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ABSTRACT

The location of the West African craton (WAC) has been poorly constrained in the
Paleoproterozoic-Mesoproterozoic supercontinent Nuna (also known as Columbia). Pre-
vious Nuna reconstruction models suggested that the WAC was connected to Amazonia in
a way similar to their relative position in Gondwana. By an integrated paleomagnetic and
geochronological study of the Proterozoic mafic dikes in the Anti-Atlas Belt, Morocco, we
provide two reliable paleomagnetic poles to test this connection. Incorporating our new poles
with quality-filtered poles from the neighboring cratons of the WAC, we propose an inverted
WAC-Amazonia connection, with the northern WAC attached to northeastern Amazonia, as
well as a refined configuration of Nuna. Global large igneous province records also conform
to our new reconstruction. The inverted WAC-Amazonia connection suggests a substantial
change in their relative orientation from Nuna to Gondwana, providing an additional example
of large-magnitude cumulative azimuthal rotations between adjacent continental blocks over

supercontinental cycles.

INTRODUCTION

The assembly and dispersal of the Paleo-
proterozoic—Mesoproterozoic supercontinent
Nuna (also known as Columbia) are possibly
the earliest manifestations of Earth’s supercon-
tinent cycle, which has profoundly influenced
Earth’s geosphere, biosphere, and atmosphere
(Nance et al., 2014). In the past two decades,
numerous attempts have been made to recon-
struct Nuna, mainly tectono-stratigraphically
and paleomagnetically (Evans, 2013). Though
still debated, the broad configuration of Nuna
is gradually becoming clearer: composed of a
central kernel of Laurentia and Baltica (Gower
et al., 1990; Evans and Pisarevsky, 2008), Si-
beria either closely or more distally adjacent to
northern Laurentia (Evans and Mitchell, 2011;
Pisarevsky et al., 2014; Ernst et al., 2016), and
proto-Australia near western Laurentia (Payne
etal., 2009; Kirscher et al., 2021). However, the
positions of the remaining building blocks have
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great uncertainties, which make the configura-
tion of Nuna and its transition to the successor
supercontinent Rodinia unclear.

The West African craton (WAC, including
the Sdo Luis block in Brazil) is one of the least-
constrained cratonic pieces of Nuna. Previous
Nuna models usually considered an “upright”
connection between the WAC and Amazonia,
with the southern WAC attached to northeast-
ern Amazonia, similar to their relationship in
Gondwana (Onstott and Hargraves, 1981; No-
made et al., 2003; D’ Agrella-Filho et al., 2016).
This upright connection was presumed to be
long-lived, with little change from the Paleo-
proterozoic to Jurassic (Onstott and Hargraves,
1981). With this upright connection model be-
ing accepted, as well as the lack of reliable
pre-Ediacaran paleomagnetic data, the WAC is
essentially a “puppet” of Amazonia, where its
paleogeography in Nuna is entirely determined
by data from Amazonia. For example, Johansson
(2009) and Zhang et al. (2012) placed Baltica,
Amazonia, and the WAC in juxtaposition to each

other along the northeastern margin of Lauren-
tia, known as the “SAMBA” model. Pisarevsky
etal. (2014) placed the WAC and Amazonia off
the Grenville margin of Laurentia, where the two
cratons are separated from Nuna by oceans and
subduction zones, yet the upright WAC-Amazo-
nia relationship is maintained. Due to the large
gap in pre-Ediacaran paleomagnetic data from
the WAC, both the upright connection between
the WAC and Amazonia and the position of the
WAC in Nuna await further tests.

We present an integrated paleomagnetic and
geochronological study of two Proterozoic mat-
ic dike swarms in the Anti-Atlas Belt, Morocco
(Fig. 1), which provides direct constraints on the
paleogeography of the WAC. Combined with
time-correlative, quality-filtered paleomagnetic
poles, and the global large igneous province (LIP)
records from other major bounding cratons, we
propose a new connection between the WAC and
Amazonia, and a refined configuration of Nuna.

