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Bulk viscosity of nuclear matter with pions in the neutrino-trapped regime
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Recent work [Fore and Reddy, Phys. Rev. C 101, 035809 (2020)] has shown that a population of thermal
pions could modify the equation of state (EoS) and transport properties of hot and dense neutron-rich matter
and introduce new reaction pathways to change the proton fraction. In this article we study their impact on the
bulk viscosity of dense matter, focusing on the neutrino-trapped regime that would be realized in neutron star
mergers and supernovae. We find that the presence of a thermal population of pions alters the bulk viscosity by
modifying the EoS (via the susceptibilities) and by providing new reaction pathways to achieve beta equilibrium.
In neutron star merger conditions, the bulk viscosity in neutrino-trapped npep matter (without pions) has its peak
at temperatures of at most a couple MeV and is quite small at temperatures of tens of MeV. We find that thermal
pions enhance the low-temperature peak of the bulk viscosity by a factor of a few and shift it to slightly lower
temperatures. At higher temperatures, where the pion abundance is large but the bulk viscosity is traditionally
small, pions can increase the bulk viscosity by an order of magnitude or more, although it is still orders of

magnitude smaller than its peak value.
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I. INTRODUCTION

Transport properties of hot and dense matter are expected
to play a role in neutron star mergers and core-collapse su-
pernovae. At high densities and temperatures encountered
in these extreme astrophysical phenomena, neutrinos dom-
inate energy and momentum transport [1]. Long ago, bulk
viscosity due to out-of-equilibrium weak reactions involv-
ing nucleons was shown to damp density oscillations on
dynamical timescales relevant to neutron star oscillations
[2,3]. Following initial estimates of the bulk viscosity by
Alford et al. [1], there has been renewed interest in de-
tailed calculations of the bulk viscosity in hot and dense
nuclear matter with [4,5] and without [6-9] trapped neu-
trinos. Two of these studies included muons in addition to
the usual neutrons, protons, and electrons. Other recent stud-
ies have looked at exotic phases of matter including dense
matter with hyperons [10] and quark matter [11-13]. For a
review of bulk viscosity in neutron star environments, see
the book chapter [14]. Favorable results in these calculations,
including the prediction of millisecond timescale bulk vis-
cous damping in neutrino-transparent matter [9], have lead
to the inclusion of weak-interaction driven bulk viscosity
in neutron star merger simulations [15-22], which has been
facilitated by improvements in neutrino transport schemes
[21] and the relativistic hydrodynamics of multicomponent
fluids [7,23-26].

In addition to neutrons, protons, electrons, muons, and
trapped neutrinos, a thermal population of negatively charged
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pions could be relevant at the high temperatures and densities
encountered in neutron star mergers [27]. Thermal pions have
been shown to soften the equation of state (EoS), enhance the
proton content, and modify the neutrino opacity in dense mat-
ter [27]. The study also mentioned that pions provide a new
pathway to equilibrate the proton fraction, thereby altering the
out-of-equilibrium weak reactions that give rise to the bulk
viscosity.

In this work, we study the effect of thermal pions on
bulk viscosity, considering their effects on out-of-equilibrium
chemical reactions and on the EoS. We will fully develop
the formalism for bulk viscosity in neutrino-trapped nuclear
matter containing neutrons, protons, electrons, muons, and a
thermal population of pions. In npe matter, the proton frac-
tion is adequate to specify the composition since the neutron
and electron densities can be determined via baryon number
conservation and charge neutrality. There is one chemical
equilibration channel and therefore the bulk viscosity exhibits
a single resonant peak. For a given density, the resonance
occurs at a temperature when the equilibration rate becomes
comparable to the oscillation frequency [9,28]. Systems with
several independent particle species can have a bulk viscos-
ity with a complicated temperature dependence with several
distinct or overlapping resonances. The rule of thumb is one
resonance for each independent equilibration channel. This
complexity has been studied in earlier work for the case of
npep matter [4,8,14,29], and in quark matter [13,30-34]. Here
we perform a similar analysis for npep matter containing a
population of thermal pions, taking into account the effect of
pions on the out-of-equilibrium reactions and the thermody-
namic properties such as the susceptibilities that influence the
bulk viscosity.
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In Sec. II, we discuss the model of nuclear matter and the
treatment of the pion-nucleon interactions and pion dispersion
relation. In Sec. III, we develop the formalism to calculate the
bulk viscosity with pions and trapped neutrinos. In Sec. IV,
we discuss the results.

We work in natural units, where i = ¢ = kg = 1.

II. NUCLEAR MATTER WITH THERMAL PIONS

The population of negatively charged thermal pions in
neutron-rich matter at high density is enhanced due to a rapid
increase in their associated chemical potential. The negative
charge chemical potential, denoted by i = u, — p,, where
tn and p, are the neutron and proton chemical potentials,
respectively, is needed to ensure electric charge neutrality
and its magnitude (which depends on the nuclear symme-
try energy) becomes comparable to the vacuum pion mass
my. Consequently, in the absence of interactions, the pion
number density increases exponentially as exp [(t — m,)/T].
Calculations in [27], which includes pion-nucleon interactions
that are based on the virial expansion, found that interac-
tions increase the pion fraction at finite temperatures. This
study found that, although s-wave interactions are repulsive,
a strong and attractive p-wave interaction can greatly enhance
the pion number at a modest temperature, motivating the study
of the presence of pions on properties of hot, dense matter.

We consider matter composed of neutrons n, protons p,
electrons e¢~, muons p~, and pions w—, as well as neu-
trinos and antineutrinos of electron and muon flavors. The
system at a particular baryon density np, temperature T,
conserved electron-type lepton fraction Y, = (n, 4+ n,,)/np
(number densities n refer to the net densities, particle mi-
nus antiparticle), and conserved muon-type lepton fraction
Yr, = (ny + ny,)/np has three independent particle fractions,
chosen to be x,, x,,, and x,. In beta equilibrium, these par-
ticle fractions are functions of ng, T, Y;., and Y7,,. We treat
the electron and muon lepton numbers to be separately con-
served because we neglect neutrino oscillations, which are
suppressed in dense matter [35].

The neutron and proton sector of the equation of state is
described here with a nonrelativistic Skyrme model called
NRAPR, described in [27,36]. To model interactions be-
tween pions and nucleons we use a construction of the pion
self-energy, X,-(p) which is structurally similar to the one
introduced in [27]. The pion dispersion relation is given by

En*(P) = p2 + mjzr + Er(ﬁ)’ (D

with the pion self-energy given by

a3k )
S (p) = / e N:anfN(ENm)) V2 (pen)

) 278!
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where the sum is over the isospin /, the angular momentum
/, and the nucleon spin v. The symbols m and p,, represent
the reduced mass of the pion-nucleon system and the center-
of-mass momentum, respectively. The term 611,U is the phase
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FIG. 1. The pion dispersion relation in vacuum (dashed line) and
in dense matter, as predicted by our EoS (solid lines). The pion
“mass” [E,-(p = 0)] is shifted from its vacuum value (139.6 MeV)
to 177.4 MeV at 1nj and to 194.0 MeV at 1.6ny. The temperature is
taken to be 1 MeV.

shift in the given channel. The modified pseudopotential now
has two parameters ¢ rather than the single value used in
[27]. This change is motivated by the fact that the model
under-represents the s-wave repulsion present in pion-nucleon
interactions by suppressing the s-wave and p-wave interac-
tions equally. To prevent this we set the parameter oy = 1
and fit the value of the remaining parameter «; such that the
model produces the same pion fraction as the virial calcula-
tion presented in [27] at a baryon density equal to nuclear
saturation density, a temperature of 30 MeV, and with both
electron-type and muon-type conserved lepton fractions equal
to 0.1. Unlike in [27], where the value of o was explored at
various temperatures and densities, our fitting parameter, o,
has a fixed value of 0.23596 for all conditions considered.

The pion dispersion relation predicted by Eq. (1) is shown
in Fig. 1. As noted earlier, the shape of the dispersion curve
can be understood as arising due to the competition be-
tween s-wave repulsion and strong p-wave attraction. The
self-energy at zero momentum leads to a positive shift of
the pion “mass” [E;-(p = 0)] of about 40 MeV at ng = ny
and by about 54 MeV at ng = 1.6 ng. These large shifts are
consistent with recent calculations of the pion mass in dense
neutron-rich matter reported in Ref. [37]. With increasing
momentum, the self-energy becomes negative due to attractive
p-wave interactions and produces the distinct nonmonotonic
behavior characterized by the maximum and minimum seen
in the figure. Since the typical pion momentum p, ~ 37T,
with increasing temperature the low lying states at higher mo-
mentum will be preferentially occupied and the nonmonotonic
dispersion relation leads to a stronger temperature dependence
of the thermal pion population as will be discussed below.
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Since we aim to cover the neutrino-trapped conditions that
exist in supernovae and neutron star mergers, we choose a
variety of Y, ; to mimic these conditions. No neutron star
merger simulation has, to this point, dynamically included
muons, and therefore we refer to a postprocessing analysis
[38] which predicts that matter above saturation density could
have Y;, in the range of 0.04-0.10 and Y;, in the range
0.01-0.07. Supernovae simulations reliably predict Y7, to be
between 0.3 and 0.4 [39]. Muons have been included in re-
cent supernovae simulations [40,41], and since the net muon
number Y;,, in the supernova progenitor is close to zero, it
remains that way throughout the duration of the supernova. To
study these different physical situations, we will focus on the
two configurations {Yz., Yz,,} = {0.05, 0} (a good description
of neutron star merger conditions) and {Yz., ¥7,.} = {0.3,0} (a
good approximation of supernova conditions). In the merger
case, the two merging neutron stars are cold and do not contain
a large muon population. Upon rapid heating at the contact of
the two stars, the muon number is frozen due to the trapping of
neutrinos. For supernovae, the matter is initially at low density
and therefore does not contain a large muon population, and
once the matter becomes dense enough to trap neutrinos, the
muon number becomes frozen in. While it is almost certainly
not zero in either physical situation, it is reasonable to choose
zero as a representative case. In the main text, we discuss
the particle content, susceptibilities, equilibration rates, and
bulk viscosity for matter with the above two choices of lepton
fractions, and put the corresponding results for equal values
of the conserved electron and muon fraction, {Yz.,Y;,} =
{0.05, 0.05} and {0.3, 0.3}, in Appendix A.

The particle fractions predicted by our EoS are plotted in
Fig. 2. The top panel depicts matter in typical neutron star
merger conditions ({Yz., Yz,,} = {0.05, 0}), and the bottom
panel typical supernovae conditions ({Yz., Yz, } = {0.3, 0}).
The dashed curves represent the EoS without pions, while the
solid curves include thermal pions.

