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Bulk viscosity of nuclear matter with pions in the neutrino-trapped regime
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Recent work [Fore and Reddy, Phys. Rev. C 101, 035809 (2020)] has shown that a population of thermal

pions could modify the equation of state (EoS) and transport properties of hot and dense neutron-rich matter

and introduce new reaction pathways to change the proton fraction. In this article we study their impact on the

bulk viscosity of dense matter, focusing on the neutrino-trapped regime that would be realized in neutron star

mergers and supernovae. We find that the presence of a thermal population of pions alters the bulk viscosity by

modifying the EoS (via the susceptibilities) and by providing new reaction pathways to achieve beta equilibrium.

In neutron star merger conditions, the bulk viscosity in neutrino-trapped npeμ matter (without pions) has its peak

at temperatures of at most a couple MeV and is quite small at temperatures of tens of MeV. We find that thermal

pions enhance the low-temperature peak of the bulk viscosity by a factor of a few and shift it to slightly lower

temperatures. At higher temperatures, where the pion abundance is large but the bulk viscosity is traditionally

small, pions can increase the bulk viscosity by an order of magnitude or more, although it is still orders of

magnitude smaller than its peak value.
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I. INTRODUCTION

Transport properties of hot and dense matter are expected

to play a role in neutron star mergers and core-collapse su-

pernovae. At high densities and temperatures encountered

in these extreme astrophysical phenomena, neutrinos dom-

inate energy and momentum transport [1]. Long ago, bulk

viscosity due to out-of-equilibrium weak reactions involv-

ing nucleons was shown to damp density oscillations on

dynamical timescales relevant to neutron star oscillations

[2,3]. Following initial estimates of the bulk viscosity by

Alford et al. [1], there has been renewed interest in de-

tailed calculations of the bulk viscosity in hot and dense

nuclear matter with [4,5] and without [6–9] trapped neu-

trinos. Two of these studies included muons in addition to

the usual neutrons, protons, and electrons. Other recent stud-

ies have looked at exotic phases of matter including dense

matter with hyperons [10] and quark matter [11–13]. For a

review of bulk viscosity in neutron star environments, see

the book chapter [14]. Favorable results in these calculations,

including the prediction of millisecond timescale bulk vis-

cous damping in neutrino-transparent matter [9], have lead

to the inclusion of weak-interaction driven bulk viscosity

in neutron star merger simulations [15–22], which has been

facilitated by improvements in neutrino transport schemes

[21] and the relativistic hydrodynamics of multicomponent

fluids [7,23–26].

In addition to neutrons, protons, electrons, muons, and

trapped neutrinos, a thermal population of negatively charged

*Contact author: stharr@iu.edu

pions could be relevant at the high temperatures and densities

encountered in neutron star mergers [27]. Thermal pions have

been shown to soften the equation of state (EoS), enhance the

proton content, and modify the neutrino opacity in dense mat-

ter [27]. The study also mentioned that pions provide a new

pathway to equilibrate the proton fraction, thereby altering the

out-of-equilibrium weak reactions that give rise to the bulk

viscosity.

In this work, we study the effect of thermal pions on

bulk viscosity, considering their effects on out-of-equilibrium

chemical reactions and on the EoS. We will fully develop

the formalism for bulk viscosity in neutrino-trapped nuclear

matter containing neutrons, protons, electrons, muons, and a

thermal population of pions. In npe matter, the proton frac-

tion is adequate to specify the composition since the neutron

and electron densities can be determined via baryon number

conservation and charge neutrality. There is one chemical

equilibration channel and therefore the bulk viscosity exhibits

a single resonant peak. For a given density, the resonance

occurs at a temperature when the equilibration rate becomes

comparable to the oscillation frequency [9,28]. Systems with

several independent particle species can have a bulk viscos-

ity with a complicated temperature dependence with several

distinct or overlapping resonances. The rule of thumb is one

resonance for each independent equilibration channel. This

complexity has been studied in earlier work for the case of

npeμ matter [4,8,14,29], and in quark matter [13,30–34]. Here

we perform a similar analysis for npeμ matter containing a

population of thermal pions, taking into account the effect of

pions on the out-of-equilibrium reactions and the thermody-

namic properties such as the susceptibilities that influence the

bulk viscosity.
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In Sec. II, we discuss the model of nuclear matter and the

treatment of the pion-nucleon interactions and pion dispersion

relation. In Sec. III, we develop the formalism to calculate the

bulk viscosity with pions and trapped neutrinos. In Sec. IV,

we discuss the results.

We work in natural units, where h̄ = c = kB = 1.

II. NUCLEAR MATTER WITH THERMAL PIONS

The population of negatively charged thermal pions in

neutron-rich matter at high density is enhanced due to a rapid

increase in their associated chemical potential. The negative

charge chemical potential, denoted by μ̂ = μn − μp, where

μn and μp are the neutron and proton chemical potentials,

respectively, is needed to ensure electric charge neutrality

and its magnitude (which depends on the nuclear symme-

try energy) becomes comparable to the vacuum pion mass

mπ . Consequently, in the absence of interactions, the pion

number density increases exponentially as exp [(μ̂ − mπ )/T ].

Calculations in [27], which includes pion-nucleon interactions

that are based on the virial expansion, found that interac-

tions increase the pion fraction at finite temperatures. This

study found that, although s-wave interactions are repulsive,

a strong and attractive p-wave interaction can greatly enhance

the pion number at a modest temperature, motivating the study

of the presence of pions on properties of hot, dense matter.

We consider matter composed of neutrons n, protons p,

electrons e−, muons μ−, and pions π−, as well as neu-

trinos and antineutrinos of electron and muon flavors. The

system at a particular baryon density nB, temperature T ,

conserved electron-type lepton fraction YLe ≡ (ne + nνe
)/nB

(number densities n refer to the net densities, particle mi-

nus antiparticle), and conserved muon-type lepton fraction

YLμ ≡ (nμ + nνμ
)/nB has three independent particle fractions,

chosen to be xp, xμ, and xπ . In beta equilibrium, these par-

ticle fractions are functions of nB, T , YLe, and YLμ. We treat

the electron and muon lepton numbers to be separately con-

served because we neglect neutrino oscillations, which are

suppressed in dense matter [35].

The neutron and proton sector of the equation of state is

described here with a nonrelativistic Skyrme model called

NRAPR, described in [27,36]. To model interactions be-

tween pions and nucleons we use a construction of the pion

self-energy, �π− (p) which is structurally similar to the one

introduced in [27]. The pion dispersion relation is given by

Eπ− (p) =

√

p2 + m2
π + �π− (p), (1)

with the pion self-energy given by

�π− (p) =

∫

d3k

(2π )3

∑

N=n,p

fN (EN (k)) V
ps

Nπ− (pcm)

V
(ps)

Nπ− (pcm ) = −
∑

I,l,ν

αl (2l + 1)
2πδI

l,ν

m̄ pcm

, (2)

where the sum is over the isospin I , the angular momentum

l , and the nucleon spin ν. The symbols m̄ and pcm represent

the reduced mass of the pion-nucleon system and the center-

of-mass momentum, respectively. The term δI
l,ν is the phase

FIG. 1. The pion dispersion relation in vacuum (dashed line) and

in dense matter, as predicted by our EoS (solid lines). The pion

“mass” [Eπ− (p = 0)] is shifted from its vacuum value (139.6 MeV)

to 177.4 MeV at 1n0 and to 194.0 MeV at 1.6n0. The temperature is

taken to be 1 MeV.

shift in the given channel. The modified pseudopotential now

has two parameters αl rather than the single value used in

[27]. This change is motivated by the fact that the model

under-represents the s-wave repulsion present in pion-nucleon

interactions by suppressing the s-wave and p-wave interac-

tions equally. To prevent this we set the parameter α0 = 1

and fit the value of the remaining parameter α1 such that the

model produces the same pion fraction as the virial calcula-

tion presented in [27] at a baryon density equal to nuclear

saturation density, a temperature of 30 MeV, and with both

electron-type and muon-type conserved lepton fractions equal

to 0.1. Unlike in [27], where the value of α was explored at

various temperatures and densities, our fitting parameter, α1,

has a fixed value of 0.23596 for all conditions considered.

The pion dispersion relation predicted by Eq. (1) is shown

in Fig. 1. As noted earlier, the shape of the dispersion curve

can be understood as arising due to the competition be-

tween s-wave repulsion and strong p-wave attraction. The

self-energy at zero momentum leads to a positive shift of

the pion “mass” [Eπ− (p = 0)] of about 40 MeV at nB = n0

and by about 54 MeV at nB = 1.6 n0. These large shifts are

consistent with recent calculations of the pion mass in dense

neutron-rich matter reported in Ref. [37]. With increasing

momentum, the self-energy becomes negative due to attractive

p-wave interactions and produces the distinct nonmonotonic

behavior characterized by the maximum and minimum seen

in the figure. Since the typical pion momentum pπ ≃ 3T ,

with increasing temperature the low lying states at higher mo-

mentum will be preferentially occupied and the nonmonotonic

dispersion relation leads to a stronger temperature dependence

of the thermal pion population as will be discussed below.

015802-2



BULK VISCOSITY OF NUCLEAR MATTER WITH PIONS … PHYSICAL REVIEW C 111, 015802 (2025)

Since we aim to cover the neutrino-trapped conditions that

exist in supernovae and neutron star mergers, we choose a

variety of YL,i to mimic these conditions. No neutron star

merger simulation has, to this point, dynamically included

muons, and therefore we refer to a postprocessing analysis

[38] which predicts that matter above saturation density could

have YLe in the range of 0.04–0.10 and YLμ in the range

0.01–0.07. Supernovae simulations reliably predict YLe to be

between 0.3 and 0.4 [39]. Muons have been included in re-

cent supernovae simulations [40,41], and since the net muon

number YLμ in the supernova progenitor is close to zero, it

remains that way throughout the duration of the supernova. To

study these different physical situations, we will focus on the

two configurations {YLe,YLμ} = {0.05, 0} (a good description

of neutron star merger conditions) and {YLe,YLμ} = {0.3, 0} (a

good approximation of supernova conditions). In the merger

case, the two merging neutron stars are cold and do not contain

a large muon population. Upon rapid heating at the contact of

the two stars, the muon number is frozen due to the trapping of

neutrinos. For supernovae, the matter is initially at low density

and therefore does not contain a large muon population, and

once the matter becomes dense enough to trap neutrinos, the

muon number becomes frozen in. While it is almost certainly

not zero in either physical situation, it is reasonable to choose

zero as a representative case. In the main text, we discuss

the particle content, susceptibilities, equilibration rates, and

bulk viscosity for matter with the above two choices of lepton

fractions, and put the corresponding results for equal values

of the conserved electron and muon fraction, {YLe,YLμ} =

{0.05, 0.05} and {0.3, 0.3}, in Appendix A.

The particle fractions predicted by our EoS are plotted in

Fig. 2. The top panel depicts matter in typical neutron star

merger conditions ({YLe,YLμ} = {0.05, 0}), and the bottom

panel typical supernovae conditions ({YLe,YLμ} = {0.3, 0}).

The dashed curves represent the EoS without pions, while the

solid curves include thermal pions.

In the merger conditions plotted above, the charge-neutral,

beta equilibrated pionless matter is neutron-dominated, hav-

ing a proton fraction of about 0.05, which rises slightly as the

temperature increases. The electron population is greater than

the muon population due to the large mass of the muon, but

together they balance out the positive charge of the proton.

Focusing on 1n0 (top left panel) for now, when thermal pions

are included in the EoS, their population at low temperatures

is small, but increases exponentially with temperature. As

their population becomes appreciable at T � 10 MeV, the

proton fraction is pushed upward (compared to the pionless

case) while the lepton populations decrease (compared to the

pionless case). This effect of the pions was seen in the original

version of this EoS [27]. At a higher density, 1.6n0 (top right

panel), the sourcing chemical potential μ̂ is larger, and thus

the pion population is much larger, even at low temperatures.

Again, the pion population grows with temperature, surpass-

ing the lepton population at temperatures of just a few MeV.

Thus, in merger conditions, the pions play a significant role

in the EoS at temperatures above 10 MeV, or even lower

temperatures as the density rises above saturation density.

