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ABSTRACT

The perennially ice-covered lakes of the McMurdo Dry Valleys (MDVs), Antarctica, are an important
reservoir of liquid water in an arid and largely frozen environment. During the austral summer, the
margins of these ice covers melt, forming a “moat” of liquid water and thin ice, allowing exchange
between lake waters and the atmosphere to occur and serving as an interface between lake, soil,
and stream ecosystems. The size of these moats varies from year to year. Here, we have established
the first published record of moat area changes at MDVs' Lake Fryxell through time using manual
traces of the moat as observed via satellite imagery. We have also tested a semi-automated
approach for measuring moat area and found that it consistently underestimated the manual
record, which we suspect may be due to the lower spatial resolution of images used in this versus
the manual approach. Finally, we developed a predictive model based on readily available climate
data, allowing moat area to be predicted beyond the limits of the satellite-based records. We found
that functional moat area varies annually, potentially influencing ecosystem processes in the
moats.
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Introduction 1998). For much of the year, these ice covers extend to

the lakeshore, freezing to the underlying substrate and
effectively sealing off the lake waters completely.

The McMurdo Dry Valleys (MDVs) of Antarctica are
the largest relatively ice-free part of the continent

(Figure 1; Levy 2013) and are home to more than 6,000
lakes and ponds (Hawes et al. 2021). The larger lakes
generally boast a several meter thick, perennial ice cover,
which helps to maintain the liquid state of the lakes
(Doran, Wharton, and Lyons 1994). In the extreme
polar desert ecosystem of the MDVs, where liquid
water plays a critical role in supporting life and facilitat-
ing ecosystem connectivity across the landscape
(Gooseft et al. 2011), these large lakes provide an
important year-round stable reservoir of liquid water
in an otherwise harsh and largely frozen environment.
Perennial lake ice covers limit exchanges between
lake water and the atmosphere, prevent wind driven
mixing, limit sedimentation and the amount of light
penetration into the water column, and allow highly
stratified water columns to persist (Doran, Wharton,
and Lyons 1994; McKay et al. 1994; Spigel and Priscu

However, during the austral spring and summer, the
grounded ice melts and thins from the bottom up, in
some places melting to the surface leading to the appear-
ance of open water areas on and around the lake ice
cover (Stone et al. 2024). These shallow lake regions that
undergo seasonal freeze-thaw cycles are called “moats.”
While moats are generally restricted to a lake’s peri-
meter, islands and shallow regions away from the lake
shore can also lead to the development of moats toward
the interior of ice-covered lakes.

Moats act as the interface between soil, stream, and
lake ecosystems. The annual thawing and refreezing of
moat ice creates a unique and challenging environment
for the organisms residing there, and the benthic com-
munities in the moats are taxonomically distinct from
those in the deeper, perennially ice-covered parts of the
lake (Stone et al. 2024). Many of the closed-basin lakes in
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Figure 1. Location of Lake Fryxell within Taylor Valley. The dark region around Lake Fryxell's ice cover is the functional moat. Inset map
shows the location of the McMurdo Dry Valleys in Antarctica. Base image from Google Earth Pro 7.3.6.9750 (January 17, 2010).

the MDV's are experiencing lake-level increases, and as
they rise, lakeshore soil communities are inundated and
incorporated into the moats (Ramoneda et al. 2021).
Thus, moats can also provide an important catalyst
driving ecological succession. When open water areas
develop in the moats, they provide a conduit for
exchange between the lake waters confined beneath the
perennial lake ice cover and the atmosphere (Stone et al.
2024).

