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Abstract—This paper is concerned with the develop-
ment and use of duality theory for a nonlinear filtering
model with white noise observations. The main contribu-
tion of this paper is to introduce a stochastic optimal
control problem as a dual to the nonlinear filtering prob-
lem. The mathematical statement of the dual relationship
between the two problems is given in the form of a duality
principle. The constraint for the optimal control problem
is the backward stochastic differential equation (BSDE)
introduced in the companion paper. The optimal control
solution is obtained from an application of the maximum
principle, and subsequently used to derive the equation of
the nonlinear filter. The proposed duality is shown to be an
exact extension of the classical Kalman-Bucy duality, and
different from other types of optimal control and variational
formulations given in literature.

Index Terms— Stochastic systems; Optimal control; Non-
linear filtering.

[. INTRODUCTION

In this paper, we continue the development of duality theory
for nonlinear filtering. While the companion paper (part I)
was concerned with a (dual) controllability counterpart of
stochastic observability, the purpose of this present paper (part
Il) is to express the nonlinear filtering problem as a (dual)
optimal control problem. The proposed duality is shown to be
an exact extension of the original Kalman-Bucy duality [1],
[2], in the sense that the dual optimal control problem has the
same minimum variance structure for both linear and nonlinear
filtering problems. Because of its historical importance, we
begin by introducing and reviewing the classical duality for
the linear Gaussian model.

A. Background and literature review
The linear Gaussian filtering model is as follows:
dXt = ATXt dt + O'dBt7
dZt = HTXt dt + th

XO ~ N(mo, Eo) (13.)

(1b)

where X := {X; € RE:0<t < T} is the state process, the
prior N(mg,Xo) is a Gaussian density with mean mg € R4
and variance Yo = 0, Z = {Z; : 0 < t < T} is the
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observation process, and B := {B, : 0 < ¢t < T} and
W = {W;:0 <t < T} are Brownian motion (B.M.). It is
assumed that X, B, W are mutually independent. The model
parameters A € R4*4, H € R¥™™ and o € R4X™,

For this problem, the dual optimal control formulations are
well-understood. These are of the following two types:

e Minimum variance optimal control problem:

T
Minimize J(u) = |yol3, +/ yr (oo™ )ye + |ue]? dt
{ur ERT0<<T) 0
(2a)
. . dyy o _ :
Subject to : T Ays + Huy, yr = f (given)
(2b)

e Minimum energy optimal control problem:

Minimize J(u,mo; 2) = |mo — mo\;,l
{ug ERN:0<t<T}=:u 0
mo€ERY T
+/ lug|? 4 |2 — H'mg|* dt (3a)
0
.
Subject to % — A", + ou (3b)

where z = {z; € R™ : 0 <t < T} is a given sample path of
observation data.

These two types of linear quadratic (LQ) optimal con-
trol problems are known since 1960s and described in [3,
Sec. 7.3.1 and 7.3.2]. Because it is discussed in the original
paper [2] of Kalman and Bucy, the minimum variance dual-
ity (2) is also referred to as the Kalman-Bucy duality [4]. The
relationship of the two problems to the model (1) is as follows:

e Minimum variance duality is related to the filtering
problem for the model (1). The optimal control cost (2a)
comes from specifying a minimum variance (least
squares) objective of estimating the random variable
"X for a given f € R?,

e Minimum energy duality is related to a smoothing prob-
lem for the model (1). The optimal cost (3a) is obtained
from specifying a maximum likelihood (ML) objective
for estimating a trajectory {rm; : 0 < t < T} given
a sample path {z; : 0 < ¢t < T} of observations. It
is noted that the sample path is not differentiable and
therefore, strictly speaking, “z,” in (3a) is not well-
defined. Although the stated form appears in most papers
and textbooks, it can be made rigorous [5].

Their respective solutions are related to (1) as follows:

e The solution of the minimum variance duality (2) is
useful to derive the Kalman filter for (1) [6, Ch. 7.6].



The derivation helps explain why the covariance equation
of the Kalman filter is the same as the differential Ricatti
equation (DRE) of the LQ optimal control. Note however
that the time arrow is reversed: the DRE is solved in
forward time for the Kalman filter. This is because the
constraint (2b) is a backward (in time) ordinary differen-
tial equation (ODE).

o The solution of the minimum energy duality (3) is a
favorite technique to derive the forward-backward equa-
tions of smoothing for the model (1). The Hamilton’s
equation for (3) is referred to as the Bryson-Frazier
formula [7, Eq. (13.3.4)]. By introducing a DRE, other
forms of solution, e.g., the Fraser-Potter smoother [8,
Eq. (16)-(17)], are possible and useful in practice.

Given this background for the linear Gaussian model (1),
there has been extensive work spanning decades on extending
duality to the problems of nonlinear filtering and smoothing.
The prominent duality type solution approaches in literature
include the following:

e Mortensen’s maximum likelihood estimator (MLE) [9].

e Minimum energy estimator (MEE) introduced in Hijab’s
PhD thesis [10] and its subsequent use in the model
predictive control (MPC) literature [11, Ch. 4].

o Log transformation relationship between the Zakai equa-
tion of nonlinear filtering and the Hamilton-Jacobi-
Bellman (HJB) equation of optimal control [12].

o Mitter and Newton’s variational formulation of the non-
linear smoothing problem [13].

In an early work [9], Mortensen considered a slightly more
general version of the linear Gaussian model (1) where the
drift terms in both (la) and (1b) are nonlinear. Both the
optimal control problem and its forward-backward solution are
straightforward extensions of (3). Since 1960s, closely related
extensions have appeared by different names in different
communities, e.g., maximum likelihood estimation (MLE),
maximum a posteriori (MAP) estimation, and the minimum
energy estimation (MEE) which is discussed next.

Based on the use of duality, the theory and algorithms
developed in the MPC literature are readily adapted to solve
state estimation problems. The resulting class of estimators
is referred to as the minimum energy estimator (MEE) [11,
Ch. 4]. The MEE algorithms are broadly of two types: (i)
Full information estimator (FIE) where the entire history of
observation is used; and (ii) Moving horizon estimator (MHE)
where only a most recent fixed window of observation is
used. An important motivation is to also incorporate additional
constraints in estimator design. Early papers include [10],
[14]-[16] and more recent extensions have appeared in [17]—
[20]. A historical survey is given in [11, Sec. 4.7] where
Rawlings et. al. write “establishing duality [of optimal es-
timator] with the optimal regulator is a favorite technique
for establishing estimator stability”. Although the specific
comment is made for the Kalman filter, the remainder of the
chapter amply demonstrates the utility of dual constructions
for both algorithm design and convergence analysis (as the
time-horizon 7' — o0). Convergence analysis typically re-
quires additional assumptions on the model which in turn has

motivated the work on nonlinear observability and detectability
definitions. A literature survey of these definitions, including
the connections to duality theory, appears in the introduction
of the companion paper (part I) [21].