In supernovae (bottom two panels of Fig. 2), the lepton

number is much higher when the neutrinos are trapped, since

trapping occurs well before deleptonization [42,43], and thus

supernova matter has a much larger conserved lepton fraction

YLe. When pion are included in the EoS, their population is

suppressed because under these conditions μ̂ = μn − μp is

small compared to mπ and the isospin asymmetry is smaller.

The pion population, and thus the alteration to the EoS is small

unless the temperature exceeds several tens of MeV.

III. BULK VISCOSITY

We derive an expression for the bulk viscosity of nuclear

matter containing a thermal population of pions. We will

consider a fluid element undergoing small-amplitude baryon

density oscillations of the form

nB(t ) = nB + Re (δnBeiωt )

= nB + δnB cos (ωt ), (3)

where δnB ≪ nB and we have chosen δnB to be real. Here, the
real and imaginary parts of a quantity X are denoted Re (X )
and Im (X ), respectively. A change in density can push the
nuclear matter fluid element out of beta equilibrium by an
amount δμ [to be precisely defined later in Eqs. (16a)–(16c)].
In this study, we assume the density oscillation amplitude is
small enough to only push the system slightly out of chemical
equilibrium, such that δμ ≪ T . The resulting bulk viscos-
ity calculated under these conditions is called “subthermal”
[44]. Below, we extend the subthermal bulk viscosity deriva-
tion in npe matter with one equilibrating chemical potential
δμ [14,28,45] to neutrino-trapped npeμπ− matter, which
will turn out to have three equilibrating chemical potentials
{δμ1, δμ2, δμ3}.

As the fluid element in question undergoes a density oscil-
lation, we will assume that the thermal conductivity (due to
trapped neutrinos [1,46,47]) is high enough to keep the matter
at constant temperature throughout an oscillation. Such an
oscillation in baryon density pushes the three particle fractions
{xp, xμ, xπ } away from their values in chemical equilibrium.
Flavor-changing interactions (these can be weak or strong
interactions, as we will see) push the particle fractions back
into chemical equilibrium, which takes a certain amount of
time. The pressure of nuclear matter, which depends on both
the baryon density and the three independent particle fractions
{xp, xμ, xπ }, changes due to chemical equilibration and thus
will oscillate out of phase with the baryon density oscillation
due to the finite rate of the weak interactions. The pressure
can be written as

P(t ) = P0 + Re (δPeiωt )

= P0 + Re (δP) cos (ωt ) − Im (δP) sin (ωt ). (4)

The Im (δP) term represents the phase lag between the pres-

sure P(t ) and the baryon density nB(t ), which will give rise

to bulk viscous energy dissipation via the mechanism of P dV

work.

The bulk viscosity is defined through its contribution to the

energy dissipation of a density oscillation,

dεosc

dt
= −ζ (∇ · v)2. (5)

We use the continuity equation for a Lagrangian fluid element,

dnB (t )

dt
+ nB(t )∇ · v = 0, (6)
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FIG. 2. Particle content in beta equilibrium in various thermodynamic conditions expected to exist in neutron star mergers (top two panels)

and supernovae (bottom two panels). The left column depicts matter at 1n0, while the right column shows matter at 1.6n0. Particle densities

are defined as particles minus antiparticles. In the case of neutrinos, the absolute value of the particle fraction is plotted (thus a sharp dip in

the neutrino fraction indicates that the net density passes through zero, indicating a switchover in neutrino or antineutrino dominance). Particle

fractions in the pionless EoS are shown with dashed lines, while the fractions in the EoS with pions are depicted with solid lines.

and then average over one oscillation period,

〈

dεosc

dt

〉

= −
1

2

(

δnB

nB(t )

)2

ω2ζ

≈ −
1

2

(

δnB

nB

)2

ω2ζ . (7)

The energy lost due to P dV work is

dEdiss = d (εV ) = −P dV . (8)

We can express this as the energy density lost due to P dV

work:

dεdiss =

(

ε + P

nB

)

dnB, (9)

where we used the fact that baryon number is conserved

dNB = d (nBV ) = nB dV +V dnB = 0. Averaging over a cy-

cle,

〈

dεdiss

dt

〉

=
ω

2π

∫ 2π/ω

0

dt

[

P(t ) + ε(t )

nB(t )

]

dnB(t )

dt

≈
ω2

2π

(

δnB

nB

)

Im (δP)

∫ 2π/ω

0

dt sin2 (ωt )

≈
ω

2

(

δnB

nB

)

Im (δP), (10)

where we used the Eq. (4) for time dependence of the

pressure. We drop the energy density term, because the
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energy density oscillates in phase with the baryon density and

therefore drops out of the time average.1

The energy lost by the oscillation is gained by the fluid

element, and thus Eqs. (7) and (10) sum to zero and we find

ζ =

(

nB

δnB

)

Im (δP)

ω
. (11)

This expression is independent of the nature of the chemi-

cal equilibration (assuming deviations from equilibrium are

small), as thus matches the expression for npe matter given in

[14,45] and in other phases of matter [48,49]. The physics of

the chemical equilibration (such as the number of equilibrat-

ing chemical potentials δμ) will affect the form of Im (δP),

which we will now determine.

Driven by a harmonically oscillating density, the particle

fractions xp, xμ, xπ are also harmonically oscillating,

xi(t ) = x0
i + Re (δxie

iωt )

= x0
i + Re (δxi ) cos (ωt ) − Im (δxi ) sin (ωt ), (12)

potentially out of phase with nB(t ). Now, the pressure

P(nB, T, xp, xμ, xπ ) can be expanded around its beta equi-

librium value (keeping T fixed throughout the oscillation

because of the high thermal conductivity):

P = P0 +
∂P

∂nB

∣

∣

∣

∣

T,xp,xμ,xπ

Re (δnBeiωt ) +
∂P

∂xp

∣

∣

∣

∣

T,nB,xμ,xπ

Re (δxpeiωt ) +
∂P

∂xμ

∣

∣

∣

∣

T,nB,xp,xπ

Re (δxμeiωt ) +
∂P

∂xπ

∣

∣

∣

∣

T,nB,xp,xμ

Re (δxπeiωt ).

(13)

Evidently [from Eqs. (4), (12), and (13)]

Im (δP) =
∂P

∂xp

∣

∣

∣

∣

T,nB,xμ,xπ

Im (δxp) +
∂P

∂xμ

∣

∣

∣

∣

T,nB,xp,xπ

Im (δxμ) +
∂P

∂xπ

∣

∣

∣

∣

T,nB,xp,xμ

Im (δxπ ), (14)

indicating that to calculate the bulk viscosity [Eq. (11)] we

need the imaginary part of the particle fraction oscillation

terms.

A. Classification of chemical reactions in neutrino-trapped

npeµπ− matter

At the high temperatures (T � 5 MeV) considered here, all

constituent particle species are in thermal equilibrium, even

the neutrinos (as their mean free path is well below 1 km

[50]). This is in contrast to the often-studied case where the

matter is neutrino transparent and therefore any reaction with

neutrinos or antineutrinos in the initial state is forbidden, and

thus the neutrinos are not in statistical equilibrium [50,51].

In the neutrino-trapped case, studied here, all weak processes

proceed in both directions. The processes proceed in a manner

that would balance the chemical potentials on each side of the

reaction,

∑

i∈LHS

μi =
∑

i∈RHS

μi, (15)

indicating chemical equilibrium [52,53].

1This fact can be seen from the Taylor expansion of the pressure

[Eq. (13)]. The partial derivatives of the pressure with respect to

particle fractions have finite values (related to the susceptibilities,

discussed later), which gives the pressure P(t ) terms that are propor-

tional to sine which are thus of phase with the density oscillation. An

analogous expansion of the energy density around beta equilibrium

would yield partial derivatives of the energy density with respect to

particle fractions, which are zero in beta equilibrium. Thus the energy

density is in phase with the baryon density for small amplitude

oscillations around beta equilibrium and it drops out of Eq. (10).

There are six classes2 of weak reactions that can occur in

neutrino-trapped npeμπ matter, and therefore six chemical

potential differences δμi that are zero in chemical equilibrium.

However, three of them are redundant and can be written in

terms of three independent equilibrating chemical potentials:

δμ1 ≡ μn + μνe
− μp − μe, (16a)

δμ2 ≡ μn + μνμ
− μp − μμ, (16b)

δμ3 ≡ μn − μp − μπ . (16c)

We assume in this analysis that particles are chemically equili-

brated with their respective antiparticles, μX = −μX̄ . This is a

good assumption for the hadrons and charged leptons, though

for neutrinos it is merely a simplifying assumption.3 Given

this, the six classes of reactions are listed in Table I.

We list next to each reaction the relaxation rate towards

beta equilibrium (the forward rate
−→
Ŵ minus the backward rate

←−
Ŵ ) and its approximation to linear order in δμ, which we will

use since we only consider small deviations from chemical

equilibrium. The coefficients

λ ≡
∂ (

−→
Ŵ −

←−
Ŵ )

∂ (δμ)

∣

∣

∣

∣

δμ=0

(17)

2Reactions within each class are related by “crossing” (e.g., direct

Urca neutron decay and electron capture) or by the addition of a

spectator particle to both sides of the reaction (e.g., direct Urca

neutron decay and modified Urca neutron decay).
3If neutrinos and antineutrinos were not equilibrated with each

other, as is likely the case except at quite large temperatures, we

would have to assign distinct chemical potentials μνe
, μν̄e

, μνμ
, μν̄μ

and consider reactions such as n + n ↔ n + n + νe + ν̄e or νe +

ν̄e ↔ νμ + ν̄μ.
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TABLE I. The chemical reactions that occur in neutrino-trapped npeμπ matter, split into six categories based on the δμ that they

equilibrate. Not included in the list are the “modified” versions of these reactions, where a spectator particle is in the initial and final state. This

table also serves to define the λi (i running through the alphabet from a to l) corresponding to each process.

Equilibrating δμ Reactions
−→
Ŵ −

←−
Ŵ (subthermal)

n ↔ p + e− + ν̄e λaδμ1
(1) δμ1 ≡ μn + μνe

− μp − μe
n + νe ↔ e− + p λbδμ1

n ↔ p + μ− + ν̄μ λcδμ2
(2) δμ2 ≡ μn + μνμ

− μp − μμ
n + νμ ↔ μ− + p λdδμ2

(3) δμ3 ≡ μn − μp − μπ n ↔ p + π− λ3δμ3

π− ↔ e− + ν̄e λe(δμ1 − δμ3)
(4) δμ4 ≡ μπ + μνe

− μe = δμ1 − δμ3
π− + νe ↔ e− λ f (δμ1 − δμ3)

π− ↔ μ− + ν̄μ λg(δμ2 − δμ3)
(5) δμ5 ≡ μπ + μνμ

− μμ = δμ2 − δμ3
π− + νμ ↔ μ− λh(δμ2 − δμ3)

μ− ↔ e− + ν̄e + νμ λi(δμ1 − δμ2 )

μ− + ν̄μ ↔ e− + ν̄e λ j (δμ1 − δμ2 )
(6) δμ6 ≡ μμ + μνe

− μe − μνμ
= δμ1 − δμ2

μ− + νe ↔ e− + νμ λk (δμ1 − δμ2)

μ− + νe + ν̄μ ↔ e− λl (δμ1 − δμ2)

describe the rate of beta relaxation of a particular reaction.

The relaxation rate λ of each class of processes is given by the

sum of λ for each reaction in the class:

λ1 = λa + λb,

λ2 = λc + λd ,

λ4 = λe + λ f , (18)

λ5 = λg + λh,

λ6 = λi + λ j + λk + λl .

The processes shown above can also occur in the presence

of spectator particles. For example, the direct Urca neu-

tron decay process n → p + e− + ν̄e is supplemented by the

modified Urca process n + N → N + p + e− + ν̄e [54], the

electron-muon conversion process μ− + νe + ν̄μ ↔ e− can

only proceed with a lepton spectator [49], and n ↔ p + π−

needs a nucleon spectator to proceed [27].