MAFIC DIKE SWARMS IN THE
ANTI-ATLAS BELT

The Anti-Atlas Belt is an 800-km-long,
northeast-southwest—trending anticlinorium
that marks the northernmost boundary of the
WAC (Fig. 1). Paleoproterozoic basement is ex-
posed in ~10 inliers that have been enveloped
by sedimentary cover since the latest Ediacaran
(Maloof et al., 2005). Numerous mafic dikes
crosscut the basement, retaining near vertical-
ity in all directions. These dikes, if precisely
dated, are ideal targets for paleomagnetic stud-
ies to test various reconstruction models. Recent
geochronological work has proposed at least five
swarms in the Anti-Atlas Belt, specifically: the
east-west—striking 2.04 Ga swarm, the north-
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Figure 1. (A) Geological map of basement rocks in the West African craton. KKI—Kédougou-Kéniéba and Kayes inliers. Dashed line delineates
cratonic boundary. (B) Geological overview of mafic dike swarms in the Anti-Atlas Belt, Morocco. Boxes indicate the studied inliers.

west-southeast—striking 1.75 Ga swarm, the
northeast-southwest—striking 1.65 Ga swarm,
the northeast-southwest—striking 1.4-1.36 Ga
swarm, and the NNE-SSW-striking 885 Ma
swarm (Fig. 1; Walsh et al., 2002; El Bahat
et al., 2013; Kouyaté et al., 2013; Soderlund
etal., 2013; Youbi et al., 2013). The dikes show
consistent ages and strikes across the Anti-Atlas
inliers (Fig. 1). Contemporaneous dikes have
also been recognized in the Man-Leo Shield
in the southern WAC, such as the northeast-
southwest—striking 1.76 Ga Kédougou swarm
and the north-south—striking 867 Ma Manso
swarm (Baratoux et al., 2019), which demon-
strate the structural integrity of the WAC on a
cratonic scale (Gong and Evans, 2021).

NEW PROTEROZOIC
PALEOMAGNETIC POLES

We collected samples from nine dikes of the
east-west—striking 2.04 Ga swarm from two re-
gions: the Zenaga and Tagragra de Tata inliers
(Figs. 2A and 2B). Field and laboratory meth-
ods are provided in the Supplemental Material'.

!Supplemental Material. Detailed geochronologi-
cal, paleomagnetic, and rock magnetic results. Please
visit https://doi.org/10.1130/GEOL.S.14699598
to access the supplemental material, and contact
editing @ geosociety.org with any questions.
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Two dikes have been precisely dated: one in the
Zenaga inlier (dike G18M48) at 2040 £+ 2 Ma
(isotope dilution—thermal ionization mass spec-
trometry [ID-TIMS] baddeleyite age; Kouyaté
et al., 2013), and one in the Tagragra de Tata
inlier (dike G19M33) at 2040 -+ 6 Ma (sensi-
tive high-resolution ion microprobe [SHRIMP]
zircon age; Walsh et al., 2002). Stable charac-
teristic remanent magnetizations (ChRMs) are
isolated typically from 535 °C to 580 °C, con-
sistently showing northwest-up and southeast-
down directions (Fig. 2D). Although lacking
explicit field tests on the age of magnetization,
the reliability of these ChRMs is supported
by demagnetization results, antipodal direc-
tions, and rock magnetic experiments (see the
Supplemental Material). Combining the virtual
geomagnetic poles (VGPs) calculated from the
nine site-mean directions yielded a 2.04 Ga pole
at —22.3°N, 49.6°E (Ays = 7.1°, K = 53.3) for
the WAC.