While the focus of MEE is on deterministic models, duality
is also an important theme in the study of nonlinear stochastic
systems—hidden Markov models (HMM). A key concept is
the log transformation [22]. In [12], the log transformation is
used to transform the Zakai equation into a Hamilton-Jacobi-
Bellman (HJB) equation. Because of this, the negative log
of a posterior density is a value function for some stochastic
optimal control problem (this is how duality is understood in
stochastic settings [23, Sec. 4.8]). While the problem itself was
not clarified in [12] (see however [24]), Mitter and Newton
introduced a dual optimal control problem in [13] based on
a variational interpretation of the Bayes’ formula. This work
continues to impact algorithm design which remains an impor-
tant area of research [25]-[29]. A notable ensuing contribution
appeared in the PhD thesis-work of van Handel [30] where
Mitter-Newton duality is used to obtain results on nonlinear
filter stability.

Given the importance of duality for the purposes of stability
analysis in both deterministic and stochastic settings of the
problem, it is useful to return to the linear Gaussian model (1)
and compare the two types of duality (2) and (3). An important
point, that has perhaps not been stressed in literature, is that
minimum variance duality (2) is more compatible with the
classical duality between controllability and observability in
linear systems theory. This is because of the following reasons:

e Inputs and outputs. In (2), the control input u has the
same dimension m as the output process while in (3), the
control input u is the dimension n of the process noise.
Arguably, it is natural to view the inputs and outputs as
dual processes that have the same dimension.

e Constraint. If we ignore the noise terms in (1) then the
resulting deterministic state-output system (&; = A"z
and z; = H'x;) shares a dual relationship with the
deterministic state-input system (2b). (It is shown in
part I [21, Sec. III-F] that (2b) is also the dual for the
stochastic system (1)). In contrast, the ODE (3b) is a
modified copy of the model (1a).

e Stability condition. The condition for asymptotic analysis
of (2) is stabilizability of (2b), and by duality detectability
of (A", H"). The latter is well known to be the appropriate
condition for stability of the Kalman filter [31], [32]. In
contrast, for (3), asymptotic convergence of the optimal
mr is possible even with o = 0. The important condition
again is detectability of (A", H") but it is not at all
transparent from (3).

o Arrow of time. Because the respective DREs are solved
forward (resp. backward) in time for optimal filtering
(resp. control), the arrow of time flips between optimal
control and optimal filtering. Evidently, this is the case for
minimum variance duality (2) but not so for the minimum
energy duality (3): The constraint (2b) is a backward in
time ODE while the constraint (3b) is a modified copy
of the signal model which proceeds forward in time.



All of this suggests that a fruitful approach—for both
defining observability and for using the definition for asymp-
totic stability analysis—is to consider the minimum variance
duality, which naturally begets the following questions:

o What are the appropriate extensions of (2) and (3) for
nonlinear deterministic and stochastic systems?

o What type of duality is implicit in Mitter-Newton’s work?
It is already evident that MEE is an extension of (3).

Both these questions are answered in the present paper (for an
HMM with white noise observations). Before discussing the
original contributions, it is noted that the past work on mini-
mum variance duality has been on refinement and extensions
of the linear model with additional constraints. In [33], it is
used to obtain the solution to a class of singular regulator
problems, and in [34], the Lagrangian dual for an MEE
problem with truncated measurement noise is considered.
Numerical algorithms for (2) and its extensions appear in [35]-
[38]. Prior to our work, originally published as a conference
paper [39], it was widely believed that the nonlinear extension
of minimum variance duality is not possible [4], [23].

B. Summary of original contributions

The main contribution of this paper is to present a minimum
variance dual to the nonlinear filtering problem. As in the
companion paper (part I), the nonlinear filtering problem
is for the HMM with the white noise observation model.
The mathematical statement of the dual relationship between
optimal filtering and optimal control is given in the form of
a duality principle (Thm. 1). The principle relates the value
of the optimal control problem to the mean-squared error (or
the “variance”) of the optimal filtering problem. The classical
Kalman-Bucy duality (2) is recovered as a special case for the
linear-Gaussian model (1).

Two approaches are described to solve the optimal control
problem: (i) Based on the use of the stochastic maximum
principle to derive the Hamilton’s equation (Thm. 2); and (ii)
Based on a martingale characterization (Thm. 3). A formula
for the optimal control as a feedback control law is obtained
and used to derive the equation of the optimal nonlinear filter.
The proposed duality is related to Mitter-Newton duality with
a side-by-side comparison in Table I.

This paper is drawn from the PhD thesis of the first au-
thor [40]. A prior conference version appeared in [39]. While
the duality principle was already stated in the conference
paper, it relied on a certain assumption [39, Assumption Al]
which has now been proved. Various formulae are stated more
simply, e.g., the use of carré du champ operator to specify
the running cost. Issues related to function spaces have been
clarified to a large extent. While the conference version relied
on the innovation process, the present version directly works
with the observation process. Such a choice is more natural
for the problem at hand. As a result, most of the results
and certainly their proofs are novel. Comparison with Mitter-
Newton duality is also novel.

C. Paper outline

The outline of the remainder of this paper is as follows:
The mathematical model and necessary background appears
in Sec. II. The dual optimal control problem together with the
duality principle and its relation to the linear-Gaussian case is
described in Sec. III. Its solution using the maximum principle
and the martingale characterization appears in Sec. IV and
Sec. V, respectively. Duality-based derivation of the equation
of the nonlinear filter appears in Sec. VI. A comparison with
Mitter-Newton duality is contained in Sec. VII. The paper
closes with some conclusions and directions for future work
in Sec. VIII. All the proof are contained in the Appendix.

Il. BACKGROUND

We briefly review the model and the notation as presented in
Part I [21]. Although the presentation is self-contained, it is in
an abbreviated form with a focus on additional new concepts
that are necessary for this paper.

On the probability space (€2, Fr,P), we consider a pair of
continuous-time stochastic processes (X, Z) as follows:

o The state process X = {X;: Q2 —>S:0<t<T}isa

Feller-Markov process taking values in the state-space S.
The prior is denoted by ;1 € P(S) (space of probability
measures) and Xg ~ p. The infinitesimal generator is
denoted by A.

o The observation process Z = {Z; : 0 < t < T} satisfies

the stochastic differential equation (SDE):

t
0

where h : S — R™ is referred to as the observation
function and W = {W; : 0 < ¢t < T} is an m-
dimensional Brownian motion (B.M.). We write W is
P-B.M. It is assumed that W is independent of X.

The above is referred to as the white noise observation model

of nonlinear filtering. The model is denoted by (A, h).

An important additional concept in this paper is the carré
du champ operator I' defined as follows (see [41]):

(C)(@) = (Af*)(@) = 2f () (Af) (2),

where f : S — R is any arbitrary function in the domain of
the generator A.

rES

Remark 1: Given the generator A of a Markov process X,
the following process is a local martingale [41, Section 1.4.3]

t
NY = g(X,) / (Ag(X)ds, t20 (5

for any function g in the domain of A. The carré du champ
operator I is related to the quadratic variation process, namely,

t
)= [ e s ©
0
or in its differential form, d(N9); = (I'g)(X;)dt. These
characterizations are utilized later in the paper.

