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Backward Map for Filter Stability Analysis
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Abstract— A backward map is introduced for the purposes of
analysis of nonlinear (stochastic) filter stability. The backward
map is important because filter-stability, in the sense of xZ-
divergence, follows from a certain variance decay property as-
sociated with the backward map. To show this property requires
additional assumptions on the hidden Markov model (HMM).
The analysis in this paper is based on introducing a Poincaré
Inequality (PI) for HMMs with white noise observations. In
finite state-space settings, PI is related to both the ergodicity of
the Markov process as well as the observability of the HMM.
It is shown that the Poincaré constant is positive if and only if
the HMM is detectable.

I. INTRODUCTION

Dissipation is at the heart of any stability theory for
dynamical systems. For Markov processes, dissipation is
referred to as variance decay. To illustrate the key ideas,
consider a Feller-Markov process X = {X; : ¢ > 0} taking
values in a Polish state-space S and suppose [ is a given
invariant measure. The fundamental object of interest is the
Markov semigroup defined by [1, Eq. (1.1.1)]

(Pf)(x):=E'(f(X,)), xeS, t>0

for f:S — R in some class of measurable functions. The
problem of stochastic stability is to show that P, f — fi(f),
in some suitable sense, as t — co. As defined, (7, f)(x) has an
interpretation as the expectation of the random variable f(X;)
starting from an initial condition Xy = x. Therefore, P, f —
(f) means that this expectation asymptotically converges
to its stationary value fi(f) for all choices (in suitable sense)
of the initial conditions x € S.
The dissipation equation requires the notation,

VI =R(f7)-R(f)?
EN(f)=R(TS)
where I is the so called carré du champ operator (Defn. 2).

The operator is a positive-definite bilinear form. Using these
definitions, the dissipation equation arises as

(variance)

(energy)

SV =€), 120

The calculation for the same appears in Appendix A, see
also [1, Thm. 4.2.5.)]. The equation shows that {V* (P, f):
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t >0} is non-increasing. To show that the variance decays to
zero requires a suitable relationship between energy and vari-
ance. The simplest such relationship is through the Poincaré
Inequality (PI):

P EFM () 2 VE(),

where the sharpest such constant ¢ is referred to as the
Poincaré constant; here, D is a suitable space of test functions
for which the energy £7(f) is well-defined (see Defn. 2).
PI is useful to conclude stochastic stability where ¢ gives
the exponential rate of convergence. For reversible Markov
processes, c is referred to as the spectral gap constant.

VfeD

A. Aims and contributions of this paper

This paper is concerned with extension of variance decay
to the study of the nonlinear filter. Specifically, the following
questions are of interest:

Q1. What is the appropriate notion of variance decay for a
nonlinear filter? And how is it related to filter stability?

Q2. What is the appropriate generalization of the dissipa-
tion equation for the nonlinear filter?

Q3. What is the appropriate generalization of the Poincaré
inequality for the filter? And how is it related to
the hidden Markov model (HMM) properties such as
observability and detectability?

In this paper, we provide an answer to each of these questions
(see Prop. 1 for Q1, Prop. 3 for Q2, and Prop. 6-7 for Q3). An
original contribution of this paper is the backward map that is
introduced here for a general class of HMMs. The backward
map is important because filter-stability, in the sense of y2-
divergence, follows from a certain variance decay property
associated with the backward map. While the backward map
and the variance decay is for a general class of HMMs,
the answers to Q2 and Q3 are given for HMM with white
noise observations. The overall approach may be regarded
as an optimal control approach to filter stability based on
our recent work on duality [2], [3], [4]. Our approach is
contrasted with the intrinsic approach to filter stability based
upon specification of a certain forward map [5].

B. Outline of the remainder of this paper

Sec. II contains math preliminaries for the HMM and the
filter stability problem. The backward map is introduced
in Sec. III and specialized to white noise observations in
Sec. IV. For this HMM, the definition of the Poincaré
Inequality (PI) is introduced in Sec. V. The PI is related to
the HMM model properties in Sec. VI (for the finite state-
space settings) and illustrated using numerics in Sec. VIL
The proofs appear in the Appendix.
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II. MATHEMATICAL PRELIMINARIES
A. Hidden Markov model (HMM)

For the definition and analysis of the nonlinear filter,
a standard model for HMM is specified (see [6, Sec. 2])
through construction of a pair of stochastic processes
(X,Z):={(X:,Z:):0<t < T} on probability space (Q,Fr,P)
as follows:

o The state-space S is a locally compact Polish space.
The important examples are (i) S={1,2,---,d} of finite
or countable cardinality, and (ii) S ¢ RY.

¢ The observation-space O =R"™.

o The signal-observation process (X,Z) is a Feller-
Markov process.

o The state process X is a Feller-Markov process with
Xo ~ L € P(S). Here, P(S) is the space of probability
measures defined on the Borel o-algebra on S and u is
referred to as the prior.

