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Repulsive short-range interactions can induce p-wave attraction between fermions in dense matter and lead

to Cooper pairing at the Fermi surface. We investigate this phenomenon, well known as the Kohn-Luttinger

effect in condensed-matter physics, in dense matter with strong short-range repulsive interactions. We find that

repulsive interactions required to stabilize massive neutron stars can induce p-wave pairing in neutron and quark

matter. When massive vector bosons mediate the interaction between fermions, the induced interaction favors

Cooper pairing in the 3P2 channel. For the typical strength of the interaction favored by massive neutron stars,

the associated pairing gaps in neutrons can be in the range of 10 keV to 10 MeV. Strong and attractive spin-orbit

and tensor forces between neutrons can result in repulsive induced interactions that greatly suppress the 3P2

pairing gap in neutron matter. In quark matter, the induced interaction is too small to result in pairing gaps of

phenomenological relevance.

DOI: 10.1103/PhysRevC.110.025804

I. INTRODUCTION

The discovery of massive neutron stars by radio observa-

tions of pulsars [1–3] confirmed that the maximum mass of

neutron stars Mmax > 2 M⊙, and gravitational wave and x-ray

observations constrain the radius of a neutron star with mass

≃ 1.4 M⊙ to the range 11–13 km [4–8]. These constraints

and theoretical calculations of the EOS of neutron-rich matter

at nB � 2nsat [9–13], taken together strongly suggest a rapid

increase in the pressure and the speed of sound in the NS core

[14]. This, in turn, implies strong repulsive interactions are

necessary for any putative phase of high-density matter in the

core. This article addresses whether such repulsion can have

other observable consequences. In particular, we investigate if

such repulsion can lead to Cooper pairing between fermions

with nonzero angular momentum due to the Kohn-Luttinger

(KL) effect [15] in the cores of neutron stars.

The KL effect, which arises because the interaction at the

Fermi surface is modified due to screening in the medium,

implies that the Cooper pairing instability in high angular

momentum states is inevitable and occurs even when the bare

interaction is repulsive [15]. The effect has been discussed

extensively in condensed-matter physics (for a recent peda-

gogic review, see Ref. [16]). In the context of dense nuclear

matter, early work in Refs. [17–19] recognized that the in-

teraction between nucleons induced by polarization effects in

the medium would significantly alter the pairing gaps (for

recent reviews, see Refs. [20,21]). The induced interaction,

typically calculated in second-order perturbation theory or

Fermi liquid theory, naturally incorporates the KL effect.

In dilute Fermi systems with attractive s-wave short-range
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interactions, it has been known since the work of Gor’kov and

Melik-Barkhudarov that the induced interaction suppresses

the s-wave pairing gap relative to the BCS prediction [22]. In

neutron matter, when the s-wave interaction is repulsive, the

induced interaction was initially expected to increase the p-

wave attraction between neutrons [17]. However, more recent

work in Ref. [23] finds that the induced spin-orbit interaction

can dominate and result in a net suppression instead at modest

density. Here we revisit calculating the induced interaction in

high-density matter characterized by a large sound speed to

study its implications for 3P2 pairing. We consider short-range

interactions that contain central and noncentral components

and study the competition between the attractive and repulsive

components of the induced p-wave interaction and its density

dependence.

In quark matter, when the Fermi surfaces of up, down, and

strange quarks are split due to charge neutrality and a larger

strange quark mass, the KL effect provides a mechanism to

pair quarks of the same flavor and color. However, in this

case, we find that p-wave interaction induced by short-range

repulsion introduced to increase the pressure of quark matter

is too small to be of phenomenological relevance.

Our study, which relies on extrapolating results derived

from perturbation theory to strong coupling, provides order-

of-magnitude estimates for the pairing gaps. Although the

method we employ is inadequate to make quantitative pre-

dictions, it identifies a mechanism for 3P2 pairing in dense

Fermi systems with large repulsive interactions mediated by

short-range interactions mediated by heavy vector bosons.

In Sec. II, we review the KL mechanism for nonrelativis-

tic fermions. In Sec. III, we derive the induced interaction

between neutrons at high density by assuming that the bare

interaction is due to the exchange of heavy vector mesons. In

Sec. IV, we consider the possible effects of the KL mechanism
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FIG. 1. Irreducible second-order diagrams for Kohn-Luttinger mechanism.

in quark matter. We discuss the implications for neutron star

cooling in Sec. V, summarize our main findings, and discuss

open questions in Sec. VI.

II. KOHN-LUTTINGER MECHANISM

Kohn and Luttinger showed that a short-range repulsive

potential can induce attraction in large odd partial waves due

to medium effects that can overscreen the effective interaction

between fermions at finite density [15]. There has been re-

newed interest in studying the KL effect in condensed-matter

systems because calculations suggest that the induced pair-

ing gaps in p waves and low-order partial waves could be

large enough to be realized in experiments (see, for example,

Refs. [24–27]). KL’s original calculation included terms at

second order in the potential; more recent analysis [28] cal-

culates the potential up to fourth order in a constant potential

characterized by a large scattering length as well as including

retardation effects where pairing occurs away from the Fermi

surface, also contributing at fourth order.

In weak coupling, the KL effect arises naturally at second

order in the potential by evaluating the diagrams in Fig. 1. We

refer to these diagrams from left to right as the screening, ver-

tex, and exchange diagrams, respectively. The vertex diagram

also has a mirror image, which must be included. We consider

interactions that occur at the Fermi surface, so |k| = |k′| = kF .

The momentum transfer is labeled q = k′ − k.

For a short-range potential with zero range and strength de-

noted by U0, the nonrelativistic calculation of these diagrams

is straightforward. In this case, the screening diagram cancels

the contribution from the two vertex diagrams, and only the

exchange diagram contributes. The exchange diagram also

gets an overall sign since it is crossed and is given by

VKL(q) = U 2
0

1

β

∑

ℓ0

∫

d3ℓ

(2π )3

1

ℓ0 − ℓ2/2m

1

ℓ0 − (ℓ + q)2/2m
.

(1)

Notice that since |k| = |k′|, the frequency transfer q0 is just

zero. Taking the Matsubara sum and simplifying it gives a sin-

gular contribution to the potential. Since we are considering

the effects of interactions with the medium, the loop integral

has a factor nF (ℓ2/2m) = 1/(eβ(ℓ2/2m−μ) + 1) and does not

need to be regulated. At the low temperatures we consider

(T ≪ ǫF = k2
F /2m) this simplifies nF (ℓ2/2m) ≈ �(kF − ℓ).

The momentum integral in Eq. (1) yields the Lindhard

function defined by

U (q) = − m

4π3q

∫

ℓ dℓ d�ℓ

�(kF − ℓ)

cos θqℓ − q/2ℓ

= mkF

4π2

[

1 − 1

q

(

1 − q2

4

)

log

∣

∣

∣

∣

1 − q/2

1 + q/2

∣

∣

∣

∣

]

, (2)

where q̄ = q/kF . Thus, Eq. (1) can be written as

VKL(q) = −U 2
0 U (q). (3)

For any potential, the contribution to the induced poten-

tial from the singularity at q = 2kF of the Lindhard function

scales as (−1)LL−4 for large L [15,29] where L is the angular

momentum quantum number. Since the regular contributions

to the total potential falls off exponentially with L, attraction

is guaranteed for large odd partial waves.

Although these results are only generically true for large

L, they persist for relatively low partial waves for some

potentials. It was shown in Refs. [24,28] that the constant

potential calculated above would result in p-wave attraction.

The p-wave contribution from the potential in Eq. (3) can be

found easily by making a change of integration variable from
∫ 1

−1
d cos θ to

∫ 2

0
qdq. The matrix element in the Born approx-

imation should be doubled due to a diagram with outgoing

momenta switched, but we will absorb this normalization into

the gap equation to match the literature. The p-wave potential

from the exchange diagram and its crossed counterpart is then

given by

Vℓ=1 = −U 2
0

mkF

4π

4

5π
(2 log 2 − 1). (4)

The superfluid gap due to the induced attraction in p-waves

was calculated several decades earlier in Ref. [17,30]. In the

BCS approximation, the p-wave gap

	p ≃ ǫF exp

(

2

N (0)Vℓ=1

)

= ǫF exp

( −5π2

4(2 log 2 − 1)(akF )2

)

,

(5)

where ǫF = k2
F /2m is the Fermi energy, N (0) = mkF /2π2 is

the density of states at the Fermi surface for each spin, and the

scattering length a = mU0/4π in weak coupling.