Explicit formulae for the most important examples are
described next.



A. Guiding examples

Example 1 (Finite state-space): S = {1,2,...,d}. A real-
valued function f is identified with a vector in R? where the
i element of the vector is f(7). In this manner, the generator
A of the Markov process is identified with a row-stochastic
rate matrix A € R9*? (the non-diagonal elements of A are
non-negative and the row sum is zero). The carré du champ
operator I' : R — R¢ is as follows:

(TF)G) =Y AGHG) - FG)? iSO
j€ES
Example 2 (Euclidean state-space): S = R?. The Markov
process X is an Itd diffusion modeled using a stochastic
differential equation (SDE):

dXt = G,(Xt) de + O'(Xt) dBt,

where the drift a € C'(R% R?) and the diffusion coefficient
o € C%(R%R¥™) satisfy appropriate technical conditions
such that a strong solution exists for [0,T], and B = {B; :
0 <t < T} is a standard B.M. assumed to be independent
of Xy and W. With a slight abuse of notation, we use the
identical symbol p to denote the probability density function
of the prior. (In the Euclidean example, all the formulae are
given in terms of the density of the respective measure.)

The infinitesimal generator A acts on C2(R%; R) functions
in its domain according to [42, Thm. 7.3.3]

(Af)(@) = a"(2)Vf(2) + gtr(00" (2)(D? f)(2),

where Vf is the gradient vector and D?f is the Hessian
matrix. For f € C1(R%R), the carré du champ operator is
given by

X()N/J,

x e RY

2

(T)(z) = |o"(@)V ()], =eR? ®)

Example 3 (Linear Gaussian model): The model (1) intro-
duced in Sec. I is a special case of an It6 diffusion where
the drift terms are linear a(x) = A"z and h(xz) = H'z, the
diffusion coefficient o(z) = o is a constant matrix, and the
prior x4 is a Gaussian density. A real-valued linear function is
expressed as

zeR?

fl@)=fu,
where f € R%. Then Af is also a linear function given by
(Af)(z) = (Af)'z, zeR?
and I'f is a constant function given by
(Tf)(z) = fT(aUT)f, reR? 9)

B. Background on nonlinear filtering

The canonical filtration F; = cr({(Xs,VVS) 10 < s <
t}) The filtration generated by the observation is denoted by
Z:={2,:0<t<T} where Z, =0c({Z, : 0 <5 <t}).
A standard approach is based upon the Girsanov change of
measure. Suppose the model satisfies the Novikov’s condition:
E (exp (1 fOT |h(X,)|? dt)) < 0. Define a new measure P on
(Q, Fr) as follows:
dp g [T 2 S
S =eo (- [ weaw—t [ peopar) = o;

0 0

Then it is shown that the probability law for X is unchanged
but Z is a P-B.M. that is independent of X [30, Lem. 1.1.5].
The expectation with respect to P is denoted by E(-).

The two probability measures are used to define the un-
normalized and the normalized (or nonlinear) filter are as
follows: For 0 <t < T and f € Cy(S),

(un-normalized filter) o:(f) := E(th(Xt)|Zt)
(nonlinear filter) 7 (f) := E(f(X})|Z:)
Ut(f)

Ot 1
as the Kallianpur-Striebel formula [43, Thm. 5.3] (here 1 is

the constant function 1(x) = 1 for all z € S). Combining the
tower property of conditional expectation with the change of
measure gives

E(f(X:)) = E(m(f)) = E(o¢(f))

As the name suggests, m(f) = which is referred to

(10)

C. Function spaces
The notation L% _(9;R™) and L% ([0,T];R™) is used to
denote the Hilbert space of Zp-measurable random vector
and Z-adapted stochastic process, respectively. These Hilbert
spaces suffice if the state-space is finite. In general settings,
let ) denote a suitable Banach space of real-valued functions
on S, equipped with the norm || - ||y). Then
o For a random function, the Banach space L% (€;)) :=
{F:Q— Y:Fis Zr-measurable, E(||F[3) < oo}.
o For a function-valued stochastic process, the Banach
space is L%([0,T];Y) = Y : Q x [0,T] — Y
Y is Z-adapted, E( J; IVi[}3 t) < oo}
In the remainder of this paper, we set ) := C3(S) (the space
of continuous and bounded functions) equipped with the sup-
norm. The dual space M(S) (the space of rba measures) is

denoted by V' where the duality pairing (f, p) = p(f) for
feYandpeYt.

1. MAIN RESULT: THE DUALITY PRINCIPLE
A. Problem statement

For a function F € L?ZT (Q;y), the nonlinear filter
mr(F) is the minimum variance (or least squares) estimate
of F(Xr) [3, Sec. 6.1.2]:

mp(F) = E(|F(Xr)—Sr)?) (D

argmin
STt GLZZT (Q,R)
Our goal is to express the above minimum variance optimiza-
tion problem as a dual optimal control problem.

The conditional variance is denoted by

Vr(F) := E(|F(X7) — 70 (F)[*|Z7) = 7p(F?) — (nr(F))”
At the initial time 7" = 0,

Vo(f) = E(If(Xo) = u(f)I?) = u(f?) = (u(f))

is the variance of a deterministic function f with respect to
the prior . Such a notation for variance is standard (e.g., [41,
Eq. (4.2.1)]). The notation for conditional variance is a direct
extension where, at time ¢t = 7', the function F' is allowed to
be Zr-measurable.

2



B. Dual optimal control problem

The function space of admissible control inputs is denoted
by U := L% ([0, T];R™). An element of U is denoted U =
{U : 0 <t < T} It is referred to as the control input. The
main contribution of this paper is the following problem.

e Minimum variance optimal control problem:

T
Minimize: Jr(U) :VO(YO)+E(/O l(Yt,Vt,Ut;Xt)dt)
(12a)
Subject to (BSDE constraint):

— dYi(z) = ((AYD)(@) + 0" (@)(Us + Vi(a))) dt — V] (2) dZ,

Yr(z) = F(z), z €S (12b)
where the running cost
Uy, v, us2) = (Ty)(2) + u+ov(@)® (13)

Remark 2: The BSDE (12b) is introduced in the companion
paper [21] as the dual control system. The data for the BSDE
is the given terminal condition F € L% (2;)) and the
control input U € U. The solution of the BSDE is the pair
(V,V) = {(Ys, Vi) : 0 < t < T} € LE([0,T];Y x ™)
which is (forward) adapted to the filtration Z. Existence,
uniqueness, and regularity theory for linear BSDEs is standard
and throughout the paper, we assume that the solution of
BSDE (Y, V) is uniquely determined in L% ([0,7]; Y x V™)
for each given Y7 € L% (€;Y) and U € L% ([0, T];R™).
The well-posedness results for finite state-space can be found
in [44, Ch. 7] and for the Euclidean state space in [45].

The relationship of (12) to the minimum variance objec-
tive (11) is given the following theorem.

