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Variance Decay Property for Filter Stability
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Abstract— This paper is concerned with the problem of
nonlinear (stochastic) filter stability of a hidden Markov
model (HMM) with white noise observations. A contribution
is the variance decay property which is used to conclude fil-
ter stability. For this purpose, a new notion of the Poincaré
inequality (PI) is introduced for the nonlinear filter. Pl is
related to both the ergodicity of the Markov process as well
as the observability of the HMM. The proofs are based upon
a recently discovered minimum variance duality which is
used to transform the nonlinear filtering problem into a
stochastic optimal control problem for a backward stochas-
tic differential equation (BSDE).

Index Terms— Nonlinear
Stochastic systems.

filtering; Optimal control;

[. INTRODUCTION

This paper is on the topic of nonlinear (stochastic) filter
stability — in the sense of asymptotic forgetting of the initial
condition. The results are described for the continuous-time
hidden Markov model (HMM) with white noise observations.
The novelty comes from the methodological aspects which
here are based on the minimum variance duality introduced
in our prior work: dual characterization of stochastic observ-
ability presented in [1]; and the dual optimal control problem
described in [2]. In the present paper, these are used to
investigate the question of nonlinear filter stability,

A. Literature review of filter stability

While duality is central to the stability analysis of the
Kalman filter and also in the study of deterministic minimum
energy estimator (MEE) [3], with the sole exception of van
Handel’s PhD thesis [4], duality is absent in stochastic filter
stability theory. Viewed from a certain lens, the story of filter
stability is a story of two parts: (i) Stability of the Kalman
filter where dual (control-theoretic) definitions and methods
are paramount; and (ii) Stability of the nonlinear filter where
there is little hint of such methods.

The disconnect is already seen in the earliest works — in
the two parts of the pioneering 1996 paper of Ocone and
Pardoux [5] on the topic of filter stability. The paper is
divided into two parts: Sec. 2 of the paper considers the linear
Gaussian model and the Sec. 3 considers the nonlinear models
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(HMM). While the problem is the same, the definitions, tools
and techniques of the two sections have no overlap. In [5,
Sec. 2], there are several control-theoretic definitions given,
optimal control techniques employed for analysis, references
cited, while in [5, Sec. 3] there are none. The passage of
time did not change matters much: In his award winning 2010
MTNS review paper, van Handel writes “The proofs of the
Kalman filter results are of essentially no use [for nonlinear
filter stability], so we must start from scratch [6].”

Our paper is the first time that such a complete generaliza-
tion of the linear Gaussian results has been possible based on
the use of duality. A summary of the two main contributions
is described as part of Sec. I-B after the literature review.

The problem of nonlinear filter stability is far from straight-
forward. In fact, [5, Sec. 3] is based on some prior work of
Kunita [7] which was later found to contain a gap, as discussed
in some detail in [8] (see also [9, Sec. 6.2]). The gap also
served to invalidate the main result in [5, Sec. 3]. The literature
on filter stability is divided into two cases:

o The case where the Markov process forgets the prior and

therefore the filter “inherits” the same property;

o The case where the observation provides sufficient in-
formation about the hidden state, allowing the filter to
correct its erroneous initialization.

These two cases are referred to as the ergodic and non-ergodic
signal cases, respectively. While the two cases are intuitively
reasonable, they spurred much work during 1990-2010 with
a complete resolution appearing only at the end of this time-
period. See [10], [11] for a comprehensive survey of the filter
stability problem including some of this historical context.

For the ergodic signal case, apart from the pioneering
contribution [5], early work is based on contraction analysis
of the random matrix products arising from recursive appli-
cation of the Bayes’ formula [12] (see also [13, Ch. 4.3]).
The analysis of the Duncan-Mortensen-Zakai (DMZ) equation
leads to useful formulae for the Lyapunov exponents under
assumptions on model parameters and noise limits [14], and
convergence rate estimates are obtained using Feynman-Kac
type representation [15]. A comprehensive account for the
ergodic signal case appears in [16] and the first complete
solution appeared in [8].

For the non-ergodic signal case, a notable early contribution
is [17] where a formula for the relative entropy is derived. It is
shown that the relative entropy is a Lyapunov function for the
filter (see Rem. 4). Notable also is the partial differential equa-
tion (PDE) approach of [18], [19] where sufficient conditions
for filter stability are described for a certain class of HMMs on
the Euclidean state-space with linear observations (see also [4,
Ch. 4]). Our own prior work [20], [21] is closely inspired



by [8] who were the first to formulate certain observability-
type “identifying conditions” for the HMM on finite state-
space. These conditions were formulated in terms of the HMM
model parameters and shown to be sufficient for the stability
of the Wonham filter.

For a general class of HMMs, the fundamental definition
for stochastic observability and detectability is due to van
Handel [22], [23]. There are two notable features: (i) the
definition made rigorous the intuition described in the two
cases [6, Sec. II-B and Sec. V]; and (ii) the definition led
to meaningful conditions that were shown to be necessary
and sufficient for filter stability [6, Thm. II1.3 and Thm. V.2].
The proof techniques are broadly referred to as the intrinsic
approach. In [11], the authors explain “By ‘intrinsic’ we mean
methods which directly exploit the fundamental representation
of the filter as a conditional expectation through classical
probabilistic techniques.” Recent extensions and refinements
of these can be found in [24]-[26].

A thorough mathematical review of these past approaches to
the problem of filter stability appears in the PhD thesis of the
first author [9, Ch. 6]. Additional mathematical comparisons
with the approach of the present paper appear as part of
Remarks 2-4 in Sec. III-A and Table III in Appendix B.

B. Summary of original contributions

The two main contributions are as follows:

1) The paper introduces a new notion of Poincaré inequal-
ity (PI) for the nonlinear filter. The PI is used to obtain
a novel formula (21) for the filter stability.

2) PI is related to the two model properties, namely, the
observability of the HMM, and the ergodicity of the
signal model (Prop. 6).

A key contribution is the variance decay property (Eq. (6)).
The property at once unifies and generalizes two bodies of
results where the notion is variance is important:

o Stability analysis of the Kalman filter: The notion of
variance is the conditional covariance (also referred to as
the error covariance), which recall is given by the solution
of the DRE.

o Stochastic stability: The notion of variance is related to
the Poincaré inequality (PI) which is a standard assump-
tion to conclude asymptotic stability of a Markov process
(without conditioning).

C. Outline

The outline of the remainder of this paper is as follows. The
mathematical background on HMMs and the filter stability
problem appears in Sec. II. The two central concepts in this
paper — the backward map and the variance decay property
— are introduced in Sec. III. Sec. IV contains a discussion
of function spaces and the dual optimal control problem.
This is followed by two sections that describes the two main
contributions: Sec. V introduces the Poincaré inequality for
nonlinear filter and Sec. VI describes its relationship to the
HMM model properties for a finite state-space model. The
paper closes with some conclusions and directions for future
work in Sec. VII. Details of the proofs appear in the Appendix.

II. MATH PRELIMINARIES AND PROBLEM STATEMENT
A. Hidden Markov model

HMM: On the probability space (2, Fr,P), consider a pair
of continuous-time stochastic processes (X, Z) as follows:

o The state process X = {X; : Q —>S:0<t<T}isa
Feller-Markov process taking values in the state-space S
which is assumed to be a locally compact Polish space.
The prior is denoted by 1 € P(S) (where P(S) is the
space of probability measures defined on the Borel o-
algebra on S) and Xy ~ . The infinitesimal generator
of X is denoted by .A.

o The observation process Z = {Z; : 0 < t < T} satisfies
the stochastic differential equation (SDE):

t
0

where h : S — R™ is referred to as the observation
function and W = {W; : 0 < ¢t < T} is an m-
dimensional Brownian motion (B.M.). We write W is
P-B.M. It is assumed that W is independent of X. The
filtration generated by the observation is denoted by Z :=
{Z,:0<t<T} WhereZt:U({ZS:()gsgt}).
The above is referred to as the white noise observation
model of nonlinear filtering. The model is denoted by (A, h).
For reasons of well-posedness, the model requires additional
technical conditions. In lieu of stating these conditions for
general class of HMMs, we restrict our study to the examples
described in the following:
Example 1 (Examples of state processes): The two exam-
ples are as follows:

e S={1,2,...,d}. A real-valued function f is identified
with a vector in R? where the 2 —th element of the vector
is f(x) for x € S. Based on this, the observation function
h is a d x m matrix and the generator A is a d X d
transition rate matrix, whose (z,y) entry (for z,y € S
and x # y) is the positive rate of transition from = — y
and A(z,z) = -3, ., Alz,y).

o SCRY X is an It6 diffusion process defined by:

dXt = a(Xt) dt+O'(Xt) dBt, XO ~ U (2)

where a(-) and o(-) are given C'!' smooth functions that
satisfy linear growth conditions at co. The infinitesimal
generator A is given by [27, Thm. 7.3.3]

(Af)(@) = a'(2)Vf(2) + tr(00"(2)(D*f)(2)), = €S

where Vf and D?f are the gradient vector and the
Hessian matrix, respectively, of the function f € C? (Rd).

o The linear Gaussian model is the special case of an Itd
diffusion where the drift a(-) is linear, o is a constant
matrix, and the prior p is a Gaussian density.