« The observation process Z has Zy =0 and conditionally
independent increments given the state process X. That
is, given X;, an increment Z; —Z; is independent of Z; :=
G({Zs :0<s< t}), for all s >t. The filtration generated
by the observations is denoted Z:= {Z;:0<¢<T}.

The objective of nonlinear filtering is to compute the

conditional expectation

mr(f)=E(f(Xr) | 2Zr), feCy(S)

where Cp,(S) is the space of continuous and bounded func-
tions. The conditional measure 7y is referred to as the
nonlinear filter.

To stress the dependence on the prior u, a standard
convention is to denote the probability space as (Q, Fr,P"),
the expectation operator as E#, and the nonlinear filter as 7k .
In practice, the prior may not be known. With an incorrect
choice of prior v € P(S), the filter is denoted as m}. The
precise meaning for these along with the definition of filter
stability appear next.

B. Filter stability

Let p € P(S). On the common measurable space (Q,Fr),
PP is used to denote another probability measure such that
the transition law of (X,Z) is identical but Xy ~ p (see [7,
Sec. 2.2] for an explicit construction of PP as a probability
measure over paths on Sx@.). The associated expectation
operator is denoted by EP(-) and the nonlinear filter by
n’ (f) = EP ( F(X) | Z,). The two important choices for p
are as follows:

e p =M. The measure u has the meaning of the true prior.

e p =V. The measure v has the meaning of an incorrect

prior that is used to compute the filter.

The relationship between P* and PV is as follows (P*|z,
denotes the restriction of P* to the o-algebra Z;):

Lemma 1 (Lemma 2.1 in [7]): Suppose U << v. Then
e P* «< PV, and the change of measure is given by

dpH du
T () = E(Xo(a))) PV-as. o

o Foreacht>0, i/ < x’, PH|z-as..

Suppose p << v. Then n# <« m}. from Lem. 1. Denote the
Radon-Nikodyn (R-N) derivative as

dr),
T
X):= x), xeS
W)= gt (0,
It is noted that while yp = —g“f is a deterministic function on

S, yr is a Zr-measurable function on S. A filter is said to be
stable if the random function ¥y — 1, in a suitable sense, as
T — oo. In this paper, the following notion of filter stability
is adopted based on y2-divergence!:

Definition 1: The nonlinear filter is stable in the sense of

(x* divergence) E“(XZ(”# | ﬂ}/)) — 0

as T — oo for every u,v € P(S) such that 4 < v.
Remark 1: yr:S — R is a non-negative random function

on § with E(yr(Xp)|27) = 7 (1) = fs vr(x) dmf (x) = 1.
The square of the function Yy is denoted by y% (That is,

¥2(x) = (yr(x))? for x€S). Then
EY (v (Xr) ~1P12r) = my () ~1 = 2°(nf' | =)
Therefore, y>-divergence xz(n# | T ) has the meaning of
the conditional variance of the random variable yr(Xr).
Next, EY(yr(Xr)) =EY(EY(yr(X7)|Z27r)) =1 and therefore
the variance of yr(Xr) is given by,
var’ (vr (X)) = E" (yr (Xr) ~ 1)
ITI. BACKWARD MAP FOR THE NONLINEAR FILTER

A key original concept introduced in this paper is the

backward map yr — yo defined as follows:
Yo(x) :=E" (yr (X7)|[Xo = x]),

The function yg:S — R is deterministic, non-negative, and

v(yo) =E¥(yr(Xr)) = 1.
Since p <« v, it follows u(yo) = E*(yr(Xr)). Using the
tower property,

1(yo) =B (vr (Xr)) = B (B* (vr (Xr)| 21)) = E* (71 (1)
Now, 7ty (vr) = m}(#), and therefore,

(o) = E*(n7(17))
Noting 7} () -1 = x*(7} | 7r¥) is the y>-divergence (see
formula in Rem. 1),
E* (2 (mf | 77)) = w(30) = V(30)
Therefore, filter stability in the sense of y>-divergence is

. . (T—o0)
equivalent to showing that p(yy) — " 1.

Because 1£(yo) - V(y0) = v((yo~ 1)(0~1)). upon using
the Cauchy-Schwarz inequality,

E* (22 (x| =) < var' (yo(X0)) 22 (ulv) ()
where var'(yo(Xo)) = EY(|yo(Xo) — 11).

xeS (1)

'For any two probability measures u,v € P(S) such that u < v, the
. d
1-divergence 22 (1 | v) = 5 (2 (x) = 1)2dv ().
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From (2), for all such choices of priors i € P(S) such that
2% (u|v) < o, a sufficient condition for filter stability is the
following:

(T—>o0)

(variance decay prop.) var’ (yo (Xo)) — 0 3)

We have thus shown the following:

Proposition 1 (Answer to QI in Sec. I): Consider the
backward map Y7 ~ yo defined by (1). Suppose x(u|v) < oo
and the variance decay property (3) holds. Then the filter is
stable in the sense of y>-divergence.