In strong coupling, we cannot calculate the effective inter-

action at the Fermi surface reliably, and in the following, we

shall assume that Eq. (5) provides a useful estimate. Further,

we shall also assume that the s-wave scattering amplitude
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between quasiparticles at the Fermi surface, denoted by f0,

is directly related to the strength of the bare interaction U0. In

Fermi liquid theory, the sound speed

cs = kF√
3mm∗

√

(1 + F0) , (6)

where F0 = N (0) f0 is dimensionless measure of the quasi-

particle interaction and m∗ is the fermion effective mass at

the Fermi surface. Using this relation, we can estimate the

interaction strength U0 ≈ f0 at a given density if cs and m∗

are known. If m∗ ≈ m and U0 = f0, then the induced p-wave

gap in Eq. (5) can be rewritten as

	p ≈ ǫF exp

(

− 5

(2 log (2) − 1)F 2
0

)

, (7)

to illustrate its extreme sensitivity to F0 and the sound speed

through Eq. (6). For example, models of high-density neutron

matter typically predict F0 � 2 for nB � 3 nsat [31]. Under

these conditions, Eq. (7) predicts robust p-wave pairing with

gaps 	p � 1 MeV due to the induced interaction.

In the next section, we will calculate the induced interac-

tion between neutrons in more realistic scenarios where the

bare potential is momentum dependent and contains central

and noncentral components.

III. INDUCED P-WAVE PAIRING

IN DENSE NEUTRON MATTER

The s-wave potential at the Fermi surface becomes repul-

sive in the neutron star core when nB � nsat/2. At these higher

densities, 3P2 pairing is favored because the bare potential in

this channel remains attractive, and noncentral components of

the interaction, especially the spin-orbit interaction, favor the

alignment of spin and orbital angular momentum. Calcula-

tions of the 3P2 pairing gap in the BCS approximation reported

in Refs. [21,32] show that the pairing gaps are model depen-

dent, especially for nB > 2nsat because the nucleon-nucleon

potentials at the relevant momenta are not well constrained

by scattering data. In these calculations, the maximum value

of the gap 	3P2
≃ 1–2 MeV occurs between 2 and 3 nsat and

decreases rapidly with increasing density. At lower density,

when the nucleon momenta p ≪ 
χ where 
χ ≃ 500 MeV is

the breakdown scale of chiral EFT, a recent study used chiral

EFT potentials and found that the maximum value 	3P2
≃ 0.4

MeV was reached at nB ≃ 1.3 nsat and its decrease at higher

density was found to be sensitive to the details of the short-

distance physics [33]. Together, these findings suggest that if

neutron matter persists at the highest densities encountered in

neutron stars, the bare 3P2 potential could be small, and 	3P2

depends on model assumptions about the nuclear interaction

at short distances.

When the bare 3P2 potential weakens, the gap is espe-

cially sensitive to corrections due to induced interactions in

the medium (see, for example, the discussion in Sec. 3.4 of

Ref. [21]). In early work, the interaction induced by the central

components of the nuclear force was found to increase the
3P2 gap [17,34], as would be expected from the discussion

of the KL mechanism in Sec. II. However, as mentioned

earlier, calculations that employed realistic low-energy nu-

clear potentials with significant noncentral components found

that the interference between the central and spin-orbit com-

ponent of the nuclear force led to significant suppression of

the 3P2 gap for nB < 2nsat [23].

At nB � 2nsat, the description of nuclear interactions relies

on model assumptions since the typical nucleon momenta

p � 
χ . To investigate the competition between a strong and

repulsive central force and the spin-orbit component of the

nuclear force at high density, we revisit the calculation of the

induced interaction in simple models. In what follows, we

shall assume that the dominant contribution to the nucleon-

nucleon interaction at short distances is due to the exchange of

heavy vector mesons such as the ω and ρ mesons with masses

mω ≈ mρ ≃ 800 MeV. For nB � 4nsat, kF /
 where 
 ≃ mω

remains a useful expansion parameter. In this case, including

terms up to O[(kF /
)2], the interaction can be described by

the potential

V (q, q′) = C0 + C̃0σ1 · σ2 + C2(q2 + q′2) + C′
2(q′2 − q2)

+ [C̃2(q2 + q′2) + C̃′
2(q′2 − q2)]σ1 · σ2

+ iVSO q × q′ · (σ1 + σ2) + VT q · σ1q · σ2 . (8)

In neutron matter, due to the Pauli principle, only the com-

binations C̄0 = C0 − 3C̃0, C̄2 = C2 − 3C̃2, and C̄′
2 = C′

2 + C̃′
2

are relevant. In the full expansion of the vector meson po-

tential, there is also a term proportional to (q × q′ · σ1)(q ×
q′ · σ2) and higher powers of momentum in the central and

spin-orbit interactions. An exchange tensor term proportional

to q′ · σ1q′ · σ2 is also allowed by the symmetries of the in-

teraction but is not present in the vector exchange. In this

exploratory study, we shall neglect the spin-orbit squared

and tensor exchange components and truncate the potential

at order k2
F . In this case, five LECs denoted by C̄0, C̄2, C̄′

2,

VSO, and VT are adequate. The large and attractive spin-orbit

interaction, whose strength is set by VSO plays an important

role, as discussed below. Since we consider incoming and out-

going momenta at the Fermi surface with zero center-of-mass

momentum, q = k1 − k3 and q′ = k1 − k4 with the momenta

of neutrons in the initial state are given by k1 and k2, and the

final state momenta are k3 and k4.

It is straightforward to repeat the calculation of the

diagrams described in the preceding section with the po-

tential in Eq. (8). However, it is simpler to define the

FIG. 2. ZS (left) and ZS′ (right) diagrams. The hatched blobs

represent the antisymmetrized interaction defined in Eq. (9).

025804-3



MIA KUMAMOTO AND SANJAY REDDY PHYSICAL REVIEW C 110, 025804 (2024)

antisymmetrized potential

V (q, q′) = C0(δ13δ24 − δ14δ23) + C2(q2 + q′2)(δ13δ24 − δ14δ23) + C′
2(q′2 − q2)(δ13δ24 + δ14δ23) + C̃0(σ13 · σ24 − σ14 · σ23)

+ C̃2(q2 + q′2)(σ13 · σ24 − σ14 · σ23) + C̃′
2(q′2 − q2)(σ13 · σ24 + σ14 · σ23)

+ 2iVSOq × q′ · (σ13δ24 + σ24δ13) + VT (q · σ13q · σ24 − q′ · σ14q′ · σ23) (9)

that includes the effect of the exchange processes. We use the notation δi j = χ
†
j χi and σi j = χ

†
j σχi for incoming and outgoing

two-component spinors χi and χ
†
j . In this case, the induced interaction at second order is calculated by evaluating the diagrams

depicted in Fig. 2. The diagram on the left is called the zero-sound diagram and denoted as ZS, and the diagram on the right is

called the exchange zero-sound diagram and is denoted by the symbol ZS′. A detailed derivation of the total induced interaction

Vind = V ZS
ind − V ZS′

ind is presented in Appendix A.

First, we present the result obtained by neglecting the momentum-dependent components of the bare central interaction. In

this case, the induced potential

V ind = −(C2
0 + 3C̃2

0 )[U (q)δ14δ23 − U (q′)δ13δ24] + 6C0C̃0[U (q)δ13δ24 − U (q′)δ14δ23] + (−C̃2
0 + 2C0C̃0)

× (σ13 · σ24 − σ14 · σ23)[U (q) + U (q′)] − 3C̃2
0 (σ13 · σ24 + σ14 · σ23)[U (q) − U (q′)]. (10)

The s- and p-wave potentials given by this interaction are

V ind
1S0

(0) = C̄2
0

mkF

3π2
(2 log 2 + 1)

V ind
3PJ

(0) = −C̄2
0

mkF

5π2
(2 log 2 − 1) , (11)

where again C̄0 = C0 − 3C̃0 is the momentum-independent bare 1S0 potential.

The calculation of the induced potential, including the momentum-dependent central interactions, is tedious, and the analytic

results contain a large number of terms. Details of the intermediate expressions can be found in Appendix A.

