalues of A
are either in the open left-half-plane or at zero, and

S⊥
s = S0 := {f ∈ Rd : Af = 0}

Therefore, stabilizability is equivalent to an inclusion property:

(A,H) is stabilizable ⇐⇒ S0 ⊂ C

A meaningful characterization is possible by partitioning
the finite state-space S into r ergodic classes {Sk : k =
1, 2, . . . , r} as follows:

1) S =
⋃r

k=1 Sk where P([Xt ∈ Sl] | [X0 ∈ Sk]) = 0 for
all t ≥ 0 and l ̸= k.

2) By choosing an appropriate coordinate, the matrix

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar


where Ak is a row stochastic matrix on Sk for k =
1, 2, . . . , r.

The Markov process is said to be ergodic if it has a single
ergodic class (r = 1). The following proposition provides an
explicit characterization of stabilizability:

Proposition 4: Consider the nonlinear model (A,H) and
an associated ergodic partition S = ∪rk=1Sk. Then

• If S has a single ergodic class (r = 1) then (A,H) is
stabilizable.

• If r > 1 then (A,H) is stabilizable if and only if the
indicator functions 1Sk ∈ C for k = 1, 2, . . . , r.

Proof: The matrix A has exactly r eigenvalues at zero
with an r-dimensional eigenspace S0 = span{1Sk : k =
1, 2, . . . , r}.

Remark 14: The two bullets in Prop. 4 correspond to the er-
godic signal case and the non-ergodic signal case as discussed
in Sec. I. The first bullet says that if the Markov process is
ergodic then the dual control system is stabilizable irrespective
of H . For the non-ergodic case, the second bullet provides a
simple condition for stabilizability. It can be shown that the
condition is both necessary and sufficient for the optimal filter
to asymptotically detect the correct ergodic class [7, Ch. 8]
(see also [14]).

V. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

In the study of deterministic linear and nonlinear systems,
duality has played a central role in defining, interpreting, and
using the property of observability. In this paper, we presented
the first such dual control system for studying stochastic
observability of HMMs with white noise observations. We
related the dual control system to both nonlinear filtering (the
Zakai equation) and the linear Gaussian model. The latter
relationship is shown to recover the classical duality between
controllability and observability of linear systems. In fact, the
development is entirely parallel in the nonlinear and the linear
systems. This is shown with the aid of the Table II with a
side-by-side comparison.
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Because the stress in this paper was on the duality between
controllability and observability, we did not explicitly relate
the process Y and the hidden process X . In fact, it is possible
as well and yields the following attractive formula

E
(
YT (XT )

)
= µ(Y0)− E

(∫ T

0

U T
t dZt

)
The formula is the starting point for the companion paper (part
II) [8] which is concerned with the use of duality to express the
nonlinear filtering problem as a dual optimal control problem.
The connection to optimal control theory opens up several
avenues of research, namely study of asymptotic stability of
the optimal filter, a definition of suitable supply rates that
yields useful dissipative characterizations of the HMM, and
opportunities for algorithm design. These are also discussed
at length as part of the conclusions of the companion paper.

A natural question also is to relate this work to the study of
deterministic models. Unfortunately, our work crucially relies
on additive Gaussian form of the measurement noise. This
effectively precludes the zero measurement noise case. Even
worse, there are well known counter-examples in stochastic
filtering theory that show that the observability property in
deterministic and stochastic models is fundamentally dis-
similar [51]. On the other hand, considering the limit as
the covariance of the measurement noise goes to zero may
be meaningful from robustness perspective, and may yield
useful insights also for the deterministic models. It is hoped
that duality helps bring together the two communities of
researchers studying deterministic and stochastic models.
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APPENDIX

A. Proof of Thm. 1
• (1 ⇐⇒ 2) It directly follows from the relative entropy

formula (5).

• (2 =⇒ 3) The Zakai equation (3) with f = 1 gives

σt(1) = 1 +

∫ t

0

σs(h)
T dZs = 1 +

∫ t

0

σs(1)πs(h)
T dZs

(18)
where the formula (4) is used to obtain the second
equality. It follows that if πµ

s (h) = πν
s (h) for all 0 ≤

s ≤ t then σµ
t (1) = σν

t (1). Using (4), σµ
t (h) = σν

t (h).

• (3 =⇒ 2) From the first equality in (18), it follows that
if σµ

s (h) = σν
s (h) for all 0 ≤ s ≤ t then σµ

t (1) = σν
t (1).

Using (4), πµ
t (h) = πν

t (h).