In the merger conditions plotted above, the charge-neutral,
beta equilibrated pionless matter is neutron-dominated, hav-
ing a proton fraction of about 0.05, which rises slightly as the
temperature increases. The electron population is greater than
the muon population due to the large mass of the muon, but
together they balance out the positive charge of the proton.
Focusing on 1ng (top left panel) for now, when thermal pions
are included in the EoS, their population at low temperatures
is small, but increases exponentially with temperature. As
their population becomes appreciable at 7 2 10 MeV, the
proton fraction is pushed upward (compared to the pionless
case) while the lepton populations decrease (compared to the
pionless case). This effect of the pions was seen in the original
version of this EoS [27]. At a higher density, 1.6ng (top right
panel), the sourcing chemical potential f is larger, and thus
the pion population is much larger, even at low temperatures.
Again, the pion population grows with temperature, surpass-
ing the lepton population at temperatures of just a few MeV.
Thus, in merger conditions, the pions play a significant role
in the EoS at temperatures above 10 MeV, or even lower
temperatures as the density rises above saturation density.

In supernovae (bottom two panels of Fig. 2), the lepton
number is much higher when the neutrinos are trapped, since

trapping occurs well before deleptonization [42,43], and thus
supernova matter has a much larger conserved lepton fraction
Yr.. When pion are included in the EoS, their population is
suppressed because under these conditions [ = u, — u, is
small compared to m, and the isospin asymmetry is smaller.
The pion population, and thus the alteration to the EoS is small
unless the temperature exceeds several tens of MeV.

III. BULK VISCOSITY

We derive an expression for the bulk viscosity of nuclear
matter containing a thermal population of pions. We will
consider a fluid element undergoing small-amplitude baryon
density oscillations of the form

ng(t) = ng + Re (8nge™")

= ng + dng cos (wt), 3)

where §np < np and we have chosen éng to be real. Here, the
real and imaginary parts of a quantity X are denoted Re (X)
and Im (X)), respectively. A change in density can push the
nuclear matter fluid element out of beta equilibrium by an
amount du [to be precisely defined later in Egs. (16a)—(16¢)].
In this study, we assume the density oscillation amplitude is
small enough to only push the system slightly out of chemical
equilibrium, such that §u <« T. The resulting bulk viscos-
ity calculated under these conditions is called “subthermal”
[44]. Below, we extend the subthermal bulk viscosity deriva-
tion in npe matter with one equilibrating chemical potential
S [14,28,45] to neutrino-trapped npeps™ matter, which
will turn out to have three equilibrating chemical potentials
{Ope1, Spo, Sz}

As the fluid element in question undergoes a density oscil-
lation, we will assume that the thermal conductivity (due to
trapped neutrinos [1,46,47]) is high enough to keep the matter
at constant temperature throughout an oscillation. Such an
oscillation in baryon density pushes the three particle fractions
{xp, X1, X7} away from their values in chemical equilibrium.
Flavor-changing interactions (these can be weak or strong
interactions, as we will see) push the particle fractions back
into chemical equilibrium, which takes a certain amount of
time. The pressure of nuclear matter, which depends on both
the baryon density and the three independent particle fractions
{xp, X, Xz}, changes due to chemical equilibration and thus
will oscillate out of phase with the baryon density oscillation
due to the finite rate of the weak interactions. The pressure
can be written as

P(t) = Py + Re (§Pe™")

=Py +Re(6P)cos (wt) — Im (§P) sin (wt). (4)

The Im (§P) term represents the phase lag between the pres-
sure P(¢) and the baryon density ng(¢), which will give rise
to bulk viscous energy dissipation via the mechanism of P dV
work.
The bulk viscosity is defined through its contribution to the
energy dissipation of a density oscillation,
deose

=—¢(V ) 5

o ¢(V-v) ®)

We use the continuity equation for a Lagrangian fluid element,
dng (t

";( ) sV v =0, ©)
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FIG. 2. Particle content in beta equilibrium in various thermodynamic conditions expected to exist in neutron star mergers (top two panels)
and supernovae (bottom two panels). The left column depicts matter at 17, while the right column shows matter at 1.6n,. Particle densities
are defined as particles minus antiparticles. In the case of neutrinos, the absolute value of the particle fraction is plotted (thus a sharp dip in
the neutrino fraction indicates that the net density passes through zero, indicating a switchover in neutrino or antineutrino dominance). Particle
fractions in the pionless EoS are shown with dashed lines, while the fractions in the EoS with pions are depicted with solid lines.

and then average over one oscillation period,

desse\  1( 8np \* ,
<7> = —5<—n30)) @&

1(8ng\*
A _5(—’3) w’t. (7
npg
The energy lost due to P dV work is
dEgiss = d(eV) = —PdV. ®)

We can express this as the energy density lost due to PdV

work:
e+ P
dgdiss = < )dl’lB,

np

C))

where we used the fact that baryon number is conserved
dNp = dngV) =ngdV +V dng = 0. Averaging over a cy-

cle,
degiss\ @ on/w dr P(t) +&(t) | dnp(t)
de | 27 ), ng(t) dt

2 § 21 /o
~ “’_(ﬂ) Im (8P) f dt sin® (1)
0

27 \ ng

~2 (‘Sﬁ) Im (8P),

2 npg

(10)

where we used the Eq. (4) for time dependence of the
pressure. We drop the energy density term, because the
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energy density oscillates in phase with the baryon density and
therefore drops out of the time average.'

The energy lost by the oscillation is gained by the fluid
element, and thus Eqs. (7) and (10) sum to zero and we find

é‘:(n_3>hn(5P). (11

Snp w

This expression is independent of the nature of the chemi-
cal equilibration (assuming deviations from equilibrium are
small), as thus matches the expression for npe matter given in
[14,45] and in other phases of matter [48,49]. The physics of

J

the chemical equilibration (such as the number of equilibrat-
ing chemical potentials §u) will affect the form of Im (5P),
which we will now determine.

Driven by a harmonically oscillating density, the particle
fractions x,, x,, X, are also harmonically oscillating,

x;(t) = x) + Re (8x;e™")
= x? 4 Re (8x;) cos (wt) — Im (8x;) sin (wt),  (12)

potentially out of phase with np(t). Now, the pressure
P(ng, T, xp, x,, X;) can be expanded around its beta equi-
librium value (keeping T fixed throughout the oscillation
because of the high thermal conductivity):

opP iot opP iwt opP iwt opP iwt
P=P+ — Re (6nge') + — Re (6x,e") + — Re (6x,e™) + — Re (6x,€"").
np T, Xp X, Xn axP T,np,x,, Xz 8xl/~ T,np,xp,Xx ax?T T,np,xp,x,
(13)
Evidently [from Egs. (4), (12), and (13)]
JaP aP aP
Im (6P) = — Im (8x,) + — Im (8x,) + — Im (8x, ), (14)
Xp T,np, Xy, Xx ax# T.np,xp,Xx axﬂ T,np,xp, Xy

indicating that to calculate the bulk viscosity [Eq. (11)] we
need the imaginary part of the particle fraction oscillation
terms.

A. Classification of chemical reactions in neutrino-trapped
npepm~ matter

At the high temperatures (T 2 5 MeV) considered here, all
constituent particle species are in thermal equilibrium, even
the neutrinos (as their mean free path is well below 1 km
[50]). This is in contrast to the often-studied case where the
matter is neutrino transparent and therefore any reaction with
neutrinos or antineutrinos in the initial state is forbidden, and
thus the neutrinos are not in statistical equilibrium [50,51].
In the neutrino-trapped case, studied here, all weak processes
proceed in both directions. The processes proceed in a manner
that would balance the chemical potentials on each side of the

reaction,
domi= ) (15)

ieLHS ieRHS

indicating chemical equilibrium [52,53].

IThis fact can be seen from the Taylor expansion of the pressure
[Eq. (13)]. The partial derivatives of the pressure with respect to
particle fractions have finite values (related to the susceptibilities,
discussed later), which gives the pressure P(¢) terms that are propor-
tional to sine which are thus of phase with the density oscillation. An
analogous expansion of the energy density around beta equilibrium
would yield partial derivatives of the energy density with respect to
particle fractions, which are zero in beta equilibrium. Thus the energy
density is in phase with the baryon density for small amplitude
oscillations around beta equilibrium and it drops out of Eq. (10).

(

There are six classes” of weak reactions that can occur in
neutrino-trapped npepsw matter, and therefore six chemical
potential differences §; that are zero in chemical equilibrium.
However, three of them are redundant and can be written in
terms of three independent equilibrating chemical potentials:

Sy = fn + o, — Up — Hes (16a)
Sy = pn + My, — Hp — MKps (]6b)
s = pn — p — M- (16c)

We assume in this analysis that particles are chemically equili-
brated with their respective antiparticles, ux = —ug. Thisisa
good assumption for the hadrons and charged leptons, though
for neutrinos it is merely a simplifying assumption.® Given
this, the six classes of reactions are listed in Table 1.

We list next to each reaction the relaxation rate towards
beta equilibrium (the forward rate I" minus the backward rate

I ) and its approximation to linear order in § ., which we will
use since we only consider small deviations from chemical
equilibrium. The coefficients

- <«
5= a(r —TI)
= (17
a(du) Su=0

Reactions within each class are related by “crossing” (e.g., direct
Urca neutron decay and electron capture) or by the addition of a
spectator particle to both sides of the reaction (e.g., direct Urca
neutron decay and modified Urca neutron decay).

3If neutrinos and antineutrinos were not equilibrated with each
other, as is likely the case except at quite large temperatures, we
would have to assign distinct chemical potentials u,,, (g, , Moy s K,
and consider reactions such as n+n<n+n-+v,+ 179, or v, +
Ve <> v, + Uy
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TABLE I. The chemical reactions that occur in neutrino-trapped npepus matter, split into six categories based on the 6u that they
equilibrate. Not included in the list are the “modified” versions of these reactions, where a spectator particle is in the initial and final state. This
table also serves to define the A; (i running through the alphabet from a to /) corresponding to each process.

Equilibrating S

(D) dpr = pn + o, — p — e
(2)dpa = pn + po, — Up — My
(3) 5”3 = MUn — Up — U

@) Spea = pg + (o, — e = 31 — dpu3

(5) dps = py + po, — 1y =3 — Sz

(6) Spke =ty + to, — e — Mo, =1 — Stz

Reactions F) — (l'_‘ (subthermal)
n<pt+e +7v, Xy
n+v,<e +p ApSiLy
n<p+up+79, AeBita
n+v,<u +p YRLYI)

n<p+mn- )L35,LL3
T < e + )“6(81“(/1 _Sl'h)
T+, e Ar(Spy — pu3)

T~ < u +,
T v, o u

Ag(Spuy — S1u3)
A8 — 8pus)

W e + 0.+, Ai(Spr — p2)
U+ e+ Aj(Spr — Sua)
U v, e+, MBSy — Spz)
n-+ v+ \_}/1 e )"l(au“l - 5“/2)

describe the rate of beta relaxation of a particular reaction.
The relaxation rate A of each class of processes is given by the
sum of A for each reaction in the class:

Al = Aq+ Ap,
Ay = Ae + Ag,
g = e+ A, (18)
As = Ag + Ap,

he =Xi+Aj+ A + A

The processes shown above can also occur in the presence
of spectator particles. For example, the direct Urca neu-
tron decay process n — p + e~ + ¥, is supplemented by the
modified Urca process n + N — N + p+ e~ + D, [54], the
electron-muon conversion process p~ + Vv, + 7, <> e~ can
only proceed with a lepton spectator [49], and n <> p+ 7~
needs a nucleon spectator to proceed [27].