In this work, where we study nuclear matter at temper-

atures high enough (T � 5 MeV) such that neutrinos are

trapped, we will not need to consider spectator particles di-

rectly. The reaction that proceeds with a spectator particle is

usually slower than the reaction without the spectator particle,

because of the additional phase space restriction from the

spectator particle (in degenerate matter, by (T/μ)2) and, in

the case of weakly coupled theories like electromagnetism,

the reaction is also suppressed by additional powers of the

small coupling α [49]. However, the direct (or, spectatorless)

reaction is sometimes kinematically forbidden, and the only

process that operates is that with the spectator. The classic

example (in neutrino-transparent matter) is the direct Urca

process, which is forbidden at low densities where the pro-

ton fraction is too small [55,56], in which case the modified

Urca process dominates. At finite but low temperatures, the

direct Urca process is not forbidden but is strongly Boltzmann

suppressed. As temperature rises the Boltzmann suppression

decreases, and at temperatures above 1 MeV the direct Urca

process, even below the threshold, dominates over modified

Urca [50,51].

Here, we consider neutrino-trapped nuclear matter, and

thus the neutrino (or antineutrino) population has a fi-

nite Fermi momentum, which alters the kinematics of the

Urca process from the neutrino-transparent case. In neutrino-

trapped matter, the direct Urca process e− + p ↔ n + νe and

its muon counterpart (λ1 and λ2) do not have a density thresh-

old because the neutrinos have a finite Fermi momentum (see

Figs. 13 and 14 in [5]), and as such will dominate over the

modified Urca processes.

The process n ↔ p + π− needs a spectator to proceed, but

even the spectator reaction n + n ↔ n + p + π− is very fast

compared to all other timescales in the problem as long as

T � 1 MeV, so in our numerical calculations we will take

the λ3 → ∞ limit and never have to calculate the rate of

n + n ↔ n + p + π−. The rate of this process, however, can

be calculated using models such as the one developed in [57].

The rate of the pion decay processes in the presence of a

nucleon spectator (for example, n + π− → n + μ− + ν̄μ) has

not been rigorously calculated, as far as we know. A rough

estimate was given for neutrino transparent matter [58]. We

cannot rule out the possibility that our calculation underesti-

mates the rates λ4 and λ5 because we neglect the possibility

of spectators particles in pion decays.

Finally, the direct leptonic processes λ6 are kinematically

allowed since there is a trapped neutrino population and

they will dominate over their counterparts with an electri-

cally charged spectator particle. Note that at our level of

approximation, where we neglect spectator processes in the
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λ6 subprocesses, λl = 0 because the process μ− + νe + ν̄μ →

e− is kinematically forbidden.

B. Weak interaction rates

We calculate the weak interaction rates Ŵ (number of reac-

tions per time per volume) with Fermi’s golden rule, where

the rate is determined by a multidimensional phase space

integral of the product of a matrix element and the Fermi-

Dirac or Bose-Einstein distributions of the involved particles

[51,54,59]. We perform the full phase space integration (as

in [4,5,9,10,29,50,51,60]) without making any approximation

for the degeneracy of any particle species. The rate calcula-

tions are briefly described in Appendix B.

In beta equilibrium, the net rate
−→
Ŵ −

←−
Ŵ of any particular

flavor-changing interaction is zero. When the system is pushed

out of beta equilibrium by amount δμ [δμ measures the de-

gree of violation of Eq. (15)], the net rate
−→
Ŵ −

←−
Ŵ becomes

nonzero, forcing the system back to chemical equilibrium (per

Le Chatelier’s principle). The net rate can be calculated for δμ

of arbitrary size (see analytic calculations for the direct and

modified Urca processes in strongly degenerate npe matter

in [61]), though we consider only subthermal bulk viscosity

where δμ ≪ T . In this regime, the net rate is proportional to

the size of the departure from beta equilibrium
−→
Ŵ −

←−
Ŵ ≈

λδμ. For a given reaction, if all involved particles are in

thermal equilibrium, there is a simple relationship4 between

the rate of the process and λ [4,5],

−→
Ŵ (δμ = 0) =

←−
Ŵ (δμ = 0) = λT . (19)

So, to obtain λ we merely need to calculate Ŵ in beta equilib-

rium and divide by the temperature.

At fixed density, the particle fractions evolve according to

nB

dxp

dt
= λ1δμ1 + λ2δμ2 + λ3δμ3, (20a)

nB

dxμ

dt
= −λ6δμ1 + (λ2 + λ5 + λ6)δμ2 − λ5δμ3, (20b)

nB

dxπ

dt
= −λ4δμ1 − λ5δμ2 + (λ3 + λ4 + λ5)δμ3. (20c)

We will refrain from plotting λi, but instead, later (Fig. 6), plot

the beta equilibration rates γi which have a clearer physical

interpretation. But before we do that, we must discuss the

susceptibilities of the EoS.

4This equation does not hold for reactions involving neutrinos in

neutrino-transparent matter (not studied here) as the rate calculation

does not contain neutrino distributions in the rate integral, since

neutrinos are assumed to not build up a population in the neutron

star due to their long mean free path. In such a case, the calculation

of λ is more complicated [50,51].

C. Susceptibilities

In our study of dense matter slightly perturbed

from beta equilibrium, it is convenient to introduce the

susceptibilities

Ai ≡ nB

∂δμi

∂nB

∣

∣

∣

∣

T,xp,xμ,xπ

, (21a)

Bi ≡
1

nB

∂δμi

∂xp

∣

∣

∣

∣

T,nB,xμ,xπ

, (21b)

Ci ≡
1

nB

∂δμi

∂xμ

∣

∣

∣

∣

T,nB,xp,xπ

, (21c)

Di ≡
1

nB

∂δμi

∂xπ

∣

∣

∣

∣

T,nB,xp,xμ

, (21d)

where i ranges from 1 to 3. These susceptibilities are proper-

ties of the nuclear matter EoS and do not themselves depend

on the reaction rates in the medium. There appear to be 12

of these susceptibilities, but they are not all independent, and

Maxwell relations

C1 = B2 − B1 (22a)

D1 = B3 − B1 (22b)

D1 − D2 = C1 − C3. (22c)

can be used to eliminate three of them. See Appendix C

for details on the Maxwell relations and thermodynamics

of multicomponent systems. Additionally, the susceptibility

C3 = 0 because the leptons and hadrons are independent.

With our EoS, D2 = 0, because of the specifics of our treat-

ment of the pion-nucleon interaction. A different prescription

for the interaction could lead to a nonzero value of D2. At

this point, we can reduce the 12 susceptibilities down to 7:

{A1, A2, A3, B1, B2,C2, D3}. We will keep D2 and C3 in our

exact expression for the bulk viscosity [Eq. (28) and Ap-

pendix D], but set them to zero elsewhere.

Finally, we note that susceptibilities Ai [Eq. (21a)] can be

written, using Maxwell relations (see Appendix C), in terms

of derivatives of the pressure. We find

∂P

∂xp

∣

∣

∣

∣

T,nB,xμ,xπ

= −nBA1 (23a)

∂P

∂xμ

∣

∣

∣

∣

T,nB,xp,xπ

= nB(A1 − A2) (23b)

∂P

∂xπ

∣

∣

∣

∣

T,nB,xp,xμ

= nB(A1 − A3). (23c)

Before we describe the nature of the susceptibilities and

plot them for the EoS developed in the previous section, we

write the Taylor expansions of P and δμ in terms of the
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susceptibilities. First,

δμi = Ai

δnB

nB

cos (ωt ) + nB[Bi Re (δxpeiωt ) + Ci Re (δxμeiωt ) + Di Re (δxπeiωt )]

= Ai

δnB

nB

cos (ωt ) + nB[Bi Re (δxp) + Ci Re (δxμ) + Di Re (δxπ )] cos (ωt ) − nB[Bi Im (δxp) + Ci Im (δxμ) + Di Im (δxπ )] sin (ωt ),

(24)

with i again taking values from 1 to 3. The pressure [Eq. (13)] can be rewritten as

P = P0 +
δnB

nB

κ−1
T cos (ωt ) + nB cos (ωt )[−A1 Re (δxp) + (A1 − A2) Re (δxμ) + (A1 − A3) Re (δxπ )]

+ nB sin (ωt )[A1 Im (δxp) − (A1 − A2) Im (δxμ) − (A1 − A3) Im (δxπ )], (25)

where we have introduced the isothermal compressibility [62]

κT =

(

nB

∂P

∂nB

∣

∣

∣

∣

T,xp,xμ,xπ

)−1

. (26)

The susceptibilities Ai describe how far the system is

pushed out of beta equilibrium when the system is compressed

if the chemical fractions are frozen. If Ai = 0, then the system

does not depart from beta equilibrium when the density is

increased, and so with respect to δμi the system is conformal.

However, the system may have other degrees of freedom that

do change when the density is increased, and so we describe

the situation where, say, A1 = 0 as partially conformal. The

Maxwell relations [Eqs. (23a)–(23c)] indicate that the Ai are

related to the degree to which the pressure depends on a

particular particle fraction. As will be seen later, generally

bulk viscosity grows with the increased magnitude of the Ai.

In particular, if all Ai = 0, then bulk viscosity (of the type

described here, related to chemical equilibration) should be

zero.

We plot the susceptibilities Ai in merger conditions (top

two panels) and in supernovae conditions (bottom two panels)

in Fig. 3. These susceptibilities are not tremendously different

between merger and supernovae conditions. A1 and A2 have

magnitudes around a few tens of MeV, and can switch signs,

indicating a partial conformal point. In merger conditions,

both A1 and A2 cross through zero as temperature rises be-

yond a couple tens of MeV. In supernovae conditions, only

A2 crosses through zero in the displayed temperature range,

though likely A1 does too at a higher temperature. Including

pions in the EoS slightly modifies A1 and A2, mostly at high

temperature where the pion population is large. The main

effect of including pions is to bring about a new susceptibil-

ity A3, which will have important consequences for the bulk

viscosity, discussed later. The susceptibility A3 is significantly

larger than A1 or A2, especially at high temperatures or densi-

ties where the pion population is large.

The susceptibilities B, C, and D represent, at a fixed density

and temperature, how far the system is pushed from chem-

ical equilibrium when just one of the particle fractions is

adjusted, keeping the others fixed. For example, B1, C1, and

D1 (roughly) represent the degree of dependence of δμ1 on

xp, xμ, and xπ respectively. The B, C, and D susceptibilities

convert λi into γi, as we will see in a later section. We plot the

susceptibilities Bi, Ci, and Di in Fig. 4. These susceptibilities,

at least in the conditions encountered in this work, never

cross zero. As we will see, while they do affect the strength

of the maximum bulk viscosity, their most important role is

their impact on the equilibration rates γi which determine the

location of the resonant maxima of the bulk viscosity.

D. Bulk viscosity at finite λ3

Combining Eqs. (11), (14), and (23a)–(23c), we find that

the bulk viscosity is given by

ζ =
1

ω

n2
B

δnB

[−A1 Im (δxp) + (A1 − A2) Im (δxμ)

+ (A1 − A3) Im (δxπ )]. (27)

To obtain Im (δxi ), we plug Eqs. (12) and (24) into Eqs. (20a)–

(20c) and match the sine terms and the cosine terms. This

yields six equations with six variables [Re (δxi ) and Im (δxi )

for i = p, μ, π ]. The three real-part variables can be elimi-

nated, yielding a set of three equations to be solved to obtain

Im (δxp), Im (δxμ), Im (δxπ ). Solving the system results in the

expression for the bulk viscosity

ζ =
F + Gω2 + Hω4

J + Kω2 + Lω4 + ω6
. (28)

The expressions for F , G, H , J , K , and L are very complicated

and are given in Appendix D. This formula is consistent with

the trend that the bulk viscosity of a system with n indepen-

dent equilibration channels, when expressed as a combined

fraction, has in the numerator a polynomial in ω of order 2n −

2 and in the denominator a polynomial in ω of order 2n (see,

e.g., [9] for n = 1 and [30] for n = 2). This trend holds for n

independent equilibration channels ζ =
∑n

i=1 γi/(γ 2
i + ω2),

but also seems to hold for systems where the bulk viscosity

is not a simple sum of n = 1 bulk viscosities.