Remark 1: Of the two models of state processes, the HMM
on a finite state-space is of the most interest. We continue to
use the notation (A, h) and state the results in their general
form with the understanding that, for the general class of
HMMs, the calculations are formal.



Nonlinear filter: The objective of nonlinear (or stochastic)
filtering is to compute the conditional expectation

mr(f) =E(f(X7) | Zr), [f€CW(S)

where Cy(S) is the space of continuous and bounded functions.
The conditional expectation is referred to as the nonlinear
filter. Assuming a certain technical (Novikov’s) condition
holds, the nonlinear filter solves the Kushner-Stratonovich
equation [28]:

dme(f) = m(Af) dt + (me(hf) — m(f)me(h)) AL (3)

with 9 = p where the innovation process is defined by
t
It = Zt—/ Fs(h)ds, tZO
0

With h = cl, the coefficient of dI; in (3) is zero and {m; : t >
0} becomes a deterministic process. The resulting evolution
equation is referred to as the forward Kolmogorov equation.

B. Filter stability: Definitions and metrics

Let p € P(S). On the common measurable space (€2, Fr),
P? is used to denote another probability measure such that
the transition law of (X, Z) is identical but Xy ~ p (see [17,
Sec. 2.2] for an explicit construction of P? as a probability
measure over the space of the trajectories of the process
(X, Z).). The associated expectation operator is denoted by
E(-) and the nonlinear filter by 7/ (f) = E°(f(Xy)|Z:). It
solves (3) with my = p. The two most important choices for
p are as follows:

e p = u. The measure p has the meaning of the true prior.

e p = v. The measure v has the meaning of the incorrect

prior that is used to compute the filter by solving (3) with
mo = v. It is assumed that py < v.
The relationship between P# and P” is as follows (P*|z,
denotes the restriction of P# to the o-algebra Z;):
Lemma 1 (Lemma 2.1 in [17]): Suppose p < v. Then
o P#* <« P¥, and the change of measure is given by
dpP# d
a7 ) = g (%olw)

e Foreach t >0, 7}’ < 7%, P¥|z,-as..

The following definition of filter stability is based on f-
divergence (Because p has the meaning of the correct prior,
the expectation is with respect to P#):

Definition 1: The nonlinear filter is stable in the sense of
E“(D(n} | 7)) — 0
B (x*(mp | 7)) — 0

E#(Hﬂ#_ﬂ'?HTV) — 0

P¥-a.s. w

(KL divergence)
(x> divergence)

(Total variation)

as T — oo for every pu,v € P(S) such that p < v. (See
Appendix A for definitions of the f-divergence).
Apart from f-divergence based definitions, the following
definitions of filter stability are also of historical interest:
Definition 2: The nonlinear filter is stable in the sense of

(L B (f) =7 (NF) — 0
(a.s.) |4 (f) — 7 (f)] — 0 Pteas.

as T — oo, for every f € Cp(S) and p,v € P(S) s.t. p < v.

In this paper, our objective is to prove filter stability in
the sense of x2-divergence. Based on well known relationship
between f-divergences, this also implies other types of stability
as follows:

Proposition 1: If the filter is stable in the sense of 2 then
it is stable in KL divergence, total variation, and L2,

Proof: See Appendix A. [ ]

Because these were stated piecemeal, the main assumptions

are stated formally as follows:

Assumption 0: Consider HMM (A, h).

1) wu,v € P(S) are two priors with < v.
2) Novikov’s condition holds:

E (exp (1 /OT |h(Xt)|2dt)> < oo

The condition holds, e.g., if h € Cy(S).
3) The generator A is for one of the two models introduced
in Example 1.

1. MAIN IDEA: BACKWARD MAP AND VARIANCE DECAY
Suppose p < v. Denote

r €S

dnh
(@)= Gt @)
It is well-defined because 7%, < 7%, from Lemma 1 (we adopt
here the convention that % = 0). It is noted that while vy = %
is deterministic, «yr is a Zp-measurable function on S. Both
of these are examples of likelihood ratio and referred to as
such throughout the paper.
A key original concept introduced in this paper is the

backward map 7 — yo defined as follows:
yo(x) := E"(vo(X7)|[Xo = ]),

The function yy : S — R is deterministic, non-negative, and
v(yo) = EY(yr(X7)) = 1, and therefore is also a likelihood
ratio. The significance of this map to the problem of filter
stability comes from the following proposition:

Proposition 2: Consider the backward map yr — yo de-
fined by (4). Then

E* (5P (e | ) [P < var” (yo(Xo)) X2 (plv) — (5)

where var” (yo(Xo)) = E” (|yo(Xo) — 1/?).
Proof: Since p < v, it follows u(yo) = E* (vr(X7)).
Using the tower property,

p(yo) = E* (yr(Xr)) = E* (77 (vr)) = B (77(77))
Noting that 74(v%) — 1 = x? (. | 74) is the x2-divergence,
E*(x* (77 | 7)) = nlyo) — v(yo)

Because 14(y0) — v(y0) = v((70—1)(yo — 1)), upon using the
Cauchy-Schwarz inequality gives (5). [ ]

From (5), provided x?(u | ¥) < oo, a sufficient condition
for filter stability is the following:

z€S 4)

(T—o0)

(variance decay prop.) var”(yo(Xo)) — 0 (6)



Next, from (4), (yo(Xo) — 1) = E”((’yT(XT) - 1)|X0), and
using Jensen’s inequality,

var” (yo(Xo)) < var” (yr(Xr)) @)

where var” (yr(Xr)) := EY(Jyr(X7) — 1|?). Therefore, the
backward map ~p — yo is non-expansive — the variance of
the random variable yy(X() is smaller than the variance of the
random variable vy (Xr).

In the remainder of this paper, we have two goals:

1) To express a stronger form of (7) such that the variance
decay property (6) is deduced under a suitable definition
of the Poincaré inequality (PI).

2) Relate PI to the model properties, namely, (i) ergodicity
of the Markov process; and (ii) observability of the
HMM (A, h).

Concerning these goals, the contributions of this paper are
noted briefly as an aid to the reader. These are as follows:

1) The stronger form of (7) is formula (20).

2) Relationship of the PI to the HMM model properties is
given in Prop. 6.

3) Based on the use of the PI, the two main filter stability
results are given in Thm. 2 and Thm. 3.

The following subsections are included to help relate the
approach of this paper to the literature. The reader may choose
to skip ahead to Sec. IV without any loss of continuity.

A. Comparison to literature

Remark 2 (Contraction analysis): Based on (7), the vari-
ance decay is a contraction property of the backward linear
map yr — Yo. This nature of contraction analysis is con-
trasted with the contraction analysis of the random matrix
products arising from recursive application of the Bayes’
formula [12] [13, Ch. 4.3]. For the HMM with white noise
observations (A, h), the random linear operator is the solution
operator of the DMZ equation [14]. An early contribution on
this theme appears in [29], which was expanded in [12], [14],
[30]. In these papers, the stability index is defined by

7 := limsup 1 log || — 7|+
T—o0 T

If this value is negative then the filter is asymptotically stable
in total variation norm. Moreover, —7 represents the rate of
exponential convergence. A summary of known bounds for 7y
is given in Appendix B and compared to the bounds obtained
using the approach of this paper.

Remark 3 (Forward map): The backward map v +— g
is contrasted with the forward map -y +— ~r defined as
follows [17, Lemma 2.1]:

v "o (XO)
) = (@, 120
The forward map is the starting point of the intrinsic (prob-
abilistic) approach to filter stability [11]. Both the forward
and backward maps have as their domain and range the space
of likelihood ratios. While the forward map is nonlinear and
random, the backward map (4) is linear and deterministic.

‘ZTV[XT:CC]), z €S

A marvelous success of the intrinsic approach is to establish
filter stability in total variation for the ergodic signal case [6,
Thm. III.3] and a.s. for the observable case [22, Thm. 1].

Remark 4 (Metrics for likelihood ratio): In an important
early study, the following formula for KL divergence (or
relative entropy) is shown [17, Thm 2.2]:

D(p|v) > E*(D(x} | 7})) + D(P"|z, | P"|z,), t>0

From this formula, a corollary is that {D(7}' | %) : ¢ > 0} isa
non-negative PH-super-martingale (assuming D(u | v) < 00).
Therefore, the relative entropy is a Lyapunov function for the
filter, in the sense that E*(D(r}" | })) is non-increasing as
function of time. However, it is difficult to establish conditions
that show that E#(D(r% | m%)) =37 0 [11, Sec. 4.1].
For white noise observations model (1), an explicit formula
is obtained as follows [17, Thm. 3.1]:

(1=, | P¥12.) = 364 [ nt) — mt(afas)

Therefore, E(|m}'(h) — ¥ (h)|?) — 0 which shows that the
filter is always stable for the observation function h(-). A
generalization is given in [31] where it is proved that one-
step predictive estimates of the observation process are stable.
These early results served as the foundation for the definition
of stochastic observability introduced in [22].

