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ABSTRACT
The perennially ice-covered lakes of the McMurdo Dry Valleys (MDVs), Antarctica, are an important 
reservoir of liquid water in an arid and largely frozen environment. During the austral summer, the 
margins of these ice covers melt, forming a “moat” of liquid water and thin ice, allowing exchange 
between lake waters and the atmosphere to occur and serving as an interface between lake, soil, 
and stream ecosystems. The size of these moats varies from year to year. Here, we have established 
the first published record of moat area changes at MDVs’ Lake Fryxell through time using manual 
traces of the moat as observed via satellite imagery. We have also tested a semi-automated 
approach for measuring moat area and found that it consistently underestimated the manual 
record, which we suspect may be due to the lower spatial resolution of images used in this versus 
the manual approach. Finally, we developed a predictive model based on readily available climate 
data, allowing moat area to be predicted beyond the limits of the satellite-based records. We found 
that functional moat area varies annually, potentially influencing ecosystem processes in the 
moats.
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Introduction

The McMurdo Dry Valleys (MDVs) of Antarctica are 
the largest relatively ice-free part of the continent 
(Figure 1; Levy 2013) and are home to more than 6,000 
lakes and ponds (Hawes et al. 2021). The larger lakes 
generally boast a several meter thick, perennial ice cover, 
which helps to maintain the liquid state of the lakes 
(Doran, Wharton, and Lyons 1994). In the extreme 
polar desert ecosystem of the MDVs, where liquid 
water plays a critical role in supporting life and facilitat
ing ecosystem connectivity across the landscape 
(Gooseff et al. 2011), these large lakes provide an 
important year-round stable reservoir of liquid water 
in an otherwise harsh and largely frozen environment.

Perennial lake ice covers limit exchanges between 
lake water and the atmosphere, prevent wind driven 
mixing, limit sedimentation and the amount of light 
penetration into the water column, and allow highly 
stratified water columns to persist (Doran, Wharton, 
and Lyons 1994; McKay et al. 1994; Spigel and Priscu  

1998). For much of the year, these ice covers extend to 
the lakeshore, freezing to the underlying substrate and 
effectively sealing off the lake waters completely. 
However, during the austral spring and summer, the 
grounded ice melts and thins from the bottom up, in 
some places melting to the surface leading to the appear
ance of open water areas on and around the lake ice 
cover (Stone et al. 2024). These shallow lake regions that 
undergo seasonal freeze-thaw cycles are called “moats.” 
While moats are generally restricted to a lake’s peri
meter, islands and shallow regions away from the lake 
shore can also lead to the development of moats toward 
the interior of ice-covered lakes.

Moats act as the interface between soil, stream, and 
lake ecosystems. The annual thawing and refreezing of 
moat ice creates a unique and challenging environment 
for the organisms residing there, and the benthic com
munities in the moats are taxonomically distinct from 
those in the deeper, perennially ice-covered parts of the 
lake (Stone et al. 2024). Many of the closed-basin lakes in 
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the MDVs are experiencing lake-level increases, and as 
they rise, lakeshore soil communities are inundated and 
incorporated into the moats (Ramoneda et al. 2021). 
Thus, moats can also provide an important catalyst 
driving ecological succession. When open water areas 
develop in the moats, they provide a conduit for 
exchange between the lake waters confined beneath the 
perennial lake ice cover and the atmosphere (Stone et al.  
2024).

We define the functional moat of a lake as areas 
where liquid moat waters appear at the surface, or 
where waters are separated from the surface by a thin 
veneer of ice. This thin veneer of ice may melt and 
refreeze several times during a given season based on 
surface temperatures and is thin enough to allow light to 
pass through it without a notable decrease in transmis
sion. The size of the functional moat has major implica
tions for moat communities. Communities residing in 
open water moat areas receive much greater photo
synthetically active radiation (PAR) than those residing 
beneath lake ice (Hawes and Schwarz 1999); thus the size 
of the functional moat controls the degree and spatial 
extent of PAR availability for lake marginal commu
nities. Although evaporation is considered only 
a minor contributor to MDV lake volume loss and draw
down (Dugan, Obryk, and Doran 2013), the size of open 
water areas of the functional moat logically impacts lake 
evaporation rates and controls its influence on overall 
lake ablation. Evaporation may also contribute to the 
increases in solute concentrations through the austral 
summer observed in the moat waters (Stone et al. 2024), 
changing the chemistry of the waters in which moat 
communities reside. In addition, the area of the func
tional moat controls how much wind can influence the 

moat environment, with the greater fetch of larger moats 
being more subject wind-driven wave action and thus 
having more potential for higher turbidity.