Before we present numerical results from Eq. (28), let us

consider some limiting cases first.

E. Bulk viscosity without pions

We can obtain the formula for the bulk viscosity if pions

are not present in the EoS by setting λ3 = λ4 = λ5 = 0 in

Eq. (28). The EoS would also have to be recomputed with

the pions removed. The susceptibilities A3, B3, C3, D1, D2,
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FIG. 3. Susceptibilities of the A type from the EoS described in Sec. II plotted in merger conditions (top panels) and in supernovae

conditions (bottom panels). The left column plots are at a density of 1n0, while the right column panels are at 1.6n0. The dashed lines

correspond to the EoS without pions, while the solid lines indicate the EoS with pions. A3 has no counterpart in a system without pions.

and D3 are all ill defined in a system without pions. The

previous definitions for the other susceptibilities carry over

to the pionless case, except that the derivatives are, of course,

no longer at constant pion fraction. The expression for bulk

viscosity in neutrino-trapped npeμ matter that undergoes the

reactions corresponding to λ1, λ2, and λ6 is given by

ζ =
G′ + H ′ω2

K ′ + L′ω2 + ω4
, (29)

where the expressions for G′, H ′, K ′, and L′ are given in

Appendix E. As a check, we can see that the susceptibilities

A3, B3, C3, D1, D2, and D3 do not appear in the expression.

Furthermore, we also note that the Maxwell relation (22a)

applies in pionless matter as well (see also [14]). In pionless

matter, the independent susceptibilities are A1, A2, B1, B2, and

C2. In Appendix E, we present further simplifications of this

expression.

F. Bulk viscosity in the limit λ3 → ∞

We return now to the EoS with pions included. The re-

action n ↔ p + π− (mediated by a spectator nucleon) is a

strong interaction and therefore5 occurs on a much faster

timescale than the weak interactions {λ1, λ2, λ4, λ5, λ6} and

the timescale of density oscillations in a merger. Thus, we take

λ3 → ∞ in Eq. (28).

5At temperatures below T ≈ 1 MeV, the pion density becomes

so low that this rate becomes comparable to weak interaction

timescales. But for the temperatures studied in this paper, the rate

can be considered infinitely fast.
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FIG. 4. Susceptibilities of the B, C, and D types from the EoS described in Sec. II plotted in merger conditions (top panels) and in

supernovae conditions (bottom panels). The dashed lines correspond to an EoS without pions, while the solid lines indicate an EoS with pions.

D3 has no counterpart in a system without pions.

The limit where n ↔ p + π− occurs infinitely quickly is

subtle. One might assume that δμ3 could simply be set to

zero in Eq. (20a)–(20c). However, it is the product λ3δμ3 that

appears on the right-hand side of those equations, and, even

for very tiny deviations of δμ3 from zero, the product λ3δμ3

could still be sizable since λ3 is very large. One must keep λ3

finite throughout the calculation [up until Eq. (28)] and then

take the limit λ3 → ∞. This was pointed out by [63,64], and

was applied to the case of hyperon bulk viscosity in [10].

The λ3 → ∞ limit of Eq. (28) yields

ζ =
Q + Rω2

U + W ω2 + ω4
. (30)

The coefficients Q, R, U , and W are given in Appendix F.

G. Partial bulk viscosities

Before we discuss the bulk viscosity results, it is first use-

ful to introduce the concept of partial bulk viscosities. The

bulk viscosity with only one equilibration rate λi active, and

all other reaction rates λ j �=i set to zero is defined to be the

partial bulk viscosity associated with the associated process.

In neutrino-trapped npeμ matter there are three partial bulk

viscosities, while when thermal pions are added into the mix

there are six (cf. Table I). We emphasize that the total bulk

viscosity is not the sum of the partial bulk viscosities. But,

often the total bulk viscosity will “track” one of the partial

bulk viscosity curves over a certain range of thermodynamic

conditions, which is why it is useful to consider the partial

bulk viscosities. This “tracking” will be apparent in the sub-

sequent section. Each partial bulk viscosity will look like
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the bulk viscosity in matter with one equilibrating particle

fraction, for example, npe matter where the proton fraction

equilibrates with rate γ .

Throughout this paper, we have called both λ and

γ “equilibration rates.” Each is useful in its own way.

The difference in the rates, schematically, can be written
−→
Ŵ −

←−
Ŵ ∼ λ(δμ − δμ0) = λδμ or

−→
Ŵ −

←−
Ŵ ∼ γ (n − n0),

where the superscript 0 denotes the beta equilibrium value.

So, λ describes the rate at which the chemical potential

difference is forced to its beta equilibrium value (zero), while

γ describes how quickly the particle fraction is forced to

its beta equilibrium value by Le Chatelier’s principle. The

susceptibilities of type B, C, and D facilitate the conversion

between γ and λ. Note that both λi and γi are positive. γ has

a clearer physical meaning, as it has dimension 1, and thus

can be written as an inverse timescale and directly compared

with the density oscillation frequency ω.

In neutrino-trapped npeμ matter, without pions, there are

three partial bulk viscosities because there are three equilibra-

tion rates,6

γ no π
1 ≡ −B1λ1, (31a)

γ no π
2 ≡ −(B2 + C2)λ2, (31b)

γ no π
6 ≡ (B2 − B1 − C2)λ6. (31c)

The three partial bulk viscosities are then

ζ no π
1 = −

A2
1

B1

γ no π
1

(

γ no π
1

)2
+ ω2

, (32a)

ζ no π
2 = −

A2
2

B2 + C2

γ no π
2

(

γ no π
2

)2
+ ω2

, (32b)

ζ no π
6 =

(A1 − A2)2

B2 − B1 − C2

γ no π
6

(

γ no π
6

)2
+ ω2

. (32c)

The partial bulk viscosities are positive. At a fixed density,

the bulk viscosity ζi as a function of temperature is maximum

when γi = ω. Therefore, the value of the bulk viscosity at

its resonant maximum is given by the susceptibility prefactor

divided by 2ω. Thus, for a given frequency density oscilla-

tion ω, the weak interaction rates set the temperature of the

resonant maximum bulk viscosity and properties of the EoS

(the susceptibilities) set the value of the bulk viscosity at its

maximum. The susceptibility prefactors can be related to the

compressibility of the dense matter. We find that

ζ no π
1,max =

nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,T

−
∂P

∂nB

∣

∣

∣

∣

xμ,δμ1,T

)

, (33a)

ζ no π
2,max =

nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,T

−
∂P

∂nB

∣

∣

∣

∣

xp−xμ,δμ2,T

)

, (33b)

6The equilibration rate γi is obtained by taking the full expression

for the bulk viscosity and setting λ j �=i = 0. Then the resultant ex-

pression is written in the form ζ ∝ γi/(γ 2
i + ω2), from which γi is

extracted.

ζ no π
6,max =

nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,T

−
∂P

∂nB

∣

∣

∣

∣

xp,δμ1−δμ2,T

)

. (33c)

See Appendix G for the thermodynamic calculations. The

maximum value of bulk viscosity, to the extent that it tracks

a particular partial bulk viscosity near its resonant maxima,

is related to the compressibility predicted by the EoS [cf.

Eq. (26)] and its multicomponent generalizations.

In neutrino-trapped npeμπ matter, we can define analo-

gously six partial bulk viscosities, each of which with one

nonzero λi (i ranging from 1 to 6). The expressions for them

are given in Appendix H. We will predominantly consider

instead versions of the partial bulk viscosities where the λ3 →

∞ limit is taken (that is, the bulk viscosity ζ
λ3→∞
i where λi

is kept finite, λ3 → ∞, and λ j �={i,3} = 0). We will see that

the partial bulk viscosity expressions become, in some sense,

“renormalized” by the infinitely fast λ3 process.

In the system containing pions, with λ3 → ∞, the γi are

given by

γ
λ3→∞
1 ≡ −

(

B1 −
B2

2

B2 + D3

)

λ1, (34a)

γ
λ3→∞
2 ≡ −

(

C2 +
B2D3

B2 + D3

)

λ2, (34b)

γ
λ3→∞
4 ≡ −

(

B1 −
B2

2

B2 + D3

)

λ4, (34c)

γ
λ3→∞
5 ≡ −

(

C2 +
B2D3

B2 + D3

)

λ5, (34d)

γ
λ3→∞
6 ≡ (B2 − B1 − C2)λ6. (34e)

We leave out γ3 because we have already taken λ3 → ∞. It

is interesting that the susceptibility prefactors in γ1 and γ4

match, as do those of γ2 and γ5. The partial bulk viscosities

(with λ3 → ∞) are

ζ
λ3→∞
1 = −

(

A1 − A3B2

B2+D3

)2

B1 −
B2

2

B2+D3

γ
λ3→∞
1

(

γ
λ3→∞
1

)2
+ ω2

, (35a)

ζ
λ3→∞
2 = −

(

A2 − A3B2

B2+D3

)2

C2 + B2D3

B2+D3

γ
λ3→∞
2

(

γ
λ3→∞
2

)2
+ ω2

, (35b)

ζ
λ3→∞
4 = −

(

A1 − A3B2

B2+D3

)2

B1 −
B2

2

B2+D3

γ
λ3→∞
4

(

γ
λ3→∞
4

)2
+ ω2

, (35c)

ζ
λ3→∞
5 = −

(

A2 − A3B2

B2+D3

)2

C2 + B2D3

B2+D3

γ
λ3→∞
5

(

γ
λ3→∞
5

)2
+ ω2

, (35d)

ζ
λ3→∞
6 =

(A1 − A2)2

B2 − B1 − C2

γ
λ3→∞
6

(

γ
λ3→∞
6

)2
+ ω2

. (35e)

It is not clear to us that the prefactors in the λ3 → ∞ limit

can be written in terms of differences of compressibilities.

But, it is useful to compare these expressions to their coun-

terparts without pions [Eqs. (32a)–(32c)] and with pions but

without λ3 → ∞ [Eqs. (H2a)–(H2f)].
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FIG. 5. Partial bulk viscosities in matter with YLe = 0.05 and YLμ = 0 at 1n0 (left column) and 1.6n0 (right column). Results for pionless

matter are in thin dotted lines. The top row depicts the conventional definition of partial bulk viscosities, where λ3 is set to zero. The bottom

row depicts the “renormalized” definition of partial bulk viscosities where λ3 is sent to infinity. The total bulk viscosity—not the sum of the

partial bulk viscosities (and discussed in Sec. IV)—is shown with a thick grey line. For clarity, for this figure the x axes are displayed with a

logarithmic scale.

In Fig. 5 we plot, just as an illustration, the partial bulk vis-

cosities in the case of the pionless EoS (ζ no π
1 , ζ no π

2 , and ζ no π
6 ),

for the EoS containing thermal pions where λ3 is not sent to

infinity (that is, the conventional definition of partial bulk vis-

cosities in Appendix H), and for the EoS containing thermal

pions but in the λ3 → ∞ limit ζ
λ3→∞
i (i = 1, 2, 4, 5, 6). The

full result for the bulk viscosity is shown with a thick grey

line: dashed for the EoS without pions and solid for the EoS

with pions. We see that most of the partial bulk viscosities dis-

play the predicted resonant structure, often with a conformal

point at a temperature above that of the resonant maximum.

The quantities ζ4 and ζ5 increase with temperature, because of

the strong temperature dependence of the relevant susceptibil-

ities (this overrides the traditional resonance structure, which

assumes that the susceptibilities do not depend strongly on

temperature [28]). The total bulk viscosity (with pions) seems

to track the “renormalized” (λ3 → ∞) partial bulk viscosities

much better than the traditional (λ3 = 0) versions. We will

refer back to this figure in the next section.

IV. RESULTS

A. Equilibration rates and bulk viscosity

In this section, we will use the EoS developed in Sec. II

and calculate the bulk viscosity using the formulas in Sec. III,

comparing the EoSs with and without pions. The presence

of pions both changes the EoS itself (the particle frac-

tions, the susceptibilities, etc.) as well as provides new beta
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FIG. 6. Individual beta equilibration rates γ no π
i and γ

λ3→∞

i in neutron star merger conditions (top panels) and in supernovae conditions

(bottom panels). The dashed lines correspond to an EoS without pions, while the solid lines indicate an EoS with pions. The rates γ
λ3→∞

4 and

γ
λ3→∞

5 of course have no counterpart in matter without pions.

equilibration pathways. We examine both in this section.

