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We derive robust bounds on the equation of state (EOS) at finite baryon chemical potential using QCD

inequalities and input from recent lattice-QCD calculations of thermodynamic properties of matter at

nonzero isospin chemical potential. We use lattice data to deduce an upper bound on the baryon density of

the symmetric nuclear matter at a given baryon chemical potential and a lower bound on the pressure as a

function of the energy density. We also use constraints from perturbative calculations of the QCD EOS at

high density derived in earlier work and causality to delineate robust bounds on the EOS of isospin

symmetric matter at densities relevant to heavy-ion collisions.
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I. INTRODUCTION

Recent studies have provided useful constraints on the

equation of state (EOS) of dense matter using input from

astrophysics and nuclear physics. Several authors have

shown that it is possible to combine measurements of heavy

neutron-star masses, neutron-star radii, and tidal deform-

ability to constrain the pressure of neutron-rich matter at

baryon density in the range 2–4nsat, where nsat ≃ 0.16 fm−3

is the saturation density inside nuclei. At lower density,

where nuclear matter is nonrelativistic and dilute, nuclear

Hamiltonians derived using phenomenological considera-

tions and chiral effective field theory (χEFT) now provide

useful constraints on the EOS, and a comprehensive

discussion of these calculations and results are reviewed

in [1]. At much higher baryon density, for nB ≳ 40nsat, the
typical momentum scale for quark and gluon interactions

becomes much larger than ΛQCD ≃ 200 MeV and pertur-

bative QCD (pQCD) calculations provide reliable and

stringent constraints on the EOS as reviewed in [2].

Further, in Ref. [3], it was shown that thermodynamic

consistency and stability conditions could be used to

extrapolate the pQCD constraints to lower density.

The tightest constraints on the EOS of neutron-rich

matter, which is characterized by a large isospin asymmetry

due to constraints imposed by charge neutrality and beta

equilibrium, are obtained from observations of neutron-star

structure. There is a one-to-one correspondence between

the mass-radius relationship of neutron stars and the EOS

through Einstein equation [4] (and similarly for other

observables such as tidal deformability), and hence astro-

physical measurements provide robust bounds on the EOS.

Indeed, it has been shown that the large portion of the

allowed region of the EOS is strictly ruled out by the tidal

deformability bound from the GW170817 event and the

existence of the two-solar-mass pulsars [5–8].

As for isospin symmetric matter, experimental measure-

ments of the isoscalar giant monopole resonances in nuclei

provide strong constraints on the incompressibility coef-

ficient of symmetric nuclear matter EOS at saturation

density (see, e.g., Ref. [9] for a review), but reliable

constraints at higher density have been elusive. Although

there has been progress in identifying several EOS-

sensitive observables in heavy-ion collisions that access

high baryon density, an interpretation of the data has been

difficult. The systematic uncertainties associated with the

hadronic transport models needed in this context remain

poorly understood, and the EOS constraints derived using

them (see, e.g., [10–12]) are not as robust as the astro-

physical constraints on isospin asymmetric matter.

The purpose of this study is to demonstrate that we can

use lattice-QCD calculations of thermodynamic properties

at μI > 0 to derive useful and robust bounds on the EOS of

isospin symmetric matter at μB > 0 and low temperature (μI
and μB are isospin and baryon chemical potentials, respec-

tively). Intriguingly, although the ground state of the matter

at μB ¼ 0 and nonzero μI, which is characterized by a Bose

condensate of pions for μI > mπ (mπ is the pion mass) [13],

is very different from baryonic matter at nonzero μB, a

QCD inequality that relates the pressures of matter at

nonzero μI and μB derived by Cohen in Ref. [14] allows us

to derive this bound. We employ results from recent lattice-

QCD calculations at μI > 0 [15] to obtain an upper bound

on the pressure as a function of μB.

The QCD inequalities, pioneered by the seminal works

dating back to four decades ago [16–18], relate different

correlation functions without explicitly evaluating them.

They are derived from inequalities among the integrands in

the path integral expressions; using the fact that the path

integral measure is positive, path-integrated quantities also
*
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satisfy inequality relations (see also Ref. [19] for a

Hamiltonian variation approach). The QCD inequalities

have been successful in discussing the symmetry-breaking

patterns, comparing hadron masses, etc., in the vacuum (see

Ref. [20] for a comprehensive review). In contrast, at

nonzero chemical potential, the QCD inequalities generally

cannot hold between path-integrated quantities because the

fermion determinant becomes complex valued, and the path

integral measure is not positive—and is widely known as

the fermion sign problem. However, there is an exceptional

case where one can still obtain the positive path integral

measure with nonzero chemical potential; it is QCD at

nonzero μI, which can be regarded as a complex phase-

quenched theory for QCD at nonzero μB [13,21] (see

also [22]). From this fact, one can put an upper bound on

the path integral of QCD at nonzero μB from that of QCD at

nonzero μI (see, e.g., Ref. [23] for an application of the

QCD inequality at nonzero μI).

The positivity of the path integral measure in QCD at

nonzero μI circumvents the sign problem and there have

been several lattice studies of the phase structure and

thermodynamic properties of the two-flavor isospin matter

at nonzero μI [15,24–36]. Apart from the QCD-like theory

with Nc ¼ 2 (see, e.g., [37–41]), QCD with Nc ¼ 3,

μB ¼ 0 and μI > 0 is the only system for which lattice

calculation of the EOS at nonzero chemical potential

around vanishing temperature is feasible. A recent lattice-

QCD calculation was able to construct states with a large

number of pions (6144) corresponding to μI > 0 and

negligible temperature and measure their thermodynamic

properties [15]. We use their results to constrain the

thermodynamic properties of matter with μB > 0 at

vanishing temperature. To our knowledge, this is the first

example of a lattice bound on the EOS at nonzero μB

and T ≈ 0.