We find analytic results for the second-order induced potentials in the s and p-induced potentials. The induced 1S0 and 3PJ

potentials calculated to O(mk3
F ) are given by

V ind
1S0

= mkFC̄2
0

1

3π2
(1 + 2 log 2) + mk3

F

[

C̄0C̄2

2

3π2
(5 + 4 log 2) + C̄0C̄

′
2

2

5π2
(7 − 4 log 2) − C̄0VT

16

15π2
(2 + log 2)

]

, (12)

and

V ind
3PJ

= mkFC̄2
0

1

5π2
(1 − 2 log 2) + mk3

F

[

C̄0C̄2

2

105π2
(59 − 68 log 2) − C̄0C̄

′
2

2

105π2
(29 + 52 log 2)

+ C̄0VT

1

105π2
(91J2 − 221J + 50 + (224J2 − 544J + 220) log 2)

]

, (13)

respectively.

When momentum dependence of the central interaction is

neglected, the bare spin-orbit force does not contribute to the

induced interaction, and the leading-order dependence of the

induced potential on J is determined by the tensor interaction.

See Appendix A for a detailed discussion.

These contributions have the same behavior as the leading-

order KL result. The contribution to the induced interaction in

a particular partial wave arising from terms in the bare inter-

action that do not contribute to that partial wave is strongly

influenced by the KL singularity at q = 2kF . For this rea-

son, their contribution is suppressed relative to other terms

in the interaction at the same order in the expansion. No-

tice, for example, that in the p-wave-induced potential, the

term proportional to C̄0C̄
′
2 has a numerical factor five times

larger than C̄0C̄2 and fifteen times larger than C̄0VT for 3P2.

This implies that the singularity at q = 2kF does not play an

essential role when C̄′
2 is of modest size. By comparing the

relevant terms in Eq. (13), we find that the KL singularity

plays an essential role only when C̄′
2 ≪ C̄0/(16k2

F ). In what

follows, we shall continue to use the term Kohn-Luttinger

effect to refer to the induced interaction, but it should be

borne in mind that the singularity at q = 2kF does not play

a dominant role for typical values of C̄′
2 we explore in this

study.

Since the spin-orbit force is strong and important in the
3P2 channel, we expect that it may contribute to the induced

interaction even though it enters at a higher order in the

momentum expansion. To investigate the impact of the spin-

orbit coupling, we calculate a subset of the terms that contain

the central and spin-orbit interactions at O(mk5
F ). These
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corrections to the induced potentials are given by:

V
(5)

1S0
= mk5

F

[

C̄2
2

8

315π2
(277 + 96 log 2) − C̄′2

2

8

105π2
(43 + 24 log 2)

+ C̄2C̄
′
2

32

105π2
(37 + 6 log 2) + V 2

SO

8

35π2
(17 + 16 log 2)

]

, (14)

and

V
(5)

3PJ
= mk5

F

[

C̄2
2

16

567π2
(83 − 24 log 2) + C̄′2

2

64

567π2
(34 − 3 log 2)

− C̄2C̄
′
2

16

2835π2
(523 + 204 log 2) + C̄′

2VSO[J (J + 1) − 4]
32

945π2
(43 + 24 log 2)

+ VT VSO[J (J + 1) − 4]
16

945π2
(43 + 24 log 2) + V 2

SO(7J2 − 17J + 10)
32

4725π2
(43 + 24 log 2)

]

. (15)

These are not all of the terms that contribute at O(mk5
F ). Not

included are terms proportional to C̄2VT , C̄′
2VT , and V 2

T .

From Eq. (15), we deduce that when the bare spin-orbit

interaction is attractive, it could enhance 3P2 pairing if

2C̄′
2 + VT + 4

5
VSO > 0 . (16)

The relation of this result to the suppression of 3P2 pairing at

low density due to spin-orbit interactions found in Ref. [23],

which employed a realistic low-momentum nucleon-nucleon

potential fit to scattering data warrants further study.

We consider three scenarios to study the implications of

these results for dense neutron matter. Each scenario is defined

by a specification of the LECs that appear in the bare potential

defined in Eq. (8). In scenario A, we shall assume that the

exchange of heavy vector mesons mediates the interactions

between neutrons. When the mass of the vector meson is large

compared to the neutron Fermi momentum, and interaction is

described by a current-current four-fermion Lagrangian

Lint = −GV

2
(nγμn)(nγ μn) . (17)

Retaining only the leading terms in the k/mn expansion, the

LECs appearing in Eqs. (12) and (13) are given by

C̄0 = GV , C̄2 = 5GV

8m2
n

, C̄′
2 = 3GV

8m2
n

,

VSO = −3GV

8m2
n

, VT = GV

4m2
n

. (18)

Although the simple vector interaction cannot capture the

complex nature of interactions between neutrons, which could

involve a richer operator structure due to pion exchange and

many nucleon forces, it is able to describe the qualitative

aspects of the nucleon-nucleon interaction at high momen-

tum; it predicts negative phase shifts in the 1S0, 3P0, and 3P1

channels. The phase shift in the 3P2 channel vanishes because

VSO = −C̄′
2, and the spin-orbit interaction exactly cancels the

contribution from the central force. This aspect of short-range

vector interactions that leads to a vanishing bare potential

in the 3P2 channel is a generic feature of any four-fermion

interaction without derivative couplings since initial and fi-

nal states constructed only from spin and helicity operators

cannot be combined to form a tensor of rank greater than 1.

As a result, such an interaction cannot generate potentials in

channels with J � 2 at the tree level. Including momentum

dependence in the meson propagator, explicit derivative cou-

plings (i.e., momentum dependence beyond that found in the

Dirac spinors), or momentum dependence from loops lifts this

restriction.

The couplings are related to the Fermi liquid parameters F0

and G0. In the mean-field theory, F0 and G0 depend only on

the central components of the interaction and are given by

F0 = N (0)
[

C̄0 + 2k2
F (C̄2 + 3C̄2

′
)
]

, (19)

G0 = −N (0)
[

C̄0 + 2k2
F (C̄2 − C̄2

′
)
]

, (20)

where N (0) =
√

k2
F + m2

nkF /2π2 is the density of states for

each spin at the Fermi surface. Thus, if F0 and G0 are

specified, the strength of the s-wave components of the in-

teraction are constrained by the equation (2C̄0 + 4k2
FC̄2) =

(F0 − 3G0)/2N (0) and the p-wave component is obtained

using the relation C̄′
2 = (F0 + G0)/(8N (0)k2

F ). In scenario A,

the interaction contains just one parameter, GV . In this case,

F0 and G0 are not independent and GV is determined by spec-

ifying F0, which we take to be in the range 2–4 at nB = 3 nsat.

The induced and total p-wave interactions at the Fermi

surface are shown in Fig. 3 for F0 = 3 at nB = 3nsat. The

actual value shown V N (0)/2 is the quantity in the exponent

of the BCS equation. The model naturally prefers 3P2 pairing

because although the induced interaction at the Fermi surface

is attractive for all values of the total angular momentum

J = 0, 1, 2, the sum V bare + V ind is only attractive for J = 1, 2

and the net attraction is larger for J = 2. In Fig. 4, we show

the 3P2 pairing gaps calculated using the BCS formula in

Eq. (5). Results are shown for three choices of the coupling

GV obtained by setting F0 = 2, 3 and 4 at nB = 3 nsat.

To study the interplay between the central p-wave and the

spin-orbit interactions, we consider scenario B, in which we

introduce parameters ξp and ξSO to control the strength of

the central p-wave interaction and the spin-orbit interaction,

respectively. In this case, we neglect the tensor coupling, and
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FIG. 3. Total potential for heavy vector boson exchange at O(mk3
F ) (left) and at O(mk5

F ) (right). The coupling constant is tuned to F0 = 3

at 3nsat .

the LEC constants are given by:

C̄0 = GV , C̄2 = GV


2
, C̄′

2 = ξp

GV


2
,

VSO = −ξSO

GV


2
, VT = 0. (21)

As a generic choice at the same order as the nucleon and

meson masses, we take 
 = 1 GeV. Figure 5 shows curves

of constant V N (0)/2 in the space of ξp and ξSO for GV =
20 GeV−2 and GV = 40 GeV−2. Corresponding values of F0

for each value of ξp are shown on the right axis. The black

line shows where the bare interaction is zero. Above this line,

the bare interaction is repulsive, and below it is attractive. The

general behavior of the induced interaction is set by terms pro-

portional to C̄′2
2 , C̄′

2VSO, and V 2
SO with some secondary effects

from terms proportional to C̄0C̄
′
2 and C̄2C̄

′
2. Even though some

of these terms enter at higher order in the gradient expansion,

they are generally more important than lower-order terms in

the induced interaction because they do not rely on the KL sin-

gularity to contribute to the 3P2 potential. Of these five terms,

the only ones that can be attractive are C̄0C̄
′
2 and C̄2C̄

′
2 when

ξp is positive, and C̄′
2VSO when ξSO and ξp are of the same

sign. As a result, for stronger couplings, the overall interaction

is repulsive when ξp is negative and of reasonable size, even

though that corresponds to a more attractive bare interaction.