We define the functional moat of a lake as areas
where liquid moat waters appear at the surface, or
where waters are separated from the surface by a thin
veneer of ice. This thin veneer of ice may melt and
refreeze several times during a given season based on
surface temperatures and is thin enough to allow light to
pass through it without a notable decrease in transmis-
sion. The size of the functional moat has major implica-
tions for moat communities. Communities residing in
open water moat areas receive much greater photo-
synthetically active radiation (PAR) than those residing
beneath lake ice (Hawes and Schwarz 1999); thus the size
of the functional moat controls the degree and spatial
extent of PAR availability for lake marginal commu-
nities. Although evaporation is considered only
a minor contributor to MDYV lake volume loss and draw-
down (Dugan, Obryk, and Doran 2013), the size of open
water areas of the functional moat logically impacts lake
evaporation rates and controls its influence on overall
lake ablation. Evaporation may also contribute to the
increases in solute concentrations through the austral
summer observed in the moat waters (Stone et al. 2024),
changing the chemistry of the waters in which moat
communities reside. In addition, the area of the func-
tional moat controls how much wind can influence the

moat environment, with the greater fetch of larger moats
being more subject wind-driven wave action and thus
having more potential for higher turbidity.

Here, we define and compare means of tracking func-
tional moat area from satellite imagery both manually
and via a semi-automated method. In doing so, we
establish the first published functional moat area record
for Lake Fryxell, a perennially ice-covered, closed-basin
lake located in eastern Taylor Valley (Figure 1). In addi-
tion, we develop a predictive model for Lake Fryxell
functional moat area based on routinely measured cli-
mate variables collected at a nearby automated meteor-
ological station. The goal of this model is to find a simple
means of predicting functional moat area using readily
available climate data, and to identify correlations
between functional moat area and climate variables.
The model facilitates hindcasting, providing a means
to extend the functional moat area record beyond the
temporal limits of the satellite imagery-based datasets,
and filling in gaps in the functional moat area record.

Setting

Lake Fryxell [77°36" S, 162°6" E] is a closed-basin lake
that lies at the eastern end of Taylor Valley, an east-west
trending valley whose eastern margin opens to the
McMurdo Sound region of the Ross Sea. The lake has
an area of roughly 7 km?> and is approximately 20 m
deep. The perennial lake ice cover on Lake Fryxell has
varied from 2.9 to 6.2 m over the monitoring record
(Priscu 2003). The lake ice is highly weathered and
opaque, and generally has a high albedo relative to
moat ice. It has a mostly white appearance except
where wind-blown sediment patches have accumulated



on the ice cover’s surface, or surface melt has led to
ponding followed by refreezing on the lake ice surface.
Conversely, early spring and summer moat ice is
smooth, largely transparent (especially where the ice is
thinnest within the first few meters of the lakeshore),
and often has a blue appearance. Both moat and peren-
nial lake ice undergo whitening as the austral summer
progresses, lowering their transmissivity (Fristen and
Priscu 1999) and their optical reflectance.

Lake Fryxell’s closed-basin means it is susceptible to
lake level changes. A manual record of the lake’s level has
been maintained since 1972, and the lake has generally
risen since the start of that record, ranging from 15.7 to
18.5 m above sea level (Barrett et al. 2008; Doran and
Gooseft 2023). Lake level changes reflect the balance of
water inflows minus evaporation and sublimation. Water
inputs into the lake largely come from meltwater streams
flowing into the lake from local alpine glaciers, or from
direct melt discharged from Canada Glacier, which abuts
the western end of the lake (Miller and Aiken 1996;
McKnight et al. 1999). The extreme aridity of the MDVs
means precipitation, almost exclusively in the form of
snow, is limited to between 3 and 50 mm water equivalent
per year (Fountain et al. 2009). While precipitation feeds
the glaciers that feed the streams and ultimately the lakes,
direct precipitation into the lakes is not considered to
have any notable effect on MDYV lake levels. As there are
no surface outflows from Lake Fryxell, water loss from the
lake is due to ablation of the lake ice cover and, likely less
so, from evaporation of the open water moat (Doran,
Wharton, and Lyons 1994; Dugan, Obryk, and Doran
2013). A groundwater system flowing beneath Lake
Fryxell to the McMurdo Sound may also play a role in
controlling lake level (Foley et al. 2019).

Average annual valley bottom air temperatures in
Fryxell Basin, measured at the Lake Fryxell
Meteorological Station (FRLM) [77°36'40” S, 163°
10'12” E], range between -23.0 and —-17.2°C (Obryk
et al. 2020). The valley experiences 24-hour daylight
during the summer months, with solar radiation reach-
ing the surface being impacted by diurnal and annual
changes in the relative position of the sun, and atmo-
spheric conditions including cloud cover. During the
summer, Lake Fryxell generally experiences more over-
cast days than more western parts of the valley (Acosta,
Doran, and Myers 2020).