Our results for the bulk viscosity rely on the susceptibilities

(Figs. 3 and 4) and on the beta equilibration rates γi (Fig. 6)

and are themselves plotted in Figs. 7 and 8, and in Appendix A

for different lepton number conditions.
In matter with one equilibrating particle fraction, the be-

havior of the bulk viscosity resulting from a small amplitude,
harmonic density oscillation of frequency ω is well known. As
long as the susceptibilities do not strongly depend on tempera-
ture, but the equilibration rate does, then the bulk viscosity has
a resonant structure as a function of temperature, with a peak
at the temperature at which the Urca rate matches the density
oscillation frequency ω; see Fig. 7 in [28] or Fig. 2 in [9] for
examples. The partial bulk viscosities plotted in Fig. 5 match
this form as well, though the susceptibilities in our model
do have a significant temperature dependence, modulating the
baseline resonant structure.

The matter studied in this paper, with three independent
particle fractions {xp, xμ, xπ } could have as many as three
resonant peaks as a function of temperature (at fixed baryon
density). However, the rate λ3 (or γ3) is essentially infinitely
fast in the temperature range considered. That is, the reso-
nant maximum of the corresponding partial bulk viscosity ζ3

[Eq. (H2c)] would be at a temperature T � 1 MeV and thus
we would only expect two resonant peaks in the displayed
temperature range. The susceptibilities, as we see in Figs. 3
and 4, do have a significant temperature dependence, which
will cause the overall bulk viscosity ζ (T ) to have nontrivial
behavior. Now we explain the equilibration rates γ (Fig. 6)
and the bulk viscosity curves (Fig. 7).

We consider neutron star merger conditions (YLe =

0.05, YLμ = 0) first. The top left panel of Fig. 6 indicates

that in the EoS without pions, all three rates γ1, γ2, and

γ6 rise above f = 1 kHz in the temperature range of a few

015802-13



HARRIS, FORE, AND REDDY PHYSICAL REVIEW C 111, 015802 (2025)

FIG. 7. Bulk viscosity in dense matter with and without pions, for a harmonic, small-amplitude, density oscillation with frequency 1 kHz.

The left panel corresponds to neutron star merger conditions and the right panel to supernovae conditions.

MeV. Indeed, one sees that the three partial bulk viscosi-

ties (Fig. 5) have resonant peaks in that temperature range.

The full calculation for the bulk viscosity in pionless matter

(Fig. 7) tracks the partial bulk viscosity ζ no π
1 for low tem-

perature and through its resonant maximum at T ≈ 2 MeV.

As temperature increases, both γ2 and γ6 cross resonance at

very similar temperatures, leading to a second resonant peak

in the total bulk viscosity, that does not quite overlap with

any of the partial bulk viscosities. There is no third resonant

peak, because the pionless EoS only has two equilibrating

quantities, xp and xμ, so the third, slowest, rate is redundant.

As temperature increases further, the bulk viscosity continues

to decrease, since all particle fractions equilibrate very quickly

compared to the millisecond timescale density oscillations. At

a temperature of about 20 MeV, the system becomes partly

conformal, because A1 and A2 pass through zero, and the

bulk viscosity dips down to a sharp minimum, but not to zero

(unlike the partial bulk viscosities, which do dip to zero). So,

without pions, the neutrino-trapped npeμ bulk viscosity has

two resonant peaks as a function of temperature, both at well

below T = 10 MeV, and then a partial conformal dip at a

temperature around 20 MeV.

When pions are added to the EoS and their reactions are

considered, the existing rates γ1, γ2, γ6 change very little.7

However, three new equilibration rates involving pions, γ3, γ4,

and γ5 enter the picture. The direct Urca (electron) rate γ1 is

still the fastest (besides γ3), and leads to the first resonant peak

in the bulk viscosity, just as in the pionless case (though, in re-

ality, this is the second resonant peak, because γ3 would reach

7As can be seen in the top left panel of Fig. 6, including pions does

change the rates at high temperature, where the pion population be-

comes substantial. But at these high temperatures, the bulk viscosity

is very far off of resonance because the rates are much faster than the

1 kHz density oscillation, and so the bulk viscosity is small.

resonance at some temperature below the 1 MeV minimum

studied here). The next resonant peak comes from γ5, the pion

decay to muons, which supersedes the reactions that dominate

in the absence of pions. In fact, the resonance shifts to slightly

lower temperatures. At temperatures just above that resonant

peak (T � 4 MeV), all three independent particle fractions

are quick to equilibrate and thus the bulk viscosity decreases

with temperature. While Fig. 6 shows other processes passing

above the 1 kHz line (and thus Fig. 5 shows other resonant

peaks at higher temperature, for example, ζ4), those never

manifest in the full bulk viscosity calculation because they are

redundant. The fastest three rates control the bulk viscosity in

neutrino-trapped npeμπ− matter.

At higher density (1.6n0), without pions, now γ6 (muon-

electron conversion) is the fastest rate (see top right panel of

Fig. 6), but it crosses 1 kHz at about the same temperature

as γ1 did at 1n0, so the resonant peak is still at T ≈ 2 MeV.

Then, γ1 crosses resonance at T ≈ 4 MeV, and then γ2 does

at T ≈ 7 MeV. These two peaks seem to interfere with each

other and what results appears to be an interference between

the two resonances (γ1 and γ2), as the peak location and

magnitude are between those of the two partial viscosities.

As temperature increases further, the bulk viscosity decreases

until the dip indicating partial conformality.

At this higher density, when pions are included in the EoS,

their population is substantial for the entire temperature range

discussed here. Thus, the reaction rates γ change substantially

when pions are added to the EoS. When the EoS includes

pions, γ1 is much faster than it is without pions present, and

it becomes the first reaction to reach resonance as T increases

(besides γ3, of course). The total bulk viscosity thus tracks

ζ
λ3→∞
1 in the range around its resonance. The pion decay

rate γ5 reaches resonance at T ≈ 4 MeV, and the total bulk

viscosity tracks ζ
λ3→∞
5 in this region. At higher temperatures,

equilibration of the three independent particle fractions is

faster than millisecond timescales, and thus the bulk viscosity
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FIG. 8. Bulk viscosity as a function of density oscillation frequency f = ω/(2π ) for neutrino-trapped matter with YLe = 0.05 and YLμ = 0.

The left panel depicts matter at 1n0 and the right panel matter at 1.6n0. Dashed lines correspond to matter without pions, and solid lines

correspond to matter with a thermal pion population.

decreases with temperature. The partial conformal point at

high temperature is smoothed out dramatically in the presence

of pions.

Overall, in merger conditions, the pions provide new equi-

libration pathways, which shift the temperature of the resonant

peaks in the bulk viscosity, though not dramatically. More

importantly, the presence of pions in the EoS modify the exist-

ing susceptibilities and contribute new susceptibilities which

alter the maximum value that bulk viscosity reaches. While

the bulk viscosity increases with density even without pions,

the pions further increase the bulk viscosity at high density.

The pions naturally have more of an effect at higher densities

where their population is higher.

In supernovae conditions, namely YLe = 0.3, YLμ = 0,

many of the equilibration rates (bottom left panel of Fig. 6)

are already fast compared to millisecond timescales, even at

low temperature. This is due to the high conserved lepton

fraction in the system. Adding pions to the EoS does not

change these rates much at all, except for introducing the

new equilibration mechanisms γ3, γ4, and γ5. With or without

pions, the bulk viscosity in the displayed temperature range is

always on the downhill side of the resonance, decreasing with

temperature, until the partial conformal points at temperatures

above 20 MeV. At higher density (1.6n0), γ1 is already faster

than millisecond timescales even for the lowest temperatures

shown. But γ2 and γ6 both cross resonance at T ≈ 2 MeV,

leading to a resonant maximum in the bulk viscosity curve,

This feature is the same with and without pions; unlike in

merger conditions, the rates containing pions do not substan-

tially contribute to the beta equilibration. The only effect the

pions have at 1.6n0 is to create a partial conformal point

at T ≈ 15 MeV where none existed in the pionless case.

All partial bulk viscosities have conformal points near this

temperature (but not all at the same temperature). Since the

partial conformal point temperatures do not quite coincide,

then the bulk viscosity does not drop to zero (and even if

it did, that would only be the chemical equilibration bulk

viscosity; there would still be a small bulk viscosity from

thermal equilibration [65]).

The (oscillation) frequency dependence of the bulk viscos-

ity in merger conditions is plotted in Fig. 8. The spectrum of

oscillations in the merger has a wide range of frequencies,

with significant amplitude from hundreds of Hz up to 2 kHz

(see the bottom panel of Fig. 4 of [1]). Likely an even wider

range of frequencies is relevant. The bulk viscosity is highest

at low frequencies and drops monotonically with increasing

density oscillation frequency. There are no spectral peaks. At

high enough temperatures, the bulk viscosity becomes fre-

quency independent. Note that the energy dissipation rate has

its own frequency dependence, so the higher values of bulk

viscosity at low frequencies do not lead to quicker damping

timescales. In fact, for small ω, the damping time τ ∼ ω−2,

though in the limit ω → ∞, the damping time τ ∼ ω0.

B. Particle dynamics during an oscillation

In the derivation of the bulk viscosity coefficient, we con-

sidered the evolution of the particle content throughout one

oscillation. This evolution ultimately gives rise to bulk viscous

dissipation as the particle fraction evolution becomes out of

phase with the density oscillation. In this section, we plot the

particle fraction as a function of time to better understand

the dynamics that give rise to bulk viscous dissipation. The

density oscillation amplitude δnB is chosen to be 0.03n0, small

enough to remain in the subthermal regime except at the

lowest temperatures studied.

In Fig. 9 we plot the evolution of δμ1, δμ2, and δμ3

over the course of the harmonic density oscillation. These

quantities are obtained from Eq. (24), where the real and
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FIG. 9. In matter with YLe = 0.05,YLμ = 0, the evolution of the three δμ quantities over the course of two oscillation periods (with

oscillation amplitude δnB = 0.03n0). Dashed lines denote matter without pions, solid lines denote matter including thermal pions. Rows 1,

2, and 3 are at temperatures of 2, 5, and 10 MeV, respectively. The left column is in matter at 1n0 and the right column is for matter at 1.6n0.

Note that the y axes do not have the same scale. The density oscillation nB(t ) is overlaid in pink so that one can tell the degree to which the

δμi are in phase with the density oscillation.
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imaginary parts of δxi are obtained from the solution of the

system of equations described after Eq. (27). When any of

the δμi departs from zero, the matter is no longer in chemical

equilibrium. In the limit λ3 → ∞, δμ3 is forced to zero, so

the reaction n ↔ p + π− is always infinitesimally close to

equilibrium.

At 1n0 and T = 2 MeV (top left panel of Fig. 9), both

δμ1(t ) and δμ2(t ) oscillate up to a couple of MeV out of

beta equilibrium. The addition of pions into the system at this

low temperature and density makes no difference because the

pion number is very low. At its maximum, the quantity δμ2

exceeds 2 MeV, and is no longer small compared to the tem-

perature, which indicates that the subthermal approximation

taken here loses validity; suprathermal corrections [28,66]

should be taken into account at these low temperatures. As the

temperature rises to 5 MeV, the chemical reaction rates grow

quickly and now the direct Urca process (with an electron) is

fast enough to keep δμ1 very close to chemical equilibrium

throughout the oscillation. The quantity δμ2 is still pushed by

about 1 MeV out of equilibrium, as the muon population is too

low for the direct Urca processes with a muon (γ2) (or muon-

electron conversion γ6) to equilibrate it efficiently. When

pions are included in the EoS, their population is sufficiently

high at T = 5 MeV that δμ2 is kept closer to equilibrium

than without the pions present. Finally, at T = 10 MeV, the

system (with or without pions) remains extremely close to

beta equilibrium (note the y-axis scale in the bottom left panel

of Fig. 9) throughout the density oscillation, indicating that

the bulk viscosity will be small at this high temperature.