Next, from (1), (yo(Xo) - 1) = EY((yr(Xr)-1)Xo), and
using Jensen’s inequality,

var* (v0(Xo)) < var” (3 (X)) @

where var”(yr(Xr)) = EV(|yr(Xr) - 1|*). Therefore, the
backward map 7yr ~ yo is non-expansive: The variance of
the random variable yy(Xp) is no larger than the variance of
the random variable 7 (X7).

Because contractive operators are a subset of non-
expansive operators, one may ask if filter stability is obtained
from showing that the backward map yr ~ yg is contractive?
The answer is provided in the following proposition:

Proposition 2: Suppose a stronger form of (4) holds s.t.
(Assumption) var” (yo (Xo)) < e_CTvaIV(}/T(XT)) )

(Because of (4), this is always true with ¢ =0). Then
1
E(x*(aff | n7)) < e~ (ulv)
a
where a = essinf,s7(x).

Proof: See Appendix B. [ ]

Based on the backward map, the analysis of filter stability
involves the following objectives:

1) To justify the stronger form (5) under a suitable
definition of the Poincaré inequality (PI).

2) Relate PI to the model properties, namely, (i) er-
godicity of the Markov process; and (ii) observabil-
ity/detectability of the HMM.

While the general case remains open, these objectives are
described for the special class of HMMs with white noise
observations.

The following remark is included to help relate the ap-
proach of this paper to the literature. The reader may choose
to skip ahead to Sec. IV without any loss of continuity.

Remark 2 (Comparison with the forward map): The
backward map is contrasted with the forward map, which
is the starting point of the intrinsic approach to the problem
of filter stability [S]. The forward map Yy~ yr is defined as
follows:

'}’T()C):Ev( YO(XO)

B (o) |2 |77 VK =¥1). xS

Upon using the map to express the total variation, one can
show (see [4, Sec. 6.5] for a complete derivation),

TILH;E“(I\E#—E¥ ) =
EV( EY(%(Xo) | Tﬂozoo fog"7oo)) ~EY(%0(Xo) | Zoo)|)
>

where Zo = Urs0 271, ff(Tkoo) = G({Xl > T}) is the tail
sigma-algebra of the state process X. As a function of T,
Zoo v]—"[XT‘OO is a decreasing filtration and Zr is an increasing
filtration. Therefore, by the martingale convergence theorem,
both terms on the right-hand side converge as T — oco. The
limit is zero if the following tail sigma-field identity holds:

) ZooV i o) = Zoo

T>0 '
This identity is referred to as the central problem in the
stability analysis of the nonlinear filter [8]. The problem gen-
erated significant attention (see [9] and references therein).

IV. EMBEDDING THE BACKWARD MAP IN A BSDE
A. White noise observation model

In the remainder of this paper, the observation process Z
is according to the stochastic differential equation (SDE):

t
z,:fo h(X)ds+W;, 120 ©6)

where h:S — R™ is referred to as the observation function
and W ={W,:0<t<T} is an m-dimensional Brownian
motion (B.M.). We write W is P-B.M. It is assumed that
W is independent of X.

For the ensuing analysis, we also need to specify addi-
tional notation for the Markov process X. Specifically, the
infinitesimal generator of the Markov process X is denoted
by A. In terms of A, an important definition is as follows:

Definition 2 (Defn. 1.4.1. in [1]): The bilinear operator

I(f,8)(x) = (Afg)(x) - f(x) (Ag) (x) - g(x) (Af) (x), xS

defined for every (f,g) € DxD is called the carré du champ
operator of the Markov generator A. Here, D is a vector
space of (test) functions that are dense in a suitable L? space,
stable under products (i.e., D is an algebra), and I': D xD —
D such that T'(f, f) > 0 for every f € D. For the case where
an invariant measure fi € P(S) is available then the natural
L? space is with respect to the invariant measure: L?(ji) =
{f:S—>R:i(f?) <oo}. We use the notation (I'f) :=T(f, f).

The above is referred to as the white noise observation
model of nonlinear filtering. The model is denoted by (A, ).

Because these were stated piecemeal, the main assump-
tions are stated as follows:

Assumption 1: Consider HMM (A, h).

1) X is a Feller-Markov process with generator .4 and
carré du champ I'.