Methods
Manual record

A manual functional moat area record was acquired via
manual tracing of the functional moat regions of Lake
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Fryxell observed from satellite images. A single panchro-
matic (450-800 nm) satellite image from either the
WorldView-2 (WV2; 46 cm pix_1 ground resolution)
or -3 (WV3; 31 cm pix ' ground resolution) satellites
was selected from near the height of the austral summer
each year with the goal of capturing the maximum
extent of the functional moat for each season. The
WV2 and WV3 satellites are in near-polar orbits,
enabling rapid repeat measurements, although satellite
tasking demands limit the frequency of image acquisi-
tion over Lake Fryxell. The georeferenced and georecti-
fied imagery used for this research was acquired through
the National Science Foundation (NSF) Polar Geospatial
Center at the University of Minnesota through
a cooperative agreement with the National Geospatial
Intelligence Agency. Satellite images were selected based
on the following criteria: 1) the image contained Lake
Fryxell in its entirety, 2) Lake Fryxell'’s margins and
islands were not obscured by cloud cover or shading to
a degree that functional moat areas were non-
discernible, 3) both the shoreline and the transition
between moat and permanent ice were easily discernible,
and 4) the images were acquired on or after January 1st
during the target austral summer, with preference going
to the latest images acquired during a given summer that
satisfied the other three criteria. Three additional images
acquired prior to January lst, corresponding to early
season images selected for semi-automated functional
moat classification (described below), were also selected
for manual tracing. These early season manual traces,
along with the rest of the manual dataset, were used to
check the accuracy of the semi-automated classification
methods.

Manual tracing of moat extent was performed in
QGIS Desktop 3.26.2 using WGS84/Antarctic Polar
Stereographic Coordinate Reference System by creating
polygon shapefiles outlining the lake, the perennial lake
ice cover, islands in the lake, and holes in the lake ice
cover created by those islands or by recently submerged
former islands (Figure 2). Where snowbanks obscured
the shoreline, the lake-proximal edge of the snowbank
was traced. In other cases where the margin of a feature
being traced was unclear, the unclear margin was inter-
polated based on the nearest clear margins occurring
before and after the unclear margin. Tracing was done
at a 1:1000 scale using a 10 m by 10 m grid as a guide,
with polygon vertices falling only on the gridlines to
maintain an identical spatial resolution throughout.
Polygon areas were calculated using the $area function
of the Field Calculator tool, which calculates surface area
with respect to the reference ellipsoid (WGS84) (QGIS
Development Team 2024). The lake area for each image
was calculated by subtracting the area of the islands
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Figure 2. Image of a portion of Lake Fryxell a) with 10 m grid and manually traced polygons imposed and b) a portion of the base
image displaying how the moat appears on the panchromatic imagery. Hole polygons denote the outlines of holes in the lake ice
cover, and the lake polygon denotes the margin of the lake. The functional moat region is the area between the lake ice cover and the
lakeshore, and the area between the lake ice cover and the islands. Imagery © 2019 Maxar.

from the area of the lake, and the ice cover area was
calculated by subtracting the area of the ice cover from
the area of the holes in the ice cover forming around
islands. The functional moat area was calculated by
subtracting the area of the ice cover from the area of
the lake, and this was converted to a percentage of the
total lake area (% TLA) to simplify inter-annual
comparisons.