Here, we define and compare means of tracking func
tional moat area from satellite imagery both manually 
and via a semi-automated method. In doing so, we 
establish the first published functional moat area record 
for Lake Fryxell, a perennially ice-covered, closed-basin 
lake located in eastern Taylor Valley (Figure 1). In addi
tion, we develop a predictive model for Lake Fryxell 
functional moat area based on routinely measured cli
mate variables collected at a nearby automated meteor
ological station. The goal of this model is to find a simple 
means of predicting functional moat area using readily 
available climate data, and to identify correlations 
between functional moat area and climate variables. 
The model facilitates hindcasting, providing a means 
to extend the functional moat area record beyond the 
temporal limits of the satellite imagery-based datasets, 
and filling in gaps in the functional moat area record.

Setting

Lake Fryxell [77°36’ S, 162°6’ E] is a closed-basin lake 
that lies at the eastern end of Taylor Valley, an east-west 
trending valley whose eastern margin opens to the 
McMurdo Sound region of the Ross Sea. The lake has 
an area of roughly 7 km2 and is approximately 20 m 
deep. The perennial lake ice cover on Lake Fryxell has 
varied from 2.9 to 6.2 m over the monitoring record 
(Priscu 2003). The lake ice is highly weathered and 
opaque, and generally has a high albedo relative to 
moat ice. It has a mostly white appearance except 
where wind-blown sediment patches have accumulated 

Figure 1. Location of Lake Fryxell within Taylor Valley. The dark region around Lake Fryxell’s ice cover is the functional moat. Inset map 
shows the location of the McMurdo Dry Valleys in Antarctica. Base image from Google Earth Pro 7.3.6.9750 (January 17, 2010).
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on the ice cover’s surface, or surface melt has led to 
ponding followed by refreezing on the lake ice surface. 
Conversely, early spring and summer moat ice is 
smooth, largely transparent (especially where the ice is 
thinnest within the first few meters of the lakeshore), 
and often has a blue appearance. Both moat and peren
nial lake ice undergo whitening as the austral summer 
progresses, lowering their transmissivity (Fristen and 
Priscu 1999) and their optical reflectance.

Lake Fryxell’s closed-basin means it is susceptible to 
lake level changes. A manual record of the lake’s level has 
been maintained since 1972, and the lake has generally 
risen since the start of that record, ranging from 15.7 to 
18.5 m above sea level (Barrett et al. 2008; Doran and 
Gooseff 2023). Lake level changes reflect the balance of 
water inflows minus evaporation and sublimation. Water 
inputs into the lake largely come from meltwater streams 
flowing into the lake from local alpine glaciers, or from 
direct melt discharged from Canada Glacier, which abuts 
the western end of the lake (Miller and Aiken 1996; 
McKnight et al. 1999). The extreme aridity of the MDVs 
means precipitation, almost exclusively in the form of 
snow, is limited to between 3 and 50 mm water equivalent 
per year (Fountain et al. 2009). While precipitation feeds 
the glaciers that feed the streams and ultimately the lakes, 
direct precipitation into the lakes is not considered to 
have any notable effect on MDV lake levels. As there are 
no surface outflows from Lake Fryxell, water loss from the 
lake is due to ablation of the lake ice cover and, likely less 
so, from evaporation of the open water moat (Doran, 
Wharton, and Lyons 1994; Dugan, Obryk, and Doran  
2013). A groundwater system flowing beneath Lake 
Fryxell to the McMurdo Sound may also play a role in 
controlling lake level (Foley et al. 2019).