The bound we derive applies to isospin symmetric matter

at nonzero μB with zero net strangeness. Such matter is

interesting because it is realized in heavy-ion collisions and

is relevant to the QCD critical point searches in heavy-ion

collisions. The critical point is the end point of a con-

jectured first-order line in the μB − T plane of isospin

symmetric matter (for a review, see [42,43]). If the first-

order phase transition persists at low temperatures, the

baryon density would be discontinuous across it. To

constrain the jump in density, we translate constraints on

the pressure to a baryon number density constraint using

the integral constraint method developed in Ref. [3]. This

method also allows us to derive constraints on the pressure

as a function of the baryon energy density at nonzero μB

and low temperature. The bounds we find may not seem

stringent but robustly exclude a soft EOS characterized by a

low sound speed v2s ≲ 0.2 for μB in the range 1–2 GeV. We

find that they are competitive with bounds derived from

robust extrapolations of pQCD that rely on thermodynamic

consistency, stability, and causality conditions [3]. The

interplay between these independent bounds could provide

guidance for both lattice QCD and pQCD.

The paper is organized as follows. In Sec. II, we review

the inequalities that compare the QCD thermodynamics at

nonzero μB and μI in detail. We show how recent lattice

results constrain the EOS in the μB − P plane in Sec. III. In

Sec. IV, we use constraints on the μB − P plane to constrain

nBðμBÞ and eventually PðεÞ. In doing so, we express the

pressure as an integral of the baryon density and specify the

constant of integration using empirical information about

nuclear matter at the saturation point to obtain a lower

bound on the pressure as a function of the energy density. In

Sec. V, we use pQCD constraints on the high-density EOS

to specify the constant of integration and isospin-QCD

lattice data to obtain an upper bound on the pressure as a

function of the energy density. In Sec. VI, we compare

results obtained in the previous sections with the pQCD

integral constraint derived earlier from the thermodynamic

consistency, stability, and causality conditions [3].

II. QCD INEQUALITIES AT NONZERO

CHEMICAL POTENTIALS

Here, we review QCD inequalities at nonzero μB and μI

and derive the relationship between QCD partition func-

tions of the baryonic matter and the isospin matter, which

are denoted as ZBðμBÞ and ZIðμIÞ, respectively. The

derivation is based on a Euclidean path integral represen-

tation and was presented in Ref. [14] (see also Ref. [44]). In

the following, we consider QCD in an Euclidean space with

Nf ¼ 2 degenerate flavors. We will specify the temperature

to be zero, but the inequalities shown below also hold at any

temperature.

A. Partition function with nonzero baryon

chemical potential

The Dirac operator DðμqÞ at a nonzero real-valued quark
chemical potential μq is given by

DðμÞ≡ =Dþm − μqγ0; ð1Þ

where the covariant derivative =D≡ =∂þ ig=A is a skew-

Hermitian operator, i.e., =D† ¼ −=D. Furthermore, due to the

skew-Hermiticity of =D, the Dirac operator at μq ¼ 0

becomes pseudo-Hermitian by γ5, and

γ5Dðμq ¼ 0Þγ5 ¼ −=Dþm ¼ D†ðμq ¼ 0Þ: ð2Þ

When μq ¼ 0, this γ5-pseudo-Hermiticity guarantees a

positive path integral measure with detDðμq ¼ 0Þ ≥ 0;

this positivity is key to deriving QCD inequalities for

path-integrated quantities. In contrast, at μq ≠ 0, the

γ5-pseudo-Hermiticity is lost because

γ5DðμqÞγ5 ¼ D†ð−μqÞ ≠ D†ðμqÞ; ð3Þ
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and consequently, the path integral measure is no longer

positive.

For QCD with two flavors, the partition function ZB in

the path integral representation is given by

ZBðμBÞ ¼

Z

½dA�

�

detD

�

μB

Nc

��

2

e−SG ; ð4Þ

where SG is the Euclidean action of QCD in the gauge

sector. In general, the fermion determinant in the above

expression is complex. However, using the charge con-

jugation symmetry that requires ZBðμBÞ ¼ ZBð−μBÞ and

the following relation derived from Eq. (3):

detDð−μqÞ ¼ det γ5Dð−μqÞγ5 ¼
�

detDðμqÞ
�

�; ð5Þ

it can be shown that

ZBðμBÞ ¼

Z

½dA�Re

�

detD

�

μB

Nc

��

2

e−SG ; ð6Þ

as should be expected on physical grounds since the

partition function should be real-valued function [14]

(see also Refs. [45–49]).

B. Partition function with nonzero isospin

chemical potential

The path integral representation of the partition function

of u and d quarks at finite μI and μB ¼ 0 is given by

ZIðμIÞ ¼

Z

½dA� detD

�

μI

2

�

detD

�

−
μI

2

�

e−SG ; ð7Þ

where DðμqÞ is the Dirac operator defined in Eq. (1). The

arguments of the fermion determinants have opposite signs

�μI as u and d quarks have opposite (third components of)

isospins I3. From the relation (5), ZIðμIÞ can be rewritten as

ZIðμIÞ ¼

Z

½dA�

�

�

�

�

detD

�

μI

2

��

�

�

�

2

e−SG : ð8Þ

The positivity of the path integral at finite μI measure

mentioned earlier is now explicit in Eq. (8). We note that

QCD at nonzero μI can also be regarded as the phase-

quenched theory of two-flavor QCD at nonzero μB in which

the complex phase of the fermion determinant is discarded.

This is quite distinct from the quenched approximation in

which the entire fermion determinant is neglected.

C. QCD inequalities

From the relation Rez2 ≤ jz2j ¼ jzj2, the following

inequality holds:

Re

�

detD

�

μB

Nc

��

2

≤

�

�

�

�

detD

�

μB

Nc

��

�

�

�

2

: ð9Þ

From this inequality, we get an upper bound on ZBðμBÞ:

ZBðμBÞ ≤

Z

½dA�

�

�

�

�

detD

�

μB

Nc

��

�

�

�

2

e−SG : ð10Þ

The lhs and rhs differ by the phase of the determinant, so

the inequality is saturated when the phase is unity. The rhs

can be recast as ZIðμIÞ by mapping μB to μI with an

appropriate prefactor, which is μI ¼ 2μB=Nc. We see that

Eq. (10) combined with Eq. (8) yields a useful inequality

ZBðμBÞ ≤ ZI

�

μI ¼
2μB

Nc

�

; ð11Þ

which was first derived by Cohen in Ref. [14].