Theorem 1 (Duality principle): For any admissible control
U € U, consider an estimator

T
St = u(Yo) —/ U; dZ, (14)
0
Then
Jr(U) = E(|F(XT) - S1*) (15)
Proof: See Appendix A. ]

The problem (12) is a stochastic linear quadratic optimal
control problem (the only non-standard aspect is the BSDE
nature of the constraint (12b)) for which there is a well
established existence-uniqueness theory for the optimal control
solution. Application of this theory is the subject of the
following section. For now, we assume that the optimal control
is well-defined and denote it as U©P) = {UP) . 0 < ¢ < T'}.
Because the right-hand side of the identity (15) is bounded
below by E(Vr(F)), the duality gap

Jp(UC) —E(Vr(F)) >0

In order to conclude that the duality gap is zero, it is both
necessary and sufficient to show that there exists a U € U
such that the estimator S, as given by (14), equals 7 (F).
Since Z is a P-B.M., the following lemma is a consequence

of the Itd representation theorem for Brownian motion [42,
Thm. 4.3.3].

Lemma 1: For any F € L% (Q;)), there exists a unique
U € U such that

T
WT(F) = E(?TT(F)) —/ UtT dZt, P-a.s.
0
Proof: See Appendix B. [ ]

Because the duality gap is zero, the following implications
are to be had:

o The optimal control U©PY gives the conditional mean

T
mr(F) = p(Yy) — / (U) dZy,  P-as.
0
« The optimal value is the expected value of the conditional
variance

E(Vr(F)) = Vo(Yo) + E(/OT 1Yy, Vi, USP: X,) dt)

where (Y, V) is the optimally controlled stochastic pro-
cess obtained with U = U©PY in (12b).
In fact, these two implications carry over to the entire
optimal trajectory.

Proposition 1: Suppose U©PY is the optimal control input
and that (Y, V) is the associated solution of the BSDE (12b).
Then for almost every 0 <t < T,

t
m(Yy) = p(Yo) — / (UCPM) dz,, P-as. (16)
0

t
EVi(V2)) =vo(Yo)+E(/0 l(Ys,n,US’P‘);XS)ds) (17)

Proof: See Appendix C. [ ]

Consequently, the expected value of the conditional variance
is the optimal cost-to-go (for ae. 0 < t < T). We do
not yet have a formula for the optimal control U©PY. The
difficulty arises because there is no HJB equation for BSDE-
constrained optimal control problem. Instead, the literature on
such problem utilizes the stochastic maximum principle for
BSDE which is the subject of the next section. Before that,
we discuss the linear Gaussian case.

C. Linear Gaussian case

The goal is to show that the classical Kalman-Bucy dual-
ity (2) described in Sec. I for the linear Gaussian model (1)
is a special case. Consider a linear function F(z) = [Tz
where f € R? is a given deterministic vector. The problem
is to compute a minimum variance estimate of the scalar
random variable f*Xp. It is given by E(f"Xr|Z7). Now, it
is a standard result in the theory of Gaussian processes that
conditional expectation can be evaluated in the form of a linear
predictor [46, Cor. 1.10]. For this reason, it suffices to consider
an estimator of the form

T
St :zb—/ uy dZy
0



where b € R and u = {u; € R™ : 0 < ¢t < T} are both
deterministic (the lower case notation is used to stress this).
Consequently, for linear Gaussian estimation, we can restrict
the admissible space of control inputs to L*([0, 7]; R™) which
is a much smaller subspace of L% ([0,7]; R™). Using a de-
terministic control u, and the terminal condition F(x) = f"x,
the solution of the BSDE is given by

Yi(z) =ylz, Vi(x)=0, z€R? 0<t<T
where y = {y; € R? : 0 < t < T} is a solution of the
backward ODE:

dy:
——=A H =
ar ye + Huy, yr=f

Using the formula (9) for the carré du champ, the running cost
(Ye, Vi, Up; Xi) = (TY)(Xy) + U + Vi(Xo)|?
= yi (00" )y + uf?
With the Gaussian prior, the initial cost Vo(yo) = y3Z0%o-
Combining all of the above, the optimal control problem (12)
reduces to (2) for the linear Gaussian model (1).

Remark 3: The solution of (2) yields the optimal control
input w©P = {u{ € R™ : 0 < ¢t < T}, along with
the vector yo € R? that determines the minimum-variance
estimator:

T T
St = ulysr) - / (™)' dZ; = yomo - / (™) a2,
0 0

The Kalman filter is obtained by expressing {S:(f) : ¢t >
0, fe Rd} as the solution to a linear SDE [6, Ch. 7.6].

V. SOLUTION OF THE OPTIMAL CONTROL PROBLEM

The BSDE constrained optimal control problem (12) is not
in its standard form [47, Eq. 5.10]. There are two issues:

o The probability space: The driving martingale of the
BSDE (12b) is Z, which is a P-B.M. However, the
expectation in defining the optimal control objective (12a)
is with respect to the measure P.

o The filtration: The ‘state’ of the optimal control prob-
lem (Y,V) is adapted to the filtration Z. However, the
cost function (12a) also depends upon the non-adapted
exogenous process X .

The second problem is easily fixed by using the tower prop-
erty of conditional expectation. To resolve the first problem,
we have two choices:

1) Use the change of measure to evaluate Jp(U) with

respect to P measure; or

2) Express the BSDE using a driving martingale that is

a P-B.M. A convenient such process is the innovation
process.
In this paper, the standard form of the dual optimal control
problem is presented based on the first choice. For an analysis
based on the second choice, see [39] and [40, Sec. 5.5].

In order to express the expectation for the control objec-
tive (12a) with respect to P, we use the change of measure
(see Appendix D for the calculation) to obtain

T
JT(U):vo<m+E(/ (Y;, Vi, Uss o) di)
0

where the Lagrangian ¢ : ) x Y™ x R™ x YT — R is defined
by

Uy, v,u; p) = p(Ty) + p(ju+v|?) (18)

The dual optimal control problem (standard form) is now
expressed as follows:

T
Minimize Jr(U) =Vo(Yo) + E(/O K(Yt,Vtﬂt;Ut)dt)
(192)
Subject to:
— dYi(z) = ((AY3)(2) + A" (2)(U; + Vi(x))) dt — V[ (x) dZ,
Y() F(z), z€S (19b)

Remark 4: The Lagrangian is a time-dependent random
functional of the dual state (y,v) and the control u. The
randomness and time-dependency comes only from o,.

A. Solution using the maximum principle

Because y € ) is a function, the co-state p € Yiis a
measure. The Hamiltonian H : Y x Y xR x YT x YT 5 R
is defined as follows:

H(y, v, u,p; p) = —p(Ay + 1" (u+v)) — £y, v, u; p)
In the following, the Hamilton’s equations for the optimal
trajectory are derived by an application of the maximum
principle for BSDE constrained optimal control problems [48,
Thm. 4.4].