In the Tagragra d’ Akka inlier, nine subpar-
allel northeast-southwest—striking dikes were
sampled (Fig. 2C). Results of the ID-TIMS bad-
deleyite geochronology on one dike (G18MO01)
showed that its age should be 1.4—1.36 Ga (see
the Supplemental Material). Dikes with pre-
dominantly northeast-southwest strikes have
also been observed in the Bas Draa inlier,
~180 km southwest of the Tagragra d’Akka

inlier (Fig. 1), and these have been dated to
1.4-1.38 Ga (Soderlund et al., 2013). We sug-
gest that these northeast-southwest—striking
dikes across the Anti-Atlas Belt belong to the
same swarm, and the dikes in the Tagragra
d’Akka inlier could represent the late-stage
pulse of this magmatic episode. Thermal de-
magnetization revealed stable ChRMs from
350 °C to 580 °C, which are characterized by
antipodal, north-down and south-up directions
(Fig. 2D). One dike (G18M90) is crosscut by a
younger north-south—striking dike (G18M89),
which, although undated, is very likely Precam-
brian because it does not penetrate the Edia-
caran—Cambrian sedimentary cover of the Anti-
Atlas Belt. In the immediate baked-contact zone,
remanences of the older dike with consistent
magnetic mineralogy (Fig. S5) are deflected
into near-parallelism with those of the younger
dike (Fig. 2D), suggestive of a positive inverse
baked-contact test and hence a Precambrian age
of remanence for the Tagragra d’ Akka northeast-
southwest swarm. From the VGPs of the nine
dikes, we obtained a 1.4-1.36 Ga pole at 87.4°N,
44.7°E (A5 = 7.8°, K = 44.1) for the WAC.

AN INVERTED WAC-AMAZONIA
CONNECTION

Incorporating our new 2.04 Ga and
1.4-1.36 Ga paleomagnetic poles witha 1.75 Ga

www.gsapubs.org | Volume 49 | Number 10 | GEOLOGY | Geological Society of America

Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/49/10/1171/5413505/g48855.1.pdf
bv niversity of Wvomina user


https://doi.org/10.1130/GEOL.S.14699598
https://doi.org/10.1130/GEOL.S.14699598

"-ﬁamda ouzgaz

 2.04 GaE-W dikes
@D 1.41.36 Ga NE-SW dikes
@D rost-1.4-1.36 Ga N-S dike

unbaked
M90
baked
M89 “\ig1

8.01°W|
e,

agragra de.Ta

2040.-&6/\<a
M33*

M39
M37
M36 M40

M34M35

Inverse baked-
contact test

Figure 2. (A-C) Site locality maps of (A) Zenaga, (B) Tagragra de Tata, and (C) Tagragra d’Akka inliers (Anti-Atlas Belt, Morocco) with Google
Earth™ satellite images as background. (D) Stereographic projection of site-mean directions of 2.04 Ga dikes (yellow) and 1.4-1.36 Ga dikes
(purple), and results of inverse baked-contact test. Dated dikes are marked by asterisks.

VGP obtained from a 1747 + 4 Ma mafic dike
in the Iguerda inlier of the Anti-Atlas Belt
(Neres et al., 2016), we can test the connec-
tion between the WAC and Amazonia. Previous
upright models were generated by aligning the
Sassandra shear zone in the Man-Leo Shield
with the Guri shear zone in the Guiana Shield
(Onstott and Hargraves, 1981), and these were
supported by 2.1-2.0 Ga paleomagnetic data
(Nomade et al., 2003; D’ Agrella-Filho et al.,
2016). More recently, Chardon et al. (2020) pro-
posed that the Brobo and the Pisco-Jurua shear
zones from the two cratons should be continu-
ous, and to align these shear zones, they rotated
Amazonia ~40° counterclockwise as compared
to the reconstruction of Onstott and Hargraves
(1981). In the model of Chardon et al. (2020),
the WAC is still connected to Amazonia in an
upright sense, and this connection could be ac-
commodated by the ca. 2.0 Ga paleomagnetic
data (Antonio et al., 2021).

