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Abstract: Understanding and monitoring nearshore environments is essential, given that these
fine-scaled ecosystems are integral to human well-being. While satellites offer an opportunity to
gain synchronous and spatially extensive data of coastal areas, off-the-shelf calibrated satellite sea
surface temperature (SST) measurements have only been available at coarse resolutions of 1 km or
larger. In this study, we develop a novel methodology to create a simple linear equation to calibrate
fine-scale Landsat thermal infrared radiation brightness temperatures (calibrated for land sensing) to
derive SST at a resolution of 100 m. The constants of this equation are derived from correlations of
coincident MODIS SST and Landsat data, which we filter to find optimal pairs. Validation against
in situ sensor data at varying distances from the shore in Northern California shows that our SST
estimates are more accurate than prior off-the-shelf Landsat data calibrated for land surfaces. These
fine-scale SST estimates also demonstrate superior accuracy compared with coincident MODIS SST
estimates. The root mean square error for our minimally filtered dataset (n = 557 images) ranges
from 0.76 to 1.20 →C with correlation coefficients from r = 0.73 to 0.92, and for our optimal dataset
(n = 229 images), the error is from 0.62 to 0.98 →C with correlations from r = 0.83 to 0.92. Potential
error sources related to stratification and seasonality are examined and we conclude that Landsat
data represent skin temperatures with an error between 0.62 and 0.73 →C. We discuss the utility of
our methodology for enhancing coastal monitoring efforts and capturing previously unseen spatial
complexity. Testing the calibration methodology on Landsat images before and after the temporal
bounds of accurate MODIS SST measurements shows successful calibration with lower errors than
the off-the-shelf, land-calibrated Landsat product, extending the applicability of our approach. This
new approach for obtaining high-resolution SST data in nearshore waters may be applied to other
upwelling regions globally, contributing to improved coastal monitoring, management, and research.

Keywords: Landsat; MODIS; sea surface temperature; nearshore oceanography; coastal upwelling

1. Introduction
The ocean is vast and most direct human interaction occurs in nearshore waters,

which also host the most productive ecosystems [1]. There are relatively few data from
waters within a few kilometers of land, which is a major oversight given the importance of
these waters for ecosystems and humans [2], and it is often assumed that waters are quite
uniform and like those further offshore over the continental shelf. While satellites offer an
opportunity to gain synchronous and spatially extensive data of these understudied areas,
there are no publicly available platforms that provide reliable surface properties at a spatial
scale sufficient to resolve primary nearshore flow features and dynamics. Specifically,
sea surface temperature (SST) has historically been available at a scale of 1 km or larger
and these data are notorious for poor reliability within a pixel of the shoreline due to
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contamination [3–5]. Newer satellites, like GCOM-C, launched on 23 December 2017,
offer higher-resolution SST at 0.5 km with a 2–3-day overpass frequency. However, due
to its moderate resolution and recent launch, it likely cannot resolve variable nearshore
features. Through the calibration of high-resolution Landsat brightness temperature data
with concurrent, long-operating, low-resolution MODIS SST data, we developed a new
method and dataset that effectively resolves fine-scale SST patterns in nearshore waters
with high fidelity.

Nearshore water circulation differs markedly from offshore regions due to the prox-
imity and shape of the shoreline and shoals. Phenomena include wave-driven flows [6,7],
large and small river outflow plumes [8–10], tidal jets [11,12], internal wave shoaling [13],
the coastal boundary layer [14], and small-scale wind effects [15]. These flow features ac-
count for complex patterns in water properties, including temperature and salinity as well
as biogeochemical (oxygen, pH, pCO2, NO3) and biological (phytoplankton, meroplankton,
and pathogenic microbes) parameters. At times, these patterns are made visible by a con-
current turbidity or a water color signal, which can be detected by high-resolution optical
satellite imagery [10]. However, few reliable methods exist for obtaining satellite-based
data on sea surface temperature at sufficient spatial resolution, despite the ubiquity of
thermal patterns in nearshore waters. While there is an increasing number of studies based
on numerical experiments and in situ field sensors [16], their scope is generally limited
by scale and the full complexity of multi-scale nearshore circulation processes remains
unresolved [17].

The Landsat series of satellites operated by the United States Geological Survey
(USGS) contains onboard thermal infrared radiation (TIR) sensors with a spatial resolution
(60–120 m) fine enough to resolve the primary nearshore circulation features with a sub-
kilometer scale. However, these satellites lack atmospheric self-correction capabilities
owing to a limited number of TIR range bands, which precludes the conversion of TIR
brightness values to sea surface temperature values without external empirical calibration.

Prior studies have used several methods to extract SST information from Landsat TIR
data. Some studies have used off-the-shelf Landsat Level 2 brightness temperature data,
calibrated by the USGS for land surfaces [4,18–21]. These studies often look at trends or
spatial gradients rather than actual SST values because of the limited accuracy of Landsat
Level 2 brightness temperature data for ocean sensing [19,20]. Other software packages like
ACOLITE [22] derive surface temperatures by converting atmospherically corrected surface
radiance using Planck’s Law (see Section 2.4) enhanced by radiative transfer models; how-
ever, these methods rely on accessing abundant coincidental data, which often complicates
atmospheric correction. Other studies have calibrated brightness data with in situ/buoy
measurements and are limited to local settings [23–26]. Studies solely using Landsat data
often note issues with accuracy in sensing nearshore SST [27]. While prior studies have
explored the correlation of Landsat data with coincident satellite data from geostationary
satellites [28] or polar orbiting satellites like MODIS and AHVRR [29–33], these studies
have been limited to less than 50 images, which is insufficient for capturing nearshore
variability and does not aggregate statistics to form generalized calibration constants. That
methodology also depends on other satellite missions as well as their continuation for
future calibrations, which is a problem as satellites eventually age past their expected
mission lifetimes and data quality degrades. Notably, MODIS is now past its expected
mission lifetime and has been shown to have unreliable data quality for SST products past
2023 [34]. Furthermore, this methodology requires manual inspection and selection of
data to avoid any sources of heterogeneity within images, which is arduous and limits the
dataset size.