In this work, where we study nuclear matter at temper-
atures high enough (T 2 5MeV) such that neutrinos are
trapped, we will not need to consider spectator particles di-
rectly. The reaction that proceeds with a spectator particle is
usually slower than the reaction without the spectator particle,
because of the additional phase space restriction from the
spectator particle (in degenerate matter, by (7/1)?) and, in
the case of weakly coupled theories like electromagnetism,
the reaction is also suppressed by additional powers of the
small coupling o [49]. However, the direct (or, spectatorless)
reaction is sometimes kinematically forbidden, and the only
process that operates is that with the spectator. The classic
example (in neutrino-transparent matter) is the direct Urca
process, which is forbidden at low densities where the pro-
ton fraction is too small [55,56], in which case the modified

Urca process dominates. At finite but low temperatures, the
direct Urca process is not forbidden but is strongly Boltzmann
suppressed. As temperature rises the Boltzmann suppression
decreases, and at temperatures above 1 MeV the direct Urca
process, even below the threshold, dominates over modified
Urca [50,51].

Here, we consider neutrino-trapped nuclear matter, and
thus the neutrino (or antineutrino) population has a fi-
nite Fermi momentum, which alters the kinematics of the
Urca process from the neutrino-transparent case. In neutrino-
trapped matter, the direct Urca process e~ + p <> n + v, and
its muon counterpart (A; and A,) do not have a density thresh-
old because the neutrinos have a finite Fermi momentum (see
Figs. 13 and 14 in [5]), and as such will dominate over the
modified Urca processes.

The process n <> p + m~ needs a spectator to proceed, but
even the spectator reaction n +n <> n+ p 4+~ is very fast
compared to all other timescales in the problem as long as
T Z 1 MeV, so in our numerical calculations we will take
the A3 — oo limit and never have to calculate the rate of
n+n < n+ p+ x~. The rate of this process, however, can
be calculated using models such as the one developed in [57].

The rate of the pion decay processes in the presence of a
nucleon spectator (for example,n +7~ — n+ u~ + v,) has
not been rigorously calculated, as far as we know. A rough
estimate was given for neutrino transparent matter [58]. We
cannot rule out the possibility that our calculation underesti-
mates the rates A4 and As because we neglect the possibility
of spectators particles in pion decays.

Finally, the direct leptonic processes Ag are kinematically
allowed since there is a trapped neutrino population and
they will dominate over their counterparts with an electri-
cally charged spectator particle. Note that at our level of
approximation, where we neglect spectator processes in the
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Ag subprocesses, A; = 0 because the process = + v, + v, —
e~ is kinematically forbidden.

B. Weak interaction rates

We calculate the weak interaction rates I" (number of reac-
tions per time per volume) with Fermi’s golden rule, where
the rate is determined by a multidimensional phase space
integral of the product of a matrix element and the Fermi-
Dirac or Bose-Einstein distributions of the involved particles
[51,54,59]. We perform the full phase space integration (as
in [4,5,9,10,29,50,51,60]) without making any approximation
for the degeneracy of any particle species. The rate calcula-
tions are briefly described in Appendix B.

= <«

In beta equilibrium, the net rate I' — ' of any particular
flavor-changing interaction is zero. When the system is pushed
out of beta equilibrium by amount ¢ [§ measures the de-

gree of violation of Eq. (15)], the net rate ? — <f_‘ becomes
nonzero, forcing the system back to chemical equilibrium (per
Le Chatelier’s principle). The net rate can be calculated for 6
of arbitrary size (see analytic calculations for the direct and
modified Urca processes in strongly degenerate npe matter
in [61]), though we consider only subthermal bulk viscosity
where 60 < T'. In this regime, the net rate is proportional to
the size of the departure from beta equilibrium T‘) — <IT ~
Adp. For a given reaction, if all involved particles are in
thermal equilibrium, there is a simple relationship* between
the rate of the process and A [4,5],

- <

So, to obtain A we merely need to calculate I" in beta equilib-
rium and divide by the temperature.
At fixed density, the particle fractions evolve according to

dx
ng—2 = A8y + hadpa + A3dus,

20
0 (20a)
dx
an—tM = —AsOp1 + (A2 + As + Ag)Sua — AsSus, (20b)
dx
Bd—: = =41 — Asdpr + (A3 + Ag + A5)8pus. (200)

We will refrain from plotting A;, but instead, later (Fig. 6), plot
the beta equilibration rates y; which have a clearer physical
interpretation. But before we do that, we must discuss the
susceptibilities of the EoS.

“This equation does not hold for reactions involving neutrinos in
neutrino-transparent matter (not studied here) as the rate calculation
does not contain neutrino distributions in the rate integral, since
neutrinos are assumed to not build up a population in the neutron
star due to their long mean free path. In such a case, the calculation
of A is more complicated [50,51].

C. Susceptibilities

In our study of dense matter slightly perturbed
from beta equilibrium, it is convenient to introduce the
susceptibilities

IS,

A = ng ’ (21a)
8”3 T\xp, Xy, X
1 96u;
gl I ’ (21b)
nB 8x[7 T,ng,xu,xyr
1 96pu;
=L 7 ’ (21c)
ng 8)6# T,np,Xp. Xy
1 a8u;
D=L u ’ (21d)
ng 0Xxg T,np.xp,x,

where i ranges from 1 to 3. These susceptibilities are proper-
ties of the nuclear matter EoS and do not themselves depend
on the reaction rates in the medium. There appear to be 12
of these susceptibilities, but they are not all independent, and
Maxwell relations

C1 = 32 — Bl (22&)
D, = B; — B, (22b)
D1 — D2 = C1 — C3. (220)

can be used to eliminate three of them. See Appendix C
for details on the Maxwell relations and thermodynamics
of multicomponent systems. Additionally, the susceptibility
C3; = 0 because the leptons and hadrons are independent.
With our EoS, D, = 0, because of the specifics of our treat-
ment of the pion-nucleon interaction. A different prescription
for the interaction could lead to a nonzero value of D,. At
this point, we can reduce the 12 susceptibilities down to 7:
{A1, Az, Az, By, By, Cy, D3}. We will keep D, and Cs in our
exact expression for the bulk viscosity [Eq. (28) and Ap-
pendix D], but set them to zero elsewhere.

Finally, we note that susceptibilities A; [Eq. (21a)] can be
written, using Maxwell relations (see Appendix C), in terms
of derivatives of the pressure. We find

aP

-— = —nBA1 (233)
axl’ T,np,xu,Xx

aP

— = ng(A; —Ar) (23b)
a'xM T,np,xp,Xx

aP

— = ng(A; — A3). (230
axﬂ T,ng,xp, X,

Before we describe the nature of the susceptibilities and
plot them for the EoS developed in the previous section, we
write the Taylor expansions of P and du in terms of the
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susceptibilities. First,

5 . | .
Suti = AL cos () + nplB; Re (81, ) + C; Re (8,6 ) + D; Re (8x,¢")]
npg

8
= A2 cos (wt) + nslB; Re (6x,) + C; Re (8x,) + D; Re (8x)] cos (wr) — ng[B; Im (8x,) + C; Im (8x,,) + D; Im ()] sin (wr).

npg

with i again taking values from 1 to 3. The pressure [Eq. (13)] can be rewritten as

)
P="P+ 2;cT_l cos (wt) + np cos (wt)[—A Re (6x,) + (A1 — Az)Re (6x,) + (A1 — Az)Re (6x;)]
np

+npsin (0t )[A; Im (8x,) — (A1 — A2)Im (6x, ) — (A; — A3)Im (6x7)], (25)

where we have introduced the isothermal compressibility [62]

-1
aP
KT = |\ np— . (26)
T\xp, XX

31’13

The susceptibilities A; describe how far the system is
pushed out of beta equilibrium when the system is compressed
if the chemical fractions are frozen. If A; = 0, then the system
does not depart from beta equilibrium when the density is
increased, and so with respect to x; the system is conformal.
However, the system may have other degrees of freedom that
do change when the density is increased, and so we describe
the situation where, say, A; = 0 as partially conformal. The
Maxwell relations [Egs. (23a)-(23c)] indicate that the A; are
related to the degree to which the pressure depends on a
particular particle fraction. As will be seen later, generally
bulk viscosity grows with the increased magnitude of the A;.
In particular, if all A; = 0, then bulk viscosity (of the type
described here, related to chemical equilibration) should be
Zero.

We plot the susceptibilities A; in merger conditions (top
two panels) and in supernovae conditions (bottom two panels)
in Fig. 3. These susceptibilities are not tremendously different
between merger and supernovae conditions. A; and A, have
magnitudes around a few tens of MeV, and can switch signs,
indicating a partial conformal point. In merger conditions,
both A; and A, cross through zero as temperature rises be-
yond a couple tens of MeV. In supernovae conditions, only
A, crosses through zero in the displayed temperature range,
though likely A does too at a higher temperature. Including
pions in the EoS slightly modifies A; and A,, mostly at high
temperature where the pion population is large. The main
effect of including pions is to bring about a new susceptibil-
ity Az, which will have important consequences for the bulk
viscosity, discussed later. The susceptibility A3 is significantly
larger than A or A,, especially at high temperatures or densi-
ties where the pion population is large.

The susceptibilities B, C, and D represent, at a fixed density
and temperature, how far the system is pushed from chem-
ical equilibrium when just one of the particle fractions is
adjusted, keeping the others fixed. For example, B, C;, and
D, (roughly) represent the degree of dependence of §u; on
Xp, X, and x;; respectively. The B, C, and D susceptibilities
convert A; into y;, as we will see in a later section. We plot the

(

susceptibilities B;, C;, and D; in Fig. 4. These susceptibilities,
at least in the conditions encountered in this work, never
cross zero. As we will see, while they do affect the strength
of the maximum bulk viscosity, their most important role is
their impact on the equilibration rates y; which determine the
location of the resonant maxima of the bulk viscosity.