By taking the logarithm of this inequality, one obtains

an upper bound on the pressure of the baryonic matter at

a given μB in terms of the pressure of isospin matter

μIð¼ 2μB=NcÞ:

PBðμBÞ ≤ PI

�

μI ¼
2μB

Nc

�

: ð12Þ

This inequality will eventually be saturated at asymptoti-

cally high density, as can be seen in the perturbative

expressions of the pressure at nonzero μB and μI as they

are identical up to order α2s, where αs is the strong coupling

constant. The difference appears at Oðα3sÞ [22].

D. An inequality for baryonic matter

with isospin imbalance

The pressure inequality derived in the preceding dis-

cussion applies to isospin-symmetric baryonic matter. From

the convexity condition of the pressure derived in Ref. [50]

and given by

PðμB; 0Þ ≤ PðμB; μIÞ ≤
1

2

�

PðμB þ μI; 0Þ þ PðμB − μI; 0Þ
�

;

ð13Þ

one can derive a bound on the pressure at nonzero μB

and finite isospin imbalance μI, denoted as PðμB; μIÞ. Given
the relations between baryonic and isospin pressures and

the general pressure with an arbitrary isospin imbalance,

PBðμBÞ ¼ PðμB; 0Þ and PIðμIÞ ¼ Pð0; μIÞ, and by combin-

ing with the QCD inequalities above, we obtain

PðμB;μIÞ≤
1

2

�

P

�

0;
2

Nc

ðμBþμIÞ

�

þP

�

0;
2

Nc

ðμB −μIÞ

��

:

ð14Þ
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This can, in principle, be applied to the neutron-star matter

where the charge neutrality and the beta-equilibrium condi-

tion are fulfilled with nonzero μI. In practice, however, this

inequality requires the value of μI as a function of μB, which

we cannot know from the current neutron-star observations

unless we assume some model.

III. LATTICE-QCD BOUND ON THE BARYONIC

MATTER PRESSURE

From the inequality (12), the lattice-QCD calculation of

the isospin matter EOS puts an upper bound for the two-

flavor symmetric matter EOS.

In Fig. 1, we plot the lattice-QCD results of the isospin

matter pressure from Ref. [15]. The blue and red shaded

regions marked with LQCD A and LQCD B in Fig. 1 are

the results sampled from different ensembles at nearly

vanishing temperature, T ∼ 23 and 17 MeV for ensembles

A and B, respectively. The x axis is rescaled as μI → μB ¼
ðNc=2ÞμI. The normalized pressure P=Pideal is read out

from the lattice data in Ref. [15] by multiplying ð1=3 − ΔÞ
and 3ε=εideal, where Δ≡ 1=3 − P=ε and 3Pideal ¼ εideal.

The pressure of the ideal quark gas is given by Pideal ≡

NcNfμ
4
q=ð12π

2Þ with μq ≡ μB=Nc ¼ μI=2. We simply

evaluate the uncertainty of P by taking the square root

of the squared sum of relative errors. We plot the resulting

pressure P=Pideal in Fig. 1. The inequality (12) rules out the

gray hatched region above the lattice data.

We note that the typical value of the normalized pressure

P=Pideal inferred from the neutron-star data is less than one.

Also, the pQCD at large μB predicts P=Pideal < 1 as the first

coefficient of OðαsÞ in the perturbative expansion is

negative. By contrast, the normalized pressure in the

isospin matter surpasses unity, as can be seen in Fig. 1.

This clearly indicates that the complex phase in the fermion

determinant at the nonzero baryon chemical makes a

substantial contribution to reducing the pressure of the

baryonic matter.

The exclusion of the high-pressure region in the μB − P
plane can be used to constrain the EOS or the function

PðεÞ, where ε is the energy density. It can also be used

to constrain the evolution of baryon density nBðμBÞ. We

will discuss both of these constraints in Sec. IV. Here, to

gain insight into how the constraints in Fig. 1 translate to

constraints on the speed of sound in dense matter, which at

zero temperature is defined by the relation vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

dP=dε
p

,

we construct simple scenarios in which vs is constant. In
this case, one can use the empirical information about the

nuclear saturation point which is characterized by P ¼ 0

at μB ¼ μsat ¼ 923 MeV and ε ¼ εsat ¼ 150 MeV=fm3 to

obtain

PðμBÞ ¼
v2sεsat

1þ v2s

��

μB

μsat

�

1þv−2s
− 1

�

; ð15Þ

where vs is taken to be a constant. In Fig. 2, we plot the

EOS with different values of v2s and see that a softer EOS

characterized by a small value of v2s has a larger slope in the
PðμBÞ relation. This can be understood by noting that the

sound speed can also be written as

v2s ¼
nB

μBχB

; ð16Þ

where nB ¼ dP=dμB is the baryon density and χB ¼
dnB=dμB is the baryon susceptibility; they correspond to

the slope and the curvature of a curve PðμBÞ, respectively.
As μB increases, χB grows slowly compared to nB unless an

EOS has an extremely soft point such a first-order phase

transition, so the stiffness depends dominantly on the value

FIG. 1. Pressure of the isospin matter. The pressure is normal-

ized by the ideal quark gas value Pideal ≡ NcNfμ
4
q=ð12π

2Þ with

μq ≡ μB=Nc ¼ μI=2. The gray hatched region is excluded by the

isospin lattice-QCD data.