In this paper, we calibrate an extensive dataset of several hundred Landsat 7–9 images
using coincidental MODIS SST (MSST) data captured prior to 2023 for coastal waters off
northern California. Our initial approach is to create a unique calibration equation for
each image, and our final product is a single equation obtained from median values of the
single-image calibrations that can be applied to images outside of the sample set without



Remote Sens. 2024, 16, 4477 3 of 21

having to conduct individual image calibrations. We test this sample calibrated Landsat
SST data (as well as Landsat SST data before and after MODIS operational dates) against
in situ temperature measurements from five locations, showing the superior utility of the
aggregate calibration equation for use in SST remote sensing, which also outperforms the
use of the off-the-shelf USGS land surface temperature measurements and MODIS. The
resultant high-resolution SST data will greatly advance the study of nearshore flow features,
hydrodynamic processes, and habitat patterns.

2. Methods
This study investigates the efficacy of Landsat surface brightness temperatures cali-

brated with MODIS Terra sea surface temperature data to produce high-spatial-resolution
SST measurements. We test these calibrations between individual images and use ag-
gregated calibration equations to create a generalized calibration equation made from
constants derived from statistics gathered from individual image calibrations. These esti-
mated SST data are validated using in situ monitoring data taken throughout the study
region, captured at the same time as the satellite overpass.

2.1. Study Site

Data used for this study are captured within Landsat Worldwide Reference System
(WRS) location path 45, row 33, spanning latitudinal coordinates from 37.90 to 39.95
(Figure 1). This area extends across a coastal upwelling region from the mouth of San
Francisco Bay northward to Cape Mendocino, covering a geomorphologically and hy-
drodynamically diverse coastline that contributes to the nearshore temperature structure
through phenomena such as runoff from ephemeral streams and small mountain river sys-
tems, tidal jets, and flow separation at headlands. This region has a typical “Mediterranean”
climate, with seasonal precipitation in winter months, when rainstorms lead to pulses of
freshwater runoff and associated river plumes (e.g., off the Russian River, Gualala River,
Big River, Noyo River, Albion River, and Navarro River (Figure 1)). During high river flow,
buoyant low-salinity plumes from these rivers extend tens of kilometers alongshore [10],
and in the dry season, river flow decreases and the estuaries can be closed off from the
ocean by sand berms [35], precluding surface exchange with the ocean.Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. Map of study region in WRS path 45 row 33. (Left) Map of in situ validation sites, from 
north to south: NOAA N46014 (buoy), BOON Intake (seawater intake), BML Mooring (buoy), 
NOAA N46013 (buoy), and BOON Tomales Bay (buoy). (Right) Map of geographical points of in-
terest, from north to south: Mendocino, Manchester Beach, Pt. Arena, Gualala River Estuary, Rus-
sian River Estuary, Salmon Creek Beach, Bodega Bay, Tomales Bay, and Pt. Reyes National Sea-
shore. Bathymetric basemap data were accessed from the General Bathymetric Chart of the Ocean 
(hĴps://www.gebco.net/), with color scaled to depth in meters as shown in the legend. 
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of 0.00341802 and offset by a value of 149 to convert data to integers for more efficient 
storage. Clouds and cloud shadow detection within these images were performed using 
the CFMASK algorithm [42]. This algorithm employs decision trees, validated by scene-
wide statistics, to accurately label pixels affected by clouds and their shadows. These 
cloud-affected regions are further delineated based on cloud height and the solar angle, 
enhancing the precision of cloud and shadow detection. Land features were then masked 
from each image using the high-resolution NOAA Continually Updated Shoreline Prod-
uct (NOAA CUSP: hĴps://shoreline.noaa.gov/data/datasheets/cusp.html (accessed on 10 
February, 2024)). This geospatial land dataset is derived from repositories of LiDAR data 
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Figure 1. Map of study region in WRS path 45 row 33. (Left) Map of in situ validation sites,
from north to south: NOAA N46014 (buoy), BOON Intake (seawater intake), BML Mooring (buoy),
NOAA N46013 (buoy), and BOON Tomales Bay (buoy). (Right) Map of geographical points of
interest, from north to south: Mendocino, Manchester Beach, Pt. Arena, Gualala River Estuary,
Russian River Estuary, Salmon Creek Beach, Bodega Bay, Tomales Bay, and Pt. Reyes National
Seashore. Bathymetric basemap data were accessed from the General Bathymetric Chart of the Ocean
(https://www.gebco.net/), with color scaled to depth in meters as shown in the legend.
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Wind patterns in the region are also seasonal. From April to June, persistent northerly
winds induce upwelling, followed by weaker winds from July to September and more
variable winds in the storm season from December to February [36]. Spring upwelling
causes nearshore cooling from offshore advection of warmer surface water. The most
marked cooling from upwelling occurs in the region south of Pt. Arena and north of the
Russian River [37,38].

2.2. Satellite Data

All Landsat 5–9 Level 2 (L2) thermal infrared radiation Landsat Brightness Tempera-
ture Bt data within the World Reference System (WRS) scene location at Path 45 Row 33
were collected from Google Earth Engine [39], extending from March 1984 to May 2023.
For the Landsat L2 product, the USGS has calibrated Landsat surface radiance Ls to a
brightness temperature Bt for land surface temperatures by applying Planck’s equation.

