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Abstract

As the adoption of wearable and smart devices increases, their pri-
vacy and security are still a concern. These devices collect sensitive
data and constantly communicate with each other, posing new
privacy threats that need to be understood and addressed. In this
paper, we analyze the privacy of smart devices from a multi-device
perspective. The central premise of our work is that information
available at each device may be non-sensitive or lightly so, but by
orchestrating information from multiple connected smart devices,
it is possible to infer sensitive content. To verify this, we conduct
a user study to understand user perceptions towards privacy on
smart devices and contrast them with their actual behavior while
operating these devices. We then present an attack framework that
can leverage tightly coupled and connected smart devices, such
as mobile, wearable, and smart TV, to leak sensitive information
inferred from individually non-sensitive data. Finally, we introduce
a tool based on NLP techniques to identify potential privacy vul-
nerabilities on smart devices and propose an integrated solution
to increase smart devices’ security. This analysis helps close the
gap between user’s perception and reality regarding privacy risks
within their smart ecosystem.
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1 Introduction

There has been a significant amount of privacy research on smart-
phones and, to a more limited extent, wearables and smart devices.
The research has identified vulnerabilities (in phones [10, 41] and
wearables [29, 30]), and some of it has presented mitigations (in
phones [9, 12, 39] and wearables [11, 16]). Broadly speaking, the
vast majority of the prior work has taken a single platform or a sin-
gle device view of user privacy. By this, we mean that the analysis
has been into privacy implications of information coming from a
single device — this could be single or multiple sources of informa-
tion (i.e., multiple apps within the same device), either covert or
overt (i.e., user-visible) sources. In a small fraction of the cases, the
work has aggregated information from multiple devices, though
in very different contexts, such as devices of the same kind, and
therefore naturally belonging to multiple users [71] or for data
transformations among multiple IoT devices [33]. We posit that the
convergence of trends laid out above about multiple smart devices
of a single user and their interactions should lead us to look at
privacy in a new light.

An important aspect of privacy is context, as is widely acknowl-
edged [12, 58]. For example, a smartphone camera taking high-def
video is acceptable when the user is in a public space, while that
camera should lower resolution if say the user is on a call from her
home, and further, in more private spaces, the camera should never
be activated. The use of context to drive privacy decisions and then
to create tools to enforce such decisions has been a fruitful line
of work [12, 48, 66]. For example, the early work in ipShield [12]
allowed a smartphone user to set context-aware fine-grained pri-
vacy rules. It inferred privacy-relevant context by monitoring of
the phone sensors accessed by an app and used this information to
perform a privacy risk assessment, which was then used to decide
whether to allow or disallow an action. A key missing piece to this
use of context has been that the context can come from multiple
devices owned by a user. This is a natural outgrowth of the trend
outlined above, multiple devices owned by a user and autonomous
interactions among them.

The nature of these devices is different, and the kinds of con-
text they provide are also distinct and often complementary. For
example, physiological signals are available from the sensors on
a smartwatch or a fitness tracker, streaming media viewing infor-
mation is available from a smart TV, and location information is
available from a smartphone. Although individually non-sensitive
or only lightly sensitive, these information components can lead
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to privacy violations when combined across multiple devices in
certain contexts. Consider a music streaming application on a smart-
phone that uses the user’s location to access local radio stations.
The application may also use user’s whereabouts for location-based
advertising and push ads from local stores. This is already a clear
privacy violation. Now let us consider the privacy implication in a
multi-device context. If the streaming music app detects that the
user is in a leisure or recreational place (e.g., bar or restaurant), it
can collude with other devices’ apps to target the user’s privacy. The
user’s smartwatch collects her heart rate, and another app on the
mobile that uses the microphone now performs automatic gender
recognition based on the voices. Using these two sources of infor-
mation, it is possible to infer the user’s emotions [28, 55] towards
friends and acquaintances and infer social or dating preferences of
the user. This work has two questions it seeks to answer.

(1) Can information collected from multiple devices of a user be
used to infer sensitive information, and therefore lead to am-
plified privacy attacks, compared to single-device scenarios?

(2) Can context help in deciding when to orchestrate such indi-
vidual pieces of information?

The question of using context to launch privacy attacks (based
on multi-device information) is significant from the point of view
of the stealthiness of the attack. Collecting information on a device
consumes resources, such as performing GPS readings, which is well
known to be energy hungry. Then, aggregating such information
across multiple devices as well as performing inferencing on the
combined information can again be resource intensive. Therefore,
triggering the attack based on context can reduce the resource
consumption of the attack and make it more stealthy. The road to
answer the above questions leads to the following contributions.

e We conduct a university IRB-approved user survey to elicit in-
puts about their main privacy concerns on multiple connected
personal devices. Our survey brings out several hitherto un-
known privacy expectations and concerns. An automated tool
developed by us shows how far the user’s privacy perception
matches with the permissions she has granted on her devices.

e We create a multi-device attacks framework, MadCap (Multiple
Aggregated Device Context Aware Privacy). We implement
three previously proposed privacy attacks using this framework,
each of which uniquely leverages the interactions of smart
devices. The proposed attack is an “amplification” attack in that
it collects data from different platforms that are individually
not sensitive or lightly so, and uses them to infer sensitive
information.

e We introduce PerQry, a tool that uses NLP techniques to answer
user queries about her privacy sensitivities and then analyzes
permissions granted to apps on her device. This aids as a privacy
check tool telling the user what privacy attacks are possible
or not possible, including in multi-device contexts. Finally, we
show how this tool can be integrated to increase the security
and privacy in multi-device contexts.