FIG. 2. Constraints imposed by the QCD inequality on the

pressure-chemical potential plane. For reference, the prediction

of the constant speed of sound EOSs with different values

are shown.
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of nB. The constant extrapolations with small values of the

sound speed are excluded by the lattice-QCD constraint as

one can see in Fig. 2 that the EOSs with v2s ¼ 0.1 are ruled

out. Thus, the upper bound on the function PðμBÞ excludes
the possibility of having a soft EOS over a wide range

of μB. This bound on the speed of sound and the average

stiffness of the EOS could be employed in modeling heavy-

ion collisions where the model assumption about the speed

of sound in baryonic is necessary [11].

IV. BOUNDS ON nBðμBÞ AND PðεÞ

In this section, we use the integral constraint method

developed in Ref. [3] to translate the lattice-QCD constraint

on the function PðμBÞ to obtain constraints on the functions
nBðμBÞ and PðεÞ. The integral constraint relies on a

reference point where all of the thermodynamic properties

are known. As mentioned earlier, at low density, the

empirical properties of nuclear matter at the saturation

density nB ¼ nsat ¼ 0.16 fm−3 provide a reference point

characterized by P ¼ 0 at μB ¼ μsat ¼ 923 MeV, and

ε ¼ εsat ¼ 150 MeV=fm3. At asymptotically high density,

one can use the pQCD calculations of the thermodynamic

properties to establish a high-density reference point. In

what follows, we use the low-density reference point and

study its implications. Additional constraints that arise

from implementing a high-density reference point will

be discussed in Sec. V.

A. Bounds on nBðμBÞ

To establish constraints on the μB − nB plane, we first

note that thermodynamic consistency requires PðμBÞ to be

a continuous function and thermodynamic stability requires

ðd=dμBÞ
2PðμBÞ ≥ 0. This implies dnBðμBÞ=dμB ≥ 0 and

indicates that the function nBðμBÞ cannot decrease with

increasing μB. Further, since

1

v2s
¼

μB

nB

dnB

dμB
ð17Þ

and causality requires v2s ≤ 1, implying a lower bound on

the slope of the function nBðμBÞ,

dnB

dμB
≥
nB

μB

: ð18Þ

Using the low-density reference point and integrating

Eq. (18) we arrive at a lower bound on the baryon density

nminðμBÞ ¼
nsat

μsat

μB: ð19Þ

To obtain an upper bound on the baryon density at a

given value of μB ¼ μ0, which we denote as n0, we define a
general function ňðμB; μ0; n0Þ to represent all possible

behavior of the baryon density nBðμBÞ in the ground state

that passes through the point ðμ0; n0Þ and is compatible

with Eq. (18) and subject to the boundary condition set by

the low-density reference point. Since nB ¼ dP=dμB and

PðμsatÞ ¼ 0, we obtain the pressure P̌ðμB; μ0; n0Þ associ-

ated with ňðμB; μ0; n0Þ at any μB > μsat by integration, and

the QCD inequality in Eq. (12) reads

P̌ðμB; μ0; n0Þ ¼

Z

μB

μsat

dμ ňðμ; μ0; n0Þ

≤ PI

�

μI ¼
2μB

Nc

�

: ð20Þ

We construct a unique function

ňðμB; μ0; n0Þ ¼

8

<

:

nsat
μsat

μB ðμsat ≤ μB < μ0Þ;

n0
μ0
μB ðμB ≥ μ0Þ;

ð21Þ

which is also shown in Fig. 3 that minimizes the pressure

P̌ðμB; μ0; n0Þ at μB subject to the low-density reference

point to saturate the above inequality. We note that this

construction, which is necessary to obtain the constraint on

the μB − nB plane, is model independent, and the upper

bound on the density n0 at μ0 will apply to any EOS with

and without phase transitions.

For μB < μ0, the baryon density that gives the smallest

possible pressure is determined by Eq. (19) with the

smallest slope starting from ðμsat; nsatÞ. At μ0, the density

jumps to n0 with v
2
s ¼ 0. Above μ0, the causal extrapolation

from ðμ0; n0Þ sweeps out the smallest area.

We solve the equation P̌ðμ̌�; μ0; n0Þ ¼ PIðμ̌�Þ for a given
μ0 to find the maximum density n0 ¼ nmaxðμ0Þ compatible

with Eq. (12). The point μ̌� is a chemical potential at which

P̌ and PI intersect. The solution to this equation gives the

maximum density

nmaxðμBÞ ¼
−nsatμ

3
B þ μBμsat½nsatμsat þ 2PIðμ̌�Þ�

μsatðμ̌
2
� − μ

2
BÞ

; ð22Þ

FIG. 3. The construction of the baryon density ňðμB; μ0; n0Þ
such that it minimizes the area at μ > μ0. It extrapolates from the

low-density reference point ðμsat; nsatÞ, passes through a specific

point ðμ0; n0Þ, and minimizes the pressure at μ ≥ μ0.
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and the location of μ̌� coincides with the tangent point of P̌
and PI; it is determined by the equation

nmaxðμBÞ

μB

μ̌� ¼
dPI

dμB

�

�

�

�

μB¼μ̌�

: ð23Þ

The lower bound on baryon density defined by Eq. (19)

and the upper bound defined by Eq. (22) are shown in

Fig. 4. We draw the upper and lower curves of the red and

blue bands using the upper and lower bounds on the

pressure shown in Fig. 1, respectively. We note that the

value of nmaxðμBÞ also depends on the slope of PIðμBÞ as is
clear from the expression of μ̌� (23), so the red and blue

bands shown in Fig. 4 may not account for the actual

uncertainty of nmax. This is also true for the red and blue

bands in the figures that appear later.

In deriving nmaxðμBÞ, we use the isospin lattice data

up to μB ≃ 3500 MeV. At μB ¼ μsat, μ̌� ≃ 1500 MeV;

it means that the baryon density around the saturation

point is constrained by the isospin lattice data at

μB ≃ 1500 MeV.