Bt =
K2

ln
(

K1
Ls

+ 1
) (1)

where Bt is the brightness temperature, K1 = (L7: 666.0900; L8: 774.8853; L9: 799.0284),
K2 = (L7: 1282.7100; L8: 1321.0789; L9: 1329.2405), and Ls is surface radiance in
W/(m2 sr µm) [40,41]. These temperature data, in degrees Kelvin, are stored as values
scaled by a factor of 0.00341802 and offset by a value of 149 to convert data to integers
for more efficient storage. Clouds and cloud shadow detection within these images were
performed using the CFMASK algorithm [42]. This algorithm employs decision trees,
validated by scene-wide statistics, to accurately label pixels affected by clouds and their
shadows. These cloud-affected regions are further delineated based on cloud height and
the solar angle, enhancing the precision of cloud and shadow detection. Land features
were then masked from each image using the high-resolution NOAA Continually Updated
Shoreline Product (NOAA CUSP: https://shoreline.noaa.gov/data/datasheets/cusp.html
(accessed on 10 February 2024)). This geospatial land dataset is derived from repositories
of LiDAR data and individual shoreline datasets; it estimates continental shorelines on a
scale from 1:1000 to 1:24,000.

Landsat 7 (L7), operational since 1999, features Band 6 (10.40–12.50 µm), which is
specifically dedicated to collecting TIR readings with a resolution of 60 m. However, L7
encountered a known issue with its scan line corrector (SLC) in 2003, leading to data gaps
in its imagery [43]. Despite this, its high-resolution thermal data remain invaluable. L7 has
a 16-day revisit cycle and typically overpasses a given location at 10:30 a.m., contributing
to the temporal coverage of the study.

Both Landsat 8 (L8) and Landsat 9 (L9) are equipped with two TIR sensors of the same
range, but temperature is typically derived with the Band 10 sensor (10.60–11.19 µm) due
to its reduced sensitivity to stray light in contrast to the other TIR sensor from the curvature
of its lens [31,44]. L8 launched in 2013 and L9 launched in 2021 follow a similar 16-day
overpass cycle as L7, also capturing mid-morning data.

To align the resolution disparities among the Landsat satellites, L7 images were
resampled from their native 60 m resolution to 100 m using bilinear interpolation, matching
the resolution of L8 and L9 images. Out of the 705 images obtained across these missions,
659 images were used, the rest being omitted for having pixel count (n) < 100 pixels or
when coincident MSST images had a low/zero pixel count. Statistics on pixel availability
are displayed in Figure 2, showing that on average, the most available pixels are captured
in April and September, while the least are captured in July and August, perhaps due
to coastal fog that is prominent during the summer months in the Northern California
region [45,46].

https://shoreline.noaa.gov/data/datasheets/cusp.html
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Figure 2. Box and whisker plot of the number of pixels per image by month in the “all” dataset. Box
margins are the 25th percentile of data (lower) and 75th percentile of data (upper). The line in the box
is the monthly median. Whiskers show minimum and maximum values.

Although Landsat 5 (operational from 1984 to 2013) captures TIR data in a similar
spectral range and has a similar overpass window as L7, and it also has data during the
timeframe available for this study, it has a spatial resolution of 120 m, which is coarser
than the 100 m that we resample images to for this study. Additionally, L5 experienced a
gradual shift in its solar zenith angle over time due to changes in orbital altitude [47]. This
led to its exclusion from initial data calibrations. Nonetheless, because of its spectral range,
L5 data are used in this study as a blind dataset to test the generalizability of calibration
constants derived from our methods for dates prior to the launch of MODIS Terra.

We directly downloaded atmospherically corrected and cloud-masked MODIS Terra
SST (MSST) datasets from the NASA Ocean Color website (http://oceancolor.gsfc.nasa.
gov/, accessed on 2 October 2024). These MSST data, provided at 1 km resolution, are
known for their efficacy and accuracy in measuring SST [48]. We specifically chose MODIS
Terra over MODIS Aqua as its overpass (typically between 10:30 and 11:30 a.m. local
time) overlaps with that of L5, L7, L8, and L9. This ensures minimal temporal discrepancy,
ranging from near-instantaneous to a maximum of about two hours, between the image
captures of the two satellites. For the data analyzed, the median difference in image capture
times on coinciding dates was 27.2 min. MODIS imagery past 2023 is unreliable due to
orbital drift; as it exceeded its expected operational time, it has run out of fuel for orbit
adjustment [34]. As a result, we only calibrate images from the MODIS mission start date
until 1 January 2023.

2.3. Brightness Temperature to Sea Surface Temperature Calibration

In the first step of our method, we calibrate Landsat (L7, L8, and L9) Bt to SST using
MSST data from the same date. For each Landsat–MODIS image pair, we calculate Pearson’s
correlation coefficient r to assess the linear correlation between the SST value of each
MODIS pixel and the median value of all Landsat Bt pixels within that MODIS pixel’s
area. We then exclude any MSST/Bt pairs that deviate by more than one standard deviation
(“outliers”) and recalculate the correlation. This process is iterated until the correlation
coefficient stabilizes or decreases. We then use this best-fit linear equation to convert
Landsat Bt data to SST data (Figure 3). To calculate the best-fit linear equation, ordinary
least squares (OLS) regression was used.

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/
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Figure 3. Example of calibration of Landsat Bt to SST using coincidental MODIS Terra SST data
from images captured on 7 January 2015 (MODIS at 18:20 LST and Landsat at 18:51 LST). (a) Initial
correlation between MODIS SST pixels and respective pixel area median Landsat Bt pixel values
from 7 January 2015. (b) Final correlation after iterative outlier removal as outlined in Section 2.3.
(c) MODIS Terra SST image from 7 January 2015. (d) Estimated Landsat SST obtained by calibrating
Landsat Bt values with the best-fit linear equation from panel (b).