B. Background on PI for a Markov process

To see the importance of PI in the study of Markov
processes, let us consider the y2-divergence with h = cl. In
this case, the two processes {m' : ¢ > 0} and {7} : ¢ > 0}
are both deterministic and a straightforward calculation (see
Appendix C) shows that

T XE(rf [ 7)) = = (Tye) ®)
where ' is the so called carré du champ operator. Its formal
definition is as follows:

Definition 3 (Defn. 1.4.1. in [32]): The bilinear operator

I'(f,9)(x) := (Afg)(z) = f(x)(Ag)(z)—g(x)(Af)(2), z €S

defined for every (f,g) € D x D is called the carré du champ
operator of the Markov generator A. Here, D is a vector space
of (test) functions that are dense in L2, stable under products
(i.e., D is an algebra), and I' : D x D — D (i.e., ' maps two
functions in D into a function in D), such that T'(f, f) > 0
for every f € D [32, Defn. 3.1.1]. (T'f)(z) :==T(f, f)(x).

Example 2 (Continued from Ex. 1): For the examples of
the state processes in Ex. 1], the carré du champ operators
are as follows:

e S=1{1,2,...,d}. Then
(TH)(@) = Al,y)(f(x) = f(y))*, =€S
yeS

for f € D = R% The same definition also applies to
discrete state-spaces with countable cardinality.



e S = R% For the Ito diffusion (2), the carré du champ
operator is given by

(CH)(@) =o' (@

for f € D = CY(R%R).

Returning to (8), an important point to note is that I" is
positive-definite and thus the right-hand side of (8) is non-
positive. This means y2-divergence is a candidate Lyapunov
function. To show y2-divergence asymptotically goes to zero
requires additional assumption on the model. PI is one such
assumption. It is described next.

Suppose i € P(S) is an invariant probability measure and
let L2(n) == {f : S — R | a(f?) < oco}. The Poincaré
constant is defined as follows:

— inf{a(Tf) ¢ € L) & var(£(X,)) = 1}

When the Poincaré constant c is strictly positive the resulting
inequality is referred to as the Poincaré inequality (PI):

D ATS) > e var (f(Xo) ¥ f € L*(B)

zeR?

W),

The significance of the P} to the problem at hand is as follows:
Set v = ji. Then 7, = =+ and the differential equation (8) for
x2-divergence becomes
Xt | ) = ~p)
(PT) _
< —cvar’ (n(Xo)) = —cx*(f' | )
Therefore, provided x?(u | ji) < oo, asymptotic stability in
the sense of y2-divergence is shown (The Poincaré constant c
gives the exponential rate of decay).
Remark 5: PI provides a natural definition for ergodicity of
a continuous-time Markov process. The relationship between
PI and the Lyapunov approach of Meyn-Tweedie is described
at length in [33]. Specifically, it is shown that (i) existence
of a positive Poincaré constant is equivalent to exponential
stability (in the sense of E(f(X;)) — a(f) for f € L*(n)),
and (ii) existence of a Lyapunov function from Meyn-Tweedie
theory implies a positive Poincaré constant [32, Thm. 4.6.2].
A goal in this paper is to define an appropriate notion of
the PI for the HMM (A, h) and use it to show filter stability.

IV. FUNCTION SPACES, NOTATION, AND DUALITY
A. Function spaces

Let p € P(S) and 7 > 0. These are used to denote a generic
prior and a generic time-horizon [0, 7]. (In the analysis of filter
stability, these are fixed to p = v and 7 = T'). The space of
Borel-measurable deterministic functions is denoted

I2(p) = {f: SR : p(f2) = /S |F(@)? dp(z) < oo}

Background from nonlinear filtering: A standard approach
is based upon the Girsanov change of measure. Because
the Novikov’s condition holds, define a new measure P? on
(Q, F;) as follows:

dpr
Sy = oxp / K (X,) th—f/ Ih(X,) |2dt) -1

TABLE |
HILBERT SPACE FOR R™-VALUED SIGNALS.

Notation Inner-product

u (U,U) = EP([] UF U dt)

Then the probability law for X is unchanged but Z is a pr-
B.M. that is independent of X [4, Lem. 1.1.5]. The expectation
with respect to Pr is denoted by Ep() The unnormalized
filter o?(f) := E°(D,f X)J ) for f € Cp(S). Tt is called
as such because 72(f) = —% 7(1)- The measure-valued process
{of:0<t<7}is the solutlon of the DMZ equation.

There are two types of function spaces:

o Hilbert space for signal: I/ is used to denote the Hilbert
space of R™-valued Z-adapted stochastic processes. It is
defined as U := L?(Q x [0,7]; Z ® B([0,7]); dP” dt) where
B([0,7]) is the Borel sigma-algebra on [0, 7], Z ® B([0,7])
is the product sigma-algebra and dP? dt denotes the product
measure on it [34, Ch. 5.1.1]. See Table I for notation and
definition of the inner product.

o Hilbert space for the dual: Formally, the “dual” is a
function on the state-space. The space of such functions is
denoted as ). It is easiest to describe the Hilbert space first
for the case when S = {1,2,...,d}. In this case, Y = R?
(See Ex. 1). Related to the dual, two types of Hilbert spaces
are of interest. These are defined as follows:

« Hilbert space of Z.-measurable random functions:
HP .= {F:Q—)Y : FeZ & EP(c°(F?)) < o0}

(This function space is important because the backward
map (4) is a map from yp € HY to yo € L2(v)).

o Hilbert space of Y-valued Z-adapted stochastic pro-
cesses:

HP([0,7]) :={Y : Q@ x [0,7] = YV: Y€ Z, 0<t < T,

& B (/OTaf(Yf)dt) < o}

(This function space is important because we will embed
the backward map (4) vr — yp into a Y-valued Z-
adapted stochastic process Y = {¥; : @ = Y : 0 <
t < T} such that Y7 = v and Yy = o).
An extension of these definitions to the case where S C R? is
described in the following example.
Example 3 (Continued from Ex. 1): For the examples of
the state processes in Ex. 1], the examples of ) are as follows:
e S={1,2,...,d}. Y = R? as discussed above.
e SCRY Y =WH%(R?) is a Sobolev space.
For these two examples, the definition of the inner-products
for H?2 and HF ([0, 7]) appear as part of Table II.

B. Notation
Let p € ’P(S) For real-valued functions f,g € ),
Vi(f,g) = m ( - 7 (f)g — 7 (g ))) With f = g,



TABLE I
FUNCTION SPACE FOR DUAL STATE (LEFT: S = {1,2,...,d}, RIGHT: S C R%)
Notation Inner-product Notation Inner-product
Y A(f9) = 2 pes M) f(z)g(x) y (£:9)x = Jra(f(x)g(z) + Df(2) Dg(x) dA(z)
H? (F,G) = EP(oF(FQ)) H7 (F.G) =EP((F,G) )
= EP(C,c5 0% (2) F(2)G()) = E? ([ga(F(2)G(z) + DF(2)' DG(x)) do? (x))
B(0,7]) (v, V) =B (J§ of (vi¥h) dt) B(0,7]) (Y, V) = E7 (J7 (Vi¥0), 0 dt)

V(f) = VIS, ). Attime ¢ = 0, V{(f) = p(f?) — p(f)? =
EP(|f(Xo) — p(f)|?) = var®(f(Xo)). In literature, V5 (f) has
been denoted as “var”(f)” and referred to as the “variance
of the function f with respect to p” [32, Eq. (4.2.1)]. In this
paper, we will instead adopt a more conventional terminology
whereby the argument of var”(-) is always a random variable.
Likewise, V/(f,g) is (related to) the conditional covariance
because V7 (f,9) = E2(((X:) — nf (£))(9(X:) — nf (9))] Z2),
and V{(f) is the conditional variance of f(X).

Apart from real-valued functions, it is also necessary to
consider R™-valued functions. The space of such functions is
denoted Y™. Let v € Y™. For each x € S, v(x) is a column
vector v(x) = [v!(z),...,v™(x)]" where v/ € Y for j
1,2,...,m. For v,0 € Y™, Vf(v,0) := 7} (v — 7 (v))" (0 —
7 (9))) and Vf (v) := Vf (v,v) = 7f (Jv — 7/ (v) [?).

For f € Y and v € Y™, V(f,0) = nf ((f — 7/ (f))(v -
Wf(v))) = [th(f’ Ul)v e 7th(f7 ™)

The space of likelihood ratio is denoted by

L:={FeH.:F(z) >0, z€S & 72(F) =1, PP-as.}

C. Duality: Optimal control problem

Our goal is to embed the backward map (4) vr — yo
into a continuous-time backward process. For this purpose,
the following dual optimal control problem is considered. The
problem was previously introduced by us in [2]. (Additional
motivation is provided in Remark 6).