The validity range of the lattice bound on the baryon

density is limited up to μ̌� ≲ 3500 MeV because we use the

lattice data only up to μB ≃ 3500 MeV so we cannot

impose the lattice bound above μ̌� ≳ 3500 MeV. The value

of μ̌� ¼ 3500 MeV is realized at μB ≃ 2400 MeV for

ensemble A and μB ≃ 2250 MeV for ensemble B.

We observe that a relation μ̌� ≃ ð3=2ÞμB holds empiri-

cally for a given μB; it means that the lattice constraint is

imposed at μ ¼ μ̌� ≃ ð3=2Þμ0 to put an upper bound on the

baryon density at μ0 in Eq. (20). Meanwhile, the isospin

chemical potential μI of the isospin lattice data is rescaled

as μB ¼ ð3=2ÞμI to compare them with the baryonic matter.

Therefore they imply that the baryon density at μB ¼ μ0 is

constrained by the isospin lattice data around μI ≃ μ0.

B. Bounds on PðεÞ

Now we translate the bound in the μB − nB plane (Fig. 4)

to the bound in the ε − P plane (Fig. 5) following the

procedure outlined in Ref. [3].

To this end, we find the maximum and minimum ε at a

given μB from the Euler equation ε ¼ −Pþ μBnB and the

isenthalpic condition h ¼ εþ P ¼ μBnB ¼ const. On the

isenthalpic line segment ε ¼ −Pþ h in the ε − P plane,

the maximum (minimum) ε is realized for the minimum

(maximum) P on the upper left (lower right) end point of

the line segment. Since the maximum and minimum ε are

entangled with the minimum and maximum P, we first

discuss Pmin and Pmax because they can be calculated easily

by integrating the nBðμBÞ relation obtained earlier in this

section.

At a specific point ðμ0; n0Þ in the μB − nB plane, which

satisfies the isenthalpic condition n0 ¼ h=μ0, the minimum

pressure is given by the integration of nmin followed by the

first-order phase transition at μ0:

Pminðμ0Þ ¼
nsat

2μsat
ðμ20 − μ

2
satÞ: ð24Þ

Note that the minimum pressure depends only on μ0 but not

on n0 and h, so the pressure takes the smallest value at the

smallest possible μ0. Such μ0 is realized at the intersection

of the isenthalpic line nB ¼ h=μB and the maximum

density nB ¼ nmaxðμBÞ in the μB − nB plane.

Likewise, the maximum pressure at a specific point

ðμ0; n0Þ, which satisfies the isenthalpic condition

n0 ¼ h=μ0, is

FIG. 4. Bound on nBðμBÞ from the lattice-QCD data combined

with the saturation property of nuclear matter.
FIG. 5. Bound on PðεÞ from the lattice-QCD data combined

with the saturation property of nuclear matter.
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Pmaxðμ0; n0 ¼ h=μ0Þ ¼

8

>

<

>

:

h
2




1 −
μ
2
sat

μ
2
0

� 


n0 ≤
nmaxðμsatÞ

μsat
μ0

�

;

h
2




1 −
μ
2
u

μ
2
0

�

þ
R

μu
μsat

dμ0nmaxðμ
0Þ




n0 >
nmaxðμsatÞ

μsat
μ0

�

;
ð25Þ

where the upper bound of the integral in the latter case,

μu, is the intersection of the line nB ¼ ðn0=μ0ÞμB with the

curve nB ¼ nmaxðμBÞ:

μu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μsat½μ̌
2
�n0 − μ0μsatnsat − 2μ0PIðμ̌�Þ�

μsatn0 − μ0nsat

s

: ð26Þ

From the above expression, the maximum pressure Pmax

takes the largest value at the largest possible μ0, which is

realized at the intersection of the isenthalpic line nB ¼
h=μB and the minimum density nB ¼ nminðμBÞ in the

μB − nB plane.

The upper end of the isenthalpic line segment in the

ε − P plane is

�

ε

P

�

¼

�

h − PmaxfμmaxðhÞ; nmin½μmaxðhÞ�g

PmaxfμmaxðhÞ; nmin½μmaxðhÞ�g

�

; ð27Þ

where μmaxðhÞ is given by the intersection of nB ¼ h=μB
and the nB ¼ nminðμBÞ. The lower end is

�

ε

P

�

¼

�

h − Pmin½μminðhÞ�

Pmin½μminðhÞ�

�

; ð28Þ

where μminðhÞ is given by the intersection of nB ¼ h=μB
and the nB ¼ nmaxðμBÞ. By substituting h ¼ μBnminðμBÞ in
Eq. (27) and h ¼ μBnmaxðμBÞ in Eq. (28), we find the upper
and the lower bound on the allowed range of values in the

ε − P plane as parametric equations with μB as a parameter.

The parametric equation for the upper bound is

�

ε

P

�

¼

�

εminðμBÞ

Pmax½μB; nminðμBÞ�

�

; ð29Þ

and that for the lower bound is

�

ε

P

�

¼

�

εmaxðμBÞ

PminðμBÞ

�

; ð30Þ

where the minimum and maximum energy densities are

defined, respectively, as

εminðμBÞ ¼ −Pmax½μB; nminðμBÞ� þ μBnminðμBÞ;

εmaxðμBÞ ¼ −PminðμBÞ þ μBnmaxðμBÞ: ð31Þ

In Fig. 5, we plot the bound in the ε − P plane. The

lattice-QCD data constrain the soft part of the EOS as

explained in the previous section. The upper bound

matches with the causal extrapolation from the point

ðεsat; PsatÞ with v2s ¼ 1. The heavy-ion constraint from

the hadron transport model is also overlaid [11].

V. COMBINING LATTICE-QCD DATA WITH

pQCD REFERENCE POINT

In this section, we use the pQCD information in addition

to the lattice data of isospin QCD matter and the empirical

saturation property of nuclear matter; we discuss the

modification to the bound on nBðμBÞ and PðεÞ.