D. Bulk viscosity at finite A3

Combining Egs. (11), (14), and (23a)—(23c), we find that
the bulk viscosity is given by

1 n%;
{=——[-A;Im (3)61,) + (A —Ay)Im (qu,)
(,()8’13
+ (A1 — A3) Im (8x7)]. (27)

To obtain Im (8x;), we plug Egs. (12) and (24) into Egs. (20a)—
(20c) and match the sine terms and the cosine terms. This
yields six equations with six variables [Re (6x;) and Im (6x;)
for i = p, u, w]. The three real-part variables can be elimi-
nated, yielding a set of three equations to be solved to obtain
Im (6x,), Im (8x,,), Im (8x; ). Solving the system results in the
expression for the bulk viscosity

F + Go? + Ho'
 J4+Ko? 4+ Lot + b
The expressions for F', G, H, J, K, and L are very complicated
and are given in Appendix D. This formula is consistent with
the trend that the bulk viscosity of a system with n indepen-
dent equilibration channels, when expressed as a combined
fraction, has in the numerator a polynomial in w of order 2n —
2 and in the denominator a polynomial in @ of order 2n (see,
e.g., [9] for n = 1 and [30] for n = 2). This trend holds for n
independent equilibration channels ¢ = Y"1, yi/(y? + @?),
but also seems to hold for systems where the bulk viscosity
is not a simple sum of n = 1 bulk viscosities.
Before we present numerical results from Eq. (28), let us
consider some limiting cases first.

(28)

E. Bulk viscosity without pions

We can obtain the formula for the bulk viscosity if pions
are not present in the EoS by setting A3 = A4 = A5 =0 in
Eq. (28). The EoS would also have to be recomputed with
the pions removed. The susceptibilities Az, B3, Cs, Dy, D>,
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FIG. 3. Susceptibilities of the A type from the EoS described in Sec. II plotted in merger conditions (top panels) and in supernovae
conditions (bottom panels). The left column plots are at a density of 1n, while the right column panels are at 1.6n,. The dashed lines
correspond to the EoS without pions, while the solid lines indicate the EoS with pions. A; has no counterpart in a system without pions.

and Dj are all ill defined in a system without pions. The
previous definitions for the other susceptibilities carry over
to the pionless case, except that the derivatives are, of course,
no longer at constant pion fraction. The expression for bulk
viscosity in neutrino-trapped npep matter that undergoes the
reactions corresponding to Aj, Xy, and XAg is given by

_ G + H' ? 29)
¢ = K/+L/w2+w4’
where the expressions for G', H', K’, and L’ are given in
Appendix E. As a check, we can see that the susceptibilities
Az, B3, C3, Dy, Dy, and D3 do not appear in the expression.
Furthermore, we also note that the Maxwell relation (22a)
applies in pionless matter as well (see also [14]). In pionless
matter, the independent susceptibilities are A|, Ay, By, Bs, and

C,. In Appendix E, we present further simplifications of this
expression.

F. Bulk viscosity in the limit A; — oo

We return now to the EoS with pions included. The re-
action n <> p+ m~ (mediated by a spectator nucleon) is a
strong interaction and therefore® occurs on a much faster
timescale than the weak interactions {Aq, A, A4, A5, A} and
the timescale of density oscillations in a merger. Thus, we take
A3 — oo in Eq. (28).

SAt temperatures below T &~ 1 MeV, the pion density becomes
so low that this rate becomes comparable to weak interaction
timescales. But for the temperatures studied in this paper, the rate
can be considered infinitely fast.
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FIG. 4. Susceptibilities of the B, C, and D types from the EoS described in Sec. II plotted in merger conditions (top panels) and in
supernovae conditions (bottom panels). The dashed lines correspond to an EoS without pions, while the solid lines indicate an EoS with pions.

D5 has no counterpart in a system without pions.

The limit where n <> p + w~ occurs infinitely quickly is
subtle. One might assume that §us could simply be set to
zero in Eq. (20a)—(20c). However, it is the product X353 that
appears on the right-hand side of those equations, and, even
for very tiny deviations of §u3 from zero, the product A35u3
could still be sizable since A3 is very large. One must keep 3
finite throughout the calculation [up until Eq. (28)] and then
take the limit A3 — oo. This was pointed out by [63,64], and
was applied to the case of hyperon bulk viscosity in [10].

The A3 — oo limit of Eq. (28) yields

Q + Rw?

T U+ W+t (30)

¢

The coefficients Q, R, U, and W are given in Appendix F.

G. Partial bulk viscosities

Before we discuss the bulk viscosity results, it is first use-
ful to introduce the concept of partial bulk viscosities. The
bulk viscosity with only one equilibration rate X; active, and
all other reaction rates A;; set to zero is defined to be the
partial bulk viscosity associated with the associated process.
In neutrino-trapped npep matter there are three partial bulk
viscosities, while when thermal pions are added into the mix
there are six (cf. Table I). We emphasize that the total bulk
viscosity is not the sum of the partial bulk viscosities. But,
often the total bulk viscosity will “track” one of the partial
bulk viscosity curves over a certain range of thermodynamic
conditions, which is why it is useful to consider the partial
bulk viscosities. This “tracking” will be apparent in the sub-
sequent section. Each partial bulk viscosity will look like
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the bulk viscosity in matter with one equilibrating particle
fraction, for example, npe matter where the proton fraction
equilibrates with rate y.

Throughout this paper, we have called both A and
y “equilibration rates.” Each is useful in its own way.

The difference in the rates, schematically, can be written
- <« — e
I' =T ~xu—8u")=a8u or T' — T ~ymn—nd),

where the superscript 0 denotes the beta equilibrium value.
So, A describes the rate at which the chemical potential
difference is forced to its beta equilibrium value (zero), while
y describes how quickly the particle fraction is forced to
its beta equilibrium value by Le Chatelier’s principle. The
susceptibilities of type B, C, and D facilitate the conversion
between y and A. Note that both X; and y; are positive. y has
a clearer physical meaning, as it has dimension 1, and thus
can be written as an inverse timescale and directly compared
with the density oscillation frequency w.

In neutrino-trapped npep matter, without pions, there are
three partial bulk viscosities because there are three equilibra-
tion rates,®

ylnon E—BI)\.l, (313)
" = —(By + Gy, (31b)
Yo" = (By — By — C)he. (31¢)
The three partial bulk viscosities are then
- A2 ynon
G =, (32a)
)
A2 no
gor=-——2___I (32b)
B, + G (yznn rr) + ?
A — A 2 no
(o = (A1 — Ay) Y6 (320)

B 32 _Bl —C2 (y611077)2 +0)2.

The partial bulk viscosities are positive. At a fixed density,
the bulk viscosity ¢; as a function of temperature is maximum
when y; = w. Therefore, the value of the bulk viscosity at
its resonant maximum is given by the susceptibility prefactor
divided by 2w. Thus, for a given frequency density oscilla-
tion w, the weak interaction rates set the temperature of the
resonant maximum bulk viscosity and properties of the EoS
(the susceptibilities) set the value of the bulk viscosity at its
maximum. The susceptibility prefactors can be related to the
compressibility of the dense matter. We find that

JaP JaP
o=l o . G
' 2w \ ong o T ong R
no ng JaP JaP
CZ,max =5 \57 - A s (33b)
20 anB Xpo X, T 3}13 Xp—Xu, 012, T

The equilibration rate y; is obtained by taking the full expression
for the bulk viscosity and setting A;.; = 0. Then the resultant ex-
pression is written in the form ¢ o y;/(y? 4+ @?), from which y; is
extracted.

aP
al’lB

oP
Comax = n—B(— ) (33¢)
Xp 81 =82, T

2w al’lB
See Appendix G for the thermodynamic calculations. The
maximum value of bulk viscosity, to the extent that it tracks
a particular partial bulk viscosity near its resonant maxima,
is related to the compressibility predicted by the EoS [cf.
Eq. (26)] and its multicomponent generalizations.

In neutrino-trapped npepsw matter, we can define analo-
gously six partial bulk viscosities, each of which with one
nonzero A; (i ranging from 1 to 6). The expressions for them
are given in Appendix H. We will predominantly consider
instead versions of the partial bulk viscosities where the A3 —
oo limit is taken (that is, the bulk viscosity {ix3—>oo where A;
is kept finite, A3 — 00, and A;.(; 3 = 0). We will see that
the partial bulk viscosity expressions become, in some sense,
“renormalized” by the infinitely fast A3 process.

In the system containing pions, with A3 — oo, the y; are
given by

Xp X, T

e =—(B __By, (34a)
LT """ B+Dy )"
B,Ds
A3—>00
20 = (4 —2 2 s, 34b
12 (2+B2+D3)2 (34b)
B2
A3—00 __ 2
7 = (B — ——2 |, 34
Va4 ( 1 BZ+D3> 4 (34¢)
B,D
A3—>00 __ 2073
=—|C+———)As, 34d
s <2+BZ+D3>5 (34d)
Ye* 7% = (By — By — Ca)le. (34e)

We leave out y3 because we have already taken A3 — oo. It
is interesting that the susceptibility prefactors in y; and y4
match, as do those of y, and ys. The partial bulk viscosities
(with A3 — 00) are

A3By \2 N
e _ A1~ 555 o
Cl - B3 A3—>00)2 s’ (352)
B~ g5 (0TT) +o
AsBy )2 Ao
h3—>oo (A2 B Bz:—Dzz) 23 ~ 35b
;‘2 - C BzD3 J3—>00 2 N ’ ( )
2+ By+D; ()/2’ ) to
A3By \2 N
A3—oo _ (Al B 32153) )/23 ~ 35
{4 - B3 A3—>00) 2 2’ (35¢)
Bi— gy (0777) o
A3B, 2 A3—>
hy3—oo (A2 B Bz:-l;;) 5 e 35d
;5 - C B>Ds Ag—)OO 2 2 ’ ( )
2+ By+D;s (VS ) to
A — A 2 Az—00
§6;\3_>oo _ (Ay 2) Ve (35¢)

= B2 — Bl _ C2 (J/G)\'»;*)Oo)z + w2 .

It is not clear to us that the prefactors in the A3 — oo limit
can be written in terms of differences of compressibilities.
But, it is useful to compare these expressions to their coun-
terparts without pions [Egs. (32a)—(32c)] and with pions but
without A3 — oo [Egs. (H2a)—(H2f)].
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FIG. 5. Partial bulk viscosities in matter with ¥;, = 0.05 and Y;,, = 0 at 1ny (left column) and 1.6n, (right column). Results for pionless
matter are in thin dotted lines. The top row depicts the conventional definition of partial bulk viscosities, where A5 is set to zero. The bottom
row depicts the “renormalized” definition of partial bulk viscosities where A5 is sent to infinity. The total bulk viscosity—rnot the sum of the
partial bulk viscosities (and discussed in Sec. IV)—is shown with a thick grey line. For clarity, for this figure the x axes are displayed with a

logarithmic scale.