This first step builds on Thomas et al. (2002) [29] and Snyder et al.’s (2017) [31] work,
differing by using the median Landsat pixel value within each MODIS pixel area rather
than pairing the nearest Landsat pixel to the nearest MODIS pixel, aiming to reduce pixel
heterogeneity and improve accuracy. This calibration step is referred to as “per-image
calibration” in this study.

As noted by Snyder et al., 2017 [31], this process assumes that atmospheric conditions
are uniform across the Landsat scene and that atmospheric and oceanic conditions do
not significantly vary between MODIS and Landsat image captures. Furthermore, as
each Landsat scene is captured in scans rather than instantaneously, this method assumes
atmospheric and oceanic conditions do not significantly change during image collection;
however, scans last only a few seconds. Additionally, this approach assumes that MODIS
SST data possess minimal uncertainty and error, enabling their use as the calibration
standard for Landsat SST. This assumption implies that any variation in the regression is
primarily attributed to the Landsat Bt data.

Using this process, we can categorize images as acceptable or not by examining
Bt-MSST correlation strengths. For this study, we considered the image dataset in two
groupings, namely an “all data” group and a “selected” (R0) group. For the “all data”
dataset, we use data in which the final r value is above 0.7, thus discarding data that had
too many image artifacts to successfully calibrate to SST from Bt. For the “selected” R0
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data, we used Landsat images where the initial r value is above 0.7 prior to iterative outlier
removal. This differs from past work, in which images were manually selected through
visual inspection. Here, we remove or retain images based on correlative strength, reducing
the time spent on data curation and utilizing many more images.

In addition to determining per-image calibrations, we determine a generalized calibra-
tion by aggregating per-image calibrations to develop a single linear relationship between
SST and Landsat Bt. This approach improves calibrations in general by mitigating the effect
of heterogeneity (potential noise from outlier pixels not removed), and it allows for the
application to images outside of the original dataset (including times when MODIS data
are not available). We aggregate the statistics of the per-image MSST-Bt relationships by
finding the median slope (m) and intercept (b) across the R0 “selected” dataset to obtain

SST = m ↑ Bt + b (2)

where SST is the estimated sea surface temperature and Bt is the brightness temperature at
a given pixel position. This is the first time such a calibration method utilizing per-image
calibration statistics has been employed that the authors are aware of. This “generalized cal-
ibration” is a novel approach, and we contrast it with “per-image calibration” approaches.

This generalized equation is applied to all L2 Landsat Bt images in the dataset. It is also
tested by applying it to images outside of the dataset without coincident MODIS data (prior
or past operational extent). For the latter application, we use L5 data prior to the launch of
MODIS Terra and L8 or L9 data after 1 January 2023, when MODIS data are unreliable. We
resampled L5 resolution to 100 m using bilinear interpolation prior to calibration to match
the resolution of the L7–9 dataset. These test data were then compared with coincidental
sensor measurements at specific pixel positions (see Section 2.3 and Table 1).

Table 1. Summary of available in situ sensor data, including coordinates, depth (“D”), distance
offshore (“Dist”), sensor type, historical data extent at study time, coordinates of nearest Landsat
pixel for validation, count of SST imagery on matching in situ data dates, and correlation/error
metrics from comparing in situ data with MODIS SST (MSST), as well as “all data” calibrated Landsat
(All), “selected” calibrated Landsat (R0), and uncalibrated Landsat (Bt) data. Correlation (r) and
error metrics (RMSEOLS, RMSE1:1) are from a generalized calibration (Equation (3)). “NA” indicates
unavailable data.

Name
Coordinate
Depth (D)

Distance Offshore (Dist)
Type Extent Pixel Count r RMSEOLS RMSE1:1

N46014:
Buoy 04/1981–05/2023 39.23078→N,

123.97424→W

All: 300 All: 0.83 All: 0.89 All: 1.15
39.225→N, 123.980→W R0: 147 R0: 0.91 R0: 0.62 R0: 1.06

D: 2.0 m Bt: 323 Bt: 0.75 Bt: 1.04 Bt: 1.86
Dist: 15.6 km MSST: 294 MSST: 0.70 MSST:1.13 MSST: 1.55

N46013:
Buoy 04/1981–05/2023 38.23544→N,

123.31667→W

All: 385 All: 0.79 All: 1.04 All: 1.25
38.235→N, 123.317→W R0: 175 R0: 0.87 R0: 0.73 R0: 1.17

D: 2.0 m Bt: 376 Bt: 0.65 Bt: 1.30 Bt: 2.00
Dist: 23.0 km MSST: 376 MSST: 0.69 MSST: 1.22 MSST: 1.53

BML Mooring:
Buoy 09/2012–05/2023 38.31180→N,

123.08312→W

All: 67 All: 0.92 All: 0.76 All: 0.95
38.312→N, 123.083→W R0: 40 R0: 0.92 R0: 0.65 R0: 1.00

D: 1.0 m Bt: 134 Bt: 0.87 Bt: 0.93 Bt: 1.63
Dist: 1.0 km MSST: 40 MSST: 0.87 MSST: 0.92 MSST: 1.31

TB Mooring:
Buoy 05/2013–10/2021 38.18783→N,

122.92771→W

All: 204 All: 0.85 All: 1.25 All: 1.56
38.188→N, 122.928→W R0: 95 R0: 0.92 R0: 0.98 R0: 1.42

D: 1.0 m Bt: 220 Bt: 0.81 Bt: 1.41 Bt: 2.53
Dist: 0.34 km MSST: NA MSST = NA MSST = NA MSST = NA