Dual optimal control problem:

Min: J2(U) = var”(Yo(Xo)) + EP(/O 1Yy, Vi, Uy s X,) dt)
(9a)
Subject to (BSDE constraint):
— dYi(2) = ((AY))(@) + (@) (U, + Vi) dt - V' (2) dZ,
Y. (z)=F(x), €S (9b)

where (Y, V') € H?([0, 7]) xHP ([0, 7])™ is the solution of (9b)
for a given F' € H? and U € U, and the running cost

Uy, v, usx) = (Py)() + |u + v(z)|*

forye Y,v e Y™ ueR™ xeS. (If Sis finite, Y = RY).
The solution to (9) and its relationship to the optimal filter
is given in the following theorem:

Theorem 1: Consider the optimal control problem (9). The
optimal control is of the feedback form given by

Uy = U .= —V(h,Y,) — 7l (V,), PPas., 0<t<rt
(10)

Suppose (Y, V) = {(Y;, V) : 0 <t < 7} is the associated

solution of the BSDE (9b). Then

e For almost every 0 <t < 7,

t
7l (Y:) = p(Yo) — / (UCPM) dz,, Pr-as. (11a)
0

t
B (V7 (40) = V() + ([ 100V, UM ) )
(11b)

e Define a real-valued Z-adapted process M := {M; : 0 <
t < 7} as follows:

t
M, = th(Yt)—/ E?(U(Ys, Vs, U X,)| Z5) ds (12)
0

Then M is a PP-martingale.
e For fe),

vy (f,Y2) = (70 (T(£,Y2)) + V(AL Yy) ) dt

+ (VU === 7). Ye) + VE(F. V) I
(13)

where I := Z, — [ 72 (h)ds.

Proof: The feedback control formula is given in [2,
Thm. 3]. The equations for conditional mean and variance
are in [2, Prop. 1]. The martingale characterization appears
in [2, Thm. 3]. In the form presented here, the SDE (13) for
the conditional variance is new (the form is used in the proof
of the main result). It is easily derived from the Hamilton’s
equation [2, Thm. 2] for the optimal control problem (9). The
derivation is included in Appendix D. [ ]

Example 4 (Continued from Ex. 1): There is a well devel-

oped theory for existence, uniqueness and regularity of the
solutions of the BSDE (9b). For the two state processes of
interest, the theory can be found in the following:

e S={1,2,...,d} and Y = R?. See [35, Ch. 7].

e S=R?and Y = W'2(R9). See [36, Thm. 3.2.] where
additional assumptions on the model are stated for these
results to hold.

Remark 6: The optimal control problem (9) is a gener-

alization of the classical minimum variance duality to the



HMM (A, h) (See [2] where historical context is provided).
Formula (11a) gives the filter in terms of the solution of
this problem. The idea of this paper is to obtain conclusions
on the asymptotic stability of the filter based on analysis of
the optimal control system. This is possible because of the
relationship of the optimal control system to the backward
map (4) as described next.

D. Relationship to the backward map (4)

Recall the backward map (4) vp +— yo introduced in
Sec. III. The following relates it to the optimal control system.

Proposition 3: Consider the optimal control problem (9)
with p = v, 7 = T, and the terminal condition Y = F' = ~p.
Then at time ¢ = 0,

Yo(z) = yo(),
where yq is according to the backward map (4). For almost

every 0 <t <T:

1) The optimal control Ut(om) =0, P¥-as..
2) The optimal state Y; € LY (i.e., Y; is a likelihood ratio).
3) The martingale (12) becomes

reS

t
M, =V (Y:) — / T (TYs) + 72 (|Ve]?) ds, P"-as.

' (14)

Proof: See Appendix E. ]

Remark 7 (Variance decay and filter stability): The most
direct route is to consider a functional inequality as follows:

7/ (TYy) + 77 ([Vi|?) > a VY (Y2), 0 <t < T, P”-as. (15)

where « = {ay : 0 < ¢t < T} is a non-negative Z-adapted
process (such a process always exists, e.g., pick a = 0).
The advantage of introducing such a process is the following
variance decay formula which first appeared in [37, Eq. (8)]
(formula reduces to (7) for the choice a = 0):

var’ (Yo(Xg)) < EY (67 Jo" o dtV%(’YT)) (16)

(If (15) holds with equality then so does (16)). Based on the
formula (16), a sufficient condition to show filter stability is
to assume % fOT aydt > ¢, P¥-a.s.. Then it is straightforward
to show that (see [37, Thm. 1])

B (P (| 7)) <

e T X (uv) (17)

ISHN

where a := essinf,¢cs Yo(x).

While the variance decay formula (16) is attractive, it has
been difficult to relate positivity of « to the model properties
of the HMM, outside a few special examples described in our
prior conference paper [37]. A summary of these examples
appears in Appendix B with details in [37].

V. POINCARE INEQUALITY AND FILTER STABILITY
A. Poincaré inequality (PI) for the filter

The optimal control system is the BSDE (9b) with Uy
defined according to optimal the feedback control law (10).

Optimal control system:

—dYy(z) = ((AYy)(x) — B (2)V{ (h, Yy)
+ 1 (2)(Vi(z) — 7f (V) dt = Vi (x) dZ,

Y (z)=F(x), z€8S, 0<t<r (18)
Using the formula (10) for the optimal control,
EP(1(V2, Vi, U™ X)) | 2y)
=mf(TV) + V7 (R V)P + VI (Ve), 0<t<7

The right-hand side is referred to as the conditional energy.
To define the notion of energy and the Poincaré constant for
the filter, first denote

N :={peP(S):var’(Yo(Xo)) =0 VF € H}

Definition 4: Consider (18). Energy is defined as follows:

er(r) = ([ at v + Ve YR + Ve ot

0
For p € P(S) \ NV, consider

Bei=inf {EF(F) : F e H? & var(Yo(Xo)) =1}
and the Poincaré constant is defined as follows:

Tlog (14 82),  pePE)\N

0, peN
Remark 8: The reason for defining the Poincaré constant
in this manner is that ¢” then represents a rate. In particular,
using (11b), for each p € P(S) \ N,

var (Yo (Xo)) < e "EP(VO(F)), VFeH?

=

B. Analysis of the Poincaré constant

We are interested in existence of the minimizer of the energy
functional £°(F) for F' € HPX. If it exists, a minimizer is not
unique because of the following translation symmetry:

EP(F + al) = E°(F)

for any Z,-measurable random variable « such that E?(a?) <
oo. For this reason, consider the subspace

S§P:={FeH’ : n2(F)=0, P’ —a.s.}

Then S” is closed subspace. (Suppose F(") — F in H? with
w2 (F() = 0. Then E? (|rf(F)]) = E? (jr2(F — F()]) <
E°(no(|F — M) = EP(of(IF — FP)) = ||F -
F™||lge — 0.).

Proposition 4: Consider the optimal control problem (9)
with F' € §”. Then

1) The optimal control U©PY = Q.

2) Attime t =0, p(Yy) = 0.

Proof: See Appendix E. ]

Therefore, with F' € S”, the optimal control system (18)

becomes

—dY;(z) = ((AYt)(x) + hT(a:)Vt(a;)) dt — V' (z)dZ,
Yr=FeS&’ z€8§, 0<t<r (19)



Its solution is used to define a linear operator as follows:
Lo:S” CH. — L%*(p) by Lo(F):=Yp

(It is noted that (19) and therefore Ly do not depend upon p
even though the optimal control system (18) does). Additional
details concerning this operator appear in Appendix F where
it is shown that Ly is bounded with ||Lo|| < 1.

The following Lemma is the main result concerning exis-
tence and continuity properties:

Lemma 2: Let p € P(S)\N. Suppose L is compact. Then
there exists an F'” € S such that

EP(FP) = B2, var’(Yo(Xo)) =1 where Yy = Lo(F”)

Consider a sequence {p™ € P(S) : n = 1,2,...} such

that p(™ <« p. Denote ~(™ d’(’i—(:) and let €, :=
sup,es [ () — 1]. Then
lim 82" =g, lim #" = ¢
€n—0 €n—>
Proof: See Appendix F. ]

Example 5 (Continued from Ex. 1): For the examples of
the state processes in Ex. 1:

e S = {1,2,...,d}. Ly is compact because Y = R? is
finite-dimensional (closed and bounded sets in R are
compact).

o S C R It is conjectured that Ly is compact whenever S
is compact subset of R%.

Remark 9: Let S = {1,2,...,d}. It is shown in Ap-
pendix M that NV = {0, : s € S}, the set of d Dirac delta
measures (d vertices of the probability simplex P(S) C R%).
Combining this with the limit formula in Lemma 2 shows
that the map p — c¢” is continuous at all points p in the
interior of P(S). This is because each such p admits a
neighborhood such that all points in the neighborhood are
absolutely continuous with respect to p. However, nothing can
be said about continuity at the boundary points.