In Fig. 5 we plot, just as an illustration, the partial bulk vis-
cosities in the case of the pionless EoS (£[°7, £;°7, and £d°™),
for the EoS containing thermal pions where A3 is not sent to
infinity (that is, the conventional definition of partial bulk vis-
cosities in Appendix H), and for the EoS containing thermal
pions but in the A3 — oo limit {i“_’oo (i=1,2,4,5,6). The
full result for the bulk viscosity is shown with a thick grey
line: dashed for the EoS without pions and solid for the EoS
with pions. We see that most of the partial bulk viscosities dis-
play the predicted resonant structure, often with a conformal
point at a temperature above that of the resonant maximum.
The quantities ¢4 and {5 increase with temperature, because of
the strong temperature dependence of the relevant susceptibil-
ities (this overrides the traditional resonance structure, which

assumes that the susceptibilities do not depend strongly on
temperature [28]). The total bulk viscosity (with pions) seems
to track the “renormalized” (A3 — 00) partial bulk viscosities
much better than the traditional (A3 = 0) versions. We will
refer back to this figure in the next section.

IV. RESULTS
A. Equilibration rates and bulk viscosity

In this section, we will use the EoS developed in Sec. II
and calculate the bulk viscosity using the formulas in Sec. III,
comparing the EoSs with and without pions. The presence
of pions both changes the EoS itself (the particle frac-
tions, the susceptibilities, etc.) as well as provides new beta
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FIG. 6. Individual beta equilibration rates y,"°”™ and y,.Aﬁoo in neutron star merger conditions (top panels) and in supernovae conditions

(bottom panels). The dashed lines correspond to an EoS without pions, while the solid lines indicate an EoS with pions. The rates

Az—00

Vs of course have no counterpart in matter without pions.

equilibration pathways. We examine both in this section.
Our results for the bulk viscosity rely on the susceptibilities
(Figs. 3 and 4) and on the beta equilibration rates y; (Fig. 6)
and are themselves plotted in Figs. 7 and 8, and in Appendix A
for different lepton number conditions.

In matter with one equilibrating particle fraction, the be-
havior of the bulk viscosity resulting from a small amplitude,
harmonic density oscillation of frequency w is well known. As
long as the susceptibilities do not strongly depend on tempera-
ture, but the equilibration rate does, then the bulk viscosity has
a resonant structure as a function of temperature, with a peak
at the temperature at which the Urca rate matches the density
oscillation frequency w; see Fig. 7 in [28] or Fig. 2 in [9] for
examples. The partial bulk viscosities plotted in Fig. 5 match
this form as well, though the susceptibilities in our model
do have a significant temperature dependence, modulating the
baseline resonant structure.

Az—00

Vs and

The matter studied in this paper, with three independent
particle fractions {x,, x,, x;} could have as many as three
resonant peaks as a function of temperature (at fixed baryon
density). However, the rate A3 (or y3) is essentially infinitely
fast in the temperature range considered. That is, the reso-
nant maximum of the corresponding partial bulk viscosity &3
[Eq. (H2¢)] would be at a temperature 7 < 1 MeV and thus
we would only expect two resonant peaks in the displayed
temperature range. The susceptibilities, as we see in Figs. 3
and 4, do have a significant temperature dependence, which
will cause the overall bulk viscosity ¢(7") to have nontrivial
behavior. Now we explain the equilibration rates y (Fig. 6)
and the bulk viscosity curves (Fig. 7).

We consider neutron star merger conditions (Y,
0.05, Yz, = 0) first. The top left panel of Fig. 6 indicates
that in the EoS without pions, all three rates y;, y», and
Y6 rise above f = 1 kHz in the temperature range of a few
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FIG. 7. Bulk viscosity in dense matter with and without pions, for a harmonic, small-amplitude, density oscillation with frequency 1 kHz.
The left panel corresponds to neutron star merger conditions and the right panel to supernovae conditions.

MeV. Indeed, one sees that the three partial bulk viscosi-
ties (Fig. 5) have resonant peaks in that temperature range.
The full calculation for the bulk viscosity in pionless matter
(Fig. 7) tracks the partial bulk viscosity ¢/'°” for low tem-
perature and through its resonant maximum at 7 ~ 2 MeV.
As temperature increases, both y, and yg cross resonance at
very similar temperatures, leading to a second resonant peak
in the total bulk viscosity, that does not quite overlap with
any of the partial bulk viscosities. There is no third resonant
peak, because the pionless EoS only has two equilibrating
quantities, x, and x,,, so the third, slowest, rate is redundant.
As temperature increases further, the bulk viscosity continues
to decrease, since all particle fractions equilibrate very quickly
compared to the millisecond timescale density oscillations. At
a temperature of about 20 MeV, the system becomes partly
conformal, because A; and A, pass through zero, and the
bulk viscosity dips down to a sharp minimum, but not to zero
(unlike the partial bulk viscosities, which do dip to zero). So,
without pions, the neutrino-trapped npep bulk viscosity has
two resonant peaks as a function of temperature, both at well
below 7 = 10 MeV, and then a partial conformal dip at a
temperature around 20 MeV.

When pions are added to the EoS and their reactions are
considered, the existing rates 1, y», ¥ change very little.
However, three new equilibration rates involving pions, y3, V4,
and ys enter the picture. The direct Urca (electron) rate y; is
still the fastest (besides y3), and leads to the first resonant peak
in the bulk viscosity, just as in the pionless case (though, in re-
ality, this is the second resonant peak, because y3 would reach

7As can be seen in the top left panel of Fig. 6, including pions does
change the rates at high temperature, where the pion population be-
comes substantial. But at these high temperatures, the bulk viscosity
is very far off of resonance because the rates are much faster than the
1 kHz density oscillation, and so the bulk viscosity is small.

resonance at some temperature below the 1 MeV minimum
studied here). The next resonant peak comes from ys, the pion
decay to muons, which supersedes the reactions that dominate
in the absence of pions. In fact, the resonance shifts to slightly
lower temperatures. At temperatures just above that resonant
peak (T 2 4 MeV), all three independent particle fractions
are quick to equilibrate and thus the bulk viscosity decreases
with temperature. While Fig. 6 shows other processes passing
above the 1 kHz line (and thus Fig. 5 shows other resonant
peaks at higher temperature, for example, ¢4), those never
manifest in the full bulk viscosity calculation because they are
redundant. The fastest three rates control the bulk viscosity in
neutrino-trapped npepw ~ matter.

At higher density (1.6np), without pions, now y (muon-
electron conversion) is the fastest rate (see top right panel of
Fig. 6), but it crosses 1 kHz at about the same temperature
as y; did at 1ng, so the resonant peak is still at 7 ~ 2 MeV.
Then, y; crosses resonance at T & 4 MeV, and then y, does
at T ~ 7 MeV. These two peaks seem to interfere with each
other and what results appears to be an interference between
the two resonances (y; and y»), as the peak location and
magnitude are between those of the two partial viscosities.
As temperature increases further, the bulk viscosity decreases
until the dip indicating partial conformality.

At this higher density, when pions are included in the EoS,
their population is substantial for the entire temperature range
discussed here. Thus, the reaction rates y change substantially
when pions are added to the EoS. When the EoS includes
pions, y; is much faster than it is without pions present, and
it becomes the first reaction to reach resonance as T increases
(besides y3, of course). The total bulk viscosity thus tracks
§1x3—>oo in the range around its resonance. The pion decay
rate ys reaches resonance at 7 &~ 4 MeV, and the total bulk
viscosity tracks {;ﬁoo in this region. At higher temperatures,
equilibration of the three independent particle fractions is
faster than millisecond timescales, and thus the bulk viscosity
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FIG. 8. Bulk viscosity as a function of density oscillation frequency f = w/(2n ) for neutrino-trapped matter with ¥, = 0.05and ¥;,, = 0.
The left panel depicts matter at 1n, and the right panel matter at 1.6n,. Dashed lines correspond to matter without pions, and solid lines

correspond to matter with a thermal pion population.

decreases with temperature. The partial conformal point at
high temperature is smoothed out dramatically in the presence
of pions.

Overall, in merger conditions, the pions provide new equi-
libration pathways, which shift the temperature of the resonant
peaks in the bulk viscosity, though not dramatically. More
importantly, the presence of pions in the EoS modify the exist-
ing susceptibilities and contribute new susceptibilities which
alter the maximum value that bulk viscosity reaches. While
the bulk viscosity increases with density even without pions,
the pions further increase the bulk viscosity at high density.
The pions naturally have more of an effect at higher densities
where their population is higher.

In supernovae conditions, namely Y;,=0.3, Y, =0,
many of the equilibration rates (bottom left panel of Fig. 6)
are already fast compared to millisecond timescales, even at
low temperature. This is due to the high conserved lepton
fraction in the system. Adding pions to the EoS does not
change these rates much at all, except for introducing the
new equilibration mechanisms y3, y4, and ys. With or without
pions, the bulk viscosity in the displayed temperature range is
always on the downhill side of the resonance, decreasing with
temperature, until the partial conformal points at temperatures
above 20 MeV. At higher density (1.6n¢), y; is already faster
than millisecond timescales even for the lowest temperatures
shown. But y, and ys both cross resonance at 7 ~ 2 MeV,
leading to a resonant maximum in the bulk viscosity curve,
This feature is the same with and without pions; unlike in
merger conditions, the rates containing pions do not substan-
tially contribute to the beta equilibration. The only effect the
pions have at 1.6ny is to create a partial conformal point
at T ~ 15 MeV where none existed in the pionless case.
All partial bulk viscosities have conformal points near this
temperature (but not all at the same temperature). Since the

partial conformal point temperatures do not quite coincide,
then the bulk viscosity does not drop to zero (and even if
it did, that would only be the chemical equilibration bulk
viscosity; there would still be a small bulk viscosity from
thermal equilibration [65]).

The (oscillation) frequency dependence of the bulk viscos-
ity in merger conditions is plotted in Fig. 8. The spectrum of
oscillations in the merger has a wide range of frequencies,
with significant amplitude from hundreds of Hz up to 2 kHz
(see the bottom panel of Fig. 4 of [1]). Likely an even wider
range of frequencies is relevant. The bulk viscosity is highest
at low frequencies and drops monotonically with increasing
density oscillation frequency. There are no spectral peaks. At
high enough temperatures, the bulk viscosity becomes fre-
quency independent. Note that the energy dissipation rate has
its own frequency dependence, so the higher values of bulk
viscosity at low frequencies do not lead to quicker damping

timescales. In fact, for small w, the damping time T ~ w2,

though in the limit @ — oo, the damping time 7 ~ «°.

B. Particle dynamics during an oscillation

In the derivation of the bulk viscosity coefficient, we con-
sidered the evolution of the particle content throughout one
oscillation. This evolution ultimately gives rise to bulk viscous
dissipation as the particle fraction evolution becomes out of
phase with the density oscillation. In this section, we plot the
particle fraction as a function of time to better understand
the dynamics that give rise to bulk viscous dissipation. The
density oscillation amplitude §np is chosen to be 0.037, small
enough to remain in the subthermal regime except at the
lowest temperatures studied.

In Fig. 9 we plot the evolution of §u;, 6, and dus
over the course of the harmonic density oscillation. These
quantities are obtained from Eq. (24), where the real and
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imaginary parts of x; are obtained from the solution of the
system of equations described after Eq. (27). When any of
the 6u; departs from zero, the matter is no longer in chemical
equilibrium. In the limit A3 — oo, §us is forced to zero, so
the reaction n <> p+ 7~ is always infinitesimally close to
equilibrium.