2) Z is according to the SDE (6) such that the Novikov’s
condition holds: E(exp(%fOT |h(X,)\2dt)) < oo,

3) u,veP(S) are two priors with y < v.
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For the HMM (A, k), the nonlinear filter solves the
celebrated Kushner-Stratonovich equation:

dm (f) = m(Af)dt + (m(hf) - m (m(h)) d, (D)

where the innovation process is defined by
t

JA ::z,—f 7, (h)ds, 120
0

With 7 = p € P(S), the filter {n/ :0<z<T} is the solution
of (7). Therefore, for the HMM (A, k), yr is the R-N ratio
of the solution of (7), 71# and 7r¥, with the two choices of
priors, mp = 1 and m = v, respectively.
B. Embedding the backward map in a BSDE

We continue the analysis of the backward map yr +— yg

introduced as (1) in Sec. III. For this purpose, consider the
backward stochastic differential equation (BSDE):
~ A8, (x) = (AL (x) + 1T () Vs (x)) di - V] (x) 42,
Yr(x)=yr(x), xeS, 0<t<T (8)
Here (Y,V) ={(Y;(x),V;(x)) : Q>R xR" : xeS,0<t<T}
is a Z-adapted solution of the BSDE for a prescribed Z7-
measurable terminal condition Y7 = ¥ = EZTV.
T

For the HMM (A,h), the relationship between the
BSDE (8) and the backward map (1) is given of the following
proposition:

Proposition 3 (Answer to Q2 in Sec. I): Fix T. Suppose
Yp is the solution of (8) at time f =0 and yq is defined
according to the backward map (1). Then

Yo(x) =yo(x), x€S
and along the solution (¥,V) of (8),

d
avarV(Y,(xt)) =EY(z/(TY) +m ([Vi[)), 0<t<T (9)

where var' (Y;(X;)) := EV(|Y,(X;) = 1]*) and ='(|Vi]?) :=
Js Vi (x)Vi(x)dm) (x). (Eq. (9) is an example of a dissipation
equation, and therefore an answer to question Q2 in Sec. I.)

Proof: See Appendix C. [ ]

Remark 3 (Relationship to (5)): Based on the dissipation
equation (9) in Prop. 3, in order to obtain variance decay, a
natural assumption is as follows:

(Assmp.) EY (7! (TY) +m’ ([Vi[*)) 2 e var’ (Y,(X;)), 0<t < T

From (9) then d%var"(Yl(X,)) > cvar’(¥;(X;)). Because
Yr(Xr) = yr(Xr) at the terminal time, Gronwall implies
var” (Yo(Xo)) < e=Tvar” (yr(Xr)) from which filter stability
follows (see Prop. 2). In a prior conference paper [10],
conditional Poincaré inequality (c-PI) is introduced for which
the assumption above can be verified for v = [i. Several
examples of Markov processes are described for which the
c-PI holds. An important such example is the case where the

Markov process satisfies the Doeblin condition.

Our aim in the remainder of this paper is to define appro-
priate notions of energy, variance, and Poincaré Inequality
(PI) for HMM (Defn. 3) and relate the PI to the model
properties (Sec. VI).

V. POINCARE INEQUALITY (PI) FOR HMM
A. Function spaces and notation

Let p € P(S) and 7> 0. These are used to denote a generic
prior and a generic time-horizon [0,7]. (In the analysis of
filter stability, these are fixed to p =v and 7 =T). The space
of Borel-measurable deterministic functions is denoted

P(p)={f:S—>R: p(f)= [If(nPdp(x) <oo}

Background from nonlinear filtering: A standard approach
is based upon the Girsanov change of measure. Because
the Novikov’s condition holds, define a new measure PP on
(Q,F;) as follows:
P T T
%:exp(—/o -4 [P ar) = ot

Then the probability law for X is unchanged but Z is a
PP_B.M. that is independent of X [11, Lem. 1.1.5]. The
expectation with respect to PP is denoted by EP(-). The
unnormalized filter 62 () := EP (D, f(X;)|2;) for feCy(S).

p
It is called as such because nf (f) = ZE’({;'

In a prior work, we introduced a ‘dual optimal control
formulation of the nonlinear filter [12], [3]. This requires
consideration of the following Hilbert spaces:

o Hilbert space for the dual: Formally, the “dual” is a
function on the state-space S. The space of such functions
is denoted as ). For the case when S = {1,2,---d}, V=
R, Related to the dual, two types of Hilbert spaces are of
interest. These are defined as follows:

« Hilbert space of Z;-measurable random functions:
HY ={F:Q—Y: FeZ; & EP(0P(F?)) <}

(This function space is important because the backward
map (1) is a map from yr e HJ. to yo eL*(v)).

« Hilbert space of )Y-valued Z-adapted stochastic pro-
cesses:

HP ([0,7]):={Y: Qx[0,7] > V: Y€ Z,,0<t <7,
& E”(/(;TG,”(Yf)dt) < oo}

(This function space is important because the solution
Y of the BSDE is an element of HP ([0, 7])).