The actionable insights that we gather from our adversarial
analysis in this paper are two-fold. First, the OSes on the smart
devices should allow for coordination not just for functionality (as
is done today), but also to enforce fine-grained privacy controls that
span multiple devices. Second, from a usability standpoint, we need
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tools that can model the context that arises from multiple devices.
This will enable users to make context-based privacy decisions or
automate the process through rules that they have pre-installed.

2 Background

Android Permissions. Permissions form one of the fundamental
aspects of the Android ecosystem in restricting an app’s access to
data (e.g.,contact list) and actions (e.g., sending an SMS) [21]. An-
droid considers users’ data and certain system resources as sensitive
and allows users to control an app’s access to them. An app that
requires access to these restricted data or actions should request
by specifying corresponding permissions its AndroidManifest.xml file
and, in a few cases, should also get authorization from the user at
runtime. Android classifies permissions based on the sensitivity of
the resources they protect as follows:

(1) Normal permissions control access to those resources that
do not pose a major risk to the users’ privacy or the device’s
operation. These permissions will be granted automatically
without confirmation from the user. e.g., INTERNET.

(2) Signature permissions are similar to normal permissions,
but with the restriction that an app requesting permission
must be signed with the same signature as the app that
defines the corresponding permission. e.g., READ_VOICEMAIL.

(3) Dangerous permissions control resources that could po-
tentially affect the users’ privacy or the device’s operation.
The user must grant these permissions explicitly at run-
time. e.g., SEND_SMS

(4) Special permissions depend on the device manufacturers or
OEMs. e.g., WRITE_SETTINGS on Google phones.

Privacy Risk on Android Ecosystem. Android enforces its per-
missions and other restrictions at app level, treating each app inde-
pendently without considering risks from collaboration with other
apps [1]. Previous studies show that user is more cautious [22, 23]
in installing an app with multiple permissions (such as INTERNET
and LocaTION) than installing multiple apps with same cumulative
permissions (e.g., two apps, one with with INTERNET and the other
with LocaTION). This further motivates attackers to focus on creating
multiple colluding apps than a single malicious app. In Android, pre-
cisely analyzing inter-app communications is a known hard prob-
lem because of the binder IPC interface [63]. Other communication
channels [31], such as storage, further exacerbate the problem. This
problem becomes intractable when the apps are across different
devices, such as smartphone and wearables. First, the devices could
be running different versions of the Android OS. Second, as these
devices differ in their capabilities, the OS design differs between
these devices [8, 37]. Having a synchronized privacy policy that
spans across multiple devices running different OSes is an open
problem [54]. Our work further explores the privacy concerns that
could arise when apps across multiple devices collude.

3 Overview

The significant amount of productive research on the privacy of
mobile platforms has treated each user device in an isolated context.
The fact that we increasingly own multiple smart devices and that
these devices are communicating with each other on a continual
basis introduces new privacy scenarios. The fundamental premise
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Table 1: Sample set of permission and their respective likelihood of app installation and security perception.

(a) Likelihood of installation across categories (b) Security perception
Permission Type Music & | Education| Business Produc- | Health & Overall Risky Safe
Audio ‘ tivity Fitness ‘
Full network access Normal 88.06% 79.10% 89.55% 85.07% 76.12% 83.58% 49.25% 46.27%
Allows the app to configure the local Bluetooth | Normal 67.16% 47.76% 59.70% 55.22% 76.12% 61.19% 35.82% 58.21%
Access to your location Runtime 65.67% 56.72% 62.69% 62.69% 74.63% 64.48% 61.19% 37.31%
Access to your device storage Runtime 80.60% 65.67% 67.16% 73.13% 55.22% 68.36% 41.79% 52.24%
Access sensor data about your vital signs Runtime 41.79% 40.30% 46.27% 49.25% 74.63% 50.45% 49.25% 44.78%
Take pictures and record videos Runtime 43.28% 43.28% 76.12% 58.21% 41.79% 52.54% 62.69% 37.31%
Record audio Runtime 52.24% 49.25% 68.66% 55.22% 40.30% 53.13% 59.70% 32.84%
Read phone status and identity Signature 44.78% 43.28% 55.22% 47.76% 53.73% 48.96% 61.19% 34.33%
Enable accessibility service and give full control | Signature 49.25% 35.82% 40.30% 38.81% 41.79% 41.19% _ 26.87%

behind our work is that such automated, i.e., non user-mediated
connections among the smart devices pose new vulnerabilities by
allowing an adversary to piece together multiple non-sensitive (or
lightly sensitive) attributes into sensitive attributes.