C. Main results on variance decay and filter stability

Fix 7 > 0. The 7-skeleton of {7y : t > 0} is a
measure-valued random sequence {7} : k =0,1,2,...}. The
associated Poincaré constants for the skeleton is a real-valued
random sequence {c™- : k= 0,1,2,...}. Define

N—-1
Cy:=)» (", N=12,...
k=0

The following proposition is the main result that gives the
stronger form of the inequality (7).

Proposition 5 (Variance decay): Consider the backward
map (4). Then

var” (yo(Xo0)) < B (e 77NV (1)),

where N = |T/7].
Proof: See Appendix 1. ]
Because {Cy : N = 1,2,...} is non-negative and mono-
tone, define

Coo(w) := lim 1 Cn(w),

YT >0 (20)

weN

where the limit may possibly be +-c0. Based on this definition,
the following is the main result on filter stability:
Theorem 2 (Filter stability): Suppose {V%(yr): T > 0} is
P”-w.i. and ¢” : P(S) \ NV — R is continuous. Then
(i) Either P”([Coo = o0]) = 1, in which case the variance
decay property (6) holds and the filter is stable in y?2-
divergence; or
(i) P”([Cx = o)) < 1, in which case
i) (1259) 0, PY-ae we[Cx < x)]
Proof: See Appendix K. ]
Remark 10 (Exponential rate): Let

c:=1inf{c”: p € P(S) \ N}

Then it is shown in Appendix I (compare with the formula (17)
in Rem. 7) that
B (X* (7 | 7)) <

e T vy @D

Q| =

where a = essinf s yo(x).

VI. RELATIONSHIP OF Pl TO THE MODEL PROPERTIES

The main task now is to relate the PI to the model properties.
In large part, this program still needs to be carried out. In this
section, some results are described for the finite state-space
HMM.

Assumption 1: The state-space is finite:

A1)  S={1,2,...,d}

A. PI for finite state-space HMM

We begin with some definitions. Additional motivation for
these can be found in [20] and [9, Ch. 8].

Definition 5: The space of observable functions is the
smallest subspace © C R? that satisfies the following two
properties:

(i) The constant function 1 € O; and

(i) If g € O then Ag € O and gh € O.

The space of null eigenfunctions is
Sop:={feRY| Tf(x)=0 VzecS}
These subspaces are useful to define the pertinent model
properties for the finite-state HMM as follows:
Definition 6: 1) HMM (A, h) is observable if O = R,
2) The Markov process A is ergodic if

I'f(z)=0, Ve eS = f(x)=¢, Yz €S

3) HMM (A, h) is detectable if Sy C O.
Example 6: Consider an HMM on S = {1, 2} with
“A2 A2 b h(1)]
/\21 —/\21 ’ h(2)_

For this model, the carré du champ operator and the observable
space are as follows:

If= Bﬂ (f() - f(2))% O= SPan{ E : [Zﬁiﬂ}

Consequently,

|




1) A is ergodic iff (A3 + A21) > 0. In this case, the

. . - )\21 )\12
invariant measure ji = {(/\12+/\21) Dz tion)

2) (A, h) is is observable iff h(1) # h(2).

The following proposition gives the relationship between
the model properties for finite state-space HMM and the PI.

Proposition 6: Suppose p € P(S) \ N, and any of the
following conditions holds:

(1) A is ergodic.
(ii) (A, h) is observable.
(iii) (A, h) is detectable.
Then ¢ > 0.
Proof: See Appendix L. ]

B. Filter stability for finite state-space HMM

Assumption 2: The measures p ~ v (are equivalent) with

(A2) 0<a:= I;lelél’}/()({l?) < r;lgg{fyo(a?) =:a< o0
Theorem 3: Suppose (A1)-(A2) holds and (A,h) is de-
tectable. Suppose any one of the following conditions hold:
i S=1{1,2}.
(i) ¢ :P(S)\ N — R is continuous.
Then the filter is stable in x2-divergence.
Proof: See Appendix M. ]
Remark 11 (Contd. from Rem. 9): It is shown in Lemma 2
that the function ¢” is continuous at interior points in P(S).
Therefore, the continuity condition ((ii) in Thm. 3) entails
continuity at the boundary points that are not in AV. For d = 2,
both the boundary points are in N and hence the continuity
condition is not required. See also Rem. 16 in Appendix M.

VIIl. DISCUSSION AND FUTURE WORK
A. Practical significance

There are two manners in which these results are of practical
significance. One, our work is important for the analysis
and design of algorithms for numerical approximation of the
nonlinear filter [38]. Specifically, the error analysis of these
algorithms require estimates of the two constants related to the
exponential decay (the Poincaré constant c) and the transient
growth (constant % in (21)) [39, Prop. 2].

The second manner of practical significance comes from
design of reinforcement learning (RL) algorithms in partially
observed settings of the problem. Many of these algorithms
are based on windowing the past observation data and using
the windowed data as an approximate information state [40]-
[42]. The Poincaré constant is useful to estimate the length of
the window for approximately optimal performance.

B. Future work

While there are a number of tasks around extending and
completing the program begun in Sec. VI, it is noted that the
definition of backward map (4) is not limited to the HMMs
with white noise observations (which is the model assumed
in all of our work on duality). This suggests that it may be
possible to extend duality and the associated filter stability
analysis to a more general class of HMMs.
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APPENDIX

A. Proof of Proposition 1

Suppose p,v € P(S) and p < v. Let v = %. Then the

three forms of f-divergence are defined as follows:
(KL divergence) D(p|v):= /S'y(x) log(v(x)) dv(z)
O0F divergence) x| v) = [ (3() =17 dv(a)
(Total variation) [t — v[lre = /S Ly(a) — 1] dv(z)

For these, the following inequalities are standard (see [43,
Lemma 2.5 and 2.7]):

2/ —v|Z <D |v) <Xl v)

The first inequality is called the Pinsker’s inequality. The result
follows directly from using these inequalities. For L? stability,
observe that for any f € Cy(S),

mp(f) = 7 (f) = 77 (frr) — 7o (H)mr(yr)
Therefore by Cauchy-Schwarz inequality,
osc(f) o
4

| (F) = mp(f)1* < X (7 | 77)

where osc(f) = sup,¢s f(z) — infzes f(x) denotes the oscil-
lation of f. Taking E#(-) on both sides yields the conclusion.

B. Rate bounds for HMM on finite state-space

A majority of the known bounds for exponential rate of
convergence are for HMMs on finite state-space. For the
ergodic signal model, bounds for the stability index ¥ (see
Rem. 2) are tabulated in Table III together with references
in literature where these bounds have appeared. All of these
bounds have also been derived using the approach of this
paper. The bounds are given in terms of the conditional
Poincaré constant ¢ (see Rem. 7) and appear as examples in
our prior conference paper [37].

For the non-ergodic signal model, again in finite state-space
settings, additional bounds are known as follows [12, Thm. 7]:

limsup 127 < —1 3 (i) min |A() — h(j)
r—0 ics J#i
.. 20— 1 _ . N N2
liminf r*5 < 5 > a0)|A(i) — h(j)|
i,jES
where r is the standard deviation of the measurement noise W.

Derivation of these latter pair of bounds using the approach
of this paper is open.



TABLE IlI
RATE BOUNDS FOR FINITE-STATE HMM*

Bound Literature (—y) Our work (c)
(1) min;x; \/A(z',j)A(j, 1) [12, Thm. 5] [37, Ex. 4]
[8, Thm. 4.3]
[4, Corr. 2.3.2]
2) ZiGS A7) minjz; A(7, §) [8, Thm. 4.2] [37, Ex. 2]
3) Zj min;; A(7, 5) [13, Ass. 4.3.24] [37, Ex. 3]

T{A(i,7) : 1 < i,j < d} is the generator (a transition rate
matrix) for the state process and [ is an invariant measure.

C. Calculation of x?-divergence

Suppose {m}’ : t > 0} and {7} : ¢ > 0} are the solutions of
the nonlinear filtering equation (3) starting from prior p and
v, respectively. Then

dx®(nf | w) = =) (Tye) + VI (e, h)- VY (0, b)) dt+CF AL

(22)
where Cy = mf' (4 (h + my (h) — 27} (h))). With h = c1, two
terms on the right-hand side are zero and the formula (8) is
obtained. Before describing the derivation of (22), a remark
concerning the direct use of this equation for the purpose of
filter stability is included as follows:

Remark 12: The term —n}(I'y;) on the right-hand side
of (8) is non-positive. However, the product V/' (v, h) -
VY (¢, h) is sign-indeterminate. Therefore, the equation has
not been useful for the asymptotic analysis of the -
divergence.

Derivation of (22): Using the equation (3) for the filter
dx®(nf | m) = dnf (37) = Cradt + Cj o dIf + Cj 5 Iy
where the formulae for the three coefficients, obtained through

an application of the It6’s formula, are as follows:

Cra = m} (D) + it (velh — 7 (W)[?) + 7t (el b = (h)[?)
=2 (w(h =i ()" (h — 7/ (h)))

Cro =27} (vi(h —7}'(h), Cis=—mn(i(h—m(h))

Upon noting dI} = dI}'+(n}'(h)—ny (h)) dt and simplifying
the formula (22) for divergence is obtained.