BML intake:
Intake 04/1988–05/2023 38.31539→N,

123.07324→W

All: 425 All: 0.73 All: 1.20 All: 1.56
38.316→N, 123.070→W R0: 188 R0: 0.83 R0: 0.89 R0: 1.58

D: 2.5–4.5 m tidal Bt: 451 Bt: 0.62 Bt: 1.40 Bt: 2.08
Dist: 0 km MSST: 50 MSST: 0.80 MSST: 1.17 MSST: 1.95

2.4. Data Validation

Landsat SST derived from both per-image calibration and generalized-equation cali-
bration are tested against in situ seawater temperature (Tinsitu) from sensors deployed on
the NOAA National Data Buoy Center buoys N46013 and N46013 (https://www.ndbc.

https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
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noaa.gov/, accessed on 10 February 2024), from sensors deployed on buoys in Tomales
Bay (TB Mooring) and off Bodega Bay (BML Mooring), and from a sensor deployed on
the Bodega Marine Laboratory seawater intake (BML Intake; https://boon.ucdavis.edu/,
accessed on 10 February 2024 )—see Table 1 and Figure 1. These measurement locations
are at varying distances offshore in order to capture variation across marine environments
(i.e., offshore, nearshore, at-shore, estuary). Landsat and in situ data were constrained to a
temperature range of 5 to 25 →C to eliminate extreme values caused by inaccuracies in sea
surface emissivity due to undetected image artifacts (clouds, shadows, and glint).

Hourly averaged in situ data are compared against SST data from the 100 m Landsat
pixel at that site. Sensor data at the BML Intake are compared to the pixel nearest to the
seawater intake. Sensor temperature data overlap with the MODIS capture time for each
date. As all of these in situ measurements are taken at depth (Table 1), a discrepancy is
expected between the sub-surface sensor temperature and the SST value, related to the
depth of the sensor and the strength of the near-surface stratification [49]. Furthermore, in
using in situ buoy measurements to validate the accuracy of these calibrated Landsat SST
data, we assume minimal uncertainty and error in these sensors’ measurements, treating
the use of buoy data as a reliable comparative standard.

To test our calibrations, we use Pearson’s r correlation between Tinsitu and SST at the
pixel (Table 1) closest to the buoy, determining the root mean square error RMSE from the
1:1 line (RMSE1:1) and from the ordinary least squares (OLS) linear best-fit line (RMSEOLS).
We also compare sensor measurements with SST estimates from MSST and Bt to benchmark
the relative performance of our methodology. We only use MSST images from the same
dates in which Landsat imagery is available to make a direct comparison. Landsat Bt data
are not filtered by date.

3. Results
3.1. Sea Surface Temperature Calibration

Of the 659 images calibrated for SST from L7 to L9, 557 images are considered as
viable for the “all data” dataset. These images went through a median of 6.0 iterations of
outlier removal. There was no observable relationship between the number of iterations
and the final Pearson’s r value. Of those images, 229 images were also in the “selected”
R0 dataset. Correlation values between coincident Bt and MSST values were high from
April to September, i.e., during the spring and summer upwelling season in northern
California (Figure 4). Variation in OLS best-fit equation constants was low in these seasons
(Figures 4 and 5). The lowest slope and smallest intercept values from these OLS best-fit
line equations were, respectively, lowest and closest to zero (closer to a 1:1 relation) during
this season.
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Figure 4. Monthly box and whisker plots from calibration of all data. Box margins are lower 25th
percentile of data (lower) and 75th percentile of data (upper). Orange line in box is monthly median.
Whiskers show minimum and maximum values. Red dotted line in c. and d. is overall average value.
(a) Pearson’s r correlation values from first iteration of per-pixel comparisons between Landsat Bt and
MSST. (b) Pearson’s r correlation values from final iteration of per-pixel comparisons after iterative
outlier removal between Landsat Bt and MSST. (c) Intercept values from OLS best-fit linear equations
from final iteration comparisons between Landsat Bt and MSST. (d) Intercept values from OLS best-fit
linear equations from final iteration comparisons between Landsat Bt and MSST.
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The distribution of m and b values from the individual MSST-Bt calibrations within
the R0 dataset are plotted in histograms in Figure 5. From these calibrations, the median of
slope values is m = 0.00297 and the median of intercept values is b = 105.879, yielding the
“generalized calibration” equation.

SST = 0.00297Bt ↓ 105.88→ (3)

A total of 90% of the slope and intercept values fall within 10% of each respective
constant value.

3.2. Data Validation Results

To explore the effectiveness of calibrations from per-image analysis, we compare
SST values with coincidental in situ measurements at each site, noting variability by site
(Figure 6). Within the “all data” group, BML Mooring showed the highest correlation
(r = 0.79) and lowest error relative to the 1:1 line (RMSE1:1 = 1.49 →C), while N46013
(r = 0.63) had the weakest correlation and TB Mooring had the highest errors
(RMSEOLS = 1.77 →C; RMSE1:1 = 3.00 →C). Overall, the accuracy of “all data” SST estimates
were comparable to Bt and MSST estimates.
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Figure 6. SST estimates from per-image-calibrated Landsat data plotted against water temperature
from in situ sensors: (a) N46014, (b) N46013, (c) BML Mooring, (d) TB Mooring, and (e) BML Intake.
Yellow data and trendline are for the All data dataset and red data and trendline are for R0 data.

Seen in Figure 6, per-image calibration with the “selected” R0 group notably improved
accuracy. Correlation was highest at N46014 and TB Mooring (r = 0.89), with the lowest
error metrics at N46014 (RMSEOLS = 0.71 →C; RMSE1:1 = 1.04 →C). The Landsat-calibrated
SST for these selected images was consistently more accurate than Bt or MSST across sites,
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with both RMSEOLS and RMSE1:1 at least 0.4 →C lower except at BML Mooring, where
differences were minimal.