There is significant net attraction only when ξp and ξSO are

both positive and ξp is not much larger than ξSO as this leads

to a more repulsive bare interaction without producing enough

induced attraction to match.

Figure 6 shows the 3P2 gap as a function of ξSO for a few

choices of ξp and the same choices of GV . This interplay

between the relative size of ξp and ξSO sensitively determines

the size of the gap. This model is not detailed enough to

make quantitative predictions, but the general trend remains

that high-order terms in the expansion play an important role

in determining the size of the gap. An attractive spin-orbit

appears to be necessary to have gaps of a reasonable size. An

attractive bare p-wave potential precludes pairing even though

the bare interaction is stronger because of the repulsion due to

the induced interaction.

FIG. 4. The 3P2 gap corresponding to the short-range vector interaction in Eq. (17). Results at O(mk3
F ) are shown in the left panel and at

O(mk5
F ) in the right panel. The coupling constant is tuned to the given value of F0 at 3nsat .
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FIG. 5. Contours of constant 3P2 potential in model B in the ξp − ξSO plane for two choices of GV at 3nsat . F0, calculated using Eq. (19) is

also shown. The black dashed line shows where the bare interaction vanishes.

To incorporate trends observed in the nucleon-nucleon

phase shifts that have been measured up to Elab ≃ 300 MeV

which correspond pc.m. = √
mnElab/2 ≃ 375 MeV, we con-

sider scenario C in which we incorporate a nonzero VT by

introducing a parameter ξT that sets the strength of the tensor

interaction, and VT = −GV ξT /
2. This allows us to obtain

any desired ordering of the p-wave phase shifts for J = 0, 1, 2

and match scattering data that require a weakly attractive bare
3P2 interaction and repulsive interactions in the 3P0 and 3P1

channels. Since the induced interaction at O(mk5
F ) in Eq. (15)

neglected the part of the potential proportional to C̄′
2VT , the

results we present here are strictly only valid for ξT ≪ ξSO.

Thus, scenario C must be viewed as an initial exploration into

the effects of VT to be continued in future work.

To obtain the correct ordering of the p-wave interactions,

the parameters must satisfy the following conditions. To

have an attractive bare 3P2 potential, ξSO > ξp and to have

a repulsive bare 3P0, ξp + 2ξSO − 3ξT /2 > 0. The condition

2ξSO/5 < ξT < 2ξSO ensures that the 3P1 potential is most

repulsive and 3P2 is most attractive. We define α and β to be

the ratio between the bare potentials given by

α ≡ V3P2

V3P0

= ξp − ξSO

ξp + 2ξSO − 3ξT /2

β ≡ V3P1

V3P0

= ξp + ξSO + ξT

ξp + 2ξSO − 3ξT /2
. (22)

Phase shifts for laboratory energies between 250 and

350 MeV favor α between −1 and −3 and β between 2 and 4.

The blue horizontal hatched and orange vertical hatched bands

in Figs. 7 and 8 identify regions −3 < α < −1 and 2 < β <

4, respectively with the correct sign for each bare potential.

We only show regions with ξSO > 0 and ξT > 0 since this is

required to obtain the correct ordering of p-wave phase shifts.

These are also the signs favored by a tensor interaction arising

from pion exchange and a spin-orbit force from heavy meson

exchange. To illustrate the relevance of the induced interac-

tion, Fig. 7 shows the interaction for scenario C broken down

into bare potential, O(mk3
F )-induced potential, and O(mk5

F )

FIG. 6. 3P2 gap as a function of ξSO in model B for a few choices of ξp and GV at 3nsat .
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FIG. 7. The bare 3P2 potential, the induced potential at O(mk3
F ), and the induced VSO at nB = 3nsat . GV = 40 GeV−2 in the upper panel and

GV = 20 GeV−2 in the lower panel. Blue horizontal hatched and orange vertical hatched bands indicate where −3 < α < −1 and 2 < β < 4,

respectively, with the correct sign for all phase shifts for α and β defined in Eq. (22).

corrections to the induced potential for a few choices of ξSO

and ξT and the same two values of GV used for scenario B. In

the right panel, ξSO is fixed to match the value of ξp so that

the bare interaction is always zero, as is found in the meson

exchange model. The range of ξp chosen is motivated by the

observation that meson exchange models predict 0.5 � ξp �
1.5 and matching to phase shifts between 250 and 350 MeV

predicts −0.5 � ξp � 0. As seen before, the O(mk3
F )-induced

interaction is dominated by the term proportional to C̄0C̄
′
2 and

gives more attraction for positive ξp and repulsion for negative

ξp. The induced interaction does not exactly go through the

origin for ξp = 0, but the KL suppression of the terms that do

not include C̄′
2 or VSO is sufficient that it is not visible on this

scale. Negative values of ξp lead to more repulsive O(mk5
F )

corrections, with this effect being stronger for larger values

of ξSO.

FIG. 8. Curves of constant total potential for different choices of ξp at 3nsat . The black dashed line shows where the spin-orbit correction

vanishes. The coupling constant is GV = 40 GeV−2. Blue horizontal hatched and orange vertical hatched bands indicate where −3 < α < −1

and 2 < β < 4, respectively, with the correct sign for all phase shifts for α and β defined in Eq. (22).
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FIG. 9. 3P2 gap as a function of ξp for a few choices of GV , ξSO, and ξT at nB = 3nsat .

Figure 8 shows the contours of constant potential for sce-

nario C. As in scenario B, negative or zero ξp corresponds to

repulsion for most of the parameter space. However, unlike

scenario B, when ξT is of reasonable size, increasing ξSO

results in repulsion much more quickly. This is a result of the

term proportional to VT VSO. The contribution of the spin-orbit

terms can be easily summarized in terms of the constants of

this model:

V
(5SO)

3P2
= ξSO

(

ξT + 4ξSO

5
− 2ξp

)

G2
V


4

32mk5
F

945π2
(43 + 24 log 2).

(23)

In scenario A, ξT is negative and ξSO = ξp, so the term in

parentheses is always negative, and the spin-orbit correc-

tions give additional attraction. However, when we allow

the constants to vary and take ξT positive as is favored by

pion exchange and phase shift data, much of the favored

region of the phase diagram shows suppression due to these

corrections. The black dashed line in Fig. 8 shows where

ξT + 4ξSO/5 − 2ξp = 0. The spin-orbit corrections suppress

the potential above and to the right of this line, while the

potential is enhanced below and to the left.

Figure 9 shows the 3P2 gap at 3nsat as a function of ξp for

a few choices of ξSO and ξT . For negative ξp, even though

the bare interaction is more attractive, the induced interaction

strongly suppresses the gap. The contribution of positive ξT

suppresses the gap. For positive ξp, MeV-scale gaps are pos-

sible. These results are sensitive to the value of F0, as can be

inferred by comparing the upper and lower panels of Fig. 7.

For smaller F0, the relative importance of the induced interac-

tion is diminished, and for most of the parameter space, the

induced interaction suppresses an attractive bare interaction.

This still has a significant effect as the gap is exponentially

sensitive to the potential. In this case, for almost all the ex-

plored parameter space, the induced interaction suppresses the

gap by an order of magnitude or more.

IV. INDUCED P-WAVE PAIRING IN QUARK MATTER

The inner cores of neutron stars may be made up of de-

confined quark matter. Quarks are expected to form a color

superconductor at asymptotic densities, with the dominant

pairing being in the color antitriplet channel (antisymmet-

ric). See Ref. [35] for a review. Color symmetric pairing is

generally not considered since gluon exchange in the color

sextet (symmetric) is repulsive, while the antitriplet channel is

attractive. At asymptotic densities, pairing all three colors and

flavors (up, down, and strange) in color and flavor antisym-

metric pairs is expected (the CFL phase). At lower densities

where the strange quark mass cannot be neglected, up and

down quarks can pair in the color antisymmetric channel.