Average annual valley bottom air temperatures in 
Fryxell Basin, measured at the Lake Fryxell 
Meteorological Station (FRLM) [77°36ʹ40” S, 163° 
10ʹ12” E], range between −23.0 and −17.2°C (Obryk 
et al. 2020). The valley experiences 24-hour daylight 
during the summer months, with solar radiation reach
ing the surface being impacted by diurnal and annual 
changes in the relative position of the sun, and atmo
spheric conditions including cloud cover. During the 
summer, Lake Fryxell generally experiences more over
cast days than more western parts of the valley (Acosta, 
Doran, and Myers 2020).

Methods

Manual record

A manual functional moat area record was acquired via 
manual tracing of the functional moat regions of Lake 

Fryxell observed from satellite images. A single panchro
matic (450–800 nm) satellite image from either the 
WorldView-2 (WV2; 46 cm pix−1 ground resolution) 
or −3 (WV3; 31 cm pix−1 ground resolution) satellites 
was selected from near the height of the austral summer 
each year with the goal of capturing the maximum 
extent of the functional moat for each season. The 
WV2 and WV3 satellites are in near-polar orbits, 
enabling rapid repeat measurements, although satellite 
tasking demands limit the frequency of image acquisi
tion over Lake Fryxell. The georeferenced and georecti
fied imagery used for this research was acquired through 
the National Science Foundation (NSF) Polar Geospatial 
Center at the University of Minnesota through 
a cooperative agreement with the National Geospatial 
Intelligence Agency. Satellite images were selected based 
on the following criteria: 1) the image contained Lake 
Fryxell in its entirety, 2) Lake Fryxell’s margins and 
islands were not obscured by cloud cover or shading to 
a degree that functional moat areas were non- 
discernible, 3) both the shoreline and the transition 
between moat and permanent ice were easily discernible, 
and 4) the images were acquired on or after January 1st 
during the target austral summer, with preference going 
to the latest images acquired during a given summer that 
satisfied the other three criteria. Three additional images 
acquired prior to January 1st, corresponding to early 
season images selected for semi-automated functional 
moat classification (described below), were also selected 
for manual tracing. These early season manual traces, 
along with the rest of the manual dataset, were used to 
check the accuracy of the semi-automated classification 
methods.

Manual tracing of moat extent was performed in 
QGIS Desktop 3.26.2 using WGS84/Antarctic Polar 
Stereographic Coordinate Reference System by creating 
polygon shapefiles outlining the lake, the perennial lake 
ice cover, islands in the lake, and holes in the lake ice 
cover created by those islands or by recently submerged 
former islands (Figure 2). Where snowbanks obscured 
the shoreline, the lake-proximal edge of the snowbank 
was traced. In other cases where the margin of a feature 
being traced was unclear, the unclear margin was inter
polated based on the nearest clear margins occurring 
before and after the unclear margin. Tracing was done 
at a 1:1000 scale using a 10 m by 10 m grid as a guide, 
with polygon vertices falling only on the gridlines to 
maintain an identical spatial resolution throughout. 
Polygon areas were calculated using the $area function 
of the Field Calculator tool, which calculates surface area 
with respect to the reference ellipsoid (WGS84) (QGIS 
Development Team 2024). The lake area for each image 
was calculated by subtracting the area of the islands 
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from the area of the lake, and the ice cover area was 
calculated by subtracting the area of the ice cover from 
the area of the holes in the ice cover forming around 
islands. The functional moat area was calculated by 
subtracting the area of the ice cover from the area of 
the lake, and this was converted to a percentage of the 
total lake area (% TLA) to simplify inter-annual 
comparisons.

Semi-automated record

Our goal with establishing a semi-automated method for 
producing a functional moat area record was to find 
a simple, reliable, and easily reproducible approach 
that could quantify the area of open moat using extant 
and future imagery. Two semi-automated approaches 
were tested and compared with the manual functional 
moat area record: a Normalized Difference Water Index 
(NDWI)–based approach and a supervised classification 
approach. WV2 and WV3 8-band visible/near-infrared 
(VNIR; 0.43 µm – 0.91 µm) multispectral data were used 
for this study because of their combination of high 
spatial resolution (1.8–2.9 m pix−1, depending on instru
ment, off-nadir pointing, and topography) and the abil
ity to spectrally interrogate each pixel. All data were 
calibrated to surface reflectance using the methods of 
Salvatore et al. (2021, 2023), which utilizes five invariant 
ground control points surrounding Lake Fryxell. In 
order to minimize the inclusion of pixels not associated 
with the marginal lake moat, we limited our selection to 
only pixels within +2 and −4 vertical meters of the 