D. Proof of Theorem 1

The feedback control formula (10) is from [2, Thm. 3]. The
equation for the conditional mean and variance is proved in [2,
Prop. 1]. The SDE (13) for the conditional variance is derived
using the Hamilton’s equation arising from the maximum
principle of optimal control [2, Thm. 2]. Specifically, for the
optimal control problem (9), the co-state process (momentum)
is a measure-valued process denoted as {P; : 0 <t < T'}. The
Hamilton’s equation for momentum is as follows: For f € ),

dPi(f) =(P.(Af) + 200 (T(f, Y1) dt
+ (Pi(hf) + 22Ul () + 207 (Vi f)) A2,

where of denotes the unnormalized filter at time ¢ (solution

of the DMZ equation starting from initialization of = p).

From [2, Rem. 51, VI (f,Y:) = 25;({1)).
t

obtained by using the It formula.
An alternate derivation of (13) is based on directly using
the nonlinear filter (3) to show that

vy (f,9) = (£ (T(f,9)) + VE (g, Af)
VP (1 Ag) =V (h )V (hg) )
+ (Wb g9) = (V2 (h,g) = w{(@)VE (B, 1)) aTf

With g = Y, using the BSDE (9b) with U; = U™, upon
simplifying, again yields (13).

The SDE (13) is then

E. Proof of Prop. 3 and Prop. 4

Suppose mP(F) = c where c is a deterministic constant.
Using (11a), because PP ~ P”,

c=p(Yo) — / (U)' dZy, PP-as.
0
By the uniqueness of the Itd representation, then
U =0, ae0<t<rt, Pas.

and, because these are equivalent, also P”-a.s.. Using (11a),
this also gives
Ff(YZ) =G

and EF (V/(YV})) = EP([Yi(Xy) — c?) = var” (Yi(Xy)).

Now consider the stochastic process {Y;(X;): 0 <t < 7}.
Because U = 0, the 1t6-Wentzell formula is used to show that
(see [1, Appdx. A])

dYi(X:) = V(X)) AWy + dNVg,

Pf-as. ae. 0<t< T

0<t<r
where {N; : t > 0} is a PP-martingale. Integrating this from
t to 7 yields
F(X,) = Yi(X,) + / VI(X,) dW, + dN,
t

which gives
Yi(z) =EP(F(Xr) | 2,V [Xy =1]), z €S, PPas.

Proof: [of Prop. 3] Set p=v and 7 =T. If F € LY the
representation as a conditional expectation shows Y;(x) > 0,
and because 7} (Y;) = 1, Y; is a likelihood ratio. For F' = ~,

Yo(z) = B (v7(X7)|[Xo = 7)),

The right-hand side is the backward map (4) which proves
Yo(z) = yo(). u

€S

F. Proof of Lemma 2
For F' € H”?, we begin by noting
1F % = E°(02(F?)) = E* (n2(F?)) = E*((F(X,))?)
(23)
Consider the optimal control system (19). Define its solution
operator

L:S” c H? — HP([0,7]) x H?([0,7])™ by L(F):=(Y,V)



As with Lg, this operator too does not depend upon p.
Because UPY = 0, with (Y, V) = L(F), the formula for
energy becomes

£9(F) = E7 ( JE0 +wf(|v;2>dt)  Fes
0

where note 7{ (|V4]?) := [ V' (2)Vi(z) dnf (x). The optimal-
ity equation (11b) gives

p(Ys) +EP(F) =EP((F(X,))?), FeS (24

This shows that Ly : S — L?(p) is a bounded operator with
ILo]| < 1. Because p(Yp) = 0, the definition of 52 becomes

BP =inf{EP(F) : F €8°, Yo=Lo(F) & p(YZ) =1}

To obtain the minimizer, setting (Y, V) = L(F) for F € S*,
the functional derivative is evaluated as follows:

(ver(r), )i ([ mb(n )+ w7 ot

where note 7 (V;'V;) := s Vi (x)Vi(x) dn’ (). From the
Cauchy-Schwarz formula, using (23) and (24),

(VEP(F), F)* < 4E°(F) |IF %

This shows that F +— (VEP(F),F) is a bounded linear
functional as a map from S” C H” into R. With these
formalities completed, we show a minimizer exists.
Proof: [of Lemma 2 (existence)] See Appendix G. [ |
For a fixed p € P(S), the minimizer is denoted by F'* with
EP(FP) = BP. From the proof of existence in Appendix G,
we also have ||FPHI2ng =1+ /2. We now show continuity.
Proof: [of Lemma 2 (continuity)] See Appendix H. MW

G. Proof of Lemma 2 (existence)

Consider an infimizing sequence {F(™) € S° : n =
1,2,...} such that £#(F(™) — B2 and p((YO(n))Q) =1 with
v =1, (F(™). The proof is obtained in three steps:
Step 1: Establish a limit F* € S” such that F("™) converges

weakly (in H?) to F'*. The weak convergence is denoted as
) s po.

Step 2: Show that £°(F?) = SP°.

Step 3:. Set Yy = Lo(F”). Show that p(Yy) =0, p(Y) = 1.
We begin with step 1. To establish a limit, use the optimality
equation (24):

p((Y{™)?) + E(F™) = B (F™(X,))?), n=1,2,...

Now p((Yon))Q) = 1 and because £(F™) — pj°, by
considering a sub-sequence if necessary, using (23),

IF™ |Fe = EP((FM™(X7)?) < 1+ (B2 + 1)

We thus have a bounded sequence in the Hilbert space H~.
Therefore, there exists a weak limit F” € HP? such that
F(®) _« Fr_Because S is closed, F? € S”. This completes
the proof of step 1.

Next we show EP(FP) = 2. Because the map from F* —
EP(FP) is convex, we have

EP(FM) > EP(FP) + (VEP(FP), (F™ — FP))

We have already shown that F' s (VEP(F”), F) is a bounded
linear functional. Therefore, letting n — oo, the second term
on the right-hand side converges to zero and

lim EP(F™) > &P(FP)

n—oo

This property of the functional is referred to as weak lower
semi-continuity. Because £°(F(™)) — (7, we have £°(F*) <
B2. However, B2 is the infimum. It therefore must be that
EP(FP) = BP. This completes the proof of the step 2.

The step 3 of the proof is to show that setting Yy := Lo(F*)
gives p(Yp) = 0 and p(Y?) = 1. This is where the assumption
on compactness of Ly is used. Because F(™) — F* in HP
and Lo is compact, we have YO(") — Yy in L?(p). Then
p(Yo)l = [p(Yo — Y& < p(IYo — Y1) — 0 and
p(Y3) = lim, o0 p((YO(”))Q) = 1 by the continuity of the
norm with respect to strong convergence.

From (24), it also follows that

IF?||2, = p(YR) + EP(FP) =1+ 3¢

and thus ||[F™|g> — ||F?||me. Therefore, F” is in fact a
strong limit whereby F(") — F* strongly in HP.

H. Proof of Lemma 2 (continuity)

Let €, — 0 as n — oo. Our goal is to show

. " .. (n)
B2 <liminf 82~ < limsup 82~ < pB°
n— oo

n— oo

W.l.o.g., we assume ¢, < % vV n. The following technical
result is helpful for the proof.
Proposition 7: The following holds:

(=)l FlEe <IFI2 00 < 1+ en)IFIl

Consequently, F' € H? iff F € H?'™ . For F € He,

lim & (F) — &°(F)
n— o0
Proof: [of Prop. 7] We have

() n
IFI2 o = EP " (1F (X)) = B (v (X0) [ (X))

Because (1 — ¢,) < 7™ (Xo) < (1 + €,), PP-as., the
equivalence of norm follows. Next, the continuity of the
functional is shown. Let F' € H”. By translation symmetry,

e (F) = e (F — =2 (F)),

E7(F) = E°(F — nt(F))

Let F(") := (nP(F) — 7r£(") (F))1 and denote
(Y™, vy = L(F - x2™ (F))
(Y, V) := L(F —="(F))
(}N/(n)7 V(n)) — L(F(n))



Then (Y (™), V(™) = (Y, V) + (Y™, V(™). Denote

50— /O Y™ (X,) + [V (X0) 2 dt
5= / TY;(Xy) + [Va(X) 2 dt
0

50 .= /T LY, ™ (X,) + V™ (X)) at
0

Then

EX(S™) = E?(S) + E7(S™) (25)

+ 260 ( / D0 T ) + (V) (T () dt)

0

Meanwhile,

g/(F) — & (F) = E°(5) - 7" (5)

term (ii)

term (i)

It is shown that each of the two terms are O(e,,). For term

(ii),

IEP(S™)) — EP'™ (8| < EP™ 1 g
7 (z)
€ (n) € 1+e
< g e g—_ 2 <ep—2
< () € TR S et F