B. Proof of Thm. 2
The space U = L2

Z([0, T ];Rm) is a Hilbert space with
the inner product ⟨U, V ⟩U := Ẽ

( ∫ T

0
U T
tVt dt

)
. Therefore,

U × R is a Hilbert space with a natural inner product

⟨(U, c), (V, d)⟩U×R := ⟨U, V ⟩U + cd. For a function f ∈ Y
and a measure µ ∈ Y†, the duality pairing is denoted by
⟨µ, f⟩Y := µ(f). Let U ∈ U , c ∈ R, and µ ∈ Y†. By linearity,
L(U, c) = L(U, 0) + c1 and therefore

⟨µ,L(U, c)⟩Y = ⟨µ,L(U, 0)⟩Y + cµ(1)

Thus, the main calculation is to show ⟨µ,L(U, 0)⟩Y =
⟨σ(h), U⟩U where σ(h) = {σt(h) ∈ Rm : 0 ≤ t ≤ T} solves
the Zakai equation (3) with σ0 = µ. This is done by using
the Itô-Wentzell formula for measure valued processes [52,
Thm. 1.1] (note here that all stochastic processes are forward
adapted),

d
(
σt(Yt)

)
=

(
σt(AYt) dt+ σt(h

TYt) dZt

)
+ σt(h

TVt) dt

+
(
σt(−AYt − hTUt − hTVt) dt+ σt(V

T
t ) dZt

)
= −U T

tσt(h) dt+ σt(h
TYt + V T

t ) dZt

Integrating both sides,

σT (YT )−µ(Y0) = −
∫ T

0

U T
tσt(h) dt+

∫ T

0

σt(h
TYt+V T

t ) dZt

With YT = 0, because Z is a P̃-B.M.,

⟨µ,L(U, 0)⟩Y = µ(Y0) = Ẽ
(∫ T

0

U T
tσt(h) dt

)
= ⟨σ(h), U⟩U

In summary,

⟨µ,L(U, c)⟩Y = ⟨σ(h), U⟩U + cµ(1) =
〈
L†µ, (U, c)

〉
U×R

C. Proof of Prop. 1

The proof is adapted from [53, Thm. 3.2]. For notational
ease, we assume m = 1. For m > 1, the procedure is repeated
for each component of h. The definition of N(L†) is:

µ ∈ N(L†)⇔ µ(1) = 0 and σt(h) ≡ 0 ∀ t ∈ [0, T ]

Since N(L†) is the annihilator of R(L), we have 1, h ∈ R(L).
Consider next the Zakai equation (3) with the initial condition
µ ∈ N(L†) and f = h:

σt(h) = µ(h) +

∫ t

0

σs(Ah) ds+
∫ t

0

σs(h
2) dZs

Since t is arbitrary, the left-hand side is identically zero for
all t ∈ [0, T ] if and only if

µ(h) = 0, σt(Ah) ≡ 0, σt(h
2) ≡ 0 ∀ t ∈ [0, T ]

and in particular, this implies Ah, h2 ∈ R(L).
The subspace C is obtained by continuing to repeat the steps

ad infinitum: If at the conclusion of the kth step, we find a
function g ∈ C such that σt(g) ≡ 0 for all t ∈ [0, T ]. Then
through the use of the Zakai equation,

µ(g) = 0, σt(Ag) ≡ 0, σt(hg) ≡ 0 ∀ t ∈ [0, T ]

so Ag, hg ∈ C. By construction, because µ ∈ N(L†), C =
R(L).
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D. Proof of Prop. 2
Suppose f ∈ R(W). Then there exists µ ∈M(S) such that

Wµ = f . Let
(
U, µ(1)

)
= L†µ, and apply the control U to

the BSDE with terminal condition YT = µ(1)1. Then

Y0 = L(U, µ(1)) = LL†µ = Wµ = f

Suppose another (Ũ , c) ∈ U × R gives L(Ũ , c) = f . Then

0 =
〈
µ,L

(
U − Ũ , µ(1)− c

)〉
Y

=
〈
L†µ,

(
U − Ũ , µ(1)− c

)〉
U×R

=
〈(
U, µ(1)

)
,
(
U − Ũ , µ(1)− c

)〉
U×R

The minimum norm formula (11) follows because of this
orthogonality property.

E. Proof of Proposition 3

Step 1: We first provide the proof for the case when m = 1. In
this case, H is a column vector and Hi denotes its ith element.
We claim that if Hi ̸= Hj for all i ̸= j, then

span{1, H, H ·H, . . . , H ·H · · ·H︸ ︷︷ ︸
(d−1) times

} = Rd (19)

where (as before) the dot denotes the element-wise product.
Assuming that the claim is true, the result easily follows
because the vectors on left-hand side are contained in R(L)
(see (16)). It remains to prove the claim. For this purpose,
express the left-hand side of (19) as the column space of the
following matrix:

1 H1 H2
1 · · · Hd−1

1

1 H2 H2
2 · · · Hd−1

2
...