Semi-automated record

Our goal with establishing a semi-automated method for
producing a functional moat area record was to find
a simple, reliable, and easily reproducible approach
that could quantify the area of open moat using extant
and future imagery. Two semi-automated approaches
were tested and compared with the manual functional
moat area record: a Normalized Difference Water Index
(NDWI)-based approach and a supervised classification
approach. WV2 and WV3 8-band visible/near-infrared
(VNIR; 0.43 um - 0.91 um) multispectral data were used
for this study because of their combination of high
spatial resolution (1.8-2.9 m pix ', depending on instru-
ment, off-nadir pointing, and topography) and the abil-
ity to spectrally interrogate each pixel. All data were
calibrated to surface reflectance using the methods of
Salvatore et al. (2021, 2023), which utilizes five invariant
ground control points surrounding Lake Fryxell. In
order to minimize the inclusion of pixels not associated
with the marginal lake moat, we limited our selection to
only pixels within +2 and —4 vertical meters of the

closest lake level measurement (Doran and Gooseff
2023) corresponding to each image’s acquisition date
using a digital elevation model (Fountain et al. 2017)
and bathymetric contours (Doran, Wharton, and
Schmok 1996). This method ensured that areas well
outside of the moat region were excluded from our
investigation, eliminating noise from shadows, sediment
patches, and pools of meltwater found atop the peren-
nial lake ice.

The semi-automated techniques used 11 images
spanning January 2012 through December 2019
(Table S1). Three images were acquired during
December, and the rest were acquired during January
or February. A sequence of images was used for the
2014-15 and 2016-17 austral summers, and no images
were classified from the 2010-11 or 2015-16 austral
summers due to a lack of suitable images.

For the supervised classification approach, each
image underwent a Minimum Distance supervised clas-
sification using endmembers aggregated from all the
calibrated images used in this study (Table S2).
Minimum Distance classification schemes assign each
pixel to a specific class based on its “resemblance” in
8-band vector space to input endmember spectra, and
has been successfully used to classify remote sensing
data for more than half a century (e.g., Wacker and
Landgrebe 1972). Classification endmembers included
snow, rock/sediment, open water, blue ice, shadowed
snow, shadowed rock/sediment, and mat-containing
stream channels. Three different combinations of classi-
fied pixels were tested to determine which set of



endmembers best combine to match our manual moat
record: the first used only pixels classified as open water;
the second used a combination of open water, blue ice,
and shadowed snow/ice pixels; and the third used the
same combination as the second, but also included
a reflectance threshold. Initial inspection revealed the
open water only approach produced the best results,
with a standard deviation of 0.95 percent TLA and
a root mean square error (RMSE) of 2.19 percent TLA
with respect to the manual record (Table S3).

The NDWI-based approach used a combination of
NDWI (Gao 1996) and a threshold based on the
0.546 pum reflectance to identify pixels containing
functional moat. NDWI was sensitive to the spectral
“roll-off” imposed by water at near-infrared (NIR)
wavelengths, while the albedo threshold helped to
differentiate between ice, snow, and water. The
NDWI of pixels were calculated using their green
and NIR bands:

(Green — NIR) _ NDWI 0
(Green + NIR)

Minimum threshold NDWI values for capturing the
functional moat, all between 0 and 1, were tested by
highlighting only pixels with NDWI values greater
than those thresholds. The highlighted pixels were
then visually compared with the green band image
used in the NDWTI calculation, in which the functional
moat is readily apparent, to determine how well the
highlighted pixels captured the functional moat.
NDWTI thresholds were systematically narrowed to
find the value that best captured the true extent of
the functional moat. This process was first performed
on a single image, then the resultant NDWI threshold
was tested on other images and adjusted as necessary
to find the value best defining the functional moat in
multiple images. The threshold value of >0.04 was
determined to best identify pixels containing open
water or water under a thin veneer of ice (i.e., func-
tional moat). While this threshold value did a great job
differentiating functional moat and the lake shore, it
was less effective in differentiating functional moat
from snow and ice (e.g., the permanent lake ice
cover). For the albedo threshold, pixels with
a reflectance value of <13 percent were identified as
containing liquid water rather than snow or ice. This
threshold value was determined by the same methods
used for NDWI threshold determination. Combined,
the NDWI and green band reflectance thresholds were
found to uniquely identify the presence of liquid water
with minimal confusion with nearby geological mate-
rials, snow, or ice.
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Predicting functional moat area