At a higher density (1.6n0), the pion density at all tem-

peratures is high enough to impact the chemical equilibration

pathways. In an EoS without pions, at T = 2 MeV, the fastest

reaction is muon-electron conversion γ6 which equilibrates

δμ1 − δμ2. When pions are added, γ3 equilibrates δμ3 very

efficiently. But γ6 is reduced and γ1 is enhanced due to the

presence of the pions in the EoS. In this situation, the addition

of pions to the EoS makes the system depart further from

chemical equilibrium than without pions (though, admittedly

the system departs from the subthermal regime at this low

temperature). At the higher temperatures of 5 or 10 MeV,

the same trends are present as at their 1n0 counterparts. The

speedup in the equilibration rates at this higher density keeps

δμ and δμ2 much closer to zero, and the pions help to keep

the system closer to beta equilibrium.

The evolution of the particle fractions xp(t ), xμ(t ), and

xπ (t ) are plotted in Fig. 10 at different temperatures and

densities, with and without pions in the EoS. These quantities

are obtained from Eq. (12), where the real and imaginary parts

of δxi are the solutions of the system of equations described

after Eq. (27). Note that we plot δxi(t ), which indicates how

far the particle fraction of species i is from its beta equilibrium

value at the background density, not the concurrent value of

the density nB(t ).

In studying these plots, both the height and the phase of the

sinusoidal variations in the particle fractions are informative.

Our intuition for the behavior of δxi(t ) comes from the npe

matter case. For example, Eq. (34) in the arXiv preprint ver-

sion of [14] indicates that in cold matter, where the beta equili-

bration is slow, δxp(t ) ∼ (δnB/nB)[A/(|B|nB)](γ /ω) sin (ωt ),

which8 is out of phase with the density oscillation, but also

vanishes in the slowly equilibrating limit (that is, when the

Urca rate is too slow to chemically equilibrate the matter,

the particle fraction does not change from the beta equi-

librium value at the background density). In the opposite

limit, where the beta equilibration is very fast, δxp(t ) ∼

(δnB/nB)[A/(|B|nB)] cos (ωt ). That is, the particle fraction os-

cillation is in phase with the density oscillation and, at the

maximum in the xp(t ) oscillation cycle, has a magnitude that

is independent of the equilibration rate. The particle fraction

just tracks the beta equilibrium curve x
β-eq.
i [nB(t )] throughout

the density oscillation.

While the equilibration rate γ is a strong function of T , it is

not necessarily the case that the above description of δxp(t ) at

low and high γ can be mapped to low and high temperature, as

the susceptibility prefactor in δxp(t ) depends on temperature

too. For low temperature npe matter, the susceptibilities are

relatively temperature-independent. But for a system includ-

ing thermal pions, the susceptibilites are not independent of

temperature, as we have seen (cf. Figs. 3 and 4).

Without pions (dashed lines in Fig. 10), we see the ex-

pected behavior. The fractions xp(t ) and xμ(t ) deviate little

from their beta equilibrium values at low temperature, and as

temperature increases they deviate further, as the equilibration

is fast enough to force the particle fractions to trace the beta

equilibrium curve x
β-eq.
i [nB(t )]. The particle fraction oscilla-

tions also become more in phase with the density oscillation

with increasing temperature.

When pions are included in the EoS, the expected behavior

[increasing deviation δxi(t ) with increasing temperature, up

to some maximum deviation] still occurs at 1n0, but at 1.6n0

the trend reverses for some of the particle species. Indeed,

the presence of the pions (through their contribution to the

susceptibilities) causes the particle fractions xp(t ) and xπ (t )

to oscillate less dramatically as temperature increases, while

the muon fraction xμ(t ) oscillation amplitude increases in the

expected way with increasing temperature.

V. CONCLUSIONS

We studied the bulk viscosity stemming from flavor-

changing interactions in dense matter, including for the first

time a population of thermal pions. To include the pions in

the EoS, we follow the virial expansion approach developed

in [27]. We include reactions involving pions in the set of

reactions that give rise to bulk viscosity. This work focuses

on neutrino-trapped nuclear matter, which is the bulk of the

matter in a neutron star merger remnant or supernovae en-

vironment. Our goal was to understand how the presence of

thermal pions modifies the beta equilibration and bulk viscos-

ity of dense matter.

The bulk viscosity is a function of the reaction rates in the

system and compositional properties of the EoS, such as the

susceptibilities (which we demonstrated here can be related

8Here, A and B correspond to A1 and B1 in this text (removing,

of course, the designation of fixed muon and pion fractions as the

expression in Ref. [14] applies to npe matter).
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FIG. 10. In matter with YLe = 0.05, YLμ = 0, the evolution of the three independent particle fractions xp, xμ, and xπ over the course of two

oscillation periods (with oscillation amplitude δnB = 0.03n0). Dashed lines denote matter without pions, solid lines denote matter including

thermal pions. Rows 1, 2, and 3 are at temperatures of 2, 5, and 10 MeV, respectively. The left column depicts matter at 1n0 and the right

column shows matter at 1.6n0. The density oscillation nB(t ) is overlaid in pink so that one can tell the degree to which the particle fractions are

in phase with the density oscillation.
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to multicomponent generalizations of the compressibility of

nuclear matter). We calculated these quantities and the resul-

tant bulk viscosity in thermodynamic conditions encountered

in neutron star mergers and supernovae, and compared the re-

sults with and without thermal pions in the EoS. We also found

relationships between the local maxima in the bulk viscosity

as a function of temperature and various compressibilities of

the EoS, making apparent the possibility of using the mea-

surement of the bulk viscosity to learn about the nature of

dense matter. Finally, we investigated how the composition of

the dense matter evolves over the course of a small-amplitude

density oscillation.

Our main finding is that thermal pions can significantly

alter the density and temperature dependence of the bulk

viscosity of hot dense matter. The pion population rapidly

increases with density and temperature, and so the bulk vis-

cosity deviates most strongly from the pionless case at higher

densities and temperatures. The addition of pions to the EoS

modifies the existing nuclear matter susceptibilities to a rel-

atively small extent (Figs. 3 and 4) but also introduces new

susceptibilities that involve the pion degree of freedom and

therefore do not exist without pions. These new susceptibili-

ties have a significant effect on the bulk viscosity. In addition,

pion reaction rates have two different effects. The (essentially)

infinitely fast strong interaction n + n → n + p + π− does

not produce a new resonant peak in the bulk viscosity in

the temperature range studied, but does (as one can see from

Fig. 5) modify the maximum value of the bulk viscosity and

can move or even eliminate or introduce partial conformal

points in the bulk viscosity at fixed density, ζ (T ). The slower

pion decays (π− → μ− + ν̄μ) in some conditions can over-

take the existing nucleonic or leptonic equilibration processes

and can dominate beta equilibration.

In the specific thermodynamic conditions that we studied,

the addition of thermal pions to the EoS and the inclusion

of their flavor-changing reactions into the bulk viscosity cal-

culation enhances the maximum value of bulk viscosity in

neutron star merger conditions by a factor of a few at higher

density, while shifting the second peak in the bulk viscosity

to a slightly lower temperature. In supernovae conditions, the

inclusion of pions introduces a partial conformal point, where

the bulk viscosity drops precipitously, but not all the way to

zero. In merger conditions, the maximum bulk viscosity [in

excess of 1027 g/(cm s)] occurs at temperatures of a few MeV.

Unfortunately, at these temperatures, the neutrino mean free

path is rather long, and it is unlikely that our assumption of

a thermally equilibrated Fermi sea of neutrinos is valid. At

higher temperatures (T � 5–10 MeV) where our calculation

is likely valid, the bulk viscosity predicted is quite small

because the reaction rates are much faster than the millisec-

ond hydrodynamical timescales. So, while pions enhance the

bulk viscosity in neutrino-trapped matter, the bulk viscosity

is likely still too small to impact neutron star mergers, unless

density oscillations persist in long-lived merger remnants.

This work is only the beginning of the study of the role

of pions in transport in hot, dense matter environments. This

calculation used a virial EoS to model the pions, an approach

that is valid at the high temperatures and low densities consid-

ered here and captures the qualitative trends associated with

attractive p-wave interactions and repulsive s-wave interac-

tions. However, a microscopic treatment of the pion-nucleon

system at finite temperature and density using chiral perturba-

tion theory (ChiPT) or other effective Hamiltonians that are

constrained by pion-nucleon and nucleon-nucleon scattering

data is needed to make more reliable quantitative predictions

and assess the role of pions over the wide range of densities

and temperatures of interest to our study. Recent work has

shown that ChiPT provides useful guidance for estimating the

uncertainties associated with the calculation of the charged

pion masses in neutron-rich matter [37]. However, more work

is necessary to address the role of the attractive p-wave in-

teractions that play a critical role in enhancing the thermal

population of negatively charged pions at finite temperatures.

Furthermore, the bulk viscosity should be calculated in the

neutrino-transparent regime, and the work in this paper should

be extended to the suprathermal regime. As a first step to

include pions in neutron star merger simulations, a nucleonic

EoS where pions were included in a makeshift way was im-

plemented recently in a merger simulation [67]. In the future,

EoSs that explicitly include pions as degrees of freedom (and

are valid for wide ranges of density and temperatures) should

be developed and used in simulations. Additionally, just as

Urca rates are beginning to be included in merger simulations,

rates involving pions should be included in simulations with

EoSs that include pions, allowing for the effects of pions on

energy transport and dissipation to be studied.
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APPENDIX A: BULK VISCOSITY OF MATTER WITH NET

MUON LEPTON FRACTION YLµ

In the main text of the paper, we focused on the more

likely case at densities near n0, where muonless, neutrino-

transparent matter is heated up and becomes neutrino trapped,

but without any net conserved muon number YLμ. We were

able to discuss essentially all aspects of the bulk viscosity of
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FIG. 11. Particle content in beta equilibrium in various thermodynamic conditions expected to exist in neutron star mergers (top two

panels) and in supernovae (bottom two panels), but with equal conserved lepton fractions. Same conventions as Fig. 2.

this neutrino-trapped npeμπ matter. However, it is conceiv-

able that in some cases there would be a net YLμ, and thus in

this Appendix we calculate the bulk viscosity of matter in two

scenarios where YLe = YLμ.

The particle fractions in matter with net conserved muon

number are plotted in Fig. 11. When YLe = YLμ = 0.05, the

electron and muon populations are roughly equal. At n0, the

proton fraction is 10% instead of around 5% (in the YLμ = 0

case). When pions are added to the system, their population

exponentially rises with temperature, becoming appreciable

at T ≈ 20 MeV. When the pion population becomes appre-

ciable, the proton fraction is raised and the lepton fractions

are slightly lowered. At 1.6n0, the pions content becomes

appreciable at very low temperatures, just a couple MeV. Thus

the proton fraction is larger than in the case without pions for

basically the entire temperature range plotted.

In the high lepton number case (YLe = YLμ = 0.3) poten-

tially relevant for supernovae, the muon content is much closer

to the electron density, but the pion population is still strongly

suppressed, and does not affect the other particle fractions

substantially.

The susceptibilities Ai, plotted in Fig. 12, are essentially the

same as the ones plotted in the main text (Fig. 3). However, A2

does not cross zero in the displayed temperature range when

YLe = YLμ = 0.3, but it does in the more physical realistic

scenario YLe = 0.3,YLμ = 0.

The susceptibilities Bi, Ci, and Di are plotted in Fig. 13.

They are relatively similar to their counterparts in YLμ = 0

matter (Fig. 4).

The equilibration rates γi are plotted in Fig. 14. In merger

conditions, the rates are much faster when YLμ = 0.05 than

when YLμ = 0. Adding pions to the EoS in these equal
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FIG. 12. Susceptibilities of the A type from the EoS described in Sec. II plotted in merger conditions (top panels) and in supernovae

conditions (bottom panels), but with equal conserved lepton fractions. The dashed lines correspond to an EoS without pions, while the solid

lines indicate an EoS with pions. A3 has no counterpart in a system without pions.

lepton fraction conditions modifies the beta equilibration rates

slightly, especially as temperature rises. In supernovae condi-

tions, the rates are hardly modified at all, because the pion

content is very low.