closest lake level measurement (Doran and Gooseff  
2023) corresponding to each image’s acquisition date 
using a digital elevation model (Fountain et al. 2017) 
and bathymetric contours (Doran, Wharton, and 
Schmok 1996). This method ensured that areas well 
outside of the moat region were excluded from our 
investigation, eliminating noise from shadows, sediment 
patches, and pools of meltwater found atop the peren
nial lake ice.

The semi-automated techniques used 11 images 
spanning January 2012 through December 2019 
(Table S1). Three images were acquired during 
December, and the rest were acquired during January 
or February. A sequence of images was used for the 
2014–15 and 2016–17 austral summers, and no images 
were classified from the 2010–11 or 2015–16 austral 
summers due to a lack of suitable images.

For the supervised classification approach, each 
image underwent a Minimum Distance supervised clas
sification using endmembers aggregated from all the 
calibrated images used in this study (Table S2). 
Minimum Distance classification schemes assign each 
pixel to a specific class based on its “resemblance” in 
8-band vector space to input endmember spectra, and 
has been successfully used to classify remote sensing 
data for more than half a century (e.g., Wacker and 
Landgrebe 1972). Classification endmembers included 
snow, rock/sediment, open water, blue ice, shadowed 
snow, shadowed rock/sediment, and mat-containing 
stream channels. Three different combinations of classi
fied pixels were tested to determine which set of 

Figure 2. Image of a portion of Lake Fryxell a) with 10 m grid and manually traced polygons imposed and b) a portion of the base 
image displaying how the moat appears on the panchromatic imagery. Hole polygons denote the outlines of holes in the lake ice 
cover, and the lake polygon denotes the margin of the lake. The functional moat region is the area between the lake ice cover and the 
lakeshore, and the area between the lake ice cover and the islands. Imagery © 2019 Maxar.
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endmembers best combine to match our manual moat 
record: the first used only pixels classified as open water; 
the second used a combination of open water, blue ice, 
and shadowed snow/ice pixels; and the third used the 
same combination as the second, but also included 
a reflectance threshold. Initial inspection revealed the 
open water only approach produced the best results, 
with a standard deviation of 0.95 percent TLA and 
a root mean square error (RMSE) of 2.19 percent TLA 
with respect to the manual record (Table S3).

The NDWI-based approach used a combination of 
NDWI (Gao 1996) and a threshold based on the 
0.546 μm reflectance to identify pixels containing 
functional moat. NDWI was sensitive to the spectral 
“roll-off” imposed by water at near-infrared (NIR) 
wavelengths, while the albedo threshold helped to 
differentiate between ice, snow, and water. The 
NDWI of pixels were calculated using their green 
and NIR bands: 

Minimum threshold NDWI values for capturing the 
functional moat, all between 0 and 1, were tested by 
highlighting only pixels with NDWI values greater 
than those thresholds. The highlighted pixels were 
then visually compared with the green band image 
used in the NDWI calculation, in which the functional 
moat is readily apparent, to determine how well the 
highlighted pixels captured the functional moat. 
NDWI thresholds were systematically narrowed to 
find the value that best captured the true extent of 
the functional moat. This process was first performed 
on a single image, then the resultant NDWI threshold 
was tested on other images and adjusted as necessary 
to find the value best defining the functional moat in 
multiple images. The threshold value of >0.04 was 
determined to best identify pixels containing open 
water or water under a thin veneer of ice (i.e., func
tional moat). While this threshold value did a great job 
differentiating functional moat and the lake shore, it 
was less effective in differentiating functional moat 
from snow and ice (e.g., the permanent lake ice 
cover). For the albedo threshold, pixels with 
a reflectance value of <13 percent were identified as 
containing liquid water rather than snow or ice. This 
threshold value was determined by the same methods 
used for NDWI threshold determination. Combined, 
the NDWI and green band reflectance thresholds were 
found to uniquely identify the presence of liquid water 
with minimal confusion with nearby geological mate
rials, snow, or ice.