This pairing involves two colors, typically denoted as red and

green, and is called the 2SC phase. In this phase, the strange

quarks and blue-up and blue-down quarks are unpaired.

Pairing of quarks of the same flavor and color was con-

sidered in Ref. [36] in which possible pairing channels were

found for strange quarks in color symmetric and antisymmet-

ric channels for a bare interaction with the quantum numbers

of gluon exchange. The attractive color symmetric channel

they find is model dependent and, in the case of massive

quarks with all contributions from gluon exchange, receives

competition from repulsive terms with the same spin and

angular momentum quantum numbers but different chiral-

ity. Since they consider contact interactions without explicit

derivative couplings, they explore J = 0 and 1. Pairing of

quarks of the same flavor was also studied in Ref. [37]

in which attractive color antisymmetric channels with J =
1 were considered, finding the transverse color-spin locked

phase to be favored.

The possibility that quarks left over in the 2SC phase could

pair due to the KL mechanism in QCD was first studied in

Ref. [38]. This study investigated the KL effect in gauge

theories where fermions interact via long-range forces that are

dynamically screened due to Landau damping of the magnetic

gauge bosons. Here, the energy dependence of the interaction

plays a critical role, and the results of Ref. [38] indicate that a

gap arises via a mechanism analogous to the Kohn-Luttinger

effect but conclude that it is too small to be phenomenologi-

cally relevant.

To assess if the KL mechanism could be relevant in quark

matter with short-range interactions that are independent of

energy, we shall calculate the induced interaction in the 3P2
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channel between quarks of the same flavor and color due

to the short-range, flavor and color-independent, repulsive

vector interaction. Such pairing would include the strange

and the up and down blue quarks. In what follows, we shall

focus on the induced interaction between strange quarks of

the same color at moderate density when ms ≫ kFs The spe-

cific question we address here is if repulsive short-range

interactions introduced to stabilize quark matter inside neu-

tron stars [39] can lead to pairing gaps of phenomenological

relevance.

For concreteness, we consider a description of quark matter

within the purview of the Nambu-Jona-Lasino (NJL) models

(see Ref. [40] for a comprehensive review). In these models,

defined by the interaction Lagrangian [39–41]

LV = G(q̄q)2 + H (q̄q̄)(qq) − gV (q̄γμq)2, (24)

where G and H are the four-fermion scalar quark-antiquark

and diquark coupling strengths, and vector coupling gV is

introduced to generate higher pressures as noted earlier. The

scalar interaction between quarks and antiquarks leads to a

nontrivial vacuum with 〈q̄q〉 
= 0 that spontaneously breaks

chiral symmetry and the coefficient G is determined by hadron

masses and the pion decay constant in the vacuum. For typi-

cal momentum cutoff 
NJL ≈ 600 MeV, G
2
NJL ≃ 2 [40]. At

densities of interest to neutron stars, chiral symmetry remains

broken. The constituent strange quark mass is expected to be

300–500 MeV, while the up and down quark masses can be

significantly smaller. The diquark coupling H and the vector

coupling gV are expected to be of similar size because they can

be thought of as arising from the same underlying high-energy

color current-current interactions in QCD [41]. Their values

at the densities of interest to neutron stars are determined phe-

nomenologically. The diquark coupling H , which encodes the

attraction in the color antisymmetric channel, leads to s-wave

pairing between quarks. For H ≃ G, the s-wave pairing gap

between up and down quarks is about 50 MeV and is typically

inadequate to induce pairing between strange quarks and light

quarks [42], as mentioned above. The analysis of the quark

matter EOS in Refs. [39,43] concluded that vector coupling

needed to be of moderate size with gV ≃ G to support the

large sound speed needed to support a two solar mass neutron

star.

First, we note that the contribution to the induced inter-

action from the closed fermion loop (the first diagram in

Fig. 1) is enhanced by a factor N f Nc. This is because the bare

vector interaction introduced to stiffen the quark matter EOS

is independent of color and flavor. Thus, in contrast to the one-

component Fermi system, where the contribution from the

closed fermion loop was canceled by the diagram that encoded

the vertex corrections, in quark matter with N f = Nc = 3, the

first diagram in Fig. 1 makes the dominant contribution to

the induced potential. In computing this diagram, the up and

down quarks must be treated as relativistic particles, leading

to a somewhat more complicated expression. After doing the

Matsubara sum and noting that ū3/qu1 = ū4/qu2 for u1 and

u2 incoming and ū3 and ū4 outgoing spinors, the induced

potential from the first diagram is given by:

V ind = g2
V (ū3γμu1)(ū4γνu2)

(

Ek + ms

2ms

)2

×
∑

f ,c

∫

ℓdℓd�ℓ

4π3qEℓ

�(k f c − ℓ)

cqℓ − q/2ℓ
(2ℓμℓν − gμν �ℓ · �q).

(25)

The calculation of the induced interaction, including both

the electric (ūγ iu for i = 0) and magnetic [ūγ iu for i =
(1, 2, 3)] components is unwieldy. In what follows, we shall

focus on the electric component as the magnetic component

is suppressed by the strange quark mass. In this case, setting

μ = ν = 0 in Eq. (25) we find that

V ind = g2
V δ13δ24

2π2q

∑

c

∫

dℓdcqℓ

cqℓ − q/2ℓ

×
[

∑

f =u,d

(2ℓ2 − ℓqcqℓ)�(k f c − ℓ)

+ 2ℓms�(ksc − ℓ)

]

. (26)

After performing the momentum integrals, we find that

V ind = g2
V δ13δ24

∑

c

⎧

⎨

⎩

∑

f =u,d

[

−
k2

f c

2π2
+ q2

2
U rel

0

(

q

k f c

)

−2k2
f cU

rel
2

(

q

k f c

)

]

− 2U (q)

⎫

⎬

⎭

, (27)

where the relativistic Lindhard functions U rel
0 and U rel

2 defined

in Appendix B.

Note that by not including the magnetic part of the vec-

tor integration [ūγ iu for i = (1, 2, 3)], explicit dependence

on J has been removed, and all the p-waves have the same

potential. Nonetheless, the 3P2 gap remains of primary in-

terest because the bare interaction vanishes for J = 2, while

it is repulsive for J = 0, 1. Figure 10 shows the induced

p-wave potential for strange quarks of mass 350 MeV, for

gV = 2/
2
NJL and 
NJL = 600 MeV. Densities of each color

and flavor are determined assuming 2SC pairing of up and

down quarks, charge neutrality, and beta equilibrium. Since

the pairing gap 	 ≃ μ exp (2/Vind(kF )N (0)), from Fig. 10

we can deduce that the induced potential is too small to be

relevant for neutron star phenomenology. This is mostly due to

the fact that the value of gV needed in NJL models to support

massive neutron stars is significantly smaller than the coupling

we considered for nucleons.

V. IMPLICATIONS FOR NEUTRON STARS

The thermal evolution of neutron stars, especially those

that are reheated by accretion from a companion at late times,

is sensitive to heat capacity and neutrino emissivity in their

cores [44–46]. The neutrino emissivity and the specific heat

of dense matter are both strongly modified by Cooper pairing.
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FIG. 10. Induced p-wave potential between strange quarks for

gV = 2/
2
NJL, 
NJL = 600 MeV, and ms = 350 MeV.

When the pairing gap is large compared to the temperature,

the neutrino emissivity and the specific heat are exponentially

suppressed by the factor exp (−	/kBT ). Additionally, in the

vicinity of the critical temperature, Cooper pair breaking and

formation (PBF) processes enhance the neutrino emissivity.

This enhancement is especially important for neutron Cooper

pairing in the 3P2 channel in the core of the neutron star

[45,46]. Studies of isolated neutron star cooling reported in

Ref. [45] that include the modified URCA (nn → npe−ν̄e and

e− pn → nnνe) reactions and the PBF process but discount the

possibility of other more rapid neutrino emission processes

such as direct URCA [47] find that a critical temperature

for 3P2 pairing, Tc ≈ 	3P2
/1.7, that is larger than 5 × 108 K

(≈50 keV) throughout the inner core would be disfavored

by observations. This favors a scenario in which the 	3P2
is

suppressed at the modest density encountered in the outer core

due to the competition between the interactions induced by the

central and spin-orbit components of the nuclear forces [23]

but is insensitive to the behavior of the gap at higher density.