Post-2.0 Ga paleomagnetic data can test
whether these upright-style models can per-
missibly persist in Nuna. We examined vari-
ous Nuna reconstruction models that adopted
an upright-style connection between the WAC
and Amazonia (Zhang et al., 2012; D’ Agrella-
Filho et al., 2016, 2020; Chardon et al., 2020).
None of these models simultaneously matched
the 1.75 Ga VGP and our 1.4-1.36 Ga pole from
the WAC with the coeval poles from other cra-
tons (Fig. S8). In particular, in these upright-
style models, a disagreement is shown between
our 1.4-1.36 Ga pole and its time-equivalents
from other cratons (Fig. S8). Only breaking the
connection between the WAC and Amazonia
can accommodate our 1.4-1.36 Ga pole in an
upright-style model (Fig. S8), but then the com-
patible basement ages and LIP records of these
two cratons become unsatisfyingly disjointed.

Alternatively, we considered the opposite po-
larity of all pre-Ediacaran paleomagnetic poles
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from the WAC, and we propose an inverted
WAC-Amazonia connection, with the northern
WAC attached to northeastern Amazonia. In this
new model, the apparent polar wander paths
(APWPs) of the two cratons still support a cra-
tonic convergence at 2.1-2.0 Ga (Fig. 3A). More
importantly, correlative poles from Amazonia
and other cratons agree well with the 1.75 Ga
VGP and our new 1.4—-1.36 Ga pole from the
WAC, considering the slight age differences
and the uncertainties of the poles themselves
(Figs. 3B and 3C). This inverted connection
between the WAC and Amazonia would negate
the shear zone alignments that were proposed
as piercing points by Onstott and Hargraves
(1981) and Chardon et al. (2020). However,
shear zones of 2.1-1.8 Ga age are commonly
observed features (Zhao et al., 2002), which
make them less powerful as precise correlation
tools. Our inverted model still permits the con-
tinuity of Eburnean orogens of the WAC with
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Figure 3. (A) Paleogeographic evolution between the West African craton and Amazonia at 2.1-2.0 Ga. Reconstruction is in the present West
Africa reference frame, with an outline of Africa shown as background. Shaded arrows show younging direction of apparent polar wander
paths. (B,C) Paleogeographic reconstruction of Nuna at 1.79-1.73 Ga (B) and ca. 1.38 Ga (C). White arrows indicate present-day north direction
for cratons. Selected paleomagnetic poles of each craton (with their abbreviations) are listed in Table S3 (see footnote 1), where colors match
those of cratons. Poles marked by asterisks are from this study. Table S4 lists Euler rotation parameters. SF—Sao Francisco.

Transamazonian orogens in Amazonia. Specif-
ically, the 2.2-2.0 Ga Anti-Atlas Belt and the
Yetti-Eglab massifs in the Reguibat Shield of
the WAC continue into the 2.2-1.95 Ga Maroni-
Itacaiunas Province in Amazonia. In addition,
the 2.2-2.05 Ga volcano-sedimentary sequences
in the Baoulé-Mossi domain and Séo Luis block
of the WAC and the Guiana Shield of Amazonia
can still be correlated along an accretionary belt,
as suggested by Klein et al. (2020), but in a more
general sense (Fig. 3A). The subsequent cratoni-
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zation following the WAC-Amazonia assembly
is compatibly reflected by the broadly overlap-
ping 2.0-1.95 Ga poles from the two cratons,
with only insignificant APWP distances through
late Paleoproterozoic time (Fig. 3A; Gong and
Evans, 2021).

REFINED NUNA CONFIGURATION
Combining our inverted WAC-Amazonia

connection with newly published paleomag-

netic results from other cratons, we propose a

refined configuration of Nuna (Fig. 3). In our
reconstruction, Laurentia and Baltica are located
in the core of Nuna, with northern Europe con-
nected to eastern Greenland (Gower et al., 1990;
Evans and Pisarevsky, 2008). Pisarevsky et al.
(2014) suggested that Siberia should be distal
to northern Laurentia, which is paleomagneti-
cally permissive. However, we prefer a tight fit
between Siberia and Laurentia, as suggested by
the paleomagnetic study of Evans and Mitch-
ell (2011), which is also supported by their
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Figure 4. Global large igneous province (LIP) records at 1.79-1.75 Ga (A) and ca. 1.38 Ga (B) in Nuna. Solid line segments show trends of dike
swarms. Dashed lines are potential linkages of LIPs. Stars indicate proposed plume centers. White arrows show present-day north direction
for cratons. See Table S5 (see footnote 1) for bibliographic references for the LIPs. AMCG—anorthosite-mangerite-charnockite-granite.