To link moat extent to inter-annual differences in
weather patterns, we used 15-minute data from FRLM
that records air temperature at 3 m, wind speed, incom-
ing solar radiation, and relative humidity since 1994
(Doran & Fountain 2023). We focused on climate vari-
ables that are routinely measured as part of the long-
term record in order to allow for hindcasting and to
make the model easily updatable for future functional
moat area predictions. Different groupings of climate
variables were tested in the model, with a focus on
groupings of air temperature, solar radiation, and degree
days as these have been shown to drive melt in the Dry
Valleys (Doran et al. 2008; Hofsteenge et al. 2023).
Specifically, we hypothesized that the same processes
responsible for glacial melt in the Dry Valleys (ie.,
temperature and insolation) were also responsible for
moat development, and thus the number of warm and
sunny days (WSdays) during an austral summer should
be a good predictor of functional moat area that season.
The number of degree days (DD) above a temperature
threshold during a given season was also hypothesized to
be a good predictor of functional moat area given the
positive correlation between the number of DD above
freezing with other MDYV climate events, such as
increases in streamflow and increases in strong, warm-
ing, down-valley foehn winds (Doran et al. 2008). DD
refers to the cumulative number of days above
a temperature threshold and was calculated by adding
the above threshold portion of 15-minute average tem-
perature measurements recorded at FRLM and dividing
the sum by the number of temperature measurements
recorded during each 24-hour span.

We built a simple model where moat extent was
a function of the number of days when mean daily air
temperature was above x; and mean daily solar radiation
was above x,. We applied a general-purpose optimiza-
tion routine using the Nelder-Mead algorithm in R (R
Core Team 2022) to minimize the r* of this function and
determine the best parameters for x; and x,. We then
built a final linear regression model where moat extent
was a function of the number of warm sunny days and
DD. Moat extent was weighted by the number of obser-
vations each year. The final model was then used to
hindcast moat extent prior to the remote sensing record.

Results
Manual record

The manual moat area record spans from the 2009-10
through the 2021-22 austral summers, with no data
acquired during the 2015-16 and 2022-23 austral
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Figure 3. Manually derived percent functional moat area relative to the area of Lake Fryxell. Black points are from January or February.

Red points are from December.

summers due to a lack of suitable imagery from those
seasons (Figure 3, Table S1). In total, 19 images were
used for this record, with 16 meeting all the listed cri-
teria and the remaining three images being acquired
prior to January 1 and corresponding to sample dates
of the semi-automated record (Table S1). The
largest percent functional moat areas captured in this
record occurred on February 9, 2011 (13.4 percent
TLA), February 1, 2014 (12.8 percent TLA), and
February 10, 2022 (12.5 percent TLA). The smallest
occurred on December 2, 2017 (0.1 percent TLA).
However, the smallest functional moat captured after
January 1st occurred on January 25, 2017 and
January 19, 2018 (both 3.2% TLA). While the percent
difference between large and small functional moat area
years is substantial, direct comparison between data
points is difficult as images were not acquired on the
same day of the year each summer (image acquisition
dates range between 2 December and 16 February)
(Table S1).

Semi-automated record

The supervised classification and NDWI based
approaches had similar results, yielding RMSEs of
2.19 percent TLA and 1.96 percent TLA, and standard
deviations of 0.95 percent TLA and 0.87 percent TLA,
respectively, relative to the manual measurements
(Table S3). Both semi-automated methods resulted in
functional moat area estimates that were consistently
below the measurements of the manual record, with
differences ranging from —0.1 percent TLA to —3.3 per-
cent TLA in both approaches (Figure 4, Table S1). Thus,
both methods generally underpredict functional moat
area relative to the manual record, meaning they provide
a lower limit estimate for functional moat area. For both
approaches, we found no correlation between the
amount of error and the manually measured area of
the functional moat (Figure S1).