Accreting neutron stars exhibit a diversity of cooling be-

haviors, and a few neutron stars show behavior that requires

rapid neutrino cooling [44,48]. Such rapid neutrino cooling

can be realized in the dense nuclear matter when the pro-

ton fraction in the core exceeds about 11% to lift kinematic

restrictions on the direct URCA reactions e− + p → n + νe

and n → e− + p + ν̄e [47]. In addition, rapid cooling would

also require 3P2 pairing to be absent at high density. Our

finding that the induced interaction disfavors 3P2 when the

spin-orbit and tensor forces are strong and attractive provides

some insight into the conditions necessary to realize unpaired

neutron matter at high density characterized by a high sound

speed. On the other hand, if the central component of the

p-wave interaction is strongly repulsive and the noncentral

components are weak, then the induced interaction favors 3P2

pairing between neutrons, and rapid neutrino cooling cannot

be realized in nuclear matter at high density. In this scenario,

rapid cooling in neutron stars would require new ungapped

fermionic excitations, such as hyperons or quarks, to enable

the direct URCA reaction. In transiently accreting neutron

FIG. 11. Contours for 	3P2
= 10 keV for GV = 40 GeV−2 at

3nsat for a few choices of ξp. Below and to the right of the contour,

the gap is larger than 10 keV.

stars, inference of the heat deposition due to deep crustal

heating from observations of accretion outbursts and the in-

ference of the core temperature from subsequent observation

in quiescence have been used to derive a lower limit to the

neutron star core heat capacity [48,49]. Further, if the neutron

stars cooling can be observed during quiescence, an upper

limit on the core heat capacity can also be deduced from

observations [48,49]. For neutron stars in the low mass x-ray

binaries KS 1731-260, MXB 1659-29, and XTE J1701-462,

with core temperatures in the range 107–108 K, the lower limit

was found to be a factor of a few below the core heat capac-

ity expected if neutrons and protons in the core are paired.

However, upper limits from future cooling observations in

these systems could constrain the extent of neutron pairing

in the neutron star core. For example, the analysis in Ref. [48]

suggests that if the neutron star in MXB 1659-29 cools by

about 4% during a 10-year period, a very large fraction of

the neutrons in the neutron star core must be superfluid with

a gap that is much larger than a few keV. If observed, it

would disfavor a large attractive tensor interaction and would

require an attractive spin-orbit interaction as shown in Fig. 11.

Repulsive bare p-wave interactions permit larger regions of

parameter space, while attractive bare p-wave interactions are

more restrictive.

VI. CONCLUSION

We have calculated the induced potential between fermions

at the Fermi surface to study the role of polarization effects in

the dense medium. We find that short-range repulsive interac-

tions due to the exchange of heavy vector mesons between

neutrons, whose strength is related to the Fermi liquid pa-

rameter F0 and the sound speed at high density, induce an

attractive p-wave potential. Using a model that allows us

to independently vary the strength of central and noncentral

p-wave interactions, we have investigated the competition

between the bare and induced interactions to determine the

conditions necessary to realize 3P2 pairing in neutron matter at
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high density. When neutron matter is characterized by a large

speed of sound c2
s > 1/3 and F0 � 2, the induced interaction

plays an important role. We find that

(i) The contribution to the induced interaction in a par-

ticular partial wave arising from terms in the bare

interaction that do not contribute to that partial wave

are suppressed because their contribution is strongly

influenced by the KL singularity at q = 2kF . For this

reason, the bare p-wave and the spin-orbit interactions

are generally more important than lower-order terms

for the induced 3P2 potential.

(ii) The induced interaction favors 3P2 pairing if the cen-

tral component of the s-wave and p-wave interaction

are strongly repulsive and the noncentral components

are small. The resulting gap, 	3P2
, can be in the range

0.1–10 MeV in the neutron star core and is exponen-

tially sensitive to the induced potential.

(iii) When the central p-wave and the spin-orbit inter-

action are both strong and attractive, the induced

interaction is repulsive. Although the bare interaction

is strongly attractive, the induced repulsion can pre-

clude pairing or suppress 	3P2
by orders of magnitude.

(iv) In the presence of a strongly attractive spin-orbit inter-

action, the induced interaction favors 3P2 pairing when

the central p wave is repulsive. Pairing persists even

when the strength of the central p-wave repulsion is

greater than the attractive spin-orbit interaction.

An important caveat to these findings is our assumption

that the bare interaction at the Fermi surface is well repre-

sented by Eq. (8). Further, at the high momenta of relevance

when nB > 2nsat, the nucleon-nucleon potential, and thereby

the parameters of our model, are not well constrained by scat-

tering data. Nonetheless, results obtained within the purview

of the model allowed us to explore the connection between

pairing and the strong repulsive central interactions needed to

generate a high sound speed and large F0 at densities expected

in the cores of massive neutron stars. Our calculation, which

includes the effect due to strong spin-orbit forces, provides

useful formulas to gauge the interplay between repulsive cen-

tral interaction and attractive spin-orbit interactions. However,

further study of the role of strong tensor interactions warrants

further study.

Another aspect that warrants mention is the role of many-

body forces. Although we have not explicitly accounted for

them in our study here, earlier work has demonstrated that

three-body forces can be incorporated through a density-

dependent two-body potential that can then be constructed

by normal ordering the three-body force with respect to

a convenient reference state, such as the ground state of

the noninteracting many-body system [9,50]. Including the

three-body force would thereby introduce a density depen-

dence to the parameters of our model that set the strength

of the two-body s-wave and p-wave interactions in dense

matter. We believe the large range of parameter values we

explored should be sufficient to account for corrections due

to many-body forces partially. The density dependence of

the two-nucleon partial-wave matrix elements at the Fermi

surface and the correlation between the parameters induced

by the three-body forces will be explored in future work.

Finally, as cautioned earlier, the magnitude of the 3P2 gap

was calculated using the BCS approximation, which restricted

the interaction to the Fermi surface. More work is needed to

assess the reliability of this approximation.
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APPENDIX A: INDUCED INTERACTIONS

In this Appendix, we derive analytic results for the induced interaction in two steps. First, for the sake of simplicity and

clarity, we assume that the bare potential only contains a momentum-independent s-wave interaction characterized by the C0 and

C̃0, and spin-orbit force with strength VSO. In this case, the ZS diagram involves the product VL × VR, where

VL = C0(δ13δab − δ1bδa3) + C̃0(σ13 · σab − σ1b · σa3) − VSO2iq × (ℓ + k′) · (σ13δab + σabδ13)

VR = C0(δ24δba − δ2aδb4) + C̃0(σ24 · σba − σ2a · σb4) + VSO2iq × (ℓ − k) · (σ24δba + σbaδ24) . (A1)

Evaluating term by term, we find that the C2
0 contribution is given by

C2
0

∑

ab={↑,↓}
(δ13δab − δ1bδa3)(δ24δba − δ2aδb4) = C2

0 δ14δ23. (A2)
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To calculate the C̃2
0 contribution, we use the following identities:

∑

ab={↑,↓}
σ i

abσ
j

ba
= 2δi j

∑

b={↑,↓}
σ

j

bc
σ i

ab = χ
†
b
σ jσ iχa = δabδ

i j − iεi jkσ k
ab

∑

bc={↑,↓}

3
∑

i=1

σ i
cdσ

j

bc
σ i

ab =
3

∑

i=1

χ
†
d
σ i(2δi j − σ iσ j )χa = −σ

j

ad
(A3)

to find that

C̃2
0

∑

ab={↑,↓}
(σ13 · σab − σ1b · σa3)(σ24 · σba − σ2a · σb4) = C̃2

0 (4σ13 · σ24 + 3δ14δ23 + 2σ14 · σ23). (A4)

The C0C̃0 contribution is calculated by noting that
∑

ab δabσba = Tr[σ ] = 0 and
∑

b σbc · σab = 3δac. Explicitly,

C0C̃0

∑

ab={↑,↓}
[(δ13δab − δ1bδa3)(σ24 · σba − σ2a · σb4) + (σ13 · σab − σ1b · σa3)(δ24δba − δ2aδb4)]

= C0C̃0[−2(3δ13δ24 + σ13 · σ24) + 2σ14 · σ23]. (A5)

We have calculated the leading-order contributions from the spin-orbit interaction, proportional to C0 VSO and C̃0 VSO and find

that their contributions vanish. First, consider the C0 VSO term

C0VSO

∑

ab={↑,↓}
[(δ13δab − δ1bδa3)2iq × (ℓ − k) · (σ24δba + σbaδ24) + (δ24δba − δ2aδb4)2iq × (−ℓ − k′) · (σ13δab + σabδ13)]