closely matched Proterozoic magmatic records
(Ernst et al., 2016). Proto-Australia is located
near southwestern Laurentia at ca. 1.8 Ga, then
becomes separated from Laurentia by a small
ocean, and finally joins Nuna at ca. 1.65 Ga
(Pisarevsky et al., 2014; Kirscher et al., 2019).
The North China craton is attached to proto-
Australia and off the western margin of Siberia
(Kirscher et al., 2021). Unlike Pisarevsky et al.
(2014)’s model, we place northwest Amazonia
close to southwest Baltica, based on the shared
histories of long-lived accretions (Johans-
son, 2009). Additionally, the Sdo Francisco
(SF)-Congo craton, constrained by the new
1.79 Ga Pard de Minas pole from SF (D’ Agrella-
Filho et al., 2020), juxtaposes with present-day
western WAC (Fig. 3). The magmatic barcode
of the WAC, when compared with the barcodes
of its bounding cratons, shows time-correlative
LIP records (Gong and Evans, 2021). With our
new reconstruction, these LIPs and their geom-
etries are placed in paleogeographic context.
Collectively, the LIPs show broad radiating pat-
terns that could indicate potential plume cen-
ters near the eastern margin of Baltica around
1.79-1.75 Ga (Fig. 4A), and the northern margin
of Baltica and southern margin of SF-Congo at
ca. 1.38 Ga (Fig. 4B). The former LIP events
would have occurred during the assembly phase
of Nuna, whereas the latter should have accom-
panied the early stages of the supercontinent’s
fragmentation (Kirscher et al., 2021).

RECONSTRUCTION IMPLICATIONS
Our inverted WAC-Amazonia connection in

Nuna, compared to their configuration in Gond-

wana, indicates large (~180°) relative rotation

between these two cratons. Large-scale azimuth-
al rotations of tectonic blocks are commonplace
features of oroclines, where ribbon-like frag-
ments of active continental margins can buck-
le isoclinally in map view (e.g., Sengdr et al.,
1993). In contrast, within larger tectonic plates,
equidimensional continental blocks from the
past few hundred million years have experienced
more muted amounts of relative azimuthal rota-
tion, with motions described by distally located
Euler stage poles that give rise to long and quasi-
linear seafloor spreading ridges (Vérard et al.,
2012). There are exceptions to this general rule,
however, leaving aside the more controversial
pre-Jurassic ~180° rotational restoration of the
Malvinas/Falkland microplate to Africa (Martin,
2007). For instance, the Siberian craton rotated
nearly 180° relative to Baltica between Edia-
caran and Permian time (Sengor et al., 1993)
and a similar amount relative to Laurentia dur-
ing the Rodinia-Pangea supercontinental transi-
tion (Merdith et al., 2021). As another example,
Amazonia rotated ~180° relative to Laurentia
prior to Rodinia assembly, regardless of which
pre-Rodinia paleomagnetic polarity option one
adopts (D’ Agrella-Filho et al., 2016). The rela-
tive orientation of the North China craton and
Australia also changed by ~180° between their
likely Nuna configuration (Kirscher et al., 2021)
and early Paleozoic time (Zhao et al., 2021).
Although a global model of prescribed Meso-
proterozoic—Neoproterozoic plate motions is not
yet available, our proposal for the nearly 180°
relative rotation between the WAC and Ama-
zonia over supercontinental cycles provides an
additional instance of this intriguing kinematic
style. The dynamics of such large-scale changes
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in relative orientations are likely related to suc-
cessive intervals of divergence, convergence,
and transform motion accompanying the series
of ancient global plate reorganizations (e.g.,
Miiller et al., 2016).
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