3.1 Problem Context

Nowadays, the ubiquitous connectivity and context-awareness na-
ture of wearables pose new challenges. Smart devices constantly
communicate with each other. Not only do wearables depend on a
mobile device [8, 56], but mobiles are also frequently used to con-
trol IoT devices or OTT (Over The Top) platforms, such as Google
TV and Amazon Fire TV [19, 43]. Prior works have demonstrated
how a mobile app can use sensing data collected from a device to
infer sensitive information from the user [12, 35, 68]. However, the
implicit connection between smart devices enables the possibility
of multiple attackers colluding to leak data from devices with the
ultimate objective of inferring sensitive information from the user.
Furthermore, the different nature of smart devices broadens the
range of possible inferences by allowing attacks that would not be
possible by targeting a single device. Our central premise is that
by collecting information specific to a particular type of device,
such as health data available on wearable devices, and then strate-
gically integrating such multimodal data or user interactions with
her other devices, it is possible to craft a richer set of attacks. Such
attacks are either infeasible or less damaging in individual device
settings.

3.2 User Perception and Reality

As a motivation for our work, we decided to contrast user percep-
tion and reality regarding privacy risk in multi-platform scenarios.
To this end, we designed a user study that was approved by the In-
stitutional Review Board of our home institution. First, we created
an online questionnaire and distributed it to 93 participants, drawn
from Amazon Mechanical Turk (AMT) and university students. The
objectives of our survey were to determine:

(1) users’ knowledge regarding the Android permission model;

(2) users’ attitudes and behaviors towards security while in-
stalling applications on their devices;

(3) users’ perception of privacy risks in scenarios that involve
multiple devices.

Then, we collected a list of the apps installed and the respec-
tive permissions granted and denied from participants’ compatible
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devices. This information helps us to get a reality check on what
permissions the participants have granted and compare it against
their answers in the online survey. Regarding the above stage, users
were aware of the role of the scanning app they were installing.
Our survey revealed that participants care about privacy risks in
these new scenarios. Moreover, the results evidence that users’ be-
havior for the same permissions varies across devices. We discuss
in further detail our findings in the next section.

4 User Study

As discussed in section 2, users may tend to overlook the privacy
risks associated with using tightly coupled devices, such as mobiles
and wearables. We conducted a user study to understand the users’
perceptions and behavior related to privacy.

4.1 Methodology

The study consisted of an online survey and a one-time collection
of data from participants’ mobile and wearable devices.

4.1.1  Online Survey. The online survey consisted of four sections.
The first two sections included questions to classify the participants
according to demographics and their knowledge and expertise in
using smart devices. The last two sections focused on participants’
behavior while installing apps and their perceptions of the possi-
bility of privacy infringement expectations in various scenarios.
All the sections included control questions to validate the quality
of the responses. From the subsequent analysis, we removed the
submissions that failed to answer the control questions correctly.

4.1.2  Permissions Granted on User Devices. Additionally, for col-
lecting the apps installed and the list of permissions granted or
denied, we developed an Android scanning app (Permeso) and
its respective companion app in the wearable. We asked the par-
ticipants to install Permeso app on their compatible devices and
upload the data collected by the app. Since we only need to collect
the data once, we requested the participants to uninstall the app
after finishing the study.

4.2 Results

In all, we had 93 survey participants, and Permeso collected in-
formation on 4,365 apps. The analysis presented here is for the 5
most popular categories, which covered 369 apps (out of the 4,365).
The survey participants came from AMT, and students at the two
universities were represented by the co-authors of this submission.
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4.2.1 Permission and Categories. One of the primary goals of our
user study was to understand users’ attitudes toward the Android
security model and examine the impact of permissions requested
by an app on users’ decision to install it on their device. To that
end, we chose five of the top categories from the Google Play Store
based on the number of apps [5]. Then, we selected a sample set of
9 of the most frequently requested permissions across categories in
Android and Wear OS, as shown in Table 1. Here, we do not select
any special permission in the sample set since these permissions are
only requested by the system and OEM’s applications. In the survey,
we asked participants how likely they would install an application,
from each of the five top categories, if it requires a permission
defined in the sample set. Table 2 summarizes the survey responses
for each category and permission type, while the same information
is broken down by individual permission in Table 1(b).

Table 2: Likelihood of installation of the application across
Permission Type.

Category ‘ Normal ‘ Runtime ‘ Signature
Music & Audio 77.61% 56.72% 47.01%
Education 63.43% 51.04% 39.55%
Business 74.63% 64.18% 47.76%
Productivity 70.15% 59.70% 43.28%
Health & Fitness 72.39% 57.31% 47.76%

As shown in Table 2, the category of an application has an impact
on user decision whether to grant or deny permissions. As expected,
participants are more likely to grant normal permissions, with rates
reaching as high as 77.61% (Music & Audio) 1. Moreover, as can be
seen from Table 1, the majority of the respondents (83.58%), did
not seem to have a reservation in granting the Full network access
permission. Again, the rate is higher in Music & Audio (88.06%) and
Business (89.55%) categories. This may be explained by the fact that
trusted music players and web conference tools (e.g., Zoom, Skype)
are prevalent applications in these categories. Survey respondents
seem more cautious with “Education” category apps, perhaps be-
cause they have less experience with apps from widely popular and
trusted brands in that category. Participants acknowledged being
less willing to install apps that request signature permission. How-
ever, the rate of 47% can still be considered high since malwares or
attackers often abuse signature permissions.