...
... · · ·

...
1 Hd H2

d · · · Hd−1
d


This matrix is easily seen to be full rank by using the Gaussian
elimination:

1 H1 H2
1 · · · Hd−1

1

0 H2 −H1 H2
2 −H2

1 · · · Hd−1
2 −Hd−1

1
...

...
... · · ·

...
0 0 0 · · ·

∏d−1
i=1 (Hd −Hi)


The diagonal elements are non-zero because Hi ̸= Hj .

Step 2: In the general case, H is a d × m matrix and Hi

denotes its ith row. We claim that if Hi ̸= Hj for all i ̸= j
then there exists a vector H̃ in the column span of H such that
H̃i ̸= H̃j for all i ̸= j. Assuming that the claim is true, the
result follows from the m = 1 case by considering (19) with
H̃ . It remains to prove the claim. Let {e1, . . . , ed} denote the
canonical basis in Rd. The assumption means (ei−ej)

TH is a
non-zero row-vector in Rm for all i ̸= j. Therefore, the null-
space of (ei − ej)

TH is a (m− 1)-dimensional hyperplane in
Rm. Since there are only finite such hyperplanes, there must
exist a vector a ∈ Rm such that (ei − ej)

THa ̸= 0 for all
i ̸= j. Pick such an a and define H̃ := Ha.

Step 3: To show the necessity of the injective property when
A = 0, assume Hi = Hj for some i ̸= j. Then the
corresponding rows are identical, so the rank is less than d.

F. Proof that O = C in Rem. 13
We begin with A = 0 case so

C = span{1, H, diag(H)H, diag(H)2H, . . .}
Since diag(H)nH = [hn+1(1), . . . , hn+1(d)]T, an element of
f ∈ C can be expressed by

f =
∞∑
j=0

aj [h
j(1), . . . , hj(d)]T =

r∑
k=1

∞∑
j=0

ajh
j
kPhk

1 ∈ O

Therefore, C ⊂ O. To show O ⊂ C, let

f =
r∑

k=1

bkPhk
1

It suffices to show that there exists {aj : j = 0, 1, . . .} such
that bk =

∑∞
j=0 ajh

j
k for all k = 1, . . . , r. In fact, such aj can

be found explicitly by setting aj = 0 for j ≥ r and inverting
the following matrix:

1 h1 h2
1 · · · hr−1

1

1 h2 h2
2 · · · hr−1

2
...

...
... · · ·

...
1 hr h2

r · · · hr−1
r


It is invertible because hi are distinct (the proof is by Gaussian
elimination as before).

For general A ̸= 0 case, we repeat the same procedure as
above for arbitrary matrices M1 and M2 which are multiples
of A and diag(H), to claim that

span{M1M2H,M1 diag(H)M2H,M1 diag(H)2M2H, . . .}
= span{M1Phk

M2H : k = 1, . . . , r}
The proposition is proved by repeating this for countable
times.

G. Formula (17) for the gramian
For a given measure µ ∈ Rd, Wµ = Y0 is obtained by

solving the BSDE

− dYt =
(
AYt +HHTσt +

m∑
j=1

Hj · V j
t

)
dt− Vt dZt

YT = (µT1)1

Consider the process

Θt := ΨT
tYt +

∫ t

0

ΨT
sHHTσs ds, 0 ≤ t ≤ T

Then by the Itô product formula,

dΘt =
m∑
j=1

ΨT
t

(
HjYt + V j

t

)
dZj

t

Therefore, {Θt : 0 ≤ t ≤ T} is a P̃-martingale. In particular,

Y0 = Θ0 = Ẽ(ΘT ) = Ẽ
(
ΨT

T 11
Tµ+

∫ T

0

ΨT
tHHTσt dt

)
Since the un-normalized filter is given by σt = Ψtµ,

Wµ = Ẽ
(
ΨT

T 11
T +

∫ T

0

ΨT
tHHTΨt dt

)
µ

Finally, Ẽ(ΨT
T 11

T) = 11T because d
dt Ẽ(Ψ

T
t1) = 0.
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[34] C. McDonald and S. Yüksel, “Observability and filter stability for
partially observed Markov processes,” in 2019 IEEE 58th Conference
on Decision and Control (CDC), 12 2019, pp. 1623–1628.
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