At 1ng and T =2 MeV (top left panel of Fig. 9), both
Spu1(t) and Suy(t) oscillate up to a couple of MeV out of
beta equilibrium. The addition of pions into the system at this
low temperature and density makes no difference because the
pion number is very low. At its maximum, the quantity §u,
exceeds 2 MeV, and is no longer small compared to the tem-
perature, which indicates that the subthermal approximation
taken here loses validity; suprathermal corrections [28,60]
should be taken into account at these low temperatures. As the
temperature rises to 5 MeV, the chemical reaction rates grow
quickly and now the direct Urca process (with an electron) is
fast enough to keep §u; very close to chemical equilibrium
throughout the oscillation. The quantity éu, is still pushed by
about 1 MeV out of equilibrium, as the muon population is too
low for the direct Urca processes with a muon (y;) (or muon-
electron conversion yg) to equilibrate it efficiently. When
pions are included in the EoS, their population is sufficiently
high at T =5 MeV that du, is kept closer to equilibrium
than without the pions present. Finally, at 7 = 10 MeV, the
system (with or without pions) remains extremely close to
beta equilibrium (note the y-axis scale in the bottom left panel
of Fig. 9) throughout the density oscillation, indicating that
the bulk viscosity will be small at this high temperature.

At a higher density (1.6n9), the pion density at all tem-
peratures is high enough to impact the chemical equilibration
pathways. In an EoS without pions, at 7 = 2 MeV, the fastest
reaction is muon-electron conversion ys which equilibrates
dp1 — 8ur. When pions are added, y3 equilibrates dus; very
efficiently. But yc is reduced and y,; is enhanced due to the
presence of the pions in the EoS. In this situation, the addition
of pions to the EoS makes the system depart further from
chemical equilibrium than without pions (though, admittedly
the system departs from the subthermal regime at this low
temperature). At the higher temperatures of 5 or 10 MeV,
the same trends are present as at their 1ny counterparts. The
speedup in the equilibration rates at this higher density keeps
o and §uu, much closer to zero, and the pions help to keep
the system closer to beta equilibrium.

The evolution of the particle fractions x,(z), x,(t), and
x(t) are plotted in Fig. 10 at different temperatures and
densities, with and without pions in the EoS. These quantities
are obtained from Eq. (12), where the real and imaginary parts
of §x; are the solutions of the system of equations described
after Eq. (27). Note that we plot 8x;(¢), which indicates how
far the particle fraction of species i is from its beta equilibrium
value at the background density, not the concurrent value of
the density ng(t).

In studying these plots, both the height and the phase of the
sinusoidal variations in the particle fractions are informative.
Our intuition for the behavior of 8x;() comes from the npe
matter case. For example, Eq. (34) in the arXiv preprint ver-
sion of [14] indicates that in cold matter, where the beta equili-
bration is slow, éx,(t) ~ (dng/np)[A/(|Blnp)](y /w) sin (wt),

which?® is out of phase with the density oscillation, but also
vanishes in the slowly equilibrating limit (that is, when the
Urca rate is too slow to chemically equilibrate the matter,
the particle fraction does not change from the beta equi-
librium value at the background density). In the opposite
limit, where the beta equilibration is very fast, §x,(t) ~
(8ng/np)[A/(|Blng)] cos (wt). That is, the particle fraction os-
cillation is in phase with the density oscillation and, at the
maximum in the x,(¢) oscillation cycle, has a magnitude that
is independent of the equilibration rate. The particle fraction
just tracks the beta equilibrium curve xf U ng(t)] throughout
the density oscillation.

While the equilibration rate y is a strong function of 7', it is
not necessarily the case that the above description of 8x,(t) at
low and high y can be mapped to low and high temperature, as
the susceptibility prefactor in 8x,(¢) depends on temperature
too. For low temperature npe matter, the susceptibilities are
relatively temperature-independent. But for a system includ-
ing thermal pions, the susceptibilites are not independent of
temperature, as we have seen (cf. Figs. 3 and 4).

Without pions (dashed lines in Fig. 10), we see the ex-
pected behavior. The fractions x,(t) and x,(¢) deviate little
from their beta equilibrium values at low temperature, and as
temperature increases they deviate further, as the equilibration
is fast enough to force the particle fractions to trace the beta
equilibrium curve xf} 4 ng(t)]. The particle fraction oscilla-
tions also become more in phase with the density oscillation
with increasing temperature.

When pions are included in the EoS, the expected behavior
[increasing deviation d8x;(¢) with increasing temperature, up
to some maximum deviation] still occurs at 1ng, but at 1.6n
the trend reverses for some of the particle species. Indeed,
the presence of the pions (through their contribution to the
susceptibilities) causes the particle fractions x,(z) and x,(¢)
to oscillate less dramatically as temperature increases, while
the muon fraction x,, (¢) oscillation amplitude increases in the
expected way with increasing temperature.

V. CONCLUSIONS

We studied the bulk viscosity stemming from flavor-
changing interactions in dense matter, including for the first
time a population of thermal pions. To include the pions in
the EoS, we follow the virial expansion approach developed
in [27]. We include reactions involving pions in the set of
reactions that give rise to bulk viscosity. This work focuses
on neutrino-trapped nuclear matter, which is the bulk of the
matter in a neutron star merger remnant or supernovae en-
vironment. Our goal was to understand how the presence of
thermal pions modifies the beta equilibration and bulk viscos-
ity of dense matter.

The bulk viscosity is a function of the reaction rates in the
system and compositional properties of the EoS, such as the
susceptibilities (which we demonstrated here can be related

8Here, A and B correspond to A; and B; in this text (removing,
of course, the designation of fixed muon and pion fractions as the
expression in Ref. [14] applies to npe matter).
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to multicomponent generalizations of the compressibility of
nuclear matter). We calculated these quantities and the resul-
tant bulk viscosity in thermodynamic conditions encountered
in neutron star mergers and supernovae, and compared the re-
sults with and without thermal pions in the EoS. We also found
relationships between the local maxima in the bulk viscosity
as a function of temperature and various compressibilities of
the EoS, making apparent the possibility of using the mea-
surement of the bulk viscosity to learn about the nature of
dense matter. Finally, we investigated how the composition of
the dense matter evolves over the course of a small-amplitude
density oscillation.

Our main finding is that thermal pions can significantly
alter the density and temperature dependence of the bulk
viscosity of hot dense matter. The pion population rapidly
increases with density and temperature, and so the bulk vis-
cosity deviates most strongly from the pionless case at higher
densities and temperatures. The addition of pions to the EoS
modifies the existing nuclear matter susceptibilities to a rel-
atively small extent (Figs. 3 and 4) but also introduces new
susceptibilities that involve the pion degree of freedom and
therefore do not exist without pions. These new susceptibili-
ties have a significant effect on the bulk viscosity. In addition,
pion reaction rates have two different effects. The (essentially)
infinitely fast strong interaction n+n — n+ p+ 7~ does
not produce a new resonant peak in the bulk viscosity in
the temperature range studied, but does (as one can see from
Fig. 5) modify the maximum value of the bulk viscosity and
can move or even eliminate or introduce partial conformal
points in the bulk viscosity at fixed density, ¢ (7). The slower
pion decays (w~ — u~ + ¥,) in some conditions can over-
take the existing nucleonic or leptonic equilibration processes
and can dominate beta equilibration.

In the specific thermodynamic conditions that we studied,
the addition of thermal pions to the EoS and the inclusion
of their flavor-changing reactions into the bulk viscosity cal-
culation enhances the maximum value of bulk viscosity in
neutron star merger conditions by a factor of a few at higher
density, while shifting the second peak in the bulk viscosity
to a slightly lower temperature. In supernovae conditions, the
inclusion of pions introduces a partial conformal point, where
the bulk viscosity drops precipitously, but not all the way to
zero. In merger conditions, the maximum bulk viscosity [in
excess of 10?7 g/(cms)] occurs at temperatures of a few MeV.
Unfortunately, at these temperatures, the neutrino mean free
path is rather long, and it is unlikely that our assumption of
a thermally equilibrated Fermi sea of neutrinos is valid. At
higher temperatures (T = 5-10 MeV) where our calculation
is likely valid, the bulk viscosity predicted is quite small
because the reaction rates are much faster than the millisec-
ond hydrodynamical timescales. So, while pions enhance the
bulk viscosity in neutrino-trapped matter, the bulk viscosity
is likely still too small to impact neutron star mergers, unless
density oscillations persist in long-lived merger remnants.

This work is only the beginning of the study of the role
of pions in transport in hot, dense matter environments. This
calculation used a virial EoS to model the pions, an approach
that is valid at the high temperatures and low densities consid-

ered here and captures the qualitative trends associated with
attractive p-wave interactions and repulsive s-wave interac-
tions. However, a microscopic treatment of the pion-nucleon
system at finite temperature and density using chiral perturba-
tion theory (ChiPT) or other effective Hamiltonians that are
constrained by pion-nucleon and nucleon-nucleon scattering
data is needed to make more reliable quantitative predictions
and assess the role of pions over the wide range of densities
and temperatures of interest to our study. Recent work has
shown that ChiPT provides useful guidance for estimating the
uncertainties associated with the calculation of the charged
pion masses in neutron-rich matter [37]. However, more work
is necessary to address the role of the attractive p-wave in-
teractions that play a critical role in enhancing the thermal
population of negatively charged pions at finite temperatures.

Furthermore, the bulk viscosity should be calculated in the
neutrino-transparent regime, and the work in this paper should
be extended to the suprathermal regime. As a first step to
include pions in neutron star merger simulations, a nucleonic
EoS where pions were included in a makeshift way was im-
plemented recently in a merger simulation [67]. In the future,
EoSs that explicitly include pions as degrees of freedom (and
are valid for wide ranges of density and temperatures) should
be developed and used in simulations. Additionally, just as
Urca rates are beginning to be included in merger simulations,
rates involving pions should be included in simulations with
EoSs that include pions, allowing for the effects of pions on
energy transport and dissipation to be studied.
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APPENDIX A: BULK VISCOSITY OF MATTER WITH NET
MUON LEPTON FRACTION Y;,,

In the main text of the paper, we focused on the more
likely case at densities near ny, where muonless, neutrino-
transparent matter is heated up and becomes neutrino trapped,
but without any net conserved muon number Y7,. We were
able to discuss essentially all aspects of the bulk viscosity of
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FIG. 11. Particle content in beta equilibrium in various thermodynamic conditions expected to exist in neutron star mergers (top two
panels) and in supernovae (bottom two panels), but with equal conserved lepton fractions. Same conventions as Fig. 2.

this neutrino-trapped npeps matter. However, it is conceiv-
able that in some cases there would be a net Y7, and thus in
this Appendix we calculate the bulk viscosity of matter in two
scenarios where Y7, = Y7,,.