The performance of SST estimates based on the “generalized calibration” equation
was considerably superior (Figure 7, Table 1) Within the “all data” dataset, SST estimates
are best at BML Mooring, where the correlation is strongest (r = 0.92) and error metrics
are lowest (RMSEOLS = 0.76 →C; RMSE1:1 = 0.95 →C). N46013 had the lowest correlation
(r = 0.73), and TB Mooring had the highest error (RMSEOLS = 1.25 →C; RMSE1:1 = 1.56 →C).
The performance across all metrics outperforms that from MSST and Bt at all sites except
for RMSEOLS and r at BML Intake, where MODIS estimates are slightly better when using
“all data”.
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Figure 7. SST estimates from generalized-equation-calibrated Landsat data plotted against water
temperature measured by in situ sensors: (a) N46014, (b) N46013, (c) BML Mooring, (d) TB Mooring,
and (e) BML Intake. Yellow data and trendline are for the All data dataset, red data and trendline are
for R0 data, green data and trend line are for USGS Bt data and purple is MODIS SST data.

As expected, performance is significantly stronger within the “selected” R0 group.
Correlation is strongest at BML Mooring, TB Mooring, and N46014 sites (respectively,
r = 0.92, 0.92, 0.91). The error from the OLS line is lowest at N46014 (RMSEOLS = 0.62 →C)
and BML Mooring (RMSEOLS = 0.65 →C). The error relative to the 1:1 line is lowest at BML
Mooring (RMSE1:1 = 1.00). Despite slightly weaker performance at BML Intake (r = 0.83;
RMSE1:1 = 1.58 →C) and errors at TB Mooring (RMSEOLS = 0.98 →C), SST estimates from the
generalized calibration remained more accurate than MSST or Bt at all sites (Figure 7 and
Table 1).

Figure 8 shows the differences between SST estimated from the “generalized cali-
bration” equation and in situ sensor-measured data for “all data” aggregated by month.
Across all buoys and months, SST is higher than Tinsitu. Within the “all data” dataset,
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this difference is greatest within the summer months from June to August, where median
differences are ~1.5 →C on average and smallest in December and January.
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4. Discussion
4.1. Image Calibration

We have developed and assessed a methodology for calibrating Landsat brightness
data using coincidental MODIS data. This allows for the production of fine-scale SST
imagery invaluable for resolving patterns in the nearshore ocean. By comparing SST
estimates produced through our generalized-equation methodology with coincident in situ
sensor data, we show markedly superior performance versus the standard USGS Level
2 Landsat Bt data, as well as the standard MODIS SST data. This methodology not only
enhances the overall estimation of SST but also allows for the semi-objective selection of an
image dataset.

Per-image calibration (Figure 6), when applied to our minimally filtered “all” dataset,
showed mixed reliability, with RMSEOLS similar to land-calibrated Bt data found in Figure 7.
However, the RMSE1:1 error from this dataset was generally lower than in the Bt data
(e.g., BML Intake was 0.40 →C lower). These results suggest that unsupervised per-image
calibration (as in past studies) may only conditionally yield a lower error than using Bt
data. In environments close to shore, such as BML Intake, per-image calibration provided
a ↓0.27 →C lower error than MSST, displaying its value for areas where MODIS data are
unavailable, such as at TB Mooring. The performance of per-image calibration is better
when applied to a tighter selection of images (“selected” data in the R0 grouping). This
approach exhibits increased correlation and reduced error relative to both USGS Level 2 Bt
data and MSST (Figure 6), particularly at sites closest to the shore. The selection of images
based on calibration not only proved efficient for isolating a “selected” R0 dataset—a task
traditionally performed manually and often arduous—but also facilitated the development
of a generalized equation.

Across all metrics and sites, SST estimates from the generalized equation demonstrated
superior accuracy. SST estimates from both datasets significantly outperformed the Bt and
MSST data, even at sites where per-image calibration had struggled.

In SST calibrated with the per-image approach, the “selected” data had an average
correlation r = 0.154 higher than the “all data”, a reduction in RMSEOLS of ↓0.31 →C, and
a reduction in RMSE1:1 of ↓0.46 →C. However, in SST calibrated with the generalized
equation step, the “selected” data correlation was only r = 0.07 higher than the “all data”,
the reduction in RMSEOLS was ↓0.25 →C, and the reduction in RMSE1:1 was only ↓0.048 →C.
This consistency affirms that selective image calibration is largely unnecessary once the
generalized equation is in place, thereby expanding the dataset and allowing for reliable
SST estimation over more extended time frames and diverse coastal environments.

To explore whether Landsat data can be calibrated independent of MODIS data by
using this generalized equation, we apply it to Landsat BT data before the launch of the
MODIS Terra satellite (Landsat 5 data from 1984 to 2000) and after its reliable data quality
window (Landsat 8 and 9 data after 2023). Validations based on in situ sensor data (Figure 9)
show comparable performance (correlation, RMSE1:1, and RMSEOLS) with validations from
the 2000–2023 dataset. While historical Landsat 5 data appear to exhibit a better fit with in
situ measurements, the recent data have a significantly smaller sample size, inadequate for
the analysis of methodological success. Given the excellent performance of the generalized
equation on independent data, it is likely that this equation will perform well at sites
elsewhere that are comparable to those in WRS tile path 45 row 33 (e.g., other coastal
upwelling regions with similar stratification patterns).