4.2.2  Security Perception. We also evaluated how safe the user
considers each of the permissions defined in our study. Table 1(b)
summarizes the results. As expected, participants consider signature
permissions riskier than the rest. Also, most of the participants
considered normal permissions as safe, which stands to reason
as these permissions are granted without users being prompted.
However, an interesting finding is that:

Note that the respondents were not informed by us on the definitions of “Normal",
“Runtime”, and “Signature" permissions, and neither were they told which category
each permission belonged to. Thus, their responses can be taken to reflect no bias
from such knowledge. The time taken to complete each survey question also makes
it unlikely that the respondents were searching for the category of each permission
prior to answering.
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Finding 1: Dangerous permissions, such as Access to your device
storage, were considered safe by the majority of the participants.

Recall that the respondents are making their decisions without
being aware of which category each permission belongs to. We
categorize it for the purpose of the analysis. The following section
delves into these findings to see how much gap there exists between
the survey responses and the actual permissions the users have
granted on their devices.

Table 3: Percentage of participants whose responses differed
across mobile and wearable app. For clarity, we include the
four permissions with the most significant differences.

Category ‘ Sf:i)};s ‘ Storage ‘ Network ‘ Location
Music & Audio 8.82 % 5.88 % 17.65% 32.35%
Education 14.71 % 11.76 % 23.53% 23.53%
Business 8.82 % 17.65 % 17.65% 17.65%
Productivity 14.71 % 11.76 % 17.65% 26.47%
Health & Fitness 8.82 % 8.82 % 20.59% 23.53%
Overall 26.47 % 29.41 % 35.59% 47.06%

4.2.3  Permission Behavior in Multi-Device Scenarios. Finally, we
assessed participants’ permission behavior on multiple platforms.
Thus, we asked the same questions, but this time with respect
to wearables apps instead of mobile. Table 3 shows the contrast
between participants’ responses on mobile versus wearable apps,
specifically for the top four permissions based on the discrepancy:
access sensor data about vital signs, access to device storage, full
network access, and access to location.

Here, 44.1% of participants expressed being more conservative
when installing apps on wearable devices. These individuals re-
sponded that they would not install an app on a wearable even
though it requests the same permission they will grant to a mo-
bile app. Hence, this means that for users, the risk associated with
permission varies depending on the platform.

Finding 2: Our results indicate that 44.1 % of participants de-
clared to be more conservative while granting permissions on
the wearable. Further, the most frequent differences were on
“Full network access” and “Access to location” permissions.

4.3 Perception vs. Reality

We also assessed how the answers given by the user match with
their actual behavior while installing apps on their devices. We com-
pared the data collected by Permeso with participant’s responses
for each of the categories included in the study. We were partic-
ularly interested to see if there are discrepancies between survey
responses and the user’s actual behavior. For example, a respondent
may claim that she would not install music applications that require
“Read phone status and identity” permission. However, she has granted
that same permission to apps in that category on her phone.
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Table 4: Discrepancy between responses and permission col-
lected by Permeso.

Perception: Will Not Grant

Cat Perception: Will Grant
ategory Reality: Granted

Reality: Not Granted

Music & Audio 28.0%
Education 37.4% 35.5%
Business 34.4% 47.2%
Productivity 36.2%
Health & Fitness 47.3% 48.7%

Table 4 shows the breakdown for each category, where a higher
percentage indicates a greater discrepancy. The number in the
second column indicates cases where users are more conservative
(i.e., strict) in reality compared to their (more lax) perception. This
is surprising but not risky as users are more strict in reality.

The numbers in the third column are interesting, where users
are more lax in reality compared to their perception. In other words,
these numbers show the cases where users are lenient in granting
permissions compared to their perception of being strict. The higher
numbers in the third column compared to the second indicate that
users are laxer in reality than in their perception. The values are
high for the Music & Audio and Productivity categories, indicating
that our desire for entertainment in personal life and productivity
gains in professional life could make us more privacy lenient. For
business apps, which traditionally tend to request a high number
of permissions, these results are disturbing since an attacker can
disguise the malicious application as a business application. Based
on the data collected through Permeso, business apps requested
on average more permissions (28) than the rest of the categories
analyzed, except for productivity apps (31). In a broader examina-
tion across all Android application categories, business apps rank
within the top 10, following behind categories such as communi-
cations (44), tools (42), photography (39), personalization (31), and
shopping (29).