The Hamilton’s equations are expressed in terms of the
derivatives of the Hamiltonian. In order to take derivatives
with respect to functions and measures, we adopt the notion
of Gateaux differentiability. Given a nonlinear functional F' :
Y — R, the Géteaux derivative I (y) € YT is obtained from
the defining relation [3, Sec. 10.1.3]:

= (9, Fy(y)),

For the problem at hand, the derivatives of the Hamiltonian
are as follows:

d
—F
de (v

vVyge)y

M, (g, 0,1, p) = —Alp — (p(Ty)),
Holy,v,u,p; p) = *ph* 2(u+v)p
Hu(y, v, u,p; p) = —p(h) = 2p(1)u — 2p(v)

Hp(y,v,u,p; p) = —Ay — h'(u +v)

where A" is the adjoint of A (whereby (ATp)(f) = p(Af)
forall f € V,p € yh. Using this notation, the Hamilton’s
equations are as follows:

Theorem 2: Consider the optimal control problem (19).
Suppose UPY is the optimal control input and the (Y, V) is
the associated solution of the BSDE (19b). Then there exists a
Z-adapted measure-valued stochastic process P = {P; : 0 <



t < T} such that

AP, = —Hy(Y;, Vi, U™, Py o) dt

— M, (Y2, Vi, U™, Pry0y) dZy (20a)
AY; = H, (Y, Vi, U™, Ps o) dt 4V, d 2, (20b)
dP,
T:(x) =2(Yo(z) — u(Yo)), Yr(z)=F(z), z€S$
(20c)
where the optimal control is given by
1 P,(h) -
U = 2287 1 (V,), Pas,0<t<T (21
20't(1) 'ﬂ—t( t)7 a.s., = = ( )

(In (20c), %IZ) denotes the R-N derivative of the measure P,
with respect to the measure p).

Proof: See Appendix E. ]

Remark 5: From linear optimal control theory, it is known
that P, is related to Y; by a (Z;-measurable) linear trans-
formation [44, Sec. 6.6]. The boundary condition (111; 0(g) =

2(Yo(x) — n(Yp)) suggests that the R-N derivative
dP, -
d—(x) =2(Y(z) —m(Yy)), Pas,0<t<T,zeS
Ot

(22)
This is indeed the case as we show in Appendix F by verifying
that (22) solves the Hamilton’s equation. Combining this
formula with (21), we have a formula for optimal control input
as a feedback control law:

o —me(R)me(Ve)) —m(Vi), P-as,,0<t<T

= —(Ft(hm)

B. Explicit formulae for the guiding examples

Example 4 (continued from Example 1): Consider a
Markov chain on a finite state-space S = {1,2,...,d}.
A real-valued function f (resp. a measure p) is identified
with a column vector in R? where the i element of the
vector represents f(i) (resp. p(i)), and p(f) = p'f. In this
manner, the generator A is identified with a rate matrix
A € R%? and the observation function £ is identified with a
matrix H € R¥™_ Let {ey,e,...,e4} denote the canonical
basis in R?, Qi) = > jes Ali,7)(e; — ej)(ei — €;)" and
p(Q) = X ,c5 p(1)Q(i). For any vector b € R, B = diag(b)
is a d x d diagonal matrix whose diagonal entires are defined
as B(i,i) = b(i) for i = 1,2,...,d. For a d X d matrix B,
b = diagT(B) is a d-dimensional vector whose entries are
defined as b(¢) = B(i,7) fori=1,2,...,d.

The Lagrangian £ : R? x R4 x R™ x R? — R and the
Hamiltonian #H : R? x R¥>™ x R™ x R? x R? — R are as
follows:

Uy, v,us p) = y"p(Q)y + p(1)|ul® + 2u'vp + p diag’ (vv")
H(y,v,u,p;p) =

The functional derivatives are now the partial derivatives. For
the Hamiltonian, these are as follows:

Hy(y,v,u,p5p) = —A'p = 2p(Q)y

Ho(y,v,u,p; p) = — diag(p)H — 2pu’ — 2diag(p)v
Huly,v,u,p;p) = —H'p — 2p(1)u — 2v"p
Hp(y,v,u,p;p) = —Ay — Hu — diagT(HvT)

The Hamilton’s equations are given by

dP, = (A"P, +20,(Q)Y;) dt
+ (diag(P:)H + 20,U; + 2 diag(o¢)V;) dZ;
dY; = —(AY, + HU, + diag' (HV,")) dt + V, dZ,
Py=2%Y,, Yp=F
where X := diag(p) — pu'.

Example 5 (continued from Example 2): Consider an It6
diffusion (2) in R? with a prior density p. Likewise, p and
p are used to denote the density of the respective measures.
Doing so, the Lagrangian and the Hamiltonian are as follows:

o) = [ p(@)(10"@V9(@) + fu+o(@)) do
M. vpip) == [ pla) (Ayla) + 1)+ o(a) do

— Ly, v, u; p)

The functional derivatives are computed by evaluating the first
variation. These are as follows:

Hy(y, v, u,p;p) = —ATp +2V - (00" (Vy)p)
Ho(y, v, u,p; p) = —ph — 2(u+v)p
u(y v,u,p; p) = —p(h) = 2p(1)u — 2p(v)
Hp(y,v,u,p;p) = —Ay — h'(u+v)

where p(v) is now understood to mean | p(z)v(z) dz and the

formula for adjoint is

(ATp)(z) = =V - ( Za o7, ~([oo"ijp) (z)

3,5=1

Therefore, the Hamilton’s equations are given by

dPy(z) = ((ATP)(z) — 2V - (00" (VY;)oy) (2)) dt
+ (Pe(@)h(x )+2(Ut+Vt( ))oi(x)) dZ;
dYi(z) = —((AY:)(x) + 1" (2)(U; + Vi(2))) dt + Vi (z) dZ,

Py(x) = 2p(x) (Yo(2) — u(Y0)), Yr(z) = F(z), z € R?

where note that P; is now a (random) function (same as Y;).
The equation for the process Y is now a backward stochastic
partial differential equation (BSPDE).

V. MARTINGALE CHARACTERIZATION

Although we do not have an HJB equation, a martingale
characterization of the optimal solution is possible as described

—p'(Ay + Hu + diag' (Hv")) — £(y, v, u; p) in the following theorem:



Theorem 3: Fix U € U. Consider a Z-adapted real-valued
stochastic process M = {M; : 0 <t < T}

t
M, = vt(Yt)—/ UYi Ve Usm)ds, 0<t<T
0

where (Y, V) is the solution to the BSDE (12b) and = is the
nonlinear filter. Then M is a P-supermartingale, and M is a
P-martingale if and only if

Uy = —(Wt(hyt) - Wt(h)ﬂt(yt)) - 7Tt(Vt) (23)
for 0 <t <T, P-as..
Proof: See Appendix G. ]

A direct consequence of Thm. 3 is the optimality of the
control (23), because

E(Mr) < E(M,y)

which means
T
EVr(F) < E(Vo(¥o) + [ Vi Vi U dt) = Jr(U)
0

with equality if and only if U = U°PY. Therefore, the expected
value of the conditional variance E(Vr(F)) is the optimal
value functional for the optimal control problem.