A. High-density reference point from perturbative QCD

For the pQCD thermodynamics, we use the result expan-

ded up to Oðα2sÞ [51,52] in the MS scheme [53,54] for the

massless Nf ¼ 2 quarks. We use the perturbative coeffi-

cients concisely summarized in Table II of Ref. [55]. We

assume the running of αsðΛ̄Þ at the N2LO and take its scale

as Λ̄ ¼ 2μB=Nc. The MS scale is fixed as Λ
MS

≃ 330 MeV,

which is the value suggested from the Nf ¼ 2 lattice-QCD

data [56,57]. The uncertainty corresponding to the ambi-

guity in the choice of Λ̄ is commonly evaluated in the

literature by varying it by a factor of 2, namely taking X ≡

Λ̄=ð2μB=NcÞ as X∈ ½1=2; 2�; here we also follow this

convention.

We choose the high-density reference point ðμH; nH; PHÞ
as tabulated in Table I. Throughout this work, we fix μH as

3000 MeV although one may be able to push down μH to

2700 MeVas this value achieves the relative scale variation

uncertainty of ∼24%, which is the standard value used in

the literature as in Refs. [3,5,6,8,58].

B. Bounds on nBðμBÞ

Combining the causal extrapolation from the high-

density reference point nB ¼ ðnH=μHÞμB and the lattice

upper bound (22) obtained in Sec. IV, the maximum density

is modified as

TABLE I. The high-density reference points from the pQCD

thermodynamics. The uncertainties arises from the ambiguity in

the choice of the renormalization scale Λ̄, which is taken to be

Λ̄ ¼ 2μH=Nc and varied by a factor 2.

μH ½MeV� nH [nsat] PH ½MeV=fm3�

3000 43.86þ1.86
−2.47 4982þ353

−882
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nmaxðμBÞ ¼

8

<

:

−nsatμ
3
B
þμBμsat½nsatμsatþ2PIðμ̌�Þ�

μsatðμ̌
2
�−μ

2
B
Þ

ðμsat ≤ μB < μ̂cÞ;

nH
μH
μB ðμ̂c ≤ μB ≤ μHÞ;

ð32Þ

where μ̂c is given by the intersection of the above two cases:

μ̂c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μsat½μ̌
2
�nH − μHμsatnsat − 2μHPIðμ̌�Þ�

μsatnH − μHnsat

s

: ð33Þ

With the high-density reference point, the lower bound

on the baryon density is also subject to the lattice bound. To

discuss a modification to the lower bound (19), we define

a general function n̂ðμB; μ0; n0Þ to represent all possible

configurations of the baryon density nBðμBÞ in the ground

state that passes through the point ðμ0; n0Þ and is subject

to the causality and the boundary condition set by the

high-density reference point. We obtain the pressure

P̂ðμB; μ0; n0Þ corresponding to n̂ðμB; μ0; n0Þ at any μB <
μH by integration; the QCD inequality (12) reads

P̂ðμB; μ0; n0Þ ¼ PH −

Z

μH

μB

dμ n̂ðμ; μ0; n0Þ

≤ PI

�

μI ¼
2μB

Nc

�

: ð34Þ

To saturate the above inequality, we choose a specific

n̂ðμB; μ0; n0Þ that minimizes the pressure P̂ðμ; μ0; n0Þ at μ
subject to the high-density reference point. This is equiv-

alent to maximizing the area beneath n̂ðμB; μ0; n0Þ. This
function is shown in Fig. 6 and defined as

n̂ðμB; μ0; n0Þ ¼

( n0
μ0
μB ðμB < μ0Þ;

nH
μH
μB ðμ0 ≤ μB ≤ μHÞ:

ð35Þ

For μB < μ0, the baryon density that sweeps out the

largest area is the causal extrapolation with the largest slope

starting from ðμ0; n0Þ. At μ0, the density jumps from n0 to
ðnH=μHÞμ0 with a first-order phase transition. Above μ0, the
baryon density that sweeps out the largest possible area is

determined by the latter case of Eq. (32) with the causal

extrapolation from ðμH; nHÞ.

We solve the equation P̂ðμ̂�; μ0; n0Þ ¼ PIðμ̂�Þ for a given
μ0 to find a minimum density n0 ¼ nminðμ0Þ compatible

with Eq. (12). The point μ̂� is a chemical potential at which

P̂ and PI intersect. The solution to this equation gives the

lattice-QCD lower bound on the density

n0ðμ0Þ ¼
nHμ

3
0 − μ0μHfnHμH − 2½PH − PIðμ̂�Þ�g

μHðμ
2
0 − μ̂

2
�Þ

; ð36Þ

and the location of μ̂� coincides with the tangent point of P̂
and PI; it is defined by the equation

n0ðμ0Þ

μ0

μ̂� ¼
dPI

dμB

�

�

�

�

μB¼μ̂�

: ð37Þ

So far, we have not used the information of the low-density

reference point ðμsat; nsatÞ. We combine the lattice bound

(36) with the causal extrapolation from ðμsat; nsatÞ (19), and
we obtain the minimum density

nminðμBÞ ¼

8

<

:

nsat
μsat

μB ðμsat ≤ μB < μ̌cÞ;

nHμ
3
B
−μBμHfnHμH−2½PH−PIðμ̂�Þ�g

μHðμ
2
B
−μ̂2�Þ

ðμ̌c ≤ μB ≤ μHÞ;

ð38Þ

where μ̌c is given by the intersection of the above two cases,

namely, the causal line and the lattice bound:

μ̌c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μHfμsatμHnH − μ̂
2
�nsat − 2μsat½PH − PIðμ̂�Þ�g

μsatnH − μHnsat

s

: ð39Þ

The upper bound on baryon density defined by Eq. (32)

and the lower bound defined by Eq. (38) are shown in

Fig. 7. The red and blue bands are the bounds obtained

from the lattice data and the black lines correspond to the

causal extrapolations from the low- and high-density

reference points.