Using the results from three randomly selected
images from each semi-automated technique, shapefiles
containing moat and non-moat classified pixels within
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Figure 4. Percent functional moat area relative to the total lake area for sampled dates derived via manual tracing (black), the NDWI-
based semi-automated approach (magenta), and the supervised classification approach (blue).



the target area as identified by each technique were
directly compared to moat and non-moat shapefiles
produced via manual tracing to further investigate
underpredicting by those techniques. Thus, 95.2 percent
of areas identified as containing moat via supervised
classification, and 92.8 percent of those areas identified
via the NDWT approach, corresponded to moat areas
identified via manual tracing (Table S4); 96.5 percent of
non-moat areas identified by both semi-automated
approaches corresponded to non-moat areas identified
by manual tracing, though supervised classification pro-
duced a lower standard deviation (+ 1.5 percent) than
the NDWI approach (+ 1.9 percent) in this regard.
Confusion matrices built from the three randomly
selected results of each semi-automated technique reveal
that in both methods, false negatives (i.e., predicted as
non-moat but manually measured as moat) are more
common than false positives (i.e., predicted as moat but
manually measured as non-moat), leading to underesti-
mation of the results (Table S5).

Predictive model

WSdays were calculated as the number of days each year
when mean daily air temperature was greater than
-1.5°C (x; = -1.5°C) and mean daily incoming short-
wave radiation was greater than 367 W m? (x, =
367 W m2). WSdays ranged from a low of three prior
to Dec 11th, 2018, to a high of nineteen prior to Feb 1st,
2014. From 1994 to 2022, Jan 18th was the
maximum day these conditions were met. DD above
3°C further improved model fit (DD_3 range = 0 to
5.37). Our final linear model to predict manual func-
tional moat area data was (Figure 5):
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Moat percentage = (0.533 x WSdays)
+ (0.652 x DD_3°C) + 1.66  (2)

The adjusted R-squared fit of the model was 0.87, and all
parameters were significant (p < 0.05). Applying our
model to historic climate data from 1994 to 2022, pre-
dicted moat extent on Jan 31st ranged from 2.24 percent
TLA in 2000-2001 to 21.3 percent TLA in 2001-2002
(Figure 6). Only 2001-2002, a particularly high melt
season in the MDVs (Doran et al. 2008), fell outside
the bounds of observation data on which the model
was constructed.

Discussion

The manually derived functional moat area record pro-
vided the highest level of human oversight of the meth-
ods used in this study. However, this method does
provide room for inconsistency between and among
individuals doing the manual tracing and other forms
of human error. Despite this, the protocols mentioned in
the methods for manual tracing were intended to mini-
mize human error as much as possible, and the same
individual was used for all manual traces to keep things
as consistent as possible. We thus considered the manual
functional moat area record to be our standard for
measuring functional moat area on each of the measure-
ment dates.

Drawbacks of the manual record included the time
investment (>3 h per complete trace) and the possible
lack of reproducibility (i.e. it is possible that new indi-
viduals contributing to the manual record will introduce
new error despite the protocols outlined in this manu-
script). The semi-automated approaches addressed both
drawbacks by providing fixed parameters that could

Predicted Moat (%)

2010
2011

2012
2013
2014
2015
2017
2018
2019
2021
2022

0000000000

T

4 6 8

10 12

Measured Moat (%)

Figure 5. Manually measured percent functional moat area relative to the total lake area versus the predicted percent functional moat
area. Line of best fit was drawn for data including (solid line) and without (dashed line) the 2021 datapoint.



8 M. S. STONE ET AL.

?

e ;
34 k
= "‘,
Ke] i
S 151 &
o [
[0 o
et : i
o [
a— 1 )
S 10 Lo
= Pol o] 4
' A
- A T R I B
o ! ‘.’ ' ! AR, 4
c \ P P
g °7 \:I e
- © v %

T

[ ]

1995 2000 2005

2010 2015 2020

Year

Figure 6. Model predicted percent functional moat area relative to the total lake area for January 31 each year, extended beyond the
limits of the manual record using the historic air temperature and solar radiation data. Light blue diamonds represent the manually

derived functional moat area between January 21 and January 31.

rapidly be applied to images of Lake Fryxell to estimate
moat area, provided those images contained the appro-
priate wavelengths, were atmospherically corrected and
calibrated to surface reflectance, and met the other
image requirements described in the methods section
of this manuscript. Thus, the semi-automated
approaches may be better than the manual approach
for maintaining a functional moat area record long-
term and through changing hands.