= 2iC0VSO[q × (ℓ − k) · (2δ13σ24 − σ24δ13 − σ13δ24) + q × (−ℓ − k′) · (2δ24σ13 − σ13δ24 − σ24δ13)] . (A6)

Equation (A6) can be simplified further by noting that terms proportional to q × ℓ vanish upon integrating over the angle θqℓ and

using the fact that q × k = q × k′ = −q × q′/2. We find the induced interaction proportional to C0 VSO,

iC0VSO[q × q′ · (2δ13σ24 − σ24δ13 − σ13δ24 + 2δ24σ13 − σ13δ24 − σ24δ13)] = 0. (A7)

To see that q × ℓ terms vanish, notice that the only angular dependence from the loop integral is on the angle between q

and ℓ. Consider the integral
∫

d�ℓℓ̂ · û f (ℓ̂ · q̂) where f (ℓ̂ · q̂) contains the angular dependence of the loop integral and ℓ̂ · û

corresponds to terms like q × ℓ · σ . Rotate �ℓ so that q̂ = ẑ and φℓ = 0 corresponds to the azimuthal angle of û calling these

angles θqℓ and φuℓ. Also define the polar angle of û as θuq Now ℓ̂ · û = sin θqℓ cos φuℓ sin θuq + cos θqℓ cos θuq. Doing the integral
∫

dφuℓ cos φuℓ = 0 so the only term that survives is proportional to cos θuq. In the spin-orbit terms, ℓ always enters as q × ℓ · σ =
ℓ · (σ × q) with σ × q orthogonal to q, so this contribution always vanishes.

Similarly, the contribution proportional to C̃0VSO can also be simplified by making the substitutions 2iq × (ℓ − k) → iq × q′

and 2iq × (−ℓ − k′) → iq × q′ and using the identities in Eq. (A3). We find that

C̃0VSO

∑

ab={↑,↓}
[(σ13 · σab − σ1b · σa3)iq × q′ · (σ24δba + σbaδ24) + (σ24 · σba − σ2a · σb4)iq × q′ · (σ13δab + σabδ13)]

= C̃0VSO iq × q′ · (2σ13δ24 − 3σ24δ13 + σ13δ24 + 2σ24δ13 − 3σ13δ24 + σ24δ13)

= 0. (A8)

Thus, spin-orbit terms do not contribute to the induced interaction at leading order in VSO. Up to this order, including all of the

nonzero terms associated with the product VL × VR and performing the particle-hole loop integration, we find that the induced

interaction due to the ZS diagram is given by

V ind
ZS = −U (q)

[(

C2
0 + 3C̃2

0

)

δ14δ23 − 6C0C̃0δ13δ24

]

− U (q)
[(

4C̃2
0 − 2C0C̃0

)

σ13 · σ24 +
(

2C̃2
0 + 2C0C̃0

)

σ14 · σ23

]

, (A9)
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where

U (q) = − 1

β

∑

ℓ0

∫

d3ℓ

(2π )3

1

ℓ0 − ℓ2/2m

1

ℓ0 − (ℓ + q)2/2m

= − m

2π2q

∫ kF

0

ℓdℓ

∫ 1

−1

d cos θqℓ

cos θqℓ − q/2ℓ

= − mk2
F

2π2q

[

− q

2kF

+ 1

2

(

1 − q2

4k2
F

)

log

∣

∣

∣

∣

1 − q/2kF

1 + q/2kF

∣

∣

∣

∣

]

(A10)

is the positive Lindhard function.

The contribution from the ZS′ diagram is obtained by switching indices 3 and 4 and by replacing q by q′ in the loop integral.

Explicitly,

V ind
ZS′ = −U (q′)

[(

C2
0 + 3C̃2

0

)

δ13δ24 − 6C0C̃0δ14δ23

]

− U (q′)
[(

4C̃2
0 − 2C0C̃0

)

σ14 · σ23 +
(

2C̃2
0 + 2C0C̃0

)

σ13 · σ24

]

. (A11)

The calculation of the momentum-dependent part of the induced potential is similar but a bit more tedious and the analytic

results involves a large number of terms. To obtain useful formula with fewer terms we present results for the spin singlet and

spin-triplet contributions. These will require the second and fourth moments of the Lindhard function denoted U2 and U4. U2 is

defined as follows:

U2(q) = − m

2π2q

∫ kF

0

ℓ3dℓ

∫ 1

−1

d cos θqℓ

cos θqℓ − q/2ℓ

= − mk4
F

2π2q

[

− q

12kF

− q3

16k3
F

+ 1

4

(

1 − q4

16k4
F

)

log

∣

∣

∣

∣

1 − q/2kF

1 + q/2kF

∣

∣

∣

∣

]

. (A12)

U4 is defined analagously and is given by:

U4(q) = − mk6
F

2π2q

[

− q

30kF

− q3

72k3
F

− q5

96k5
F

+ 1

6

(

1 − q6

64k6
F

)

log

∣

∣

∣

∣

1 − q/2kF

1 + q/2kF

∣

∣

∣

∣

]

. (A13)

Five momentum structures appear corresponding to the five pairings of the combinations of constants given above. The

momentum-dependent parts of VL and VR take the following form for the spin-independent terms. The spin-dependent terms

are analagous,

VL ⊃ C2(| − ℓ − k′|2 + q2)(δ13δab − δ1bδa3) + C′
2(| − ℓ − k′|2 − q2)(δ13δab + δ1bδa3)

VR ⊃ C2(|ℓ − k|2 + q2)(δ24δba − δ2aδb4) + C′
2(|ℓ − k|2 − q2)(δ24δba + δ2aδb4). (A14)

The contributions of the momentum dependence to the induced potential are as follows:

ξa(q) = 1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[2q2 + | − ℓ − k′|2 + |ℓ − k|2]

ξb(q) = 1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[−2q2 + | − ℓ − k′|2 + |ℓ − k|2]

ξc(q) = 1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[| − ℓ − k′|2 + q2][|ℓ − k|2 + q2]

ξd (q) = 1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[| − ℓ − k′|2 − q2][|ℓ − k|2 − q2]

ξe(q) = 1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[(| − ℓ − k′|2 − q2)(|ℓ − k|2 + q2) + (|ℓ − k′|2 + q2)(|ℓ − k|2 − q2)] (A15)
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	(ℓ) = (ℓ0 − ℓ2/2m)−1 is the fermion propagator. After doing the loop integral, these give:

ξa(q) = −2mk3
F

3π2
−

(

q2 + 2k2
F

)

U (q) − 2U2(q)

ξb(q) = −2mk3
F

3π2
+

(

3q2 − 2k2
F

)

U (q) − 2U2(q)

ξc(q) = −mk3
F

π2

(

11

15
k2

F + 7

12
q2

)

−
(

k4
F + 3

2
q2k2

F + q4

8

)

U (q) − 3

2
q2U2(q) − U4(q)

ξd (q) = −mk3
F

π2

(

11

15
k2

F − 3

4
q2

)

−
(

k4
F − 5

2
q2k2

F + 17

8
q4

)

U (q) + 5

2
q2U2(q) − U4(q)

ξe(q) = −mk3
F

π2

(

22

15
k2

F − q2

6

)

−
(

2k4
F − q2k2

F − 7

4
q4

)

+ q2U2(q) − 2U4(q).