For term (i), using Cauchy-Schwarz in (25),
E2(S) — E7(S1)] < E/(S™) + 2,/En(F)[E2(3)
< EP(S™) + 2| Fllag /B (S™) (26)
Now, using the Bayes’ formula,
Fn) — (n*(F) — o
- (erroeolz) -

Now, because 1 — ¢, < 7™ (z) <1+ €,,

(F)1

Ep(,y(n) (XO)F(XT) ‘ZT) ) 1
£/ (7™ (Xo)|2

(n)
1-— 7 (Xo) < 2én , PP —as.
Er(v((X0)|Z-)| ~ 1 — €y
and thus
2
(n (n €
[FMZ, = EP(FM(X,))?) < 4(1_7)“}7”]}}1”
Finally, because (Y (™) V() .= L(F(™),
2
(7 a(n =(n En
p(Fg™)?) + EP(S™) = [|[F™2, <4—"—||F|Z,
(1—en)
Substituting the estimate in (26),
EP(S) — EP(SM)| <4— _|IF|=2,
|E”(S) (St < (1_€n)2|| [

which shows that term (ii) is also O(e,). Combining the
estimates for the two terms,

£9(F) = 7 (F)] < e | R,
> €n (1 — en)Q HP
which proves the continuity of the functional. ]

The continuity of the map p — 2 is shown in two steps:

Step 1. Proof of limsup,, . 55“” < BP: For p, consider a
minimizer F'* € H” such that 82 = £°(F”). From Prop. 7,
I e Hﬁ(m and because Bp(m is the minimum value,

g < e (Fry

Letting n — oo, from Prop. 7, the right-hand side converges
to £P(F'*) which gives

. (n)
limsup 5?2
n—0o0

< EN(F?) =p7

Step 2. Proof of 52 < liminf, ﬁﬁ("): For p(”), consider
a minimizer F*" € & H’T’(m such that 6"(") =
" (") and with v = (e — e (),
p(n)((yop L))Q) = 1. From the estimate in step 1,
considering a subsequence if necessary,

upon

(n) (n)
IFP) 12 ,,<n>—1+/55 <2487 Vn
From Prop. 7, because ¢, < 2, the subsequence is bounded

also in HZ. Set

(n)

FO = pe™ o (Fe™), v = Ly(F™)

Then F(") € S”. Conclude a weak limit F € S C H? such
that F(™) — F (in H?). Because L, : H? — L?(p) is compact,
denoting Yj := Lo(F),

p(Y5) = lim p((Yg™)?)
We make two claims as follows:

_ ||Fp(n)

(Claim A) ||F™)|2,

o™ + O(en)
(Claim B)  p((Y{™)2) = p™((Y¢"™)2) + Olen)

From Claim B, p(Y) = 1. Now, it is a property of weak

convergence that
2 s 2
1F I < liminf || FC)Z,
From Claim A,
. (n)
1FGy < Hminf (|21, ) + O(en)
We have

1Pl = p(Y7) + E°(F) =1+ E°(F)

o

(n) n ) () ;1 p(m) )
17 o = P + 87 () =14
Combining

L ¢ <1+ E°(F) < liminf(1+ 527 + O(ey))

. . (n) .
which shows 2 < liminf,,_,., 82 . It remains to prove the

two claims.

Proof of Claim A: Let F(") := (T(_f_)(n) (F"(")) (Fp(")))l
Then, by repeating the argument in the proof of Prop 7,

IF™2, < 4

631 p(™) 12 2
(172“17 e = O(e3)

_ Gn)



Because F(W = pr™
using Prop. 7.

Proof of Claim B: Let Y™ := LO(F(")). Then p((Y{™)2) <
[| Because Y(n) Yp + VM,

+ F( | the claim is proved from

2,
p(Y™)2) = p((Y"")2) + Olen) = p™ (V¢

which concludes the proof of the claim.

")) + Ofen)

I. Proof of Proposition 5

The proof is based on the following technical Lemma:
Lemma 3: Let (Y, V) be the solution of the optimal control
system (18) with p = v, 7 =T and Y = yp. Then

t+T1
e ([ )+
t
0<t<T~—r, PY-as.

Proof: See Appendix J. ]
From Lemma 3, using the formula (14) for martingale in
Prop. 3, for 0 <t <T — 7,

v t+7
Ty e[ aaev)+
t
= B (Ve (Vi) | 20) ~ V().

Therefore, using the definition of the Poincaré constant,

(Va2 ds | 2,) = 87 VY (Y0),

(VP ds | Z1)
P"-a.s.
EY (VY (Yesr) | 20) > ™" VY (), PY-as. 27)
In both the proof of Prop. 5 and in derivation of (21), let
= |T /7| and partition the interval [0,T] as 0 =tp < ... <
ty <...<tnyg1 =T where ty = k7 for k=0,1,2,...,N.
Proof: [of Prop. 5] For the partition, formula (27) gives
E” (VZCJA (}/tk-+1) | Ztk) >
and therefore,
Ev (677'(7&]/;C (}/tk))
v —T —TC ;/ 1% v
S E ( Cke g E (Vtk+1 (Y;fk+1) | Ztk))
= E¥ (e_TcHth”Hl(}QkH)), k<N
A recursive application of this identity gives
var” (Yo(Xo)) = Vi, (Ya,) < B (77 V) (V2y))
< EY (ef‘rCthl; (}/tZ)) < < EY (ef'rCsz/N (}/tN))

e VY (V,), Praas, k< N

Therefore,
var (Yo(Xo)) < EY (e 7NV, (Yiy))
< B (e TONEY (VR(YT) | Z1y)) = EY (e TON V(YY)

which concludes the result because Y = yp and Yy = yo
(from Prop. 3). [ |

Proof of formula (21): From the definition of A/, we have
my € P(S)\N

mf EN

Therefore, for the partition, formula (27) gives

EY (VY (Yi) | 2) > €V (Vs,), PY-as., k<N

> e,
Vty(Yt) =0,

and upon taking expectations of both sides

Varu()/twrl (th+1)) > €TCV3rV(Y;k (th))a k<N
A recursive application of this identity gives
var” (Yo (Xo)) < e~ Nvar” (Yo, (Xoy )

< e T Dvar” (yp (X))
Meanwhile, from (5),
(E" (x*(h | 77)))* < var” (70(Xo))var” (Yo(Xo))
<e T Tvar” (y(Xo))var” (vr(X71))

Since var” (yr(Xr1)) = E¥(x?
by var” (y7 (X)) to conclude

RrE (3 *(nh | 7)) < e T var” (y0(Xo))

(mh | ©%)), divide both sides

The result follows because R1 > a (see Remark below). N
Remark 13 (Lower bound for the ratio Rr): Since Rr is
the ratio of expectations of the same random variable

V¥(yr) = x?*(n% | %) under measures P* and P”
Rr = w > essinf dp” (w) = essinf —u(m) =a
Ev (V%(’yT)) we dP¥ zeS  dv
An alternative formula for the ratio is as follows:
_E(VOr) | E(Arvy(ar)
Er(Vi(yr)) B (Vr(yr))

where the change of measure (see [9, Sec. 4.5.1]):

dP*|z ’
Ar = T — B(h) — w2 (h))dI
ri= G = e ([ (w0 =) ar
T
Y MLAOREACIEY
0
Now, {Ar : T > 0} is a non-negative P”-martingale with

EY(Ar) = E”(Ap) = 1 and therefore, by the martingale
convergence theorem, there exists a random variable A,

such that Ap (1> As. It is possible that an improved
asymptotic lower bound for R7 can be obtained by showing

that essinf,,coAs(w) > 0.

J. Proof of Lemma 3

The proof requires showing a Markov property of the
optimal control system (18).

Markov property of the optimal control system: Because
U©PY = (), the optimal control system (18) is the BSDE

—dYy(z) = ((AYy)(2) + h'(2)Vi()) dt — V' (2) dZ,
Yr(z) = yr(z) = jZf (r), z€S, 0<t<T (28)

Since the terminal value Y7 is a function of 7%, and W;, which
are both Markov processes, the Markov property follows
from the theory of forward-backward SDEs [44, Chapter 5].
Specifically, for time s € [t,T], let 72* denote the solution
of (3) with initial condition 7; = p. Then

Al @) = T (w), Plae w, t<s<T
ot £ (W), t(w) =ml(w), P-ae w, t<s<T



Therefore, express

t

A
=—L (), z€5S

= ™
dm

o
_ dmr
v

dnt,

(z)

yr(z)

and consider the following BSDE over the time-horizon [¢, T):
—dYy(2) = ((AY:)(2) + W' (2)Vi(x)) ds — V] (2) dZs,

ot
Vr(a) = L (x), z€S, t<s<T
dmgt”
Note that the solution (Y,V) = {(Y,,Vi) : t < s < T}
depends on 7¥ and 7" because of the nature of the terminal
condition. The theory of Markov BSDE is used to assert the
following (see [44, Ch. 5]):
Lemma 4 (Markov property of the BSDE): Let (Y,V) =
{(Y;,V;) : 0 <t < T} be the solution of (28). Then
e V.=Y,and V, =V, forall t < s < T, P’-as..
o Given 7/ and 77 at time t, {(Y,,Vi) : t < s < T} is
independent of Z;.
Proof: See [44, Thm. 5.1.3]. ]
Remark 14: A corollary to the Markov property is the
following representation of the solution

Yt = (Z)t(ﬂ-z/vﬂ-f)v

where ¢;(-,-) is a deterministic function of its arguments.
While interesting, the representation is not used in this paper.