The bulk viscosity in this equal-lepton-fraction matter is

plotted in Fig. 15. In matter with YLe = YLμ = 0.05, the bulk

viscosity is always on the “downhill side” of the resonance

at n0 (that is, all equilibration channels are equilibrated faster

than the millisecond oscillation timescale). This can be seen

from the top left panel of Fig. 14 as well. Adding pions to

the EoS at 1n0 merely shifts the dip in the bulk viscosity at

T ≈ 25 MeV. At 1.6n0, the rates are actually a bit slower, and,

without pions, the rate γ2 passes through resonance, creating

a peak in the bulk viscosity at T ≈ 1.2 MeV. With pions, the

infinitely fast γ3 rate leads to a dip in ζ
γ3→∞

2 , causing the sharp

drop in the bulk viscosity at T just above 1 MeV. The pions

smooth out the dip in the bulk viscosity at higher temperatures

too.

In matter with YLe = YLμ = 0.3, again all of the particle

fractions are equilibrated quickly compared to millisecond

timescales. The bulk viscosity is, even at T = 1 MeV, quite

small and decreases further with temperature. At 1.6n0,

the quickly equilibrating pions cause a dip in the bulk

viscosity.
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FIG. 13. Susceptibilities of the B, C, and D types from the EoS described in Sec. II plotted in merger conditions (top panels) and in

supernovae conditions (bottom panels), but with equal conserved lepton fractions. The dashed lines correspond to an EoS without pions, while

the solid lines indicate an EoS with pions. D3 has no counterpart in a system without pions.

APPENDIX B: WEAK INTERACTION RATE PHASE SPACE INTEGRALS

In this section, we write down the expressions for the phase space integrals for the rate calculations in this paper and give a

few details, but mostly we refer the reader to previous works which give a complete description of the calculations.

1. Direct Urca (with electrons)

The rate (per volume) of the neutron decay process n → p + e− + ν̄e is

Ŵ =

∫

d3 pn

(2π )3

d3 pp

(2π )3

d3 pe

(2π )3

d3 pν̄e

(2π )3
(2π )4δ4

(

pn − pp − pe − pν̄e

)

∑

spins |M|2

24EnEpEeEν̄e

fn(1 − fp)(1 − fe)
(

1 − fν̄e

)

, (B1)

where f denotes the Fermi-Dirac distribution. The matrix element is given by

∑

spins

|M|2 = 32G2
F cos2 θc[(1 + gA)2(pp · pe)(pn · pν ) +

(

g2
A − 1

)

m2(pe · pν ) + (gA − 1)2(pn · pe)(pp · pν )], (B2)
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FIG. 14. Individual beta equilibration rates γ no π
i and γ

λ3→∞

i in neutron star merger conditions (top panels) and in supernovae conditions

(bottom panels), but with equal conserved lepton fractions. The dashed lines correspond to an EoS without pions, while the solid lines indicate

an EoS with pions. The rates γ
λ3→∞

4 and γ
λ3→∞

5 of course have no counterpart in matter without pions.

but we will take the nucleons to be nonrelativistic and eliminate the (small) term that is proportional to (1 − g2
A), which reduces

the matrix element down to the momentum-independent quantity (see Appendix C in [45])
∑

spins |M|2

24EnEpEeEν

= 2G2
F cos2 θc

(

1 + 3g2
A

)

. (B3)

The phase space integral reduces from 12 to 8 dimensions after integrating over the delta functions. Then a spherical coordinate

system can be chosen in such a way to render three additional angular integrals trivial, leaving a five-dimensional integral. Two

more integrals can be done analytically, leaving a three-dimensional integral to do numerically. This integral has been done

with the full matrix element [Eq. (B2)] with gA = 1 in [4], with the non-relativistic matrix element (B3) in [5], and in the

neutrino-transparent case in [50,51].

The rate of the inverse electron capture process n + νe → e− + p is

Ŵ =

∫

d3 pn

(2π )3

d3 pp

(2π )3

d3 pe

(2π )3

d3 pνe

(2π )3
(2π )4δ4(pn − pp − pe + pνe

)

∑

spins |M|2

24EnEpEeEνe

fn(1 − fp)(1 − fe) fνe
. (B4)

The matrix element for n + νe → e− + p is also given by Eq. (B3) [or Eq. (B2)] due to crossing symmetry, and the phase space

integration is done almost identically to the neutron decay case.
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FIG. 15. Bulk viscosity in dense matter with and without pions, for a harmonic, small-amplitude, density oscillation with frequency 1 kHz.

The direct Urca processes involving a muon are obtained by replacing the electron mass and chemical potential with the muon

mass and chemical potential. While electrons can be treated as ultrarelativistic particles (though we do not assume this in our

calculation), muons cannot be. The electron neutrino chemical potential is also changed to the muon neutrino chemical potential.

2. Pion decay to electron

The rate of the pion decay process π− → e− + ν̄e is

Ŵ =

∫

d3 pπ

(2π )3

d3 pe

(2π )3

d3 pν̄e

(2π )3
(2π )4δ4(pπ − pe − pν̄e

)

∑

spins |M|2

23EπEeEν̄e

gπ (1 − fe)
(

1 − fν̄e

)

, (B5)

where g denotes the Bose-Einstein distribution. The matrix element is given by

∑

spins

|M|2 = 4 f 2
π G2

F [2(pπ · pν )(pπ · pe) − (pπ · pπ )(pe · pν )] = 4 f 2
π G2

F m2
e (pe · pν ), (B6)

where the second line was obtained by using four-momentum conservation. The four-vector dot product pπ · pπ �= m2
π due to

the pion self-energy.

The rate of the process π− → μ− + ν̄μ can be obtained by taking the rate integral (B5) with matrix element (B6) and

replacing the electron mass and chemical potential with those of the muon, as well as replacing the electron neutrino chemical

potential with the muon neutrino chemical potential.

3. Electron-muon conversion

The rate of μ− → e− + ν̄e + νμ is

Ŵ =

∫

d3 pμ

(2π )3

d3 pe

(2π )3

d3 pν̄e

(2π )3

d3 pνμ

(2π )3
(2π )4δ4

(

pμ − pe − pν̄e
− pνμ

)

∑

spins |M|2

24EμEeEν̄e
Eνμ

fμ(1 − fe)
(

1 − fν̄e

)(

1 − fνμ

)

. (B7)

The matrix element is given by

∑

spins

|M|2 = 128G2
F

(

pμ · pνe

)(

pνμ
· pe

)

. (B8)

The rate of μ− + ν̄μ → e− + ν̄e is

Ŵ =

∫

d3 pμ

(2π )3

d3 pe

(2π )3

d3 pν̄e

(2π )3

d3 pν̄μ

(2π )3
(2π )4δ4

(

pμ − pe − pν̄e
− pν̄μ

)

∑

spins |M|2

24EμEeEν̄e
Eν̄μ

fμ(1 − fe)
(

1 − fν̄e

)(

1 − fν̄μ

)

. (B9)
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The rate of μ− + νe → e− + νμ is

Ŵ =

∫

d3 pμ

(2π )3

d3 pe

(2π )3

d3 pνe

(2π )3

d3 pνμ

(2π )3
(2π )4δ4

(

pμ − pe − pνe
− pνμ

)

∑

spins |M|2

24EμEeEνe
Eνμ

fμ(1 − fe)
(

1 − fνe

)(

1 − fνμ

)

. (B10)

The rate of μ− + νe + ν̄μ → e− is given by

Ŵ =

∫

d3 pμ

(2π )3

d3 pe

(2π )3

d3 pνe

(2π )3

d3 pν̄μ

(2π )3
(2π )4δ4

(

pμ − pe − pνe
− pν̄μ

)

∑

spins |M|2

24EμEeEνe
Eν̄μ

fμ(1 − fe)
(

1 − fνe

)(

1 − fν̄μ

)

. (B11)

All four reactions in this section have the same matrix element [Eq. (B8)] due to crossing symmetry. The phase space integration

proceeds the same way as for the Urca processes, and is (briefly) described in [4].

APPENDIX C: MAXWELL RELATIONS

The first law of thermodynamics in neutrino-trapped npeμπ− matter can be written

dE = −P dV +T dS +μn dNn +μp dNp +μe dNe +μμ dNμ +μνe
dNνe

+μνμ
dNνμ

+μπ dNπ . (C1)

We normalize all quantities by baryon number NB:

d

(

ε

nB

)

=
P

n2
B

dnB +T d

(

s

nB

)

+μn dxn +μp dxp +μe dxe +μμ dxμ +μνe
dxνe

+μνμ
dxνμ

+μπ dxπ . (C2)

We know from the allowed chemical reactions that dxn = − dxp, dxe = dxp − dxμ − dxπ , dxνe
= dxπ + dxμ − dxp, and dxνμ

=

− dxμ and so all particle fractions can be expressed in terms of the proton, muon, and pion fractions. We Legendre transform the

temperature/entropy term [68], getting the final expression

d

(

ε − sT

nB

)

=
P

n2
B

dnB −
s

nB

dT −δμ1 dxp +(δμ1 − δμ2) dxμ +(δμ1 − δμ3) dxπ . (C3)

From this first law of thermodynamics, we can derive six Maxwell relations (if we only consider derivatives with respect to nB

or xi) [68]. The three that are relevant are written in Eqs. (23a)–(23c).

APPENDIX D: FULL EXPRESSION FOR BULK VISCOSITY

In this section, we give the definitions of F, G, H, J, K, L in the expression for the bulk viscosity [Eq. (28)]. We keep all of

the susceptibilities in these expressions, even though three are redundant (due to Maxwell relations) and D2 = C3 = 0 for our

EoS. Even if we were to take advantage of these simplifications, the resultant expression for the bulk viscosity would still be

quite complicated.

First, we define the variables

a ≡ A1λ1 + A2λ2 + A3λ3, (D1a)

b ≡ B1λ1 + B2λ2 + B3λ3, (D1b)

c ≡ C1λ1 + C2λ2 + C3λ3, (D1c)

d ≡ D1λ1 + D2λ2 + D3λ3, (D1d)

e ≡ A1λ6 − A2(λ2 + λ5 + λ6) + A3λ5, (D1e)

f ≡ B1λ6 − B2(λ2 + λ5 + λ6) + B3λ5, (D1f)

g ≡ C1λ6 − C2(λ2 + λ5 + λ6) + C3λ5, (D1g)

h ≡ D1λ6 − D2(λ2 + λ5 + λ6) + D3λ5, (D1h)

i ≡ A1λ4 + A2λ5 − A3(λ3 + λ4 + λ5), (D1i)

j ≡ B1λ4 + B2λ5 − B3(λ3 + λ4 + λ5), (D1j)

k ≡ C1λ4 + C2λ5 − C3(λ3 + λ4 + λ5), (D1k)

l ≡ D1λ4 + D2λ5 − D3(λ3 + λ4 + λ5). (D1l)

Then,

F = (A1 − A3)c2 f 2i − (A1 − A2)cdf 2i − 2(A1 − A3)bc f gi + (A1 − A2)bdf gi − A1cdf gi + (A1 − A3)b2g2i

+ A1bdg2i + (A1 − A2)bc f hi + A1c2 f hi − (A1 − A2)b2ghi − A1bcghi − (A1 − A3)c2e f j + (A1 − A2)cde f j
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+ (A1 − A3)bcegj + A1cdegj + (A1 − A3)ac f gj − (A1 − A2)adf gj − (A1 − A3)abg2 j − A1adg2 j

− (A1 − A2)bceh j − A1c2eh j + (A1 − A2)abgh j + A1acgh j + (A1 − A3)cdf i j − (A1 − A2)d2 f i j

− (A1 − A3)dg2i j − (A1 − A3)bchi j + (A1 − A2)bdhi j + (A1 − A3)cghi j + (A1 − A2)dghi j − (A1 − A2)ch2i j

− (A1 − A3)cde j2 + (A1 − A2)d2e j2 + (A1 − A3)ach j2 − (A1 − A2)adh j2 + (A1 − A3)bce f k − (A1 − A2)bde f k

− (A1 − A3)ac f 2k + (A1 − A2)adf 2k − (A1 − A3)b2egk − A1bdegk + (A1 − A3)ab f gk + A1adf gk