Finding 3.a: In contrast to users perception, in reality users
are more lenient in granting permissions. The discrepancy is
non-uniform, and there are certain categories of apps where
users are more lenient compared to others.

4.3.1 Discrepancy v/s Apps Popularity. Our survey only uses the
category of apps without mentioning a specific app or brand name.
However, Permeso examines the apps the user has installed; many
of these apps are presumably from vendors that are trusted. This
might pose a familiarity bias threat to the validity of our findings.
Specifically, users might be willing to grant permissions to widely
popular, and therefore implicitly more trusted, apps from well-
known brand names.

To understand this, we delved into the details of the popularity of
applications that Permeso detects on the user devices; popularity is
measured by the number of downloads from the Google Play Store,
as is typically done. Figure 1 shows the difference between the
survey and data collected using Permeso grouped by the number
of installs of the application. From the heat map, we see that the
user behavior for granting permission (i.e., second column) does
not seem to be heavily impacted by the popularity of the apps. In
most cases, the values hover around the 50% mark.
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Figure 1: Relation between popularity of the app and discrep-
ancy between the survey responses and actual permissions
granted by the user on her devices.

Finding 3.b: Our results show that apps’ popularity does not
influence the discrepancy between the user’s perception and
reality.

4.4 Privacy Related Scenarios

We also asked users for their opinions on the privacy risk in var-
ious scenarios involving multiple devices. Previous research [24]
has only focused on scenarios in single device context, i.e., either
mobiles or wearable devices, but not both. Specifically, we crafted
16 scenarios where it was possible to infer sensitive information by
using data from multiple devices, especially mobile and wearable.
Each scenario succinctly describes a multi-device privacy risk, i.e.,
using data from multiple devices to infer sensitive information,
which will be leaked to directly related entities or unrelated entities
(e.g., advertisement companies). We asked our participants to clas-
sify each scenario as “risky” or “safe” regarding privacy. We also
included an additional category, “Do not know”, to indicate a neu-
tral position. The Table 5 lists all the scenarios and the percentage
of users who considered each scenario as risky.

Finding 4: Participants seem more concerned about scenarios
where their data is explicitly shared with entities directly re-
lated to them, such as HR and insurance companies. In contrast,
scenarios where the data is either leaked publicly or used for
advertisement do not concern them as much.

Users perceived scenarios to be relatively safe when scenarios
involved an app suggesting something to the user without explicit
mention of an external party becoming aware of that information.
Obviously, this situation hides the fact that the app knowing and
suggesting something could very well mean that the creator of the
app and any third parties that the creator has signed deals with can
access the user data.
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Table 5: Percentage of participants who responded ‘yes‘ to
whether each scenario was considered a violation of their
privacy

Permission | Risky

A productivity app on the mobile collects data about the music listened 68.66%
to by a user and, using her wearable locations, determines she is at
work. The app reports the music genres to the HR department.

Using the wearable’s location, an app installed on the mobile device
can suggest the apps a user interacts with at work. The app reports the
list to the user’s manager.

Using sleep data collected from a smartwatch and the mobile’s location,
an app can suggest medical disorders in the users. The app could disclose
this information to the user’s health insurance company.

Based on wearable fitness data and other sensors on the mobile, an
app determines the user’s grocery patterns. The app could disclose this
information to third parties.

Based on fitness tracker data, an app can infer if a user has any heart
pre-condition. The app could disclose this information to the user’s
health insurance company.

Based on variations on your heart rate while readings news from the
mobile, an app can suggest your political preferences.

Using the microphone in your mobile and variations in your heart rate,
an app can suggest your personal preferences in dating.

Using the mobile device’s location and the sensors installed on a smart-
watch, an app can suggest the location of ATMs commonly visited by
the user.

Using the mobile device’s location and the sensors installed on a smart-
watch, an app can suggest the user’s preferred offline work locations.
A shopping app recommends a user to buy merchandise of the musical
artists she often listens to while working out, using the fitness data
from the wearable and the microphone on the mobile.

Data collected from the user’s device (mobile’s location and wearable’s
fitness data) suggest the restaurants she usually frequents to eat.

An app installed on a user’s phone could tell her daily commutes based
on the fitness data collected from a fitness tracker or smartwatch.
Based on data collected from sensors on the mobile and the wearable,
an advertiser shows local stores’ ads within a user’s daily commutes.
Using the mobile’s location, a shopping app can show sale offers on
energy drinks from nearby stores if it detects a user is working out
based on the wearable’s fitness data.

Data collected from the user’s phone and her smartwatch by an app
can suggest the user’s preferred times for working out.

An educational app, either on a mobile or wearable device, could tell
the user location based on the fitness tracker data and customize the
app’s experience depending if it is an outdoor or indoor area.