The particle fractions in matter with net conserved muon
number are plotted in Fig. 11. When Y;, = Yz, = 0.05, the
electron and muon populations are roughly equal. At ng, the
proton fraction is 10% instead of around 5% (in the ¥;,, =0
case). When pions are added to the system, their population
exponentially rises with temperature, becoming appreciable
at T ~ 20 MeV. When the pion population becomes appre-
ciable, the proton fraction is raised and the lepton fractions
are slightly lowered. At 1.6n, the pions content becomes
appreciable at very low temperatures, just a couple MeV. Thus
the proton fraction is larger than in the case without pions for
basically the entire temperature range plotted.

In the high lepton number case (Y;, = Yz, = 0.3) poten-
tially relevant for supernovae, the muon content is much closer
to the electron density, but the pion population is still strongly
suppressed, and does not affect the other particle fractions
substantially.

The susceptibilities A;, plotted in Fig. 12, are essentially the
same as the ones plotted in the main text (Fig. 3). However, A,
does not cross zero in the displayed temperature range when
Y. =Yz, = 0.3, but it does in the more physical realistic
scenario Yz, = 0.3,Y;, = 0.

The susceptibilities B;, C;, and D; are plotted in Fig. 13.
They are relatively similar to their counterparts in Y, =0
matter (Fig. 4).

The equilibration rates y; are plotted in Fig. 14. In merger
conditions, the rates are much faster when Y;,, = 0.05 than
when Y7, = 0. Adding pions to the EoS in these equal
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FIG. 12. Susceptibilities of the A type from the EoS described in Sec. II plotted in merger conditions (top panels) and in supernovae

conditions (bottom panels), but with equal conserved lepton fractions.

The dashed lines correspond to an EoS without pions, while the solid

lines indicate an EoS with pions. A3 has no counterpart in a system without pions.

lepton fraction conditions modifies the beta equilibration rates
slightly, especially as temperature rises. In supernovae condi-
tions, the rates are hardly modified at all, because the pion
content is very low.

The bulk viscosity in this equal-lepton-fraction matter is
plotted in Fig. 15. In matter with ¥z, = Y;,, = 0.05, the bulk
viscosity is always on the “downhill side” of the resonance
at ng (that is, all equilibration channels are equilibrated faster
than the millisecond oscillation timescale). This can be seen
from the top left panel of Fig. 14 as well. Adding pions to
the EoS at 1ny merely shifts the dip in the bulk viscosity at
T ~ 25 MeV. At 1.6ny, the rates are actually a bit slower, and,

without pions, the rate y, passes through resonance, creating
a peak in the bulk viscosity at 7 ~ 1.2 MeV. With pions, the
infinitely fast y; rate leads to a dip in £J°~*°, causing the sharp
drop in the bulk viscosity at T just above 1 MeV. The pions
smooth out the dip in the bulk viscosity at higher temperatures
too.

In matter with ¥;, =1Y;,, = 0.3, again all of the particle
fractions are equilibrated quickly compared to millisecond
timescales. The bulk viscosity is, even at T = 1 MeV, quite
small and decreases further with temperature. At 1.6ny,
the quickly equilibrating pions cause a dip in the bulk
viscosity.
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FIG. 13. Susceptibilities of the B, C, and D types from the EoS described in Sec. II plotted in merger conditions (top panels) and in
supernovae conditions (bottom panels), but with equal conserved lepton fractions. The dashed lines correspond to an EoS without pions, while
the solid lines indicate an EoS with pions. D3 has no counterpart in a system without pions.

APPENDIX B: WEAK INTERACTION RATE PHASE SPACE INTEGRALS

In this section, we write down the expressions for the phase space integrals for the rate calculations in this paper and give a
few details, but mostly we refer the reader to previous works which give a complete description of the calculations.

1. Direct Urca (with electrons)

The rate (per volume) of the neutron decay process n — p + e~ + ¥, is

_ d3pn d3pp d3pe d3Pm
) @n) @r) @n) 2n)?

27)*8*(pa — Pp — Pe — P3.)

where f denotes the Fermi-Dirac distribution. The matrix element is given by

Zspins IM |
2%E,E,EEy,

2
Sl = f)(0 = f(1 = f,), (B1)

D IMP = 132G} cos> cL(1 + g4)*(pp - P)Pn - Pv) + (€5 — D)m*(pe - po) + (84 = 1*(Pu - p)(pp - P, (B2)

spins
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FIG. 14. Individual beta equilibration rates " and yfﬁ“’ in neutron star merger conditions (top panels) and in supernovae conditions
(bottom panels), but with equal conserved lepton fractions. The dashed lines correspond to an EoS without pions, while the solid lines indicate

an EoS with pions. The rates )/4A 37 and )/5)‘3ﬁ°o of course have no counterpart in matter without pions.

but we will take the nucleons to be nonrelativistic and eliminate the (small) term that is proportional to (1 — gi), which reduces
the matrix element down to the momentum-independent quantity (see Appendix C in [45])

2
Zspins |M|

_ 2 2 2
FEEEE, = 2G2 cos? 0. (1 + 38%). (B3)

The phase space integral reduces from 12 to 8 dimensions after integrating over the delta functions. Then a spherical coordinate
system can be chosen in such a way to render three additional angular integrals trivial, leaving a five-dimensional integral. Two
more integrals can be done analytically, leaving a three-dimensional integral to do numerically. This integral has been done

with the full matrix element [Eq. (B2)] with g4 = 1 in [4], with the non-relativistic matrix element (B3) in [5], and in the
neutrino-transparent case in [50,51].

The rate of the inverse electron capture process n 4+ v, — e~ + pis

[ &p. &’p, d’p. Ip,,

Zspins |M|2
) @uy@2n) 2n) 2n)

2%E,E,E,.E,

Q2r)*8*(pu — pp — Pe + Pv,) L1 = A = £ f. (B4)

The matrix element for n + v, — e~ + p is also given by Eq. (B3) [or Eq. (B2)] due to crossing symmetry, and the phase space
integration is done almost identically to the neutron decay case.
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FIG. 15. Bulk viscosity in dense matter with and without pions, for a harmonic, small-amplitude, density oscillation with frequency 1 kHz.

The direct Urca processes involving a muon are obtained by replacing the electron mass and chemical potential with the muon
mass and chemical potential. While electrons can be treated as ultrarelativistic particles (though we do not assume this in our
calculation), muons cannot be. The electron neutrino chemical potential is also changed to the muon neutrino chemical potential.

2. Pion decay to electron

The rate of the pion decay process 1~ — e~ + ¥, is

_ dspn d3pe d3pm

Zspins |M|2
) @ny@ry@n)

VE,E.E;,

27)*8*(px — pe — p3,) g1 = f)(1 - £.). (B5)

where g denotes the Bose-Einstein distribution. The matrix element is given by

D IMP =4£2GE2(px - Po)(Px - Pe) = (P Pr)(Pe - po)] = 4f2GEmZ(pe - py). (B6)

spins

where the second line was obtained by using four-momentum conservation. The four-vector dot product p, - p, # m> due to
the pion self-energy.

The rate of the process 7~ — u~ + ¥, can be obtained by taking the rate integral (B5) with matrix element (B6) and
replacing the electron mass and chemical potential with those of the muon, as well as replacing the electron neutrino chemical
potential with the muon neutrino chemical potential.

3. Electron-muon conversion
The rate of u= — e~ + ¥, + v, is

d3p d3pe dBPDE dspvu Zs ins |M|2
- (27[;3 Ty @y Gy (27)*8* (py — pe — Py, — pv,l)mfﬂ(l -0 -f)0-f). B

The matrix element is given by

D IMP = 128G (py - pu.) (Pu, - Pe)- (B8)
spins
The rate of u= + v, — e~ + D is

dspu d3pe dsp\')e dSPI’Ju 404 Zspins |M|2
= | @ry @ny @ny ) 27)*8* (P — pe — P, — Paﬂ)mﬁ;(l (=)= F). B
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The rate of u= + v, — e~ + v, is

Zspins |M |2
24E,E.E, E,,

_ d3pu d3pe d3pve d3pvu
) @n) @) @) 2nr)?

@n)*8* (P = pe = Pv. = Pu,) Su = (1 = £ )(1 = £,)- (B10)

The rate of u= + v, + v, — e~ is given by

2
Zspins |M|

_ [ @pu &p. Ipy, dps,
2E,E.E, Ey,

) @rp@ry @) Qer)y

21)*8*(pu = pe = Pu, — P3,) Ju = f(1 = £ ) (1 = f3,)- (B11)

All four reactions in this section have the same matrix element [Eq. (B8)] due to crossing symmetry. The phase space integration
proceeds the same way as for the Urca processes, and is (briefly) described in [4].

APPENDIX C: MAXWELL RELATIONS

The first law of thermodynamics in neutrino-trapped npeus ~ matter can be written

dE = —PdV +T dS +u, dN, +pp ANy +ke AN, +iay AN, 1, ANy, +iay, ANy, 7 dNy (C1
We normalize all quantities by baryon number Ng:
e P s
d(n_) = oy dng +T d(n_> ol dXy +php dxp + e dXe +pay Xy + 0y, dxy, +py, dXy, g dxy . (C2)
B B B
We know from the allowed chemical reactions that dx, = — dx, dx, = dx, —dx;, — dx;, dx,, = dx; +dx, —dx,, and dx,, =

—dx,, and so all particle fractions can be expressed in terms of the proton, muon, and pion fractions. We Legendre transform the
temperature/entropy term [68], getting the final expression

e —sT P )

d( ) = —dng ——dT =51 dx, +(Sp1 — Spa) dx, +(Bpr — Spa3) dx . (C3)
ng ng ng

From this first law of thermodynamics, we can derive six Maxwell relations (if we only consider derivatives with respect to ng

or x;) [68]. The three that are relevant are written in Egs. (23a)—(23c).

APPENDIX D: FULL EXPRESSION FOR BULK VISCOSITY

In this section, we give the definitions of F, G, H, J, K, L in the expression for the bulk viscosity [Eq. (28)]. We keep all of
the susceptibilities in these expressions, even though three are redundant (due to Maxwell relations) and D, = C; = 0 for our
EoS. Even if we were to take advantage of these simplifications, the resultant expression for the bulk viscosity would still be
quite complicated.