The superior performance of the generalized equation is expected, as this composite
approach based on “selected” image pairs excludes any misleading image pairs that may
retain unresolved artifacts in either Landsat or MODIS data. Notably, the generalized equa-
tion approach removes the potential for error due to poor-quality MODIS data in coastal
waters for specific overpass conditions. Nevertheless, there is a clear seasonal change in
slope and intercept values (Figure 4c,d), which is largely due to a poorer determination of
values in the winter months with higher cloud cover in this region.
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Figure 9. In situ sensor data on temperature at (a) N46014, (b) N46013, and BML Intake (c) plotted
against SST data from general-equation calibration of Landsat Bt data before and after MODIS capture
window. Green data points are data captured after 2023, and red data points are data captured prior
to 2000. Blue trend line is OLS best-fit line for combination of those two data ranges.

4.2. Sources of Error

While overall accuracy between Tinsitu and SST is high across sites and seasons, the
agreement is not as strong at some sites (although still better than for SST from Landsat
Bt or MODIS—see Table 1). This is expected, as the discrepancy between Tinsitu and
SST may be due to specifics of the in situ data at particular sites. While we compared
satellite data with in situ data as an independent measure of how well the Landsat SST
calibration works, it should be recognized that both measurements may differ from the true
surface temperature of the ocean (i.e., skin temperature). Errors associated with satellite
data are related to atmospheric effects and are well articulated in the remote sensing
literature [49,50], including the effects of aerosols, fog, and wildfires [51]. Errors associated
with in situ data are related to the vertical separation between the surface and the sensor in
the presence of near-surface stratification [52,53].

Near-surface stratification develops in the presence of surface runoff or surface heat-
ing. In our study region, runoff effects occur in winter and are typically small [9]—while
they could affect near-coastal locations like the Bodega Head or Tomales Bay sites, surface
heating is weak in winter. In summer, there is a persistently positive heat flux associated
with the low surface temperatures of upwelled water [54]. As described previously, ther-
mal stratification may develop near the surface during calm periods, above the depth
of near-surface sensors [52,53]. However, on windy days, near-surface waters are mixed
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and isothermal to depths below near-surface sensors; prior studies have identified wind
speeds of 6 m/s as a threshold for well-mixed near-surface conditions [55,56]; this value is
often exceeded in coastal waters off northern California [36,57]. The discrepancy between
skin and bulk temperatures due to surface heating is expected to yield positive errors
(SST > Tinsitu), as seen in Figure 7. For sites with the best agreements between Tinsitu and
SST (e.g., BML Mooring), the offset between regression line values and 1:1 line values
is about 0.5 →C in the center of the data range. Similar values have been seen in prior
studies of the discrepancy between skin and bulk temperatures [52,58], suggesting that
this half-degree positive bias in SST values is primarily due to near-surface stratification.
Furthermore, the slopes of the regression lines are less than the slope of the 1:1 line, ac-
counting for a smaller offset at lower temperatures, consistent with the expectation that
the offset tends toward zero on windy days as cold water is well correlated with strong
winds in this and other upwelling regions [37,54]. In addition to this persistent bias (offset),
other transient effects may contribute to differences between skin and bulk temperatures
(e.g., internal wave runup; diurnal warming) and combine with atmospheric effects to
account for the noise in both measurements, which is indexed by RMS errors. Without a
high-resolution field experiment, it is difficult to attribute error more specifically.

Given that the offset from the 1:1 line is explained by differences between skin and
bulk water temperatures, an appropriate measure of the performance of Landsat SST as a
measure of skin temperature is the RMS error relative to the linear regression line. Thus,
we estimate the uncertainty in the method as 0.62 →C from calculating the RMS error using
the best data at the best site (R0 data at N46014, Figure 7). This is supported by low RMS
errors elsewhere, with less than 1.0 →C for R0 data at all sites and less than 0.73 →C at all
mooring sites.

In general, the high performance at both offshore and nearshore mooring sites (N46013,
N46014, BML Mooring) highlights the skill of our SST calibration methodology in coastal
waters. Correlations for selected R0 data at mooring sites vary between 0.87 and 0.92, with
RMS errors between 0.62 and 0.73 →C (Table 1; Figure 7). The lowest correlation and highest
error are found at BML Intake, which is a sensor on an intake pipe at a fixed depth that
does not adjust with tidal level. Furthermore, the pipe is deeper than buoy sensors, varying
between 2.5 and 4.5 m below the surface within a cove that is partially sheltered from
waves and winds. The sensor temperature at this site may differ significantly from the true
surface (skin) temperature [48,56]. In other words, our calibrated SST may still perform
well here. The second-highest error is found at TB Mooring in Tomales Bay, which is a
low-inflow estuary. Although this buoy-mounted sensor is shallow (~1 m below surface),
the Bay can exhibit stratification due to cold-water intrusions in summer and low-salinity
runoff in winter [11,59] and again, the poorer agreement between SST and in situ data may
be unrelated to the performance of the calibrated SST in representing the true surface (skin)
temperature. At offshore mooring sites N46013 and N46014, near-surface stratification
likely accounts for an increased positive difference in summer months (maximum in June–
August), when surface heating creates near-surface stratification in cold upwelled waters
(Figure 8) [30,37,60].

4.3. Observation and Use Cases

High-resolution SST data allow for the observation of small-scale nearshore processes
that are too fine for detection with moderate-resolution data products like GOES or MODIS.
This enhancement enables the study of phenomena such as rip currents and their impact
on temperature patterns in the nearshore. Moreover, it facilitates the observation of various
non-turbid dynamics, irrespective of their size, which are typically not observable in
visual–optical/color satellite radiances. Examples include clear river plumes, tidal outflows
from bays and estuaries, and fine-scale eddies.