Results of the NDWI and supervised classification
based semi-automated approaches were similar, though
the NDWI approach resulted in a slightly higher RMSE
and standard deviation than the supervised classification
approach (Table S3). However, the NDWI approach
produced more false positive moat identifications than
supervised classification (Table S4). Given that both
techniques consistently underestimated the manually
measured functional moat area, it seems likely the
higher prevalence of false positives in the NDWI
approach are responsible for the higher RMSE resulting
from that method. Thus, it does not make sense to
declare the NDWT approach the better of the 2 techni-
ques. Given the similarity in their results, we suggest
both approaches are viable options for estimating func-
tional moat area.

The semi-automated approaches consistently under-
estimated manually measured functional moat areas.
The degree of this underestimation did not show any
correlation with changes in functional moat area (Figure
S1), and thus it seems unlikely that the estimated func-
tional moat area is notably influenced the number of
moat-containing pixels identified in a sample image.
This suggests that although false negative moat identifi-
cations are common relative to false positives (Table S5),

the occurrence of false negatives does not compound
with increasing moat area.

The consistency of the underestimated moat area
estimates produced by the semi-automated techniques
(e.g., Figure 4, Table S3) may be due to the lower spatial
resolution multispectral imagery used for spectral
remote sensing as opposed to the ~2x higher spatial
resolution panchromatic imagery used for the manual
dataset. We hypothesized that the apparent lower RMSE
limit at ~2 percent, observed in the results of both
methods (Table S3), would become smaller if higher
spatial resolution multispectral imagery were used in
the future, or, conversely, if the same resolution imagery
were used for both the manual and semi-automated
methods. Field-based ground truthing in future years is
also expected to help improve the accuracy of the semi-
automated techniques.

Although functional moats were small during the
early part of the season and the largest moat areas all
occurred during the month of February, the date of
a measurement alone did not appear to be a good pre-
dictor of functional moat area. In the manual record,
moats as small as 3.5 percent TLA were observed in
February, and moats as large as 10.2 percent TLA were
seen in the first half of January (Figure 3).

Our predictive model generally did a good job of
predicting functional moat area as measured by the
manual record, indicating a strong correlation between
temperature, shortwave radiation, and functional moat
area. The model’s largest outliers were the January 8,
2021 and January 5, 2013 predictions, with differences
between predicted and measured moat areas of 2.87 per-
cent TLA and —2.02 percent TLA, respectively (Figure 5,
Table S6). While the cause of these relatively larger



outlier predictions are not known, they are the two ear-
liest January predictions in our record. It is possible that
thermal inertia plays a larger role in the later season
moat areas, thus resulting in an offset in our early
January predictions. Accounting for this would require
a more dynamic model beyond the scope of this manu-
script and would likely require us to abandon our goal of
creating a predictive model using only readily available
climate data.

Since the model relied solely on long-term meteoro-
logical data from FRLM, which has been in operation
since 1994, the model could be used for hindcasting.
This allowed us to predict the percent size of the func-
tional moat during years when no usable satellite ima-
gery existed, especially in the months of January and
February when functional moats tended to be at their
largest. Hindcasting required the specification of a date
to predict the corresponding functional moat area. We
arbitrarily selected January 31st each year for our model
predictions (Figure 6). The predicted large moat area in
2002 corresponded to the year of the greatest amount of
streamflow and lake level rise on record in the McMurdo
Dry Valleys, known as the “flood year” (Doran et al.
2008). The large predicted functional moat area in 2002
is related to the 2001-2002 austral summer having, by
far, the highest number of DD above 3°C compared to
any other season measured (Fig. S2). While five of the six
largest moats were predicted to have occurred since
2011, there was no statistical difference in the mean
moat size between 1995-2010 (excluding 2002) and
2011 to 2022 (t-test, p = 0.5). The increased variation
in moat size may have been related to other recent
landscape changes in the region (e.g., increases in glacial
ablation, stream erosion, and landscape lowering via
deflation), which are attributed to increasing solar radia-
tion from anthropogenic climate change (Fountain et al.
2014). If true, given the correlation between functional
moat area and both solar radiation and temperature, we
suspect functional moat area will continue to increase as
the regional climate warms in the coming decades (e.g.,
Shindell and Schmidt 2004; Arblaster and Meehl 2005;
Chapman and Walsh 2006).