Predicting functional moat area

To link moat extent to inter-annual differences in 
weather patterns, we used 15-minute data from FRLM 
that records air temperature at 3 m, wind speed, incom
ing solar radiation, and relative humidity since 1994 
(Doran & Fountain 2023). We focused on climate vari
ables that are routinely measured as part of the long- 
term record in order to allow for hindcasting and to 
make the model easily updatable for future functional 
moat area predictions. Different groupings of climate 
variables were tested in the model, with a focus on 
groupings of air temperature, solar radiation, and degree 
days as these have been shown to drive melt in the Dry 
Valleys (Doran et al. 2008; Hofsteenge et al. 2023). 
Specifically, we hypothesized that the same processes 
responsible for glacial melt in the Dry Valleys (i.e., 
temperature and insolation) were also responsible for 
moat development, and thus the number of warm and 
sunny days (WSdays) during an austral summer should 
be a good predictor of functional moat area that season. 
The number of degree days (DD) above a temperature 
threshold during a given season was also hypothesized to 
be a good predictor of functional moat area given the 
positive correlation between the number of DD above 
freezing with other MDV climate events, such as 
increases in streamflow and increases in strong, warm
ing, down-valley foehn winds (Doran et al. 2008). DD 
refers to the cumulative number of days above 
a temperature threshold and was calculated by adding 
the above threshold portion of 15-minute average tem
perature measurements recorded at FRLM and dividing 
the sum by the number of temperature measurements 
recorded during each 24-hour span.

We built a simple model where moat extent was 
a function of the number of days when mean daily air 
temperature was above x1 and mean daily solar radiation 
was above x2. We applied a general-purpose optimiza
tion routine using the Nelder-Mead algorithm in R (R 
Core Team 2022) to minimize the r2 of this function and 
determine the best parameters for x1 and x2. We then 
built a final linear regression model where moat extent 
was a function of the number of warm sunny days and 
DD. Moat extent was weighted by the number of obser
vations each year. The final model was then used to 
hindcast moat extent prior to the remote sensing record.

Results

Manual record

The manual moat area record spans from the 2009–10 
through the 2021–22 austral summers, with no data 
acquired during the 2015–16 and 2022–23 austral 
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summers due to a lack of suitable imagery from those 
seasons (Figure 3, Table S1). In total, 19 images were 
used for this record, with 16 meeting all the listed cri
teria and the remaining three images being acquired 
prior to January 1 and corresponding to sample dates 
of the semi-automated record (Table S1). The 
largest percent functional moat areas captured in this 
record occurred on February 9, 2011 (13.4 percent 
TLA), February 1, 2014 (12.8 percent TLA), and 
February 10, 2022 (12.5 percent TLA). The smallest 
occurred on December 2, 2017 (0.1 percent TLA). 
However, the smallest functional moat captured after 
January 1st occurred on January 25, 2017 and 
January 19, 2018 (both 3.2% TLA). While the percent 
difference between large and small functional moat area 
years is substantial, direct comparison between data 
points is difficult as images were not acquired on the 
same day of the year each summer (image acquisition 
dates range between 2 December and 16 February) 
(Table S1).

Semi-automated record

The supervised classification and NDWI based 
approaches had similar results, yielding RMSEs of 
2.19 percent TLA and 1.96 percent TLA, and standard 
deviations of 0.95 percent TLA and 0.87 percent TLA, 
respectively, relative to the manual measurements 
(Table S3). Both semi-automated methods resulted in 
functional moat area estimates that were consistently 
below the measurements of the manual record, with 
differences ranging from −0.1 percent TLA to −3.3 per
cent TLA in both approaches (Figure 4, Table S1). Thus, 
both methods generally underpredict functional moat 
area relative to the manual record, meaning they provide 
a lower limit estimate for functional moat area. For both 
approaches, we found no correlation between the 
amount of error and the manually measured area of 
the functional moat (Figure S1).

Using the results from three randomly selected 
images from each semi-automated technique, shapefiles 
containing moat and non-moat classified pixels within 

Figure 3. Manually derived percent functional moat area relative to the area of Lake Fryxell. Black points are from January or February. 
Red points are from December.