+ (A1 − A2)b2ehk + A1bcehk − (A1 − A2)ab f hk − A1ac f hk − (A1 − A3)bdf ik − A1d2 f ik + (A1 − A3)df gik

+ (A1 − A3)b2hik + A1bdhik − (A1 − A3)c f hik + A1dghik − A1ch2ik + (A1 − A3)bde jk + A1d2e jk

+ (A1 − A3)degjk − (A1 − A3)abh jk − A1adh jk − (A1 − A2)deh jk − (A1 − A3)agh jk + (A1 − A2)ah2 jk

− (A1 − A3)de f k2 − A1dehk2 + (A1 − A3)a f hk2 + A1ah2k2 + (A1 − A2)bdf il + A1cdf il − (A1 − A2)df gil

− A1dg2il − (A1 − A2)b2hil − A1bchil + (A1 − A2)c f hil + A1cghil + (A1 − A3)bce jl − 2(A1 − A2)bde jl

− A1cde jl − (A1 − A3)ac f jl + (A1 − A2)adf jl − (A1 − A3)cegjl + (A1 − A3)ag2 jl + (A1 − A2)abh jl

+ A1ach jl + (A1 − A2)ceh jl − (A1 − A2)agh jl − (A1 − A3)b2ekl − A1bdekl + (A1 − A3)ab f kl + A1adf kl

+ (A1 − A3)ce f kl + (A1 − A2)de f kl + A1degkl − (A1 − A3)a f gkl + A1cehkl − (A1 − A2)a f hkl − 2A1aghkl

+ (A1 − A2)b2el2 + A1bcel2 − (A1 − A2)ab f l2 − A1ac f l2 − (A1 − A2)ce f l2 − A1cegl2 + (A1 − A2)a f gl2

+ A1ag2l2, (D2a)

G = (A1 − A2)b2e + A1bce − (A1 − A2)ab f − A1ac f − (A1 − A2)ce f − A1ceg + (A1 − A2)a f g + A1ag2

+ (A1 − A3)b2i + A1bdi − 2(A1 − A3)c f i + (A1 − A2)df i + (A1 − A3)g2i − A1chi − (A1 − A2)ghi

− (A1 − A3)ab j − A1ad j + (A1 − A3)ce j − 2(A1 − A2)de j + (A1 − A2)ah j − (A1 − A3)di j − A1dek

+ (A1 − A3)a f k − (A1 − A3)egk + 2A1ahk + (A1 − A2)ehk + (A1 − A3)hik − A1dil − (A1 − A2)hil

+ (A1 − A3)a jl − (A1 − A3)ekl + A1al2 + (A1 − A2)el2, (D2b)

H = A1a + (A1 − A2)e + (A1 − A3)i, (D2c)

J = (dgj − ch j − df k + bhk + c f l − bgl )2, (D2d)

K = c2 f 2 − 2bc f g + b2g2 + 2cdf j − 2dg2 j − 2bch j + 2cgh j + d2 j2 − 2bdf k + 2df gk + 2b2hk − 2c f hk

− 2dh jk + h2k2 − 2bd jl + 2ch jl + 2df kl − 2ghkl + b2l2 − 2c f l2 + g2l2, (D2e)

L = b2 − 2c f + g2 − 2d j + 2hk + l2. (D2f)

APPENDIX E: BULK VISCOSITY WITHOUT PIONS

In this section, we give the definitions of G′, H ′, K ′, and L′, in the bulk viscosity expression Eq. (29):

G′ = [λ2λ6 + λ1(λ2 + λ6)]{(A1B2 − A2B1)2λ1 + [(A1 − A2)B2 + A1C2]2λ2 + [A2(B1 − B2) + A1C2]2λ6}, (E1)

H ′ = A2
1λ1 + A2

2λ2 + (A1 − A2)2λ6, (E2)

K ′ = [λ2λ6 + λ1(λ2 + λ6)]2[B2
2 − B1(B2 + C2)]2, (E3)

L′ = B2
1λ

2
1 + 2B2

2λ1λ2 + (B2 + C2)2λ2
2 + 2(B1 − B2)2λ1λ6 + 2C2

2 λ2λ6 + (B2 − B1 − C2)2λ2
6. (E4)

Reference [4] studied bulk viscosity in neutrino-trapped npeμ matter in the cases where λ6 → 0 and λ6 → ∞. In the limit

λ6 → 0, our expression simplifies to

ζ =
λ1λ2{(A1B2 − A2B1)2λ1 + [(A1 − A2)B2 + A1C2]2λ2} +

(

A2
1λ1 + A2

2λ2

)

ω2

λ2
1λ

2
2

[

B2
2 − B1(B2 + C2)

]2
+

[

B2
1λ

2
1 + 2B2

2λ1λ2 + (B2 + C2)2λ2
2

]

ω2 + ω4
. (E5)

In the limit where λ6 → ∞,

ζ =
[A2(B1 − B2) + A1C2]2(λ1 + λ2)

[

B2
2 − B1(B2 + C2)

]2
(λ1 + λ2)2 + (B2 − B1 − C2)2ω2

. (E6)
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APPENDIX F: BULK VISCOSITY λ3 → ∞

In this section, we give the definitions of Q, R, U , and W in the expression for the bulk viscosity [Eq. (30)]. We set D2 =

C3 = 0, consistent with our EoS:

Q = [(λ1 + λ4)(λ2 + λ5) + (λ1 + λ2 + λ4 + λ5)λ6]

{

(λ1 + λ4)

[

A2B1 −
B2[A3(B1 − B2) + A2B2 + A1D3]

B2 + D3

]2

+ (λ2 + λ5)

[

A1C2 +
B2[(A1 − A2)D3 − A3C2]

B2 + D3

]2

+ λ6

[

A2(B1 − B2) + A1C2 −
A3B2(B1 − B2 + C2)

B2 + D3

]2
}

, (F1a)

R = (λ1 + λ4)

[

A1 −
A3B2

B2 + D3

]2

+ (λ2 + λ5)

[

A2 −
A3B2

B2 + D3

]2

+ λ6(A1 − A2)2, (F1b)

U = [(λ1 + λ4)(λ2 + λ5) + (λ1 + λ2 + λ4 + λ5)λ6]2

{

B1C2 +
B2[(B1 − B2)D3 − B2C2]

B2 + D3

}2

, (F1c)

W =

(

B1 −
B2

2

B2 + D3

)2

(λ1 + λ4)2 +

(

C2 +
B2D3

B2 + D3

)2

(λ2 + λ5)2 + 2
B2

2D2
3

(B2 + D3)2
(λ1 + λ4)(λ2 + λ5)

+ 2(B1 − B2)2(λ1 + λ4)λ6 + 2C2
2 (λ2 + λ5)λ6 + (B1 − B2 + C2)2λ2

6. (F1d)

APPENDIX G: THERMODYNAMIC JACOBIAN CALCULATIONS

We go through the thermodynamic Jacobian calculations to relate the compressibility of nuclear matter to the susceptibilities,

which appear in the bulk viscosity formulas. For a review of thermodynamic Jacobians, see [68]. Temperature is held constant

in all formulas in this Appendix, so we leave it implicit in the Jacobians and derivatives.

Without pions, a few key compressibilities can be written as

∂P

∂nB

∣

∣

∣

∣

xμ,δμ1

≡
∂ (P, xμ, δμ1)

∂ (nB, xμ, δμ1)
=

∂ (P, xμ, δμ1)

∂ (nB, xp, xμ)

∂ (nB, xp, xμ)

∂ (nB, xμ, δμ1)
=

∂ (P, δμ1, xμ)

∂ (nB, xp, xμ)

∂ (xμ, xp)

∂ (xμ, δμ1)

=
∂ (P, δμ1)

∂
(

nB, xp

)

/

∂δμ1

∂xp

∣

∣

∣

∣

nB,xμ

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

−
∂P

∂xp

∣

∣

∣

∣

nB,xμ

∂xp

∂δμ1

∣

∣

∣

∣

nB,xμ

∂δμ1

∂nB

∣

∣

∣

∣

xp,xμ

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

+
1

nB

A2
1

B1

, (G1a)

∂P

∂nB

∣

∣

∣

∣

xp−xμ,δμ2

≡
∂ (P, xp − xμ, δμ2)

∂ (nB, xp − xμ, δμ2)
=

∂ (P, xp − xμ, δμ2)

∂ (nB, xp, xμ)

∂ (nB, xp, xμ)

∂ (nB, xp − xμ, δμ2)

=
∂ (P, xp − xμ, δμ2)

∂ (nB, xp, xμ)

/

∂ (xp − xμ, δμ2)

∂ (xp, xμ)
=

∂P

∂nB

∣

∣

∣

∣

xp,xμ

−

(

∂P

∂xp

∂δμ2

∂nB

+
∂P

∂xμ

∂δμ2

∂nB

)/(

∂δμ2

∂xμ

+
∂δμ2

∂xp

)

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

+
1

nB

A2
2

B2 + C2

, (G1b)

∂P

∂nB

∣

∣

∣

∣

xp,δμ1−δμ2

≡
∂ (P, xp, δμ1 − δμ2)

∂ (nB, xp, xμ)

∂ (nB, xp, xμ)

∂ (nB, xp, δμ1 − δμ2)
=

∂ (P, δμ1 − δμ2)

∂ (nB, xμ)

/

∂ (δμ1 − δμ2)

∂xμ

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

−
∂P

∂xμ

∂xμ

∂ (δμ1 − δμ2)

∂ (δμ1 − δμ2)

∂nB

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

−
1

nB

(A1 − A2)2

C1 − C2

=
∂P

∂nB

∣

∣

∣

∣

xp,xμ

−
1

nB

(A1 − A2)2

B2 − B1 − C2

. (G1c)

For readability, after the first line, we drop the variables that are held constant, but the independent variables are always

{nB, xp, xμ} (and T , which is implicit in this section).
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APPENDIX H: PARTIAL BULK VISCOSITIES WITHOUT λ3 → ∞ LIMIT

In this section, we present the formulas for the partial bulk viscosities in dense matter containing thermal pions, without

taking the limit of infinitely fast λ3. These expressions are really to be compared with the λ3 → ∞ expressions in the main text.

The beta equilibration rates are

γ1 ≡ −B1λ1, (H1a)

γ2 ≡ −(B2 + C2)λ2, (H1b)

γ3 ≡ −(B2 + D3)λ3, (H1c)

γ4 ≡ (B2 − B1 − D3)λ4, (H1d)

γ5 ≡ −(C2 + D3)λ5, (H1e)

γ6 ≡ (B2 − B1 − C2)λ6, (H1f)

and the partial bulk viscosities are given by

ζ1 = −
A2

1

B1

γ1

γ 2
1 + ω2

, (H2a)

ζ2 = −
A2

2

(B2 + C2)

γ2

γ 2
2 + ω2

, (H2b)

ζ3 = −
A2

3

B2 + D3

γ3

γ 2
3 + ω2

, (H2c)

ζ4 =
(A1 − A3)2

B2 − B1 − D3

γ4

γ 2
4 + ω2

, (H2d)

ζ5 = −
(A2 − A3)2

C2 + D3

γ5

γ 2
5 + ω2

, (H2e)

ζ6 =
(A1 − A2)2

B2 − B1 − C2

γ6

γ 2
6 + ω2

. (H2f)

The maximum values of the partial bulk viscosities can be related to the compressibilities via the same procedure as given in

Appendix G. The results are

ζ1,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xμ,xπ ,δμ1,T

)

, (H3a)

ζ2,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xp−xμ,xπ ,δμ2,T

)

, (H3b)

ζ3,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xμ,xp−xπ ,δμ3,T

)

, (H3c)

ζ4,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xp,xμ,δμ1−δμ3,T

)

, (H3d)

ζ5,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xp,xμ+xπ ,δμ2−δμ3,T

)

, (H3e)

ζ6,max =
nB

2ω

(

∂P

∂nB

∣

∣

∣

∣

xp,xμ,xπ ,T

−
∂P

∂nB

∣

∣

∣

∣

xp,xπ ,δμ1−δμ2,T

)

. (H3f)
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