Proof: [Proof of Lemma 3] Based on the Markov prop-
erty, the following transformation holds P"-a.s.:

0<t<T

t+7
e ([ m v VP ds | )

t+1 v N v N
:EV(/ 7T;rt’t(FYs)+772””5(|V<~:|2)dsIZf)
t

:E”5</
0

PhH v ~ e -
> ﬂrt Vz/(yvt) = /BTt Vt (}/t) (a th = Y;S)

7wyt > Tt 1177
TTL (Do) 4w (Vi [2) ds)

where 3¢ is now a random number (32 with p = 7¥). [ |

K. Proof of Theorem 2

Case (i): By definition of uniform integrability (u.i.), for each
€ > 0, there exists K such that

E” (VT(’YT)]‘[VT(’)’T)>K]) < €, vT >0

Therefore,

EV(e77"Vr(vr)) =B (¢ T NVr(vr) s (v > K1)
+E (e TV (Y) Lvr (e < K1)
< €+KEV(€7TCN)

The second term converges to zero from DCT. Since € is
arbitrary, the result follows.

Case (ii): For w € [Co, < 00|, limy_y00 ¢™7(w) = 0. The
result follows because {m}" : ¢ > 0} is a solution of the
SDE (3) and therefore a continuous function of time.

L. Proof of Proposition 6

Suppose any of the three conditions hold. We claim then
(claim) &EP(F) =0 = var’(Yp(Xo)) =0

If the claim is true, the proof is by contradiction. Suppose
¢? = 0, then by Lemma 2 there exists £7(F) = 0 such that
var”(Yp(Xo)) = 1 which contradicts the claim. It remains
to prove the claim. For each of the three cases, the proof is
described in the remainder of this section.

(i) Ergodic case: At time ¢, let p; denote the probability law of
X; (without conditioning). Then because the Markov process
is ergodic, for any ¢ > 0, the invariant measure i < p; (as
measures on S). W.Lo.g., take S’ = supp(p;) as the new state-
space and consider the Markov process on S'. It is again
ergodic with the invariant measure i € P(S’) and using
Defn. 6 of ergodicity,

I'f(z)=0, Ve eSS = f(x)=¢c, Vze¥ (29)

Suppose £°(F) = 0. Because P? ~ P?,

EX (/OT FYt(Xt)dt> =0

= I'Y;(Xy) =0, Isp-a.s., ae.0<t<r

Pick a positive ¢ such that I'Y;(X;) = 0, P?-a.s.. Now, under
PP, X; ~ ps, and X; and Y; are independent. Therefore,

0=Er(IY;(Xy)) = EP(p(TY2)) = pi(TY;) =0, PP-as.
Using (29),
pi(TY,) =0, PPas. = Yi(x)=c¢;, x€S, PPas.
where ¢; is Z;-measurable. Then because P? ~ |5p,
EP(V/(Y)) < E°(IYi(Xy) — rf?) = 0

and the result follows because var”(Yy(Xo)) < EP(V/(Y}))
using (11b).

Remark 15: Note that only the part of the energy involving
the carré du champ is used in the proof of the ergodic
signal case. Therefore, for an HMM (A, h), the conclusion
depends only upon A and holds irrespective of the model h
for observations.

(ii) Observable case: The proof is given for HMMs more
general than finite state-space: In Defn. 5, O is now a subspace
of Cy(S) satisfying the two properties (enumerated as (i) and
(i) in the definition). In the general setting, an HMM is said to
be observable if O is dense in L?(p) (written as O = L?(p)).
The key to prove the result is the following Lemma:
Lemma 5: Suppose E°(F) = 0. Then for each f € O,

VI(f,Y;) =0, Pfas, ae.0<t<rt
Proof: From the defining relation for £°(F),

7 (TY,) =0, V/(h,Y;) =0, V/(V;) =0, Pl-as.

for a.e. 0 <t < 7. Using the Cauchy-Schwarz formula then
for each f € Cy(S),

VL VP SVE(VE(Ve) =0 PP-as.



Similarly, upon using the Cauchy-Schwarz formula [32,
Eq.1.4.3] for the carré du champ operator,

nf(C(f,Y:)) =0, Prf-as.

Based on these, the SDE (13) for the conditional covariance
simplifies to

AVY(f,Y:) = Vi (Af, Yz) dt
+ (VE(ht,Y) = mf (VP (f,Ye) dIf, 0<t<T
Therefore,

VO, V) =0, 0<t<T
= V{(Af,Y) =0, V/(hfY) =0, 0<t<T7

Since V(1,Y;) = 0 for all ¢ € [0, 7], the result follows from
Defn. 5 of the observable space O. ]

Based on the result in Lemma 5, the proof of the claim for
observable case is completed as follows:

Because Yy = Lo(F) and Lg is bounded, Yy € L?(p). If S
is finite there is nothing to prove because © = R. In the case
where O C O = L?(p), there exists a sequence {f, € O :
n =1,2,...} such that f, — Yy in L?(p). From Lemma 5,
for each n,

VE(fn,Yo) =0, Prf-as.

Therefore,

var’(Yy(Xo) = Vi (Yo) = V5 (Yo — fn, Y0) (30

and letting n — oo, because f, — Yo, var®(Yp(Xp)) = 0
using the Cauchy-Schwarz.

(iili) Detectable case: As shown in the ergodic case, if
EP(F) = 0 then T'Y;(z) = 0 for all z € S, and therefore
Y; € So. If the system (A, h) is detectable, then this implies
Y, € O. By Lemma 5, E? (V{(Y;)) = 0 and the claim follows.

M. Proof of Theorem 3

Let 05 denote the Dirac delta probability measure with
support at s € S. Denote

N():{(SS:SGS}
N.={peP(S):p(s) >1—efor one s €S}

Ny is a subset of P(S) comprising of d Dirac delta measures (d
vertices of the probability simplex). A, is the e-neighborhood
of NMy. We claim that N = Nj. Assuming the claim to be
true, the proof steps to show Thm. 3 are as follows:

Step 1: Show that {V%.(yr) : T > 0} is P-u.i. This is because
of the formula for the forward map (See Rem. 3):

max |yr(z)] < =, PY —as.

z€S -

SES]]

Step 2: Show that on [Cos < o0, VX(yr) — 0, PY-as..
This is where the assumption of detectability is used. From
Thm. 2, on [Cs < 00], ¢™7(*) — 0 P”-a.s.. Because ¢’ > 0
and p — ¢” is continuous for points in the interior of P(S)
(Lemma 2), 7%.(w) eventually escapes every compact set in
the interior of P(S). For d = 2, this means that for each

€ > 0, there exists a T = T'(w, €) such that 74 (w) € N, for
all T' > T'. It is a straightforward estimate then to show that

Vi(yr) < 46(3)2, T>T

Since e is arbitrary, it follows that V%.(yr) — 0, P”-as..
Step 3: From (20),

var' (Yo (X)) < EY (e TNVi(yr)) =

E” (Liow=oo)e " VE(rr)) + B (Liow<ocje™ ™Y Vi (V1))
The first of these terms goes to zero because e~ "N — 0 P¥-

a.s. on [Cy = 00]. The second of these terms goes to zero
from step 2.

Proof of the claim A" = Njy: For p € P(S) \ N, pick a
function f € R? such that p(f) = 0 and p(f2) = 1. Such a f
always exists: Pick two points s1,s2 € S such p(s1) > 0 and
p(s2) > 0. Set

a

I
f(s) = oy S=s2
0 s €S\ {s1,s2}
where @ = /281002 Now solve the forward-in-time
p(s1)+p(s2)

linear ordinary differential equation

S (0) = —(A¥) (@) + W' ()VE (R, Vi)

Yo(z) = f(z), z€S, 0<t<T

This is finite-dimensional linear system with uniformly
bounded random coefficients. So, it admits a well-defined
bounded solution at time ¢ = 7. Denote the solution Y, = F.
Because F' is bounded, F' € H?. Now, consider dual optimal
control system (18) with Y7 = F. Then by uniqueness
of the solution, V' = 0 and Yy = f. By construction,
var?(Yy(Xo)) = 1. This shows that N' C ANj. To show
that N' = No, note p(f*) = p(f)* = |f(s)]* for p = Js.
Therefore, var”(Yy(Xo)) = 0 for p € Np.

Remark 16: For d > 2, it is still true (in step 2) that 7% (w)
eventually escapes every compact set in the interior of P(S).
However, a subsequential limit could be to a point on the
boundary. To extend the proof to d > 2 requires one to show
that p — ¢” is continuous at the boundary points p € P(S)\N.
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