Remark 6: We now have a complete solution of the opti-
mal control problem (12). Remarkably, the solution admits a
meaningful interpretation not only at the terminal time 7" but
also for intermediate times 0 < ¢ < T'. At time ¢,

o The optimal value functional is E (Vt(Yt)) (formula (17)).

« The optimal control U{°"" is a feedback control law (23).
o The optimal estimate is 7¢(Y;) (formula (16)).

Formula (16) for 7 (Y;) explicitly connects the optimal control
to the optimal filter. In particular, the optimal control up to
time ¢ yields an optimal estimate of Y;(X).

Because of the BSDE constrained nature of the optimal con-
trol problem (12), an explicit characterization of the optimal
value functional and the feedback form of the optimal control
are both welcome surprises. It is noted that the feedback
formula (23) for the optimal control is derived using two
approaches: using the maximum principle (Rem. 5) and using
the martingale characterization (Thm. 3).

V1. DERIVATION OF THE NONLINEAR FILTER

From Prop. 1, using the formula (23) for optimal control

t
m(¥5) = u(¥0)+ [ () = m (W) (V) + 7. (V)" 42,

’ (24)
for 0 <t < T, P-as.. Because the equation for Y is known, a
natural question is whether (24) can be used to obtain the
equation for nonlinear filter (akin to the derivation of the
Kalman filter described in Rem. 3). A formal derivation of
the nonlinear filter along these lines is given in Appendix H.

VIl. COMPARISON WITH MITTER-NEWTON DUALITY
A. Review of Mitter-Newton duality

In [13], Mitter and Newton introduced a modified (con-
trolled) version of the Markov process X. The controlled
process is denoted by X = {Xt 0 5S:0<¢t< T}.
The problem is to pick (i) the initial prior p; and (ii) the
state transition, such that the probability law of X equals the
conditional law for X.

This is accomplished by setting up an optimization problem
on the space of probability laws. Let Px denote the law for
X, Q denote the law for X, and P X|- denote the conditional
law for X given an observation sample path z = {z; € R™ :
0 <t < T}. Assuming Q < Px, the objective function is the
relative entropy between Q and Px.:

. dQ dPX\z
Eo( 105 5, ) — Ea(1o 35 )
R T A S
In [30], (25) is referred to as the variational Kallianpur-Striebel

formula. For Example 2 (Itd diffusion), this procedure yields
the following stochastic optimal control problem:

(25)

Min: J(a,U;z)
o, U
dii, 5 . T
- E(log d—Z(Xo) — 2rh(X7) +/O (X, U, ;zt)dt>

(26a)

Subj : dXt = G(Xt) dt + U(Xt)(Ut dt + dBt), Xo ~ /1
(26b)

where

Uz, usze) = |ul? + $h*(2) + 2 (A h)(z)

where A" is the generator of the controlled Markov process
X. A similar construction is also possible for Example 1 (finite
state-space) [30, Sec. 2.2.2], [49, Sec. 3.3].

The problem (26) is a standard stochastic optimal control
problem whose solution is obtained by writing the HIB
equation (see [49]),

Ov
*aTt(“””) = (A(vy + 2h)) () + $h* ()
— 0"V (v + 2¢h) (2)]?

vp(x) = —zrh(z), = €R?

and the optimal control U, = u{**”(X,) where
uf™ (z) = —0"V (vy + 2h)(z)
By expressing the value function

v(x) = —log (Qt(l”)ezth(gc))

a direct calculation shows that the process {¢; : 0 < t < T}
satisfies the backward Zakai equation of the smoothing prob-
lem [50], [51, Thm. 3.8]. This shows the connection to both the
log transformation and to the smoothing problem. In fact, the
above can be used to derive the forward-backward equations
of nonlinear smoothing (see [49] and [40, Appdx. B]).

Remark 7: The stochastic optimal control problem (26) is
equivalently stated as a deterministic optimal control problem



TABLE |

COMPARISON OF THE MITTER-NEWTON DUALITY AND THE DUALITY PROPOSED IN THIS PAPER

Mitter-Newton duality

Duality proposed in this paper

Filtering/smoothing objective

Minimize relative entropy (Eq. (25))

Minimize variance (Eq. (11))

Observation (output) process

Pathwise (z is a sample path)

Z is a stochastic process

Control (input) process

Ut has the dimension of the process noise

U and Z are both elements of L% ([0, T]; R™)

Dual optimal control problem

Eq. (26)

Eq. (12)

Arrow of time

Forward in time

Backward in time

Dual state-space

S: same as the state-space for X}

Y: the space of functions on S

Constraint

Controlled copy of the state process SDE (26a)

Dual control system BSDE (12b)

Running cost (Lagrangian)

U, usze) = Slul? + 3% (@) + 2 (A"D) (2)

Uy, v, u;2) = (Ty) () + Ju+ v(2)®

Value function (its interpretation)

Minus log of the posterior density

Expected value of the conditional variance

Asymptotic analysis (condition)

Unclear

Stabilizability of BSDE <« Detectability of HMM

Optimal solution gives

Forward-backward equations of smoothing

Equation of nonlinear filtering

Linear-Gaussian special case

Minimum energy duality (3)

Minimum variance duality (2)

on Yt [49, Sec. 3.2]. Note that the optimal control problem
depends on a (fixed) observation sample path z, which is the
reason why a deterministic formulation is available.

B. Linear Gaussian case

The goal is to relate (26) to the minimum energy duality (3)
described in Sec. I for the linear Gaussian model (1). In the
linear Gaussian case, the controlled process (26b) becomes

dX, = A"X,; dt+oU,dt+0dB,, Xy~ N(mg,%0) (27)
where U, my, f)o are decision variables. Because the problem

is linear Gaussian, it suffices to consider a linear control law
of the form

Uy = Ki(Xy — ) + (28)

where 77, := E(X,) and the two deterministic processes

K={K,eR™.0<t<T}
u={u eR":0<t<T}

are the new decision variables. With a linear control law (28),
the state Xt is a Gaussian random variable with mean m;
and variance ;. It is possible to equivalently express (26) as
two un-coupled deterministic optimal control problems, for the
mean and for the variance, respectively. Detailed calculations
showing this are contained in Appendix I. In particular, it is
shown that the optimal control problem for the mean is the

classical minimum energy duality (3).

C. Comparison

Table I provides a side-by-side comparison of the two types

of duality:
o Mitter-Newton duality (26) on the left-hand side; and
o Duality (12) proposed in this paper on the right-hand side.
In Sec. VII-B and Sec. III-C, the two are shown to be
generalization of the classical minimum energy duality (3)
and the minimum variance duality (2), respectively. All of this
conclusively answers the two questions raised in Sec. I.

We make a note of some important distinctions (compare
also with the bulleted list in Sec. I):

e Inputs and outputs. In proposed duality (12), inputs and
outputs are dual processes that have the same dimension.
These are element of the same Hilbert space U.

e Constraint. The constraint is the dual control sys-
tem (12b) studied in the companion paper (part I) [21].

e Stability condition. For asymptotic analysis of (12), sta-
bilizability of the constraint is a natural condition. The
main result of part I was to show that stabilizability of
the dual control system is equivalent to the detectability
of the HMM. The latter is known to be the appropriate
condition for stability of the nonlinear filter [52].

e Arrow of time. The dual control system is backward-in-
time. Note however that the information structure (filtra-
tion) is forward-in-time. In particular, all the processes
are forward adapted to the filtration Z defined by the
observation process.