Figure 4. Percent functional moat area relative to the total lake area for sampled dates derived via manual tracing (black), the NDWI- 
based semi-automated approach (magenta), and the supervised classification approach (blue).
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the target area as identified by each technique were 
directly compared to moat and non-moat shapefiles 
produced via manual tracing to further investigate 
underpredicting by those techniques. Thus, 95.2 percent 
of areas identified as containing moat via supervised 
classification, and 92.8 percent of those areas identified 
via the NDWI approach, corresponded to moat areas 
identified via manual tracing (Table S4); 96.5 percent of 
non-moat areas identified by both semi-automated 
approaches corresponded to non-moat areas identified 
by manual tracing, though supervised classification pro
duced a lower standard deviation (± 1.5 percent) than 
the NDWI approach (± 1.9 percent) in this regard. 
Confusion matrices built from the three randomly 
selected results of each semi-automated technique reveal 
that in both methods, false negatives (i.e., predicted as 
non-moat but manually measured as moat) are more 
common than false positives (i.e., predicted as moat but 
manually measured as non-moat), leading to underesti
mation of the results (Table S5).

Predictive model

WSdays were calculated as the number of days each year 
when mean daily air temperature was greater than 
−1.5°C (x1 = −1.5°C) and mean daily incoming short
wave radiation was greater than 367 W m−2 (x2 = 
367 W m−2). WSdays ranged from a low of three prior 
to Dec 11th, 2018, to a high of nineteen prior to Feb 1st, 
2014. From 1994 to 2022, Jan 18th was the 
maximum day these conditions were met. DD above 
3°C further improved model fit (DD_3 range = 0 to 
5.37). Our final linear model to predict manual func
tional moat area data was (Figure 5): 

The adjusted R-squared fit of the model was 0.87, and all 
parameters were significant (p < 0.05). Applying our 
model to historic climate data from 1994 to 2022, pre
dicted moat extent on Jan 31st ranged from 2.24 percent 
TLA in 2000–2001 to 21.3 percent TLA in 2001–2002 
(Figure 6). Only 2001–2002, a particularly high melt 
season in the MDVs (Doran et al. 2008), fell outside 
the bounds of observation data on which the model 
was constructed.

Discussion

The manually derived functional moat area record pro
vided the highest level of human oversight of the meth
ods used in this study. However, this method does 
provide room for inconsistency between and among 
individuals doing the manual tracing and other forms 
of human error. Despite this, the protocols mentioned in 
the methods for manual tracing were intended to mini
mize human error as much as possible, and the same 
individual was used for all manual traces to keep things 
as consistent as possible. We thus considered the manual 
functional moat area record to be our standard for 
measuring functional moat area on each of the measure
ment dates.

Drawbacks of the manual record included the time 
investment (>3 h per complete trace) and the possible 
lack of reproducibility (i.e. it is possible that new indi
viduals contributing to the manual record will introduce 
new error despite the protocols outlined in this manu
script). The semi-automated approaches addressed both 
drawbacks by providing fixed parameters that could 

Figure 5. Manually measured percent functional moat area relative to the total lake area versus the predicted percent functional moat 
area. Line of best fit was drawn for data including (solid line) and without (dashed line) the 2021 datapoint.
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rapidly be applied to images of Lake Fryxell to estimate 
moat area, provided those images contained the appro
priate wavelengths, were atmospherically corrected and 
calibrated to surface reflectance, and met the other 
image requirements described in the methods section 
of this manuscript. Thus, the semi-automated 
approaches may be better than the manual approach 
for maintaining a functional moat area record long- 
term and through changing hands.

Results of the NDWI and supervised classification 
based semi-automated approaches were similar, though 
the NDWI approach resulted in a slightly higher RMSE 
and standard deviation than the supervised classification 
approach (Table S3). However, the NDWI approach 
produced more false positive moat identifications than 
supervised classification (Table S4). Given that both 
techniques consistently underestimated the manually 
measured functional moat area, it seems likely the 
higher prevalence of false positives in the NDWI 
approach are responsible for the higher RMSE resulting 
from that method. Thus, it does not make sense to 
declare the NDWI approach the better of the 2 techni
ques. Given the similarity in their results, we suggest 
both approaches are viable options for estimating func
tional moat area.