Notation: Let p € P(S). For real-valued functions f,g €
YV, VP(f.8) = af ((f-af (f)(g -7 (g))) With f =g,
V(1) =V (£ 1)

B. Definitions of energy, variance, and PI

Dual optimal control system:
=dY;(x) = ((AY) (x) = h" () V7 (. Y;)
+h' (x)(Vi(x)-af (V;)))dt -V (x)dZ,, 0<t<7
Yi(x)=F(x), xeS (10)
(Y,V) eHP([0,7]) xHP ([0,7])™ is the solution of (10) for a

given F ¢ HY. The dual optimal control system is important
because of the following relationship to the nonlinear filter:

4073

Authorized licensed use limited to: University of lllinois. Downloaded on June 26,2025 at 21:23:12 UTC from IEEE Xplore. Restrictions apply.



Proposition 4 (Prop. 1 in [3]): Consider (10). Then for
ae. re[0,71],

") =p()+ [ (VP(Y) 70 (V)) aZ, PP -as
(11a)

EP(VP (1)) = (11b)
var® (1 (%)) + ([ 78 (U0 + V2 (1,1, + VP () ds)

Remark 4: The BSDE embedding (8) of the backward
map (1) is a special case of (10). In particular, with F = yr,
using (11a) with =7 and p =V,

V/(hY)+r) (V) =0, PY-as.,0<t<T
(because 7y (yr) = 1). Therefore, (10) reduces to (8).
Let V== {p e P(S) :var® (¥5(Xp)) =0 VF e HP}.

Definition 3: Consider (10). Energy is defined as follows:
& (k) =B ( [T+ VP (b 1P VP (V) )
For p € P(S)\ N, consider
BP :=inf{€P(F) : F eHY & var®(Yp(Xo)) =1}
and the Poincaré constant is defined as follows:
. %log(l +BP), peP(S)\N
0, peN

Remark 5: The reason for defining the Poincaré constant
in this manner is that cP then represents a rate. In particular,
using (11b), for each p e P(S)\ N,

var (Yo (Xo)) <e " EP(VE(F)), VFeHE

C. Existence of minimizer

We are interested in existence of the minimizers of the
energy functional £P (F) for F e H?. If it exists, a minimizer
is not unique because of the following translation symmetry:

EP(F+al)=EP(F)

for any Z;-measurable random variable o such that
EP (a?) < oo. For this reason, consider the subspace

SP={FeHf : n’(F)=0, PP -as.}

Then SP is closed subspace. (Suppose F (") 5 F in HP with
77 (F™) = 0. Then EP(|nf(F)|) = E°(|zf (F - F™)|) <
EP (a7 (IF ~F ™)) =EP (of ((F-F"[?)) = |F = F ") |y -
0.).

Proposition 5: Consider the optimal control system (10)
with Y7 = F € SP. Then p(¥y) =0 and
VP(h,Y,)+xP (V) =0, PP-as.,0<tr<t

Proof: The result follows from using (11a) in Prop. 4
(similar to Rem. 4). |

Because of Prop. 5, for Yr = F € SP, (10) simplifies to

—dY(x) = ((AY) (x) + 1" (x)V;(x) ) dt -V (x)dZ;, 0<t<7t
Y:=FeSP, xeS (12)

Note that this is identical to the BSDE embedding (8) of the
backward map. Its solution is used to define a linear operator
as follows:

Lo:SP cHE »1*(p) by Lo(F)=Y

(It is noted that (12) and therefore Ly do not depend upon
p even though the optimal control system (10) does). Addi-
tional details concerning this operator appear in Appendix D
where it is shown that Ly is bounded with |Lo| < 1.

The following Lemma provides sufficient condition for a
minimizer to exist:

Lemma 2: Let p € P(S)\N. Suppose that L is compact.
Then there exists an F € SP such that

BP =EP(F) and var’(Yo(Xp))=1
Proof: See Appendix D. "

VI. PI AND HMM MODEL PROPERTIES

In this section, we make the following assumption:
Assumption 2: The state-space is finite:

(A2) S:{172a"'7d}

Notation: The space of functions and measures are both
identified with R?: a real-valued function f (resp., a measure
) is identified with a column vector in R? where the x™
element of the vector equals f(x) (resp., u(x)) for x €S,
and p(f) =u"f. In this manner, the observation function
h:S —R™ is also identified with a matrix H e R¥"_ Its j-th
column is denoted H/ for j=1,2,---,m. The constant function
1=[1,1,---,1] is a d-dimensional vector with all entries equal
to one. P(S) is the probability simplex in RY. The generator
A is identified with a transition rate matrix, denoted as A,
whose (i, j) entry (for i # j) gives the non-negative rate of
transition from state i — j. The diagonal entry (i,i) is chosen
such that the sum of the elements in the i-th row is zero.
The finite state-space HMM is denoted as (A,H). For any
function g:S — R, the notation

hg = {diag(H')g: j=1,2,---,m}

For m =1, this is simply the element-wise multiplication of
the function / and g (hg(x) = h(x)g(x) for x€S).