(A16)

The total central induced potential in the spin triplet channel:

V ind
S=1 = −C̄2

0 [U (q) − U (q′)] + C̄0C̄2[ξa(q) − ξa(q′)] + C̄0C̄
′
2[ξb(q) − ξb(q′)]

+ C̄2
2 [ξc(q) − ξc(q′)] + 5C̄′2

2 [ξd (q) − ξd (q′)] + C̄2C̄
′
2[ξe(q) − ξe(q′)]. (A17)

The total central induced potential in the spin singlet channel:

V ind
S=0 = C̄2

0 [U (q) + U (q′)] − C̄0C̄2[ξa(q) + ξa(q′)] + 3C̄0C̄
′
2[ξb(q) + ξb(q′)]

− C̄2
2 [ξc(q) + ξc(q′)] + 3

(

C̄′2
2 [ξd (q) + ξd (q′)] + C̄2C̄

′
2[ξe(q) + ξe(q′)]

)

. (A18)

This gives s- and p-wave central potentials:

1S0 : C̄2
0

mkF

3π2
(1 + 2 log 2) + mk3

F

[

C̄0C̄2

2

3π2
(5 + 4 log 2) + C̄0C̄

′
2

2

5π2
(7 − 4 log 2)

]

+ mk5
F

[

C̄2
2

8

315π2
(277 + 96 log 2)

− C̄′2
2

8

105π2
(43 + 24 log 2) + C̄2C̄

′
2

32

105π2
(37 + 6 log 2)

]

(A19)

3PJ : C̄2
0

mkF

5π2
(1 − 2 log 2) + mk3

F

[

C̄0C̄2

2

105π2
(59 − 68 log 2) − C̄0C̄

′
2

2

105π2
(29 + 52 log 2)

]

+ mk5
F

[

C̄2
2

16

567π2
(83 − 24 log 2)

+ C̄′2
2

64

567π2
(34 − 3 log 2) − C̄2C̄

′
2

16

2835π2
(523 + 204 log 2)

]

. (A20)

The spin-orbit potential gives an additional contribution to the p waves:

2C̄′
2VSO

1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[(| − ℓ − k′|2 − q2)iq × (ℓ − k) · (3δ13σ24 + δ24σ13)

+ (|ℓ − k|2 − q2)iq × (−ℓ − k′) · (3δ24σ13 + δ13σ24)]

= C̄′
2VSOiq × q′ · (σ13δ24 + σ24δ13)ξ f (q). (A21)

The function ξ f (q) is given by:

ξ f (q) = −2mk3
F

3π2
+ (5q2 − 4k2

F )U (q). (A22)

This gives a contribution to the p waves after including the ZS′ diagram:

3PJ : [J (J + 1) − 4]C̄′
2VSO

32mk5
F

945π2
(43 + 24 log 2). (A23)

We calculate the contribution of the tensor interaction only to O(mk3
F ). The term proportional to C0VT gives:

C0VT

1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q)[−δ13δ24(| − ℓ − k′|2 + |ℓ − k|2) − 2q · σ13q · σ24

+ (−ℓ − k′) · σ23(−ℓ − k′) · σ14 + (ℓ − k) · σ23(ℓ − k) · σ14]. (A24)
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Doing the calculation for the C̃0VT term gives −3 times the result for the term proportional to C0VT after reducing to spin singlet

or triplet. The potentials in these channels after including the ZS′ diagram are given by:

V ind
S=0 = −C̄0VT (2q2U (q) + 2q′2U (q′)), (A25)

V ind
S=1 = C̄0VT

[

mk3
F

6π2
(−q̂ · σ13q̂ · σ24 + q̂′ · σ13q̂′ · σ24) + U (q)

(

3

4
q · σ13q · σ24 − 1

2
q′ · σ13q′ · σ24 + q2

4

)

−U (q′)

(

3

4
q′ · σ13q′ · σ24 − 1

2
q · σ13q · σ24 + q′2

4

)

+ U2(q)(1 + q̂ · σ13q̂ · σ24) − U2(q′)(1 + q̂′ · σ13q̂′ · σ24)

]

,

(A26)

where we define the unit vector q̂ = �q/|q|. For the spin triplet, outgoing spin indices are exchanged on some terms to simplify

the equations. Doing the integrals gives:

1S0 : −C̄0VT

16mk3
F

15π2
(2 + log 2)

3P2 : −C̄0VT

4mk3
F

15π2
(1 − log 2)

3P1 : −C̄0VT

4mk3
F

21π2
(4 + 5 log 2)

3P0 : C̄0VT

2mk3
F

21π2
(5 + 22 log 2).

(A27)

The part of the interaction proportional to V 2
SO takes the form:

− 8V 2
SO

1

β

∑

ℓ0

∫

d3ℓ

(2π )3
	(ℓ)	(ℓ + q){[q × (−ℓ − k′) · σ13][q × (ℓ − k) · σ24] + δ13δ24[q × (−ℓ − k′)] · [q × (ℓ − k)]}

= −2mk3
F

3π2
[q2(σ13 · σ24 + 2δ13δ24) − (q · σ13)(q · σ24)] + U (q)[q4σ13 · σ24

− q2(q · σ13)(q · σ24) + 2(q × q′ · σ13)(q × q′ · σ24) + 8δ24δ24q2k2
F ]

− U2(q)[4q2σ13 · σ24 − 4(q · σ13)(q · σ24) + 8δ13δ24q2]. (A28)

A tedious calculation gives the following contribution:

1S0 : V 2
SO

8mk5
F

35π2
(17 + 16 log 2)

3P2 : V 2
SO

128mk5
F

4725π2
(43 + 24 log 2)

3P1 : 0

3P0 : V 2
SO

64mk5
F

945π2
(43 + 24 log 2).

(A29)

APPENDIX B: INDUCED INTERACTION BETWEEN QUARKS

Treating quarks relativistically, the screening diagram is given by

V ind = g2
V (ū3γμu1)(ū4γνu2)

(

Ek + ms

2ms

)2
∑

f ,c

1

β

∑

ℓ0

∫

d3ℓ

(2π )3

Tr[γ μ(/ℓ + /q + m f )γ ν (/ℓ + m f )]
(

ℓ2
0 − ℓ2 − m2

f

)(

ℓ2
0 − (ℓ + q)2 − m2

f

) , (B1)

where f = u, d, s and c = r, g, b denotes the flavor and color of quarks that appear in the particle-hole loop. Since the screening

diagram is enhanced by the number of flavors and colors and the other diagrams are not, we calculate only this part of the

potential. We neglect antiparticle contributions by discarding the Matsubara sums that produce terms proportional to (exp[β(E +
μ)] + 1)−1, which are negligible at small temperatures. Doing the trace and noticing that ū3/qu1 = ū4/qu2 = 0, Eq. (B1) can be
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written as

V ind = g2
V (ū3γμu1)(ū4γνu2)

(

Ek + ms

2ms

)2
∑

f ,c

∫

ℓdℓd�ℓ

4π3qEℓ

�(k f c − ℓ)

cos θqℓ − q/2ℓ
(2ℓμℓν − gμν �ℓ · �q) (B2)

k f c is the Fermi momentum of flavor f and color c with the normal subscript F suppressed for readability. Since the Fermi

momentum of strange quarks is approximately the same for all colors, also suppress the color label on ks. Expanding to zeroth

order in ks/ms, only the μ = ν = 0 components contribute and we get:

V ind = g2
V δ13δ24

1

2π2q

∑

f ,c

∫

ℓdℓ
√

ℓ2 + m2
f

dcqℓ

cos θqℓ − q/2ℓ
�(k f c − ℓ)(2ℓ2 + 2m2

f − 2ℓq cos θqℓ). (B3)

Setting mu = md = 0 and discarding components from the strange quark that are not proportional to ms gives:

V ind = g2
V δ13δ24

∑

c

⎧

⎨

⎩

∑

f =u,d

[

−
k2

f c

2π2
+ q2

2
U rel

0

(

q

k f c

)

− 2k2
f cU

rel
2

(

q

k f c

)

]

− 2U (q)

⎫

⎬

⎭

, (B4)

where the mass in the Lindhard function U (q) is the strange quark mass and we define relativistic dimensionless Lindhard

functions in analogy with the relativistic ones (defining q̃ = q/k f c to be distinguished from q̄ = q/ks):

U rel
0 (q̃ = q/k f c ) = − 1

2π2q̃

∫

d ℓ̄ log

∣

∣

∣

∣

1 − q̃/2ℓ̄

1 + q̃/2ℓ̄

∣

∣

∣

∣

= 1

2π2q̃

[

log

∣

∣

∣

∣

1 + 2

q̃

∣

∣

∣

∣

−
(

1 − q̃

2

)

log

∣

∣

∣

∣

1 − q̃/2

1 + q̃/2

∣

∣

∣

∣

]

U rel
2 (q̃) = − 1

2π2q̃

∫

ℓ̄2d ℓ̄ log

∣

∣

∣

∣

1 − q̃/2ℓ̄

1 + q̃/2ℓ̄

∣

∣

∣

∣

= 1

6π2q̃

[

q̃

2
+ q̃3

4
log

∣

∣

∣

∣

1 + 2

q̃

∣

∣

∣

∣

−
(

1 − q̃3

8

)

log

∣

∣

∣

∣

1 − q̃/2

1 + q̃/2

∣

∣

∣

∣

]

. (B5)

Analytical expressions for s- and p-wave potentials can easily be found with Mathematica or equivalent, but are long and

unenlightening so we do not reproduce them here.
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