The semi-automated approaches consistently under
estimated manually measured functional moat areas. 
The degree of this underestimation did not show any 
correlation with changes in functional moat area (Figure 
S1), and thus it seems unlikely that the estimated func
tional moat area is notably influenced the number of 
moat-containing pixels identified in a sample image. 
This suggests that although false negative moat identifi
cations are common relative to false positives (Table S5), 

the occurrence of false negatives does not compound 
with increasing moat area.

The consistency of the underestimated moat area 
estimates produced by the semi-automated techniques 
(e.g., Figure 4, Table S3) may be due to the lower spatial 
resolution multispectral imagery used for spectral 
remote sensing as opposed to the ~2x higher spatial 
resolution panchromatic imagery used for the manual 
dataset. We hypothesized that the apparent lower RMSE 
limit at ~2 percent, observed in the results of both 
methods (Table S3), would become smaller if higher 
spatial resolution multispectral imagery were used in 
the future, or, conversely, if the same resolution imagery 
were used for both the manual and semi-automated 
methods. Field-based ground truthing in future years is 
also expected to help improve the accuracy of the semi- 
automated techniques.

Although functional moats were small during the 
early part of the season and the largest moat areas all 
occurred during the month of February, the date of 
a measurement alone did not appear to be a good pre
dictor of functional moat area. In the manual record, 
moats as small as 3.5 percent TLA were observed in 
February, and moats as large as 10.2 percent TLA were 
seen in the first half of January (Figure 3).

Our predictive model generally did a good job of 
predicting functional moat area as measured by the 
manual record, indicating a strong correlation between 
temperature, shortwave radiation, and functional moat 
area. The model’s largest outliers were the January 8, 
2021 and January 5, 2013 predictions, with differences 
between predicted and measured moat areas of 2.87 per
cent TLA and −2.02 percent TLA, respectively (Figure 5, 
Table S6). While the cause of these relatively larger 

Figure 6. Model predicted percent functional moat area relative to the total lake area for January 31 each year, extended beyond the 
limits of the manual record using the historic air temperature and solar radiation data. Light blue diamonds represent the manually 
derived functional moat area between January 21 and January 31.
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outlier predictions are not known, they are the two ear
liest January predictions in our record. It is possible that 
thermal inertia plays a larger role in the later season 
moat areas, thus resulting in an offset in our early 
January predictions. Accounting for this would require 
a more dynamic model beyond the scope of this manu
script and would likely require us to abandon our goal of 
creating a predictive model using only readily available 
climate data.

Since the model relied solely on long-term meteoro
logical data from FRLM, which has been in operation 
since 1994, the model could be used for hindcasting. 
This allowed us to predict the percent size of the func
tional moat during years when no usable satellite ima
gery existed, especially in the months of January and 
February when functional moats tended to be at their 
largest. Hindcasting required the specification of a date 
to predict the corresponding functional moat area. We 
arbitrarily selected January 31st each year for our model 
predictions (Figure 6). The predicted large moat area in 
2002 corresponded to the year of the greatest amount of 
streamflow and lake level rise on record in the McMurdo 
Dry Valleys, known as the “flood year” (Doran et al.  
2008). The large predicted functional moat area in 2002 
is related to the 2001–2002 austral summer having, by 
far, the highest number of DD above 3°C compared to 
any other season measured (Fig. S2). While five of the six 
largest moats were predicted to have occurred since 
2011, there was no statistical difference in the mean 
moat size between 1995–2010 (excluding 2002) and 
2011 to 2022 (t-test, p = 0.5). The increased variation 
in moat size may have been related to other recent 
landscape changes in the region (e.g., increases in glacial 
ablation, stream erosion, and landscape lowering via 
deflation), which are attributed to increasing solar radia
tion from anthropogenic climate change (Fountain et al.  
2014). If true, given the correlation between functional 
moat area and both solar radiation and temperature, we 
suspect functional moat area will continue to increase as 
the regional climate warms in the coming decades (e.g., 
Shindell and Schmidt 2004; Arblaster and Meehl 2005; 
Chapman and Walsh 2006).