Definition 4: Consider an HMM (A,H) on a finite state-
space S={1,2,---,d}. The space of observable functions is
the smallest subspace O c RY that satisfies the following two
properties:

1) The constant function 1€ O; and

2) If g€ O then Age O and hge O.

The space of null eigenfunctions is defined as

So:={feR?| Af =0}
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Definition 5: Consider an HMM (A,H) on a finite state-
space S={1,2,---.d}.

1) The HMM is observable if © =R¢.

2) The Markov process is ergodic if

Af=0 = f=cl

3) The HMM is detectable if Sy c O.

Remark 6: For additional motivation and background for
these definitions, see [2, Sec. IV] and [4, Ch. 8]. It is
shown (see [2, Rem. 13]) that the definition is equivalent
to the (standard) definition of observability and detectability
of HMM introduced in [6].

Example 1: Consider an HMM on S = {1,2} with

Az A h(1)
A= , H=
[ M = h(2)
For this model, the carré du champ operator and the observ-
able space are as follows:

o= 3o, o-sm[}] [15)]]

Consequently,
1) Aisergodic iff (112 + A1) > 0. In this case, the invariant

_ A T
measure i =| 22y |
2) (A,H) is is observable iff A(1) = h(2).

A. Main result

Proposition 6 (Answer to Q3 in Sec. I): Consider the
HMM (A,H) on finite state-space and p € P(S) \ N.
Suppose any one of the following conditions holds:

1) The Markov process is ergodic; or

2) The HMM is observable; or

3) The HMM is detectable.

Then c? > 0.
Proof: See Appendix E. [ ]

The converse of this result — which gives the tightest
condition for ¢? to be positive — is as follows:

Proposition 7 (Answer to Q3 in Sec. I): Consider the
HMM (A,H) on finite state-space. If ¢ >0 for all
p € P(S)\N, then the HMM is detectable.

Proof: See Appendix F. [ ]

VII. NUMERICAL EXAMPLE

Consider an HMM on S = {1,2,3,4} with the transition
rate matrix given by

11 0 0 00 0 0
2 2 0 0 0 -1 0
A@=lo o -1 1|*lo 1 -1 o
o 0o 2 -2 Vo o o0 o

There are two cases:
1) Case 1: € =0. The Markov process is not ergodic. The
space of null eigenfunctions is given by,

1\ /(0
So=N(A) =span

S O -

0
1
1

TABLE I
COMBINATIONS OF SIMULATION PARAMETERS

€ h Model property Rate of conv.
0 A Not detectable 0

0 n? Non-ergodic but detectable 0.075

0 | Observable 0.155

0.1 | Al Ergodic with i(1) = h(3) 0.196
0.1 | # Ergodic with (1) # h(3) 0.412

x? divergence between rif' and ¥

1004

W= L & —

10714

10724

1031 -0.196

1071 @ £=0.0,h
- £=0.0, h

£=0.0, h
1075y @ £=0.1,h
€= Ot'l' ?3 explct +b) fit: c=-0.412
=== constan
0 7 15 22 30

Time t (s)

Fig. 1. E(x*(#' | ¥)) for the model with different values of & and
observation function. The number on each line shows the exponential rate
obtained from linear fitting.

This shows that the subsets {1,2} and {3,4} are the
two communicating classes.

2) Case 2: £ > 0. The Markov process is ergodic with
only a single communicating class given by S.

Consider three choices for the observation function:

2 2
0 3 10
oy’ = -2
0 0

n' =

2
ol ..
1
0

With € >0, the HMM is detectable for any of these choices.
Therefore, the interesting case arises when € = 0. In this case,
the following sub-cases arise:

1) Case 1.1: £ =0 and H =h'. The system (A,H) is not
detectable.

2) Case 1.2: £ =0 and H = h?. The system (A,H) is not
observable, but it is detectable.

3) Case 1.3: £ =0 and H = h*. The system (A,H) is
observable.

Fig. 1 depicts the expected value of the y>-divergence
between /' and m’ from p =[0.25,0.40,0.30,0.05] and
v =[0.1,0.2,0.3,0.4]. The parameters together with the esti-
mated rate of convergence are summarized in Table VII. An
Euler discretization with step-size 0.005 is used to simulate
the HMM and the nonlinear filter. The expectation is approx-
imated by averaging over 500 Monte-Carlo simulations.
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APPENDIX
A. Dissipation equation for a Markov process

The semigroup {F; :¢ >0} is a solution of the Kolmogorov
equation, % (B.f)=A(Pf) for t >0. Therefore,

d. g _ _ _

VB =28((BS)(ARS)) - 28(PHR(ARS))

=-(C(Rf))

where ,a(A(P, f )) =0 because [I is an invariant measure.
B. Proof of Proposition 2