65.67%

65.67%

59.70%

58.21%

55.22%

52.24%

52.24%

41.79%

38.81%

37.31%

35.82%

32.84%

28.36%

28.36%

26.87%

4.5 Summary

Our findings shed light on certain important aspects and suggest
directions for effective privacy protection measures. Specifically,
the well-known problem [42, 50] of users lacking knowledge of the
severity of certain permissions still exists (Findings 1, 2). Users’
perception and their practices regarding permission vary (Finding
3.a). We urge the community to pay special attention to survey-
based user studies involving permissions, as the results might not
truly reflect users’ real behavior. Privacy-related scenarios (Finding
4) might be an effective way to warn about potential misuse of
permissions by an app. Finally, there is the potential for multi-device
context-sensitive attacks, whose severity may not be correctly assessed
by the users (Findings 1, 2, 3.a, 3.b, 4).

5 Our Attack Framework: MadCap

We designed MadCap, a framework aiding the implementation
of stealthy multi-device context-sensitive attacks. Table 6 summa-
rizes a (limited) list of attacks that can be crafted following our
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Figure 2: Architecture of the MadCap framework for multi-
device privacy attacks.

framework. We implemented three Proof of Concept (PoC) attacks
using MadCap, demonstrating the generality of our framework.

5.1 Adversary Model

Attacker. An attacker is a developer who publishes a malicious app
in the Google Play Store. These apps behave as benign at the start
of their life cycle. However, after achieving user trust that it serves
a legitimate purpose, it can start the attack stealthily and collude
with other apps in the user’s devices to leak sensitive information.
Attacker Goal. We assume that the adversary intends to leak
sensitive information from the user by collecting individually non-
sensitive (or lightly sensitive) data from multiple platforms, such
as mobile, wearable, and smart TV. The attacker’s malicious apps
collect data from the victim’s devices and use it to infer and leak
sensitive information about the user. We refer to sensitive informa-
tion as any knowledge of the user that must be protected against
unauthorized access since its disclosure could cause adverse con-
sequences, such as damage to her financial standing, reputation,
employability, or insurability.

Victim. A victim is a smartphone user who has her phone paired
with a wearable device or uses the phone to interact with other
smart devices. The victim installs malicious apps on their devices
from regular channels, such as Google Play Store.

Feasibility. We found that 64% of the top 200 popular wearable
apps in the Google Play Store have a counterpart in the mobile
device. Therefore, it is quite conceivable that if the user is socially
engineered to download an app on her wearable, she is likely to
download the (seemingly benign) companion app on her mobile.

5.2 Attack Overview

We first present an overview of our attack named MadCap. As
shown in Figure 2, MadCap exploits the previously described attack
approach by orchestrating a collusion attack between the apps
installed on multiple platforms.

5.2.1 Architecture. MadCap consists of two components: agents
and coordinator. Both components are malicious apps, but their
objectives vary in the overall attack scheme. These components
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Table 6: Summary of privacy attacks that can be implemented using our MadCap framework.

‘ Attack Aim ‘ Mobile ‘ ‘Wearable ‘ Android TV

A | Tracking user’s workout Location Heart rate,Accelerometer, Gyroscope -

B | Tracking user’s music preferences Location, Microphone Heart rate,Accelerometer, Gyroscope -

C Tracking user’s activity Accelerometer, Gyroscope Heart rate,Accelerometer, Gyroscope -

D | Leak conversation during meetings Calendar Microphone

E | Tracking virtual work place Location Accelerometer, Gyroscope -

F | Tracking sleeping patterns Location Accelerometer, Gyroscope -

G | Show unsolicited ads Location Heart rate,Accelerometer, Gyroscope -

H | Disclose contextual information Location, Accelerometer, Gyroscope, Camera, Mic | Heart rate, Accelerometer, Gyroscope -

I | Disclose ATM’s PIN sequence Location Acceloremeter, Gyroscope, Magnometer | -

J | Personal preference in dating Location, Device Storage, Microphone Heart rate -

K | Political preference (based on content watched) | - Heart rate Accessibility Service

* We are assuming the data is leaked using conventional channel such as Internet, which does require a normal permission.

leverage the permissions legitimately given by the user to collect
individually non-sensitive or only lightly sensitive data. Once the
data is collected, the agents forward it to the coordinator, usually
installed on the mobile device due to energy constraint limitations
of smart devices, such as wearables. Then, the coordinator infers
some sensitive information using the data collected. In cases where
the inference algorithms require more computation power, this
mission can be accomplished by an external server. Finally, the
coordinator can leak the information itself, or it can delegate the
task to an agent. The communication between components can
happen via Wear OS Data Layer API, WiFi, or Bluetooth.

5.2.2 Trigger Conditions. Neither the agents nor the coordinator
is expected to collect data from the user continuously; instead, the
attack needs to be triggered if specific conditions are met (i.e., Con-
text). By doing this, we keep the attack as stealthy as possible and
avoid wasting scarce energy resources on the devices so as not to
raise the victim’s awareness. The trigger conditions vary depend-
ing on the sensitive information that is targeted. For example, if
MadCap aims to leak a user’s ATM pin number, it will track the
user’s location sporadically. When it detects that the user location
matches with a nearby ATM, coordinator will trigger the attack,
and the agents will start collecting the required sensing data needed
to infer the victim’s ATM PIN.