A major drawback of the proposed duality is that the problem
(for the Euclidean state-space S = R?) is infinite-dimensional.
This is to be expected because the nonlinear filter is infinite-
dimensional. In contrast, the state space in the minimum



energy duality is the Euclidean space which is important for
algorithm design (e.g., MEE). Having said that, the linear
quadratic nature of the infinite-dimensional problem may
prove to be useful in practical applications of this work.

VIII. CONCLUSIONS AND DIRECTIONS OF FUTURE WORK

In this paper, we presented the minimum variance dual op-
timal control problem for the nonlinear filtering problem. The
mathematical relationship between the two problems is given
by a duality principle. Two approaches are described to solve
the problem, based on maximum principle and based on a
martingale characterization. A formula for the optimal control
as a feedback control law is obtained, and used to derive the
equation of the nonlinear filter. A detailed comparison with
the Mitter-Newton duality is given.

There are several possible directions of future research:
An important next step is to use the controllability and
stabilizability definitions of the dual control system to recover
the known results in filter stability. Research on this is ongoing
with preliminary results appearing in [40, Ch. 7 and 8]
and [53], [54]. Although some sufficient conditions have been
obtained and compared with literature, a complete resolution
still remains open.

Both the stability analysis and the optimal control formu-
lation suggest natural connections to the dissipativity theory.
Because the dual control system is linear, one might consider
quadratic forms of supply rate function as follows (compare
with the formula (13) for the running cost 1):

s(y, v, ) 1= ylu+v()|* = |y(2) — Gy

where v > 0and C :={C, : 0 <t <T} € L%([0,T];R) isa
suitable stochastic process (which can be picked). Establishing
conditions for existence of a storage function and relating these
conditions to the properties of the HMM may be useful for
stability and robustness analysis.

Another avenue is numerical approximation of the nonlinear
filter by considering sub-optimal solutions of the dual optimal
control problem. The simplest choice is to consider determin-
istic control inputs U € L*([0,T];R™). Some preliminary
work on algorithm design along these lines appears in [39,
Rem. 1], [40, Sec. 9.2] and [55, Ch. 4]. In particular for the
finite state space case, this approach provides derivation and
justification of Kalman filter for Markov chains [56]. In this
regard, it is useful to relate duality to both the feedback particle
filter (FPF) [57] and to the special cases (apart from the linear
Gaussian case) where the optimal filter is known to be finite-
dimensional, e.g. [58].
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APPENDIX
A. Proof of Thm. 1

Note that all stochastic processes are forward adapted.
Apply the It6-Wentzell formula to Y;(X;) (see [59, Thm. 1.17]
for the formula in the Euclidean case and [60] for the general
case),

AYy(Xe) = ~UF dZy + (Up + Vi( X)) AWy + dN;

where d/V; is a martingale increment (use formula (5) in
Remark 1 with g = Y}). Define the error ¢ := {g; : 0 <
t <T} by

t
fo= VX))~ () + [ U.dzi, 0<e<T
0

whereby
dey = (U, + Vt(Xt))Tth + dNy, g0 = Yo(Xo) — pu(Yo)
Using the It6-rule,

de} = 2e;dey + |Up + Vi (Xo) [P dt + (TY3)(X,) dt

where we have used the formula (6) for the quadratic variation,
namely, d(N); = (T'Y;)(X) d¢. The desired result is obtained
by integrating and taking expectation because € is a martingale
and E(|F(X7) — Sr|?) = E(e3,).

B. Proof of Lemma 1

Because Z is a P-B.M., the formula holds for mp(F) €
L% (;R) by the Brownian motion representation theo-
rem [46, Thm. 5.18]. Note that

[ (F)? < ||F||§;, P-as.

because || - ||y is the sup norm. Therefore if F' € L% (Q;))
then wp(F) € L% (9;R). The conclusion follows.

C. Proof of Prop. 1

Using optimal control U©PY = {Ut(om) 0<t<T} el,
(V,V) = {(Y;, Vi) : 0< t < T} € L% ([0, T); Y x Y™) is the
solution of the BSDE (12b) with Y = F' € LQZT (€; ). Fix
t €[0,T) and let

t
S =uve) - [ (UE)'az,
0

Then by repeating the proof of Thm. 1 now over the time-
horizon [0, ¢],

t
E(YA(X0) ~ Si) = Va(¥a) + E( | 1Y, Vi U™ X,) )
0

If E(|Y;(X;) — Si|?) = E(V(Y;)) then there is nothing to
prove. Because then S; = m(Y;) (P-a.s.) by the uniqueness
of the conditional expectation. Therefore, suppose

E(V(Y2)) = E([Va(Xy) — m(Y2)]?) < E(|Yi(Xs) — Sif?)

In tl}is case, we show that there exists a U € U such that
Jr(U) < Jp(U©M), Because UPY is the optimal control,
this provides the necessary contradiction.



Set C := E(ftTl(Ys,Vs, ULP: X,)ds) and we have

Jp(U) = E([i(X)) — Sif2) + C

Because Y; € L%ﬁ(Q;y), by Lemma 1 there exists U €
L% ([0,¢]; R™) such that

t
(V) = E(mo(V2) — / 0Tz, P-as.
0

Consider an admissible control U as follows

N U,
Us = { gop[)

and denote by (Y, V) the solution of the BSDE with the con-
trol U. Because of the uniqueness of the solution, (Y, V;) =
(Ys, Vs) for all s > ¢ and therefore

s<t
s>t

Ir(U) = E([Ye(Xy) — m(Y2)[?) + C

<E(Yi(Xy) — Si?) + C = Ip (U

This supplies the necessary contradiction and completes the
proof.

D. Derivation of the Lagrangian
Using the change of measure formula (10),

E((Y)(X1) = E(0n(TY1))
E(|U: + Vi(Xy)|?) = E(oe(|U: + Vi ?))

Even though the formula (10) is stated for deterministic
functions, it is easily extended to Z;-measurable functions
which is how it is used above. Therefore,

T
r() = Vovo) +E( [ (MY + 100 + ViCxo) )
=) +E( [ TV + e + Vi) at)

5 T
—Vo(Ye) + E(/ (Y. Vi, Usio) di)
0

E. Proofof Thm. 2

Equation (20) is the Hamilton’s equation for optimal control
of a BSDE [48, Thm. 4.4]. The optimal control is obtained
from the maximum principle:

U, = argmax H(Yy, Vi, u, Py 0¢)
UGR’"L

Since H is quadratic in the control input, the explicit for-
mula (21) is obtained by evaluating the derivative and setting
it to zero:

Hu(Ye, Vi, u, Py oy) = 204(1)u + 204(V;) + P,(h) =0

F. Justification of the formula (22)

For notational ease, we drop the superscript ©PY and denote
the optimal control input simply as Uy. In this proof, (-, -)
is used to denote the duality paring between functions and

measures (e.g., (f, ) = u(f)).
Let f be an arbitrary test function. We show that

(f.Pr) = <2f()/t - Wt(}/t))vat>v

This is known to be true at time ¢ = 0 because of the boundary
condition (20c). Therefore, the proof is carried out by taking
a derivative of both sides and showing these to be identical.