Figure 10 showcases these features. Fine-scale cold features align with the shapes and
locations of small turbid rip currents visible in high-resolution true-color imagery along
the Pt. Reyes Seashore (Figure 10d). The calibrated high-resolution SST in this figure also
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illuminates the shapes and extents of non-turbid mixing processes, manifesting as small
clear river plumes (Figure 10b) and tidal bay outflows (Figure 10c). While these features
may be identified in uncalibrated brightness values, calibration allows for the quantification
of the temperatures of these features and provides a clearer understanding of the thermal
differences between these features and ambient coastal waters, which could not be verified
with uncalibrated brightness temperature values.
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Figure 10. Mapped temperature from 25 April 2019 vs. true-color values at zoomed-in sites. Color
scale adjusted to highlight all temperature features. (a) Entire calibrated SST image. (b) Zoomed-
in calibrated SST (left) and true-color imagery (right) directly west of the Russian River estuary.
(c) Zoomed-in calibrated SST (left) and true-color imagery (right) north of the Pt. Reyes National
Seashore and south of Bodega Bay. (d) Zoomed-in calibrated SST (left) and true-color imagery (right)
of the north headland of Point Reyes national seashore.

The capability to sample SST with high spatial resolution enhances the ability to
monitor regions where regular in situ data collection is challenging, such as immediate
and often rocky nearshore areas. This facilitates novel observational studies and research
projects. For instance, an application of this methodology is the investigation of disparities
between nearshore temperatures and ambient coastal waters, including effects of the coastal
boundary layer [14] and the surf zone [61]. For example, plots of high-resolution SST for a
cross-shore transect off Manchester Bay show the possibility that waters within a kilometer
of the shore are 1–2 →C warmer or cooler than those offshore (Figure 11). Interestingly, even
though the observations were made at the same location and during the same season, the
temperature gradients along this transect showed varying trends—warming, cooling, or
displaying a parabolic shape with increasing distance from the shore.

Recognizing that these high-resolution SST data are available as far back as 1984, we
can determine fine-scale climatology across an extensive spatial area. For example, the
mean SST map in Figure 12 shows a familiar pattern with the coldest waters at the Point
Arena upwelling center [36,37] but also fine-scale nearshore zones off the Russian River,
in Bodega Bay, and along the north shore of Point Reyes that are a few degrees warmer
than upwelled waters further offshore. Narrower nearshore features are also evident off
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other north-facing beaches such as Ten Mile, Manchester, and Salmon Creek. A second
upwelling maximum is apparent near Fort Bragg.
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5. Conclusions
In our research, we develop, validate, and apply a two-step methodology for deriving

nearshore ocean water surface temperature from Landsat land brightness temperatures in
WRS tile path 45 row 33 using associated MODIS Terra SST data. By deriving calibration
constants from relationships between coincident MODIS Terra and Landsat data, we
can calibrate data prior to, during, and after the operational extent of reliable MODIS
Terra SST data. For validation, we tested our calibrated data against in situ temperature
measurements collected from sensors at various distances offshore within the study area
and compared these validations against those with values from uncalibrated USGS Landsat
land brightness temperatures and coincident MODIS SSTs. We find superior accuracy
compared with the off-the-shelf USGS product and even with coincident MODIS SST
data. For a minimally filtered dataset (n = 557 images), the RMSE against the OLS line
ranges between 0.76 and 1.20 →C, the RMSE against the 1:1 line ranges between 0.95
and 1.56 →C, and correlation coefficients range from r = 0.73 to 0.92. These metrics are
further enhanced when looking at comparisons within our R0 dataset (n = 229), which
consists of optimal images whose selection was enabled by our methodology. This dataset
has an RMSE against the OLS line ranging between 0.62 and 0.98 →C, an RMSE against
the 1:1 line ranging between 1.00 and 1.58 →C, and correlation coefficients ranging from
r = 0.83 to 0.92. Furthermore, it appears that the larger errors in validation may be related
to seasonal impacts, such as near-surface stratification, so that the smallest errors are likely
most representative of the skill of this calibrated Landsat data in representing true surface
temperatures—this error is between 0.62 and 0.73 →C.

The first step of our method enhances existing techniques for calibrating single-image
Landsat brightness temperature to SST using coincident MODIS data and extends its
application across hundreds of images rather than isolated dates. The second step develops
a generalized equation based on constants derived from median statistics of the best-fit
correlation equations from data derived from and selected with the first-step methodology.
This calibration exhibits uniformly enhanced data correlation across the dataset with in situ
temperature data both nearshore and offshore. This methodology’s strength lies in its ability
to transcend inaccuracies potentially introduced by artifacts such as undetected clouds and
shadows, which can adversely affect per-image calibrations. The resulting data quality,
closely aligned with in situ measurements, underscores the value of a generalized approach
in achieving more consistent and accurate SST estimations. The success in applying the
generalized calibration to historical satellite data not only validates the robustness and
utility of the methodology but also broadens the temporal scope of fine-scale SST analyses,
including long-term climatological assessments.

The goal of this paper is to provide an easily applied and replicable methodology for
optimizing SST data for nearshore observation. Future work could test these calibration
constants in other regions to assess the broader applicability of this methodology. This
would help validate the robustness of the approach and extend its utility. It is expected that
this calibration will perform well in coastal areas with similar oceanographic characteristics,
such as upwelling regions along western continental boundaries. Furthermore, an investi-
gation of the impacts of stratification on the calibration methodology could help refine and
enhance future efforts in deriving high-resolution SST data from satellite imagery. Here,
we show the promise of fine-scale SST data for questions that cannot be addressed with
coarser moderate-resolution SST data. Specifically, we are motivated by the prospect that
these high-resolution SST data will provide unique perspectives on nearshore processes,
with significant new insights related to nearshore water quality and ecosystems.
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