5.3 PoC Attacks

We demonstrate the generality of MadCap framework by imple-
menting three multi-device attacks. We selected the attacks based
on their severity. We emphasize that the general principle remains
the same across all attacks, i.e., inferring privacy-sensitive data
from non-privacy-sensitive data across multiple devices.

5.3.1 Attack #1: Revealing ATM PIN sequence. The attack focuses
on inferring the victim’s ATM PIN. The attacker requires a coordi-
nator on the victim’s mobile device and an agent deployed on the
wearable. The coordinator, which maintains a list of ATM places
near the victim, uses the LocATION permission to keep track of her
whereabouts. As soon as the coordinator detects the victim is close
to any ATM location registered, it triggers the attack by communi-
cating with the agent. Then, the agent uses the wearable’s sensing
data to infer the victim’s hand movements and suggest a possible
ATM PIN. Prior works [60, 61] already shown the feasibility of infer-
ring a user’s personal PIN sequence by using sensing data from the
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accelerometer, gyroscope, and magnetometer with high accuracy
(80%-90%) without any training and contextual information. It is
noteworthy that the agent does not need any permission to access
the required sensing data.

For our implementation, we kept the nearby ATM locations
in geofences of 10m radius. When the victim enters any of the
geofences declared in the coordinator, it will communicate with the
agent deployed in the wearable using the Data Layer APIL Then, the
agent collects the sensing data and sends it back to the coordinator
in batches to minimize the communication overhead. Although the
Geofences API limits to 100 locations per app, this can easily be
overcome by dynamically updating the list.

5.3.2  Attack #2: Inferring Personal Preference in Dating. The goal of
the attack is to suggest the gender dating preference of the victim
based on the emotions expressed. The attacker requires access to
the victim’s location (LocATION) and microphone (RECORD_AUDIO) in
the mobile, and the sensing data of the vital signs (BoDY_SENSORS)
on the wearable. The coordinator tracks the victim’s whereabouts
using the GPS sensor data. The coordinator triggers the attack
when it detects that the victim is located in a place of interest
from Google Maps (e.g., restaurants, bars). Then, the agents start
collecting data from the microphone and the heart rate sensor. The
audio data is used to identify people and their respective gender.
Harb et al. [27] have shown the feasibility of gender identification
with high accuracy (94.2% for males and 88.0% for females) by
using audio classifier models speech. Meanwhile, the heart rate
sensor data is used to determine the victim’s mood as has been
demonstrated multiple times [34, 36]. By combining both sources of
information, MadCap can determine if the victim feels any affection
toward their partner and identify the gender of the person.

In the implementation, we also used geofences to keep track
of the places of interest. The communication between the coordi-
nator (mobile) and the agents happens either via Intents (mobile)
or through Data Layer (wearable). The coordinator triggers the
attack once the victim enters any geofences. Both agents send the
collected data to the coordinator in batches to minimize overhead.

5.3.3 Attack #3: Tracking user’s workout. This attack focuses on
inferring sensitive patterns relative to user workout behavior, such
as days and times of the week the victim prefers to work out and
preferred locations. The attacker requires access to the heart rate
sensor (BoDY_SENSORS) and accelerometer on the wearable, and the
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Table 7: Success ratio per each attack from the dataset of Top 200 apps. Attacks are described in Table 6.

Attack Type ‘ A ‘ B ‘ C

D |[E|F | G |

H | 1| J

% apps vulnerable [ 13.02 [ 2.60 [

16.14 |

1.52 |

625 | 625 | 13.02 | 208 | 1250 | 572

% apps partially vulnerable | 65.62 | 69.79 | 100.00 | 16.67 | 625 | 62.5 | 65.62 | 53.12 | 64.58 | 73.95

victim’s location (LocaTION) on the mobile. The coordinator, installed
on the wearable, uses the device’s accelerometer to track the user’s
movements, and upon detecting significant motion, it coordinates
with both agents so they can start collecting the sensing data. Prior
works [64] have already shown that acceloremeter data can be used
to identify user physical activity. To further minimize the overhead
on the wearable, the agent shutdowns the attack if the heart rate
is below 100 bpm. We selected this limit (100 bpm) as it is the
lowest bpm in every “moderate exercise” target heart rate range as
specified by American Heart Association[7].

Our implementation includes a server to collect the data. The
server runs a clustering algorithm to extract the victim’s most
frequent workout times and determine the workout locations based
on averages of the geolocation coordinates. This algorithm requires
at least a week of data to infer the workout habits accurately.

6 Attack Evaluation

Although we implemented only three attacks, the principle method-
ology is the same for all attacks in Table 6. The key difference is the
feasibility of acquiring the desired permissions by apps on various
devices.

6.1 Feasibility

We evaluate the feasibility of our attacks in terms of the likelihood
of acquiring the required permissions. Our dataset included the top
200 wear apps from the Google Play Store and their corresponding
companion mobile apps. Out of them, we removed 7 pairs of paid
apps, lowering the dataset to 193 apps.