Using the Ito-Wentzell formula for measure valued pro-
cesses [61, Thm. 1.1],

d(2f (Y — mt(Y1)), 01)
— 2(A(fY:) — FIAYD) — (V) (AS), ) dt
+ (2f (Ui + V), 00) + (fh, Py)) dZ;
where we have used d(wt(Yt)) = —U;dZ; (Prop. 1). From

the Hamilton’s equation (20b), upon explicitly evaluating the
terms

0<t<T

d(f, P, = (<Af7 P)+ éat (T(Y; +¢f)) \ ) dt

=0
+ (<fha Pt> + <2f(Ut + ‘/t)a O-t>) dZt

where

Lriep)

On comparing the terms, the two derivatives are the seen to be
the same where we use also the identity (g, P;) = (2g(Y; —
7rt(Yt)),Ut> for g = Af.

L= 2(A0LS) = Yi(AS) = f(AY)

e=

G. Proof of Thm. 3

The proof uses the equation of the nonlinear filter and
dI; := dZ;—m(h) dt is the innovation increment. We evaluate

the derivative of V,(V;) = m(Y2) — (m (V).

dm (V)
= m(AY?)dt + (mi(hY?) — m(h)m (V) dIy
+ 7 (= 2Yi (AY; + h(Us + V) + [Vi]?) dt
+2m, (YViVi) AZ; + 2(mi(hY Vi) — mi(h)my (Y2 V) dt
=m(LY;) dt + m(|V3]?) dt — 2my (hY3) Uy dt
+ (m(hY?) = m(h)ym (YY) + 2m (Vi Vy)) d,

Similarly,

dmy (V) = m(AYy) dt
+ (m(hYy) = me(h)m(Y2)) (dZ; — mi(R) dt)
— i (AY; + h(U; + Vi) dt + m (Vi) dZ;
+ (ﬂt(th) — wt(h)m(Vt)) dt
= (m(hYy) — m(h)m(Y2) + m(V2)) dZ,
— (Uy + m(hYy) — m(R)m(Yy) + me (V) me(R) dt
= U™ dZ, — (U — UP)my(h) dt



where U™ := —my(hY;) 4 m(h)m (Yy) — w4 (V3). Therefore,

d(m(¥2))? = 27, (V)US dZ, + |UCP dt
— 21y (V) (Uy — Uy (h) dt

Collecting terms, we have

dM,; =m; (TY;) dt + m(|V]?) dt — 2m (hY;) Uy dt
+ (m(hY?) = me(R)me (Y72 + 2m (Y2 Ve)) A,
— 21 (Vo) U™ dZy + 2 (V) (Ur — U™ ) me(R) dt
— UL 2 At — £(Yy, Vi, Ups ) dt
=(m(hY?) — m(h)m (Y?) + 2m (Y3 V) dI,
— U, — U™ dt
Since —|U; — U™|2 < 0 and [ is a P-martingale, M is a

P-supermartingale, and it is a martingale if and only if U, =
UL for all t.

H. Formal derivation of the nonlinear filter

We begin with an ansatz

dﬂ't (f) = Oét(f) dt + Bt(f) dZt

where the goal is to obtain formulae for a; and ;. Because
we have an equation (24) for m;(Y3), let us express d(m:(Y3))
in terms of the unknown «; and 3;. Using the SDE (29) for
m; and the BSDE (12b) for Y;, apply the It6-Wentzell formula
to obtain

d(m (Y1) = (u(Ye) + Bi(Vi) — mi(AY: + B (U; + Vi) dt
+ (B8:(Y2) + m (V1)) dZ,

(29)

Comparing with (24),
ar(Yy) + Be(Vi) — mi(AYy + R (U + V) = 0
Bi(Ye) + 1 (Vi) = (me(hY:) — mi(h)me (V) + e (V2)

for 0 <t < T, P-as.. Because F' and therefore Y; is arbitrary,
the second of these equations suggests setting

Be(f) = me(hf) — me(h) e (f)

using which the first equation is manipulated to show

ar(Yy) = m(AY;) — m(h) (m(hYy) — o (h)my (YVe) + 7o (V7))
+ m(hVy) = me(AVy) + me(h)me (Vi)
= m(AY;) — m(h) (me (hY;) — me(h)m (V)
= m(AYy) — mi(h)Be(Y2)

which, again because Y; is arbitrary, gives the following

ay(f) = m(Af) — me(h)Be(f)

Substituting the expressions for a; and 3, into the ansatz (29)

dmi(f) = (me(Af) = Bi(f)me(h)) dt + Bi(f) A2,
=m(Af)dt + (Wt(hf) — ﬂ't(h)ﬂ't(f))<dZt — m(h) dt)

This is the well known SDE of the nonlinear filter.

1. Mitter-Newton duality for the linear Gaussian model

Consider (27) with the linear control law (28). Then X, is
a Gaussian random variable whose mean m; and variance >;
evolve as follows:

dm

d; = A"y + ous (30a)
dEt T - - T T T
W = (A +0Kt)2t+2t(14 +UKt) + oo (30b)

Note that the two equations are entirely un-coupled: u; affects
only the equation for m; and K, affects only the equation for
¥,. We now turn to explicitly computing the running cost. For
the linear Gaussian model

(A“h)(z) = H'(A"x 4 ou)
and the running cost becomes
Uz usz) = Sul® + [H'z> + 2 H'(A"z + ou)

Because X; ~ N (my, f)t),

E(Z(Xt,ut N Zt)) = %|Ut|2 + %tf(KgKtit) + %|HT’ﬁ"Lt|2

+ %tr(HHTENIt) + 2z H (A" + ouy)

and because i from p are both Gaussian, the divergence

E(log % (%,)) = L 0)" S ! i

( og OTM( 0)) = 3(mo —100)"3q " (mo — o)

det(Z0) d | e <1
~ S Ly(Bn
det(ng) 2 T2 (0o

+ % lo
and because h(-) is linear the terminal condition term
E(erh(X7)) = 20 H'inr

Combining all of the above, upon a formal integration by parts,
J(i1,U; 2) is expressed as sum of two un-coupled costs

J1 (g, us 2) = L(mo — 1m0) =g (mo — 1)

T
+/ Hug|> + L2 — H'y)? dt
0
J2(30, K 5 2) = § log(det(30)) + 5tr(Xo%, ")
T
+ / Mr(KTKS,) + Lu(HH'™S,) dt
0

plus a few constant terms that are not affected by the decision
variables. The first of these costs subject to the ODE con-
straint (30a) for the mean m, is the classical minimum energy
duality.
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