First, we define the variables

a = Ak +Asks + Ashs, (Dla)
b = Bi) + Byhs + Bshs, (D1b)
¢ =Cih + Coha + Ciis, (Dlc)
d = DiA, + Doy + Diks, (D1d)
e = Aihg — As(r + hs + hg) + Ashs, (Dle)
f = Bihg — Ba(hs + A5 + Ag) + Baks, (D1f)
g=Cide — Ca(A2 + As + A6) + Gihs, (Dlg)
h=Dil¢ — Dy(Ay + A5 4+ Ag) + D3As, (D1h)
I =AM +Ashs —A3(A3 + Ay + As), (D1i)
J = BiAs + Baks — B3(A3 + Ag + As), (D1j)
k=CiAg+Cohs — C3(A3 4+ Ag + As), (D1k)
| = DAy 4+ DyAs — D3(A3 4+ Ag + As). (D11)

Then,

F = (A — A — (A — Ay)edf?i — 2(A, — A3)befgi + (A — Ay)bdfgi — Ajcdfgi + (A — A3)b* i
+A1bdg’i + (Ay — A)befhi+ A\ fhi — (A — Ay)b*ghi — Aibeghi — (A — A3)cPefj + (A — Ay)cedef j
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+ (A1 — A3)bcegj + Aredegj + (A1 — Az)acfgj — (A1 — Ay)adf gj — (A — Az)abg’ j — Ajadg’j

— (A — Ay)bcehj — Ac*ehj + (A) — Ax)abghj + Ajacghj + (A — A3)edfij — (A) — A))d> fij

— (A — A3)dg%ij — (A) — A3)bchij + (A; — Ay)bdhij + (A — Az)cghij + (A — Ay)dghij — (A; — Ay)chij

— (A, — As)edej? + (A — Ar)d?ej* + (A — As)achj? — (A| — Ax)adhj? + (A — A3)beefk — (A) — Ay)bdefk

— (A1 — A3)acf?k + (A — Ax)adf*k — (A, — A3)b*egk — A bdegk + (A — As)abf gk + A adf gk

+ (A — Ay)bPehk + A bcehk — (A} — Ay)abfhk — Ayacfhk — (A, — A3)bdfik — A\d> fik + (A, — A3)df gik

+ (A, — A3)b?hik + A1bdhik — (A; — As)cfhik + Adghik — A ch*ik + (A; — A3)bdejk + A d>e jk

+ (A — A3)degjk — (A; — A3)abhjk — Ajadhjk — (A; — Ax)dehjk — (A — As)aghjk + (A, — Ax)ah? jk

—(A; — A3)defk> — Ardehk® + (A| — A3)afhk* + Ayah®k* + (A — A2)bdfil + A cdfil — (A; — A»)df gil

—Aidgil — (A; — Ay)b*hil — A bchil + (A — Ay)cfhil + Aycghil + (A) — As)beejl — 2(A; — As)bdejl

—Ayedejl — (A — As)acf jl + (Ay — Ayadf jl — (Ay — As)cegjl + (Ay — As)ag® jl + (A1 — Ar)abhjl

+Ajachjl + (A, — Ay)cehjl — (A; — Az)aghjl — (Aq —A3)bzekl — A1bdekl + (A — Az)abfkl + Ayadfkl

+ (A, — A3)cefkl + (A; — Ay)defkl + Adegkl — (Ay — As)afgkl + Acehkl — (A, — Ay)afhkl — 2A aghkl

+ (A — Ap)bPel® + Aibcel* — (Ay — Ar)abf1> — AjacfI* — (A, — Asr)cef1> — Acegl® + (A) — Ar)afgl?

+Aagdl?, (D2a)
G = (A — Ay))bPe + Abce — (A1 — Ay)abf — Aracf — (A; — Ay)cef —Ajceg + (A, — Ar)afg+ Aag’

+ (A} — A3)bPi + Abdi — 2(A) — A3)efi+ (A — A)dfi+ (A — A3)g%i — Aychi — (A) — Ay)ghi

— (A1 — A3)abj — Ajadj + (A — Az)cej — 2(A; — Ay)dej + (A; — Ay)ahj — (A — A3)dij — Ajdek

+ (A — A)afk — (A — A3)egk + 2A,ahk + (A| — Ay)ehk + (A — A3)hik — Aydil — (A, — Ay)hil

+ (A — Aajl — (A) — As)ekl + Ajal® + (A — Ay)el?, (D2b)

H = Aja+ (A — Ax)e + (A1 — A3)i, (D20)

= (dgj — chj — dfk + bhk + cfl — bgl)*, (D2d)
K = 2 f? —2bcfg+ b’ + 2cdf j — 2dg*j — 2bchj + 2cghj + d*j* — 2bdfk + 2df gk + 2b*hk — 2c fhk

—2dhjk + h*k* — 2bdjl + 2chjl + 2dfkl — 2ghkl + b*1> — 2cf1* + 1, (D2e)

L=0 —2cf +¢ —2dj+ 2hk + 2. (D2f)

APPENDIX E: BULK VISCOSITY WITHOUT PIONS

In this section, we give the definitions of G’, H', K’, and L', in the bulk viscosity expression Eq. (29):

G’ = [Aahe + A1 (A2 + Ae)[{(A 1By — A2B1 )’y + [(A] — A2)By + A1Col*As + [Ax(B) — Ba) + A 1Ca1 e}, (E1)
H' = Alr +ASh + (A — Ay) e, (E2)
K' = [Mahe + A2 + A6)’[B3 — Bi(B, + &)1, (E3)
L' = B3\] 4+ 2B30 kg + (By + C)?*A3 + 2(B) — By)* A + 2C3hahe + (Ba — By — C)* Az (E4)

Reference [4] studied bulk viscosity in neutrino-trapped npep matter in the cases where A¢ — 0 and A¢ — o0. In the limit
Ae — 0, our expression simplifies to

_ Miaof(ArB; — A2B1 )M + [(A1 — A2)By + A1 P} + (ATAr + A3hs)o?
= . .
A2A3[B3 — Bi(By + Cy)|” + [BIA} + 2B3h1hy + (By 4+ )43 |0 + w*

(E5)

In the limit where Ay — 00,

‘= [A2(B1 — By) + A1Co )P (A + A2) (E6)
[B2 — Bi(By + Co)' (1 + 2)2 + (B, — B — Cy)2e?
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APPENDIX F: BULK VISCOSITY A3 — o0

In this section, we give the definitions of Q, R, U, and W in the expression for the bulk viscosity [Eq. (30)]. We set D, =
C; = 0, consistent with our EoS:

By[A3(B) — By) + A2B, +AID3]T

O=[A1+2)R2+2rs)+ A1+ 22+ A4 +)»5))»6]{(M +)»4)|:A231 - B
>+ Ds

B>[(A1 — A2)D3 — A3 (5]

2
i| + A [Az(B1 —By) +AC —

A3By(B; — B, + ) T?
+(A2+A5)|:A1C2+ 3B2B1 — By 2)] } (Fla)

Bz+D3 BZ +D3
2 2
R:(A1+A4)[A1— AsBs } +(k2+A5)|:A2— AsBs } T Ae(A] — Ar), (F1b)
By + D3 By + D;s
B>[(B; — B>)D; — B,C>])?
U=[(Al+k4)(xz+xs>+(x1+A2+A4+AS)A612{BICZ+ 2[(B1 = B2)Ds — B, 2]} , (Flo)
B, + Ds

W—(B 5 )2(/\ +A)2+(C+ B2Ds )2@ +as) +2 B3D; (1 + 2) (02 + 15)

- 1 B2+D3 1 4 2 B2 -|—D3 2 5 (B2 +D3)2 1 4 2 5
+2(B1 — B2’ (M1 + Ma)he +2C5 (A + As)he + (B1 — By + C2)*Ag. (F1d)

APPENDIX G: THERMODYNAMIC JACOBIAN CALCULATIONS

We go through the thermodynamic Jacobian calculations to relate the compressibility of nuclear matter to the susceptibilities,
which appear in the bulk viscosity formulas. For a review of thermodynamic Jacobians, see [68]. Temperature is held constant
in all formulas in this Appendix, so we leave it implicit in the Jacobians and derivatives.

Without pions, a few key compressibilities can be written as

3_P _ (P, xy, 81u1) _ (P, x,, 8u1) 9(ng, xp, Xy) _ (P, Sy, xu) 9(xy, xp)
8nB X8 8(”39 xﬂ98l‘l'1) a(nBv -xpsx,u,) 8(7’13, Xus 5“1) a(n37 -xpv-xu) a(-x/,u 8“1)
_ I(P,Spuy) [0 _ oP JP ox, 081
8(n37xl7) axp ng.x, dng Xp Xyt axl’ ng.,X, Ly ng.,x, dng Xpo Xy
oP 1 A2
=— —-1, (Gla)
81’13 XpoXy ng Bl
B_P = 8(Rxp_-x;u 8“2) — a(P»xp_-xp,a 8“2) a(nBa-xpy-xu)
ongly . sy, 0B Xp — Xy, S1t2) d(np, xp,x,)  0(np, x, — Xy, Su2)
(P, xp — Xy, 82) [ 0(x, — Xy, 642) oP oP 08y dP 951, 08y 0S5y
= =— - — + — +
d(np, xp, X,.) 9(x,, x,) ong ot 0x, ong 0x, Ong oxy, 0x,
) 1 A2
=— ——2_, (G1b)
dng xx, 1B B, + G
P P O =) Xy x) (P — ) [ 9B — 8p1a)
OnB |y su,—sus d(np, xp, x,)  0(np, Xp, Sj41 — Su2) d(np, x,.) dxy
_ P P ax,, (1 —Spua) 9P 1 (A4 — Ay)?
COngl, ., 9%, 8B — Spa) dng COngl,., e Ci—C
oP 1 (A —A)?
-2 _ _M (Glc)
31’13 XpoXy ng Bz — Bl — C2

For readability, after the first line, we drop the variables that are held constant, but the independent variables are always
{ng, x5, x,} (and T, which is implicit in this section).
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APPENDIX H: PARTIAL BULK VISCOSITIES WITHOUT A3 — oo LIMIT

In this section, we present the formulas for the partial bulk viscosities in dense matter containing thermal pions, without
taking the limit of infinitely fast X3. These expressions are really to be compared with the A3 — oo expressions in the main text.

The beta equilibration rates are

and the partial bulk viscosities are given by

" = —BiAg,

2 = —(By + (1),

y3 = — (B2 + D3)As,

va = (B2 — B — D3)Ay4,
ys = —(C + D3)As,

Yo =

&1 =—

A_% 4!
B| y12 +a)2’

(B — B — Cy)As,

A7 ¥

A3 V3

(A — A3)?

T B+ G Vi 4 w?

S TERAD o

V4

‘T BB —-Diyita?

{5 = —

(A — A3)?

Vs

(A — Ay)?

Cy + Ds )/52—‘1-6()2’

Y6

86

T BB -G+

(Hla)
(H1b)
(Hlc)
(H1d)
(Hle)
(HIf)

(H2a)

(H2b)

(H2c)

(H2d)

(H2e)

(H2f)

The maximum values of the partial bulk viscosities can be related to the compressibilities via the same procedure as given in

Appendix G. The results are

gl,max -

§2,max -

(3,max -

;4,max -

;5,max -

;6,max =

oP
Xps Xy X, T anB
oP
XXX, T dng
oP
XXX, T ongp
oP
XX X, T ongp
oP
Xp XX, T ongp
oP
Xp XX, T ongp
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Xy Xp—Xg 003, T
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