Using inequalities (2) and (5),

B (2 (f [ 7)) < e™Tvar® (v (X)) 2% (ulv)
Since var¥ (yr(Xr)) =EY(|yr (Xr) - 11*) =EY (x* (7} | 7)),
1 —C

E“(?ﬂ(ﬂ#l#))ﬁge "2 (uv)
E* (2 (xfI}) )
e (2 (afinp))
C. Proof of Proposition 3

Apply It6 formula on Y;(X;) to obtain

dYt (Xt) = ‘/Z‘T(Xt) d‘/Vt + dNt

where Rr := > essinfxeg%(x) =a.

where {N; :t >0} is a martingale [3, Remark 1]. Integrating,

T
() =0+ [ V) dweeaN,  (13)

and therefore
Yi(x) = EV(VT(XT) | Z v (X :x])a xeS

In particular at time 7 =0, we have Yy(x) = yo(x). The
variance of Y;(X;) is also obtained from (13):

EY(Iyr (Xr) - 11°)
T
=BV () 1P [ V)P + (T () ds)

T
—var' (1(0) +EY( [ A (00 +x! (Vi) ds)
t
Upon differentiating both sides with ¢ gives (9).
D. Proof of Lemma 2

Discussions on the map L and EP: For F ¢ H?, note that
|F e = EP(af (F?)) =EP (72 (F?)) = EP (F (X:)?)

He
For FeSP, m(F) =0 and -, EP((F(X;))?) = EP (VE (F)).
Eq. (11b) in Prop. 4 is thus expressed as

IFI2p = p(13) +€°(F), FeS”

(14)
This shows that Lo : H? - L*(p) is bounded with |Lo| < 1.

To obtain the minimizer, setting (¥,V) to be the solution
to (12) with Y; = F € SP, the functional derivative is evaluated

as follows:

(VEP(F),F) =2 EP ([ornf(l"(Yt,Z) +n;’(x4sz)dt)

where note 7’ (V'V;) = [(V[(x)V;(x)dx (x). Using
Cauchy-Schwarz and (14),
(VEP(F),F)[* <4[F e [ (15)

This shows that F'+ (VEP(F),F) is a bounded linear func-
tional as a map from SP c HY into R. With these formalities
completed, we show a minimizer exists.

Proof of Lemma 2: Let P be the infimum. Consider
a sequence {F(" ¢SP:n=1,2,...} such that EP(F") |
BP and p((YO(”))z) =1 for each n, with YO(") = Lo(F(™M),
Using (14),

[FO |3 =1+€P(FM) <C, n=12,...

Therefore, F( is a bounded sequence in the Hilbert space
HP, and there exists a weak limit F ¢ H? such that F ()
F. Moreover, F € SP because SP is closed. Therefore Y :=
Lo(F) satisfies p(Y) = 0. Since F") —~ F in H? and Ly is
compact, we have YO(") — Yy in L*(p). Therefore, p((¥y)?) =
limyseo p((¥7)?) = 1.

It remains to show that £ (F) = . The map F — EP (F)
is convex. Therefore,

EP(FMY) > EP(F)+(VEP(F),F™ —F)

We have already shown that F'+ (VEP(F),F) is a bounded
linear functional. Therefore, letting n — oo, the second term
on the right-hand side converges to zero and

EP(F) < lim EP(F™) = pP

Because 3” is the infimum, this show that EP (F) = 8°.
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E. Proof of Proposition 6

Proof: [of Prop. 6] Suppose any one of the three
conditions hold. We claim then

(claim) EP(F)=0 == var® (Yo(Xo)) =0

Supposing the claim is true, the proof is by contradiction. To
see this suppose P =0. By Lemma 2, there exists EP (F) =0
such that var® (Yy(Xp)) = 1 which contradicts the claim. It
remains to prove the claim. For the three cases, its proof is
described in the remainder of this appendix. [ ]

1. Ergodic case: At time ¢ >0, let p, denote the proba-
bility law of X; (without conditioning). Then p <« p; and
supp(p;) =S’ is identical for any ¢ >0. W.Lo.g., take S’ as
the new state-space and consider the Markov process on S'.
Suppose EP(F) =0. Then

EP(forntp(FY,)dt):O — 7’ (I%) =0

almost every 7 € [0, 7], PP|z, -almost surely. For white noise
observation model, supp(n”) =S’ and therefore I'Y;(x) =0
for all x€S’, and therefore T'Y; =0 with probability 1. If
the model is ergodic, this implies Y; is a constant function,
and therefore EP(V}D (Y;)) = 0. The proof of the claim is
completed by noting var? (Yo (Xo)) < EP (VP (Y,)) from (11b).