Our functional moat area records showed the percent 
functional moat area changing from year to year (Figures 
3, 4 and 6). This suggests that the moat environment is 
subjected to varying levels of light, wind driven mixing 
and turbidity, and evaporation annually, adding to the 
environmental stresses moat communities are subjected 
to. Evaporation is generally considered to play only 
a minor role in total water mass loss in MDV lakes 
(Dugan, Obryk, and Doran 2013). However, we measured 
functional moat areas as large as 13.4 percent TLA. As 
evaporation requires far less energy than sublimation, this 

may imply that during large functional moat years, eva
poration from the moats can be a major contributor to 
lake volume loss. Thus, functional moat area may play an 
important role in controlling lake water balance. The 
correlation between warm and sunny days and functional 
moat area further suggests that during large functional 
moat years, not only are moat communities subject to 
greater amounts of PAR due to a thin or missing moat ice 
cover, they also are receiving greater amounts of PAR due 
to the meteorological conditions of that season. The 
reverse appears to be true during small functional moat 
years, with moat communities receiving less PAR due to 
both a more persistent and thicker moat ice cover, and 
due to a lower number of warm and sunny days. Thus, 
functional moat area may play an important role in influ
encing ecosystem processes in the moat environment 
annually.

Moats represent an important landscape unit within 
the MDVs, acting as a dynamic interface between ter
restrial and aquatic ecosystems (Stone et al. 2024). 
Indeed, their seasonally ice-free nature may provide 
the first glimpse into the future of MDV lakes, which 
are predicted to lose their perennial ice covers within the 
next few decades (Obryk, Doran, and Priscu 2019). 
Thus, understanding the moat environment is essential 
for understanding the present and future ecology of 
MDV lakes and how they connect to the broader MDV 
environment. Although this study focused largely on 
annual changes in functional moat area at Lake Fryxell, 
our methods can be easily adapted to other MDV water 
bodies and to investigate seasonal trends in functional 
moat growth, provided the appropriate satellite imagery 
becomes available. This study also paves the way for 
future research into the spatial components of func
tional moat development (e.g., what causes some regions 
of a lake to develop wide moats while other areas have 
little to no moat?). It is our hope that future additions to 
this dataset will be complimented by field-based ground 
truthing to allow us to fine tune our methodology and 
further improve this important new dataset.

Conclusions

When the protocols we have outlined in the methods 
were adhered to, manual functional moat area tracing 
provided the most reliable means of measuring func
tional moat area on satellite imagery. However, the 
manual method was more subject to human error and 
required much more time than semi-automated meth
ods. The two semi-automated approaches did a suitable 
job of estimating moat area and could be readily applied 
to future satellite imagery to help maintain the func
tional moat record over the long term. These approaches 
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were not subject to the same level of human error that 
the manual approach was as they were minimally depen
dent on human interpretation. Still, some human inter
pretation-based input was necessary in both methods, 
with threshold values for both the NDWI and albedo 
parameters having been selected manually. Despite 
reducing human error, the semi-automated approaches 
did present some possible shortcomings, namely that 
they consistently underpredicted functional moat area 
compared to the manual record. This underpredicting 
may have been a product of the lower spatial resolution 
of the satellite imagery used in the semi-automated 
approaches relative to the manual approach. We there
fore recommend that functional moat areas derived via 
either of the semi-automated approaches be treated as 
low-end estimates, being likely smaller than the true 
extent of the functional moat.

Our climate-variable based model was effective in 
predicting functional moat area in most cases and pro
vided a means of hindcasting functional moat area 
beyond the limits of our satellite imagery-based records. 
The reliance of the predictive model on routinely mea
sured meteorological variables meant it could be rapidly 
and easily applied. The availability of satellite imagery 
was dependent on several factors, including atmospheric 
conditions, shading, and satellite tasking demand. Thus, 
our predictive model provided a means of filling in gaps 
in the functional moat area record.

Functional moat area varied from year to year, likely 
controlling the degree of meteorological influences on 
the moats and the communities they contain. Large 
functional moats likely lead to greater amounts of eva
poration, and the annual variance in functional moat 
area may play an important role in controlling total lake 
water balance. This variance may also help control 
annual PAR availability for organisms residing in the 
moat, thus influencing moat ecosystem processes.
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