The validity range of the lattice bound on the baryon

density is limited above μ̂� ≳ 270 MeV because we use

the lattice data only above μB ≃ 270 MeV so we cannot

impose the lattice bound below μ̂� ≲ 270 MeV. The value

of μ̌� ¼ 270 MeV is realized at μB ≃ 2200 MeV for

μH ¼ 3000 MeV.

We find an empirical relation μ̂� þ μH ≃ ð3=2ÞμB for a

given μB; it means that the lattice constraint is imposed at

μ ¼ μ̂� ≃ ð3=2Þμ0 − μH to put an upper bound on the

baryon density at μ0 in Eq. (34). This implies that when

FIG. 6. The construction of the baryon density n̂ðμB; μ0; n0Þ
such that it maximizes the area at μ < μ0. It extrapolates from the

high-density reference point ðμH; nHÞ, passes through a specific

point ðμ0; n0Þ, and minimizes the pressure P̂ðμ; μ0; n0Þ at μ ≥ μ0.
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combined with the pQCD data imposed at μH, the baryon

density at μB ¼ μ0 is constrained by the isospin lattice data

around μI ≃ μ0 − ð2=3ÞμH.

C. Bounds on PðεÞ

Now we translate the bound in the μB − nB plane (Fig. 7)

to the bound in the ε − P plane (Fig. 8) following the

procedure outlined in the previous section. The parametric

equation for the upper bound is Eq. (29) and the equation

for the lower bound is Eq. (30).

The only modification occurs in the expression of Pmin.

The minimum pressure at ðμ0; n0Þ is

Pminðμ0Þ ¼

( nsat
2μsat

ðμ20 − μ
2
satÞ ðμsat ≤ μ0 < μ̃cÞ;

PH −
nH
2μH

ðμ2H − μ
2
0Þ ðμ̃c ≤ μ0 ≤ μHÞ;

ð40Þ

where μ̃c is defined as

μ̃c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μsatμHðμHnH − μsatnsat − 2PHÞ

μsatnH − μHnsat

s

: ð41Þ

Remember that the minimum pressure does not depend on

n0. The former case in Eq. (40) is given by
R

μ0
μsat

dμnminðμÞ

while the latter case is given by PH −
R

μH
μ0

dμnmaxðμÞ. Since

μ̂c < μ̃c < μ̌c, the integrals of nmin and nmax are carried out

straightforwardly. We then arrive at the expression as

simple as Eq. (40).

In Fig. 8, we plot the upper and lower bounds in the

ε − P plane that are subject to the high-density reference

point. The upper and lower bounds are defined in Eqs. (29)

and (30), respectively. We observe that the lattice-QCD

data now constrain the stiff part of the EOS in addition to

the soft part of the EOS by including the high-density

reference point in the integral. Further, the lower bound is

also modified as we require the EOS to converge to the

high-density point on the ε − P plane.

VI. COMPARISON TO THE pQCD INTEGRAL

CONSTRAINT

In this section, we compare the lattice-QCD constraint

with the constraint put by the thermodynamically consis-

tent construction of the EOS imposing the integral

condition:

Z

μH

μsat

dμ0 nBðμ
0Þ ¼ PH − Psat: ð42Þ

In the following, we loosely refer to this constraint as the

“pQCD integral constraint.”

The minimum density from the pQCD integral con-

straints is [3]

n
pQCD
min ðμBÞ ¼

8

<

:

nsat
μsat

μB

�

μsat ≤ μB < μ
pQCD
c




;

nHμ
3
B
−μBμHðnHμH−2PHÞ

μHðμ
2
B
−μ2satÞ

�

μ
pQCD
c ≤ μB ≤ μH




;

ð43Þ

and the maximum density is

n
pQCD
max ðμBÞ

¼

8

<

:

−nsatμ
3
B
þμBμsatðnsatμsatþ2PHÞ

μsatðμ
2
H
−μ2

B
Þ

�

μsat ≤ μB < μ
pQCD
c




;

nH
μH
μB

�

μ
pQCD
c ≤ μB ≤ μH




;
ð44Þ

where μ
pQCD
c is

μ
pQCD
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μsatμHðμHnH − μsatnsat − 2PHÞ

μsatnH − μHnsat

s

: ð45ÞFIG. 8. Bound on PðεÞ from the lattice-QCD data combined

with the high-density reference point calculated from pQCD.

FIG. 7. Bound on μBðnBÞ from the lattice-QCD data combined

with the high-density reference point calculated from pQCD.
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The maximum pressure at a given μB constructed consis-

tently with the constraint (42) is

P
pQCD
max ðμBÞ ¼ PH

μ
2
B − μ

2
sat

μ
2
H − μ

2
sat

: ð46Þ

In Fig. 9, we plot the pQCD integral constraint in the

μB − nB plane along with the lattice constraint. From the

figure, we can tell that the lattice bound can constrain better

around μsat and μH. In the pQCD integral constraint, the

effect of the scale ambiguity is also included by choosing

the factor X ¼ 1=2, 1, and 2 as explained in Sec. VA. We

note that the lower bound from the lattice data in Fig. 9 also

varies according to the choice of X, but we do not include

these effects here to make the figure simple. The upper

bound in Fig. 9 does not vary; the only source of the

uncertainty for this bound is the lattice errors.

In Fig. 10, we plot the maximum pressure (46) from the

pQCD integral constraint, and we take the effect of the

scale ambiguity into account as in Fig. 9. These green lines

in the figure are compatible with both the low-density

saturation and high-density pQCD reference points and,

thus, can be considered as the pressure upper bound in

such a setup. For the lattice constraint, we incorporate the

empirical information on the nuclear saturation; i.e., the

pressure vanishes at μsat. We integrate nmaxðμBÞ (22) to

include such an effect and combine it with the bare lattice

data presented in Fig. 2. Around μB ≃ 1500 MeV, the

lattice bound is as constraining as the pQCD bound.

The pQCD integral constraint becomes more con-

straining compared to the lattice bound when we take

smaller value for μH and vice versa when we take large μH.