Our functional moat area records showed the percent
functional moat area changing from year to year (Figures
3, 4 and 6). This suggests that the moat environment is
subjected to varying levels of light, wind driven mixing
and turbidity, and evaporation annually, adding to the
environmental stresses moat communities are subjected
to. Evaporation is generally considered to play only
a minor role in total water mass loss in MDV lakes
(Dugan, Obryk, and Doran 2013). However, we measured
functional moat areas as large as 13.4 percent TLA. As
evaporation requires far less energy than sublimation, this
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may imply that during large functional moat years, eva-
poration from the moats can be a major contributor to
lake volume loss. Thus, functional moat area may play an
important role in controlling lake water balance. The
correlation between warm and sunny days and functional
moat area further suggests that during large functional
moat years, not only are moat communities subject to
greater amounts of PAR due to a thin or missing moat ice
cover, they also are receiving greater amounts of PAR due
to the meteorological conditions of that season. The
reverse appears to be true during small functional moat
years, with moat communities receiving less PAR due to
both a more persistent and thicker moat ice cover, and
due to a lower number of warm and sunny days. Thus,
functional moat area may play an important role in influ-
encing ecosystem processes in the moat environment
annually.

Moats represent an important landscape unit within
the MDVs, acting as a dynamic interface between ter-
restrial and aquatic ecosystems (Stone et al. 2024).
Indeed, their seasonally ice-free nature may provide
the first glimpse into the future of MDV lakes, which
are predicted to lose their perennial ice covers within the
next few decades (Obryk, Doran, and Priscu 2019).
Thus, understanding the moat environment is essential
for understanding the present and future ecology of
MDYV lakes and how they connect to the broader MDV
environment. Although this study focused largely on
annual changes in functional moat area at Lake Fryxell,
our methods can be easily adapted to other MDV water
bodies and to investigate seasonal trends in functional
moat growth, provided the appropriate satellite imagery
becomes available. This study also paves the way for
future research into the spatial components of func-
tional moat development (e.g., what causes some regions
of a lake to develop wide moats while other areas have
little to no moat?). It is our hope that future additions to
this dataset will be complimented by field-based ground
truthing to allow us to fine tune our methodology and
further improve this important new dataset.

Conclusions

When the protocols we have outlined in the methods
were adhered to, manual functional moat area tracing
provided the most reliable means of measuring func-
tional moat area on satellite imagery. However, the
manual method was more subject to human error and
required much more time than semi-automated meth-
ods. The two semi-automated approaches did a suitable
job of estimating moat area and could be readily applied
to future satellite imagery to help maintain the func-
tional moat record over the long term. These approaches
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were not subject to the same level of human error that
the manual approach was as they were minimally depen-
dent on human interpretation. Still, some human inter-
pretation-based input was necessary in both methods,
with threshold values for both the NDWI and albedo
parameters having been selected manually. Despite
reducing human error, the semi-automated approaches
did present some possible shortcomings, namely that
they consistently underpredicted functional moat area
compared to the manual record. This underpredicting
may have been a product of the lower spatial resolution
of the satellite imagery used in the semi-automated
approaches relative to the manual approach. We there-
fore recommend that functional moat areas derived via
either of the semi-automated approaches be treated as
low-end estimates, being likely smaller than the true
extent of the functional moat.

Our climate-variable based model was effective in
predicting functional moat area in most cases and pro-
vided a means of hindcasting functional moat area
beyond the limits of our satellite imagery-based records.
The reliance of the predictive model on routinely mea-
sured meteorological variables meant it could be rapidly
and easily applied. The availability of satellite imagery
was dependent on several factors, including atmospheric
conditions, shading, and satellite tasking demand. Thus,
our predictive model provided a means of filling in gaps
in the functional moat area record.

Functional moat area varied from year to year, likely
controlling the degree of meteorological influences on
the moats and the communities they contain. Large
functional moats likely lead to greater amounts of eva-
poration, and the annual variance in functional moat
area may play an important role in controlling total lake
water balance. This variance may also help control
annual PAR availability for organisms residing in the
moat, thus influencing moat ecosystem processes.
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