2. Observable case: The proof is based on using the equation
for conditional covariance V¥ (£,Y;) (see [13, Appdx. D] for
its proof):

VP (%) = (= (D(f,%)) + VP (Af, X)) de
(V=P (D=2 (D)1 +VE (£.V0)) dif

The equation is used to prove the following Lemma which
is the key to prove the claim.

Lemma 3: Suppose EP(F) =0. Then for each f €O,
VP (f:1:) =0,

Proof: From the defining relation for P (F),
7’ (TY,) =0, VP (h,Y;) =0,V (V;) =0, PP-as.

(16)

PP-as., ae. 0<t<T

for a.e. 0 <t < 7. Using the Cauchy-Schwarz formula then for
each feCy(S),

WP (F VP <VP(H)VP (Vi) =0 PP-as.

Similarly, upon using the Cauchy-Schwarz formula [1,
Eq.1.4.3] for carré du champ, n°(I(f,Y;)) =0, PP-as..
Based on these (16) simplifies to

dVf (f,17)
=VP(AFY)di+ (VP (hf, ) -7 (VP (f.%,)) P
Therefore, VP (f,Y;) =0, 0<r<7
— VP(Af,Y,)=0,VP(hf,¥,)=0, 0<r<7

Since VP (1,Y;) =0 for all 1 € [0,7], the result follows from
Defn. 4 of the observable space O. |

Based on the result in Lemma 3, if O = R?, we
have EP(VF(Y,)) =0, and then the claim follows because
var? (Yo(Xo)) < EP (VP (Y;)) from (11b).

3. Detectable case: As in the ergodic case, if £P (F) =0 then
I'Y;(x) =0 for all xeS’, and therefore Y; € Sg. If the system
(A, h) is detectable, then this implies ¥; € O with probability
1. By Lemma 3, EP(V,p(Yl)) =0 and the claim follows.

F. Proof of Proposition 7

Suppose HMM is not detectable. Our goal is to find
peP(S)NN and F ¢ H? such that £P(F) =0 and
var® (Yo(Xo)) = 1. We begin with two claims:

1) Claim 1. There exists a p € P(S) and f € Sy such that

(@) p(f*)>0, and (b) p(fg) =0 for all geO.

2) Claim 2. For any such f and p (that satisfy the two

conditions in claim 1), ©° (fg)=0,0<t<7, VgeO.

Assuming these claims are true 7f (f) =0 and therefore
f€Sp. Because f €Sy, Af =0 and therefore, ¥, = f and
V, =0 solves the BSDE (12), whose energy EP(f) =0 and
var? (Yo(Xo)) = p(f?) > 0. It remains to prove the two claims.

Proof of claim 2: Since f €Sy, Af =0, and consequently,
A(fg) = fAg. From (7):

dnf (fg) =nf (fAg)dr +f (ghf)'dl, 0<r <7t

Because Ag € O and ghe O (Defn. 4) this shows claim 2.
Attime 1 =0, nif (fAg)|_,=p(fAg)=0and nf (ghf)| _, =
p(fgh) =0. Therefore, n’ (fg) =0 is the equilibrium soln.

Proof of claim 1: Consider an ergodic partition S = U;S (k)
and the invariant measures [L(k) with support on S®) for each
k. W.l.o.g, upon re-ordering of indices if necessary, there
exists an f = 15(1) - 15(2) such that f ¢ O. Therefore, w.l.o.g,
we may restrict ourselves to ergodic partition with exactly
two components, S =S Mys (2), with invariant measures [L(l)
and [1(2) with support on § () and ), respectively. For this
case, dim(N(.A)) =2 and since 1 is contained in both N(.A)
and in O, and the fact that N(A) ¢ O, dim(N(A)nO) = 1.
Consider the restriction (noting O is A-invariant),
Alp: 0= AO0)cO

Then dim(N(A|,)) = 1. By rank-nullity, dim(A(O)) =
dim(O) - 1. Consider a decomposition O = A(O) ®@span{s}
for some 0 € O. Use the decomposition to express any g € O
as g = g4 +ao, where acR. Now, iV (1) =g®(1)=1 —
1¢ A(O) (since, for all ge A(O), i (g) =a® (g) =0).
Because 1€ O, a possible choice is to pick o =1.

We now pick p € P(S) and f €Sy to show that p(fg)=0
for all g€ O. Set

p=3aM+1a®, f=cilg +alg
where the constants ¢ and ¢, need to be picked. Because g4 €
R(A), p(f2a) = 5(c1aD(ga) +c2i® (ga)) = 0. Therefore,
a, _ - _ -
p(f2)=5(18 V(@) + 202 (9))

Pick constants ¢; and ¢, to make the right-hand side zero.
With 6=1, ¢; =1 and ¢ = -1 works for which p(f) =0 and

p(f3)=1.

4077

Authorized licensed use limited to: University of lllinois. Downloaded on June 26,2025 at 21:23:12 UTC from IEEE Xplore. Restrictions apply.