Both constraints have different sources of uncertainty, so

the comparison will lead to an independent check of each

constraint. Furthermore, in addition to that the independent

check is feasible, we can also benefit from having two

independent constraints as we can put improved bounds by

combining these two.

In what follows, we outline how improved bounds can be

obtained from the synergy of the pQCD and lattice-QCD

constraints. We can simply obtain the improved bounds by

taking the more restrictive one out of the lattice bound and

the pQCD integral constraint. For instance, if we compare

the lower curve of the band of the lattice upper bound

with the pQCD integral constraint with X ¼ 2 in Fig. 9, the

former is more restrictive around μB ¼ 1000 MeV. So,

the improved bound in this case is patching the lattice

bound around μB ≲ 1000 MeV and the pQCD integral

constraint at μB ≃ 1000 MeV. The same construction

works for Fig. 10.

In Figs. 9 and 10, the range of μB at which the lattice

bound is more restrictive compared to the pQCD bound is

different. To understand this difference, we compare the

semianalytic formulae for the lattice constraint and the

pQCD integral constraint. As a particular example, we

compare the maximum density in the lattice constraint (32)

and that in the pQCD integral constraint (44) around μsat.

The lattice maximum density is obtained by replacing

ðμH; PHÞ with ðμ̌�; PIðμ̌�ÞÞ in the former case of the pQCD

maximum density (44). At μB ¼ μsat, the maximum density

from the lattice and the pQCD constraint is, respectively,

nlatmaxðμsatÞ ¼
2μsatPIðμ̌�Þ

μ̌
2
� − μ

2
sat

;

n
pQCD
max ðμsatÞ ¼

2μsatPH

μ
2
H − μ

2
sat

: ð47Þ

At μsat, μ̌� ≃ 1500 MeV. In Fig. 10, we observe that

P
pQCD
max ðμ̌�Þ ≳ PIðμ̌�Þ: ð48Þ

FIG. 9. Comparison of the lattice bound on nBðμBÞ relation and
the pQCD integral constraint. For the pQCD integral constraint,

we also take into account the renormalization scale ambiguity by

varying by a factor of 2.

FIG. 10. Comparison of the lattice bound on PðμBÞ relation

taking into account the saturation property and the maximum

pressure from the pQCD integral constraint.
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Remember that here we compare the lower curve of the

lattice band and the X ¼ 2 of the pQCD curves. By using

the relation (46), it leads that the lattice bound is more

restrictive at μsat, i.e., n
pQCD
max ≳ nlatmaxðμsatÞ. So, even though

the range of μB at which the lattice bound is more restrictive

compared to the pQCD bound is different in the μB − nB
and the μB − P plane, they are consistent with each other

from the discussion above. Thus, we can safely patch

together the lattice and pQCD bounds on the nBðμBÞ and
PðμBÞ relations at different values of μB.

VII. SUMMARY AND CONCLUSION

We demonstrated that the equation of state of two-flavor

symmetric matter at nonzero baryon chemical potential

(i.e., the symmetric nuclear matter) can be robustly con-

strained by combining a QCD inequalities [14] and the

recent calculation of the equation of state of matter at

nonzero isospin chemical potential on the lattice [15]. We

presented the lattice constraints in three ways: (a) the bound

on the pressure at a given baryon chemical potential

(Figs. 1 and 2), (b) the bounds on the baryon density at

a given baryon chemical potential (Figs. 4 and 7), and

(c) the bounds on the pressure at a given energy density

(Figs. 5 and 8).

For the pressure at a given baryon chemical potential, the

lattice data only provide an upper bound presented in

Fig. 1. We showed EOSs characterized by a speed of sound

v2s ≲ 0.2 for μB ≃ 2000 MeV are ruled out by this upper

bound, as can be seen from Fig. 2. This bound on the vs
could be useful for modeling dense matter realized in

heavy-ion collisions [12].

Obtaining bounds on the baryon density at a given

baryon chemical potential from the lattice data requires

additional input. We express the pressure as an integral of

the baryon density using the method in Ref. [3] so that the

pressure inequality can be used. In the integral, we need to

specify either a lower bound μsat or upper bound μH of the

integration interval. In Sec. IV, we took μsat as the empirical

saturation point. The upper bound on the baryon density

plotted in Fig. 4 is robust; the only source of uncertainty in

this lower bound is the uncertainty of the lattice calculation.

This result implies that the density jump ΔnB in the first-

order phase transition, if it exists around the saturation

density, cannot be infinitely large but has to be bounded

ΔnB < 10nsat.

In Sec. V, we pinned down the perturbative QCD

thermodynamics at μH. Figure 7 shows the lower bound

on the baryon density in addition to the upper bound. Aside

from the lattice uncertainty, this lower bound is also

sensitive to the renormalization scale ambiguity in the

running coupling constant; in this work, we did not include

this effect in the lattice bounds.

The bounds on the pressure at a given energy density

gives a straightforward interpretation for the stiffness of the

equation of state. The lower and higher pressure at a given

energy density correspond to the soft and stiff equations of

state, respectively. In Fig. 5, we plot the lower bound from

the lattice data. This bound only assumes the input from the

empirical saturation of nuclear matter and the lattice bound,

so it is robust. Combined with the perturbative QCD

thermodynamics at μH, one can also put an upper bound

on the energy density-pressure plane as can be seen in

Fig. 8. The upper bound is close to the causal extrapolation

from the empirical saturation point. The lower bound is also

modified in Fig. 8 as the equation of state is required to

converge on a single point at μH.

Finally, we compared the lattice bound with the integral

constraint on the interpolation between the low-density and

the high-density reference points imposing the thermody-

namic stability and causality. The results are plotted in

Figs. 9 and 10. We found that around the saturation density,

the information content of the lattice data is comparable to

that of the perturbative QCD at μH ¼ 3000 MeV. These

results imply that the synergy between both QCD-based

constraints can further restrict the allowed region of the

equation of state.
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