Table 7 shows the feasibility of the 11 different privacy attacks
presented in Table 6 across these top apps. Attack K was excluded
from our analysis because of the lack of ability to specifically filter
Android TV apps. While most of the attacks do not contain every
permission required to launch the attack, many apps do ask for
partial permissions that are required to execute the attack. Multiple
apps have the potential to cooperate in order to perform privacy at-
tacks, not only making the attacks more feasible but also stealthier.
It is less likely that the user will grant to a single app many per-
missions that a user may consider risky. However, the threat arises
when the permissions are spread across multiple apps, and relevant
to this work, even multiple devices, when the individual apps do
not appear to be malicious. The threat is especially exacerbated
when multiple devices are used because of the heterogeneity of
sensors and correspondingly attack surfaces, on different devices.

Figure 3 depicts the number of possible privacy attacks using
the same top 193 apps. The X-axis shows the cumulative number
of multi-device privacy attacks (from the 11 in Table 6) that are
possible the list. The data point "1" on the X-axis indicates that 100%
of the apps have at least 50% of the permissions needed to execute
at least one attack, while 65% of the apps grant all the permissions
needed to execute at least one attack. While the percentage of apps
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containing all the required permissions drops fairly quickly with
increasing the number of attacks, the portion of apps containing
partial permissions drops much more slowly. This highlights the
possibility that attacks can be launched not by an individual app,
but by a set of apps that collude and share data. Such collusion
among apps can dramatically increase the attack surface.
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Figure 3: Cumulative number of feasible attacks from dataset
of top 200 apps.

6.2 Stealthiness

One of the main indicators of a continuous attack is increased
energy consumption, especially on battery-powered devices. We
consider an attack to be stealthy if the resulting energy consumption
is low (or normal). We measure the energy required to conduct the
PoC attacks to understand their overhead. More specifically, we
quantify the energy required to use the sensors and communication
hardware to conduct these attacks. We use the Android Battery
Historian to get an estimate of how much battery the PoC uses
over a time period. We are then able to calculate the rate at which
the attacks consume the device’s battery. By measuring the battery
drawn from the attack, we are able to understand how a user may
notice the attack. For these experiments, we used a Google Pixel 6a
(Android 12) and a Google Pixel Watch (Wear OS 3.5).

Another benefit of MadCap is that it does not need to be con-
stantly using every sensor on the device. In MadCap, we use a
coordinated attack and only use the relevant sensors when nec-
essary. In an uncoordinated attack, every sensor is always on. A
coordinated attack has a Quiescent mode and an Attack mode. More
formally, we can think of the energy used as a random variable, A
for when the attack is Active, Q for when MadCap is Quiescent
and waiting to start the attack. The distribution for power used for
Q will be similar to a device under normal operating times. The
distribution for the total amount of energy used by MadCap will be
a weighted average of the two individual distributions yA+(1-y)Q,
where y € [0, 1] is the relative amount of time the attack is active.
As y — 1, the attack is active more often and uncoordinated. As
y — 0, the attack is inactive more often and coordinated. For
PoC1, a 2020 study [49] showed the average person visits an ATM
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4.4 times per week. Assuming 5 minutes per visit yields y; =2.18e-3.
People spend 1.95 hours a week socializing and communicating
[47]. Using this as an upper bound for PoC2 we get y, =1.16e-
2. For PoC3, it has been shown people spend an average of 5.48
hours/week working out, which gives y3 =3.26e-2. Table 8 shows
the power consumption in our coordinated MadCap attack vs an
uncoordinated attack.

Table 8: Power consumption of each attack.

PoC#| Device Quiescent | Attack State MadCap ) Uncoord. /
State (Uncoord.) (coord) Vi MadCap
1 Mobile 0.08 %/hr 0.08 %/hr 0.08 %/hr | 2.18e-3 1
1 Wearable 0 %/hr 0.31 %/hr | 6.8e-4 %/hr | 2.18e-3 458.7
2 Mobile 0.259 %/hr 2.814 %/hr 0.289 %/hr | 1.16e-2 9.7
2 Wearable 0 %/hr 0.84 %/hr | 9.7e-3 %/hr | 1.16e-2 86.2
3 Mobile 0 %/hr 0.85 %/hr | 2.8e-2 %/hr | 3.26e-2 30.7
3 Wearable| 0.16 %/hr 0.39 %/hr 0.16 %/hr | 3.26e-2 24

* Comparison of the efficiency between an uncoordinated attack and MadCap.
Note that some values are zeroes since there are no sensors required in that state.

7 Answering user privacy queries

Our goal here is to assist users in understanding the feasibility
of privacy risks from a given set of apps on multiple connected
devices. Consider a wearable app that can read the heart rate and
a corresponding companion app on the smartphone that can com-
municate externally through the internet. As we show in Section 6,
there are several possible privacy risks associated with these two
apps. For example, the user’s heart rate can be leaked to an external
server and an external entity can monitor users’ emotions (through
the heart rate analysis [55]). On the other hand, there are certain
privacy risks that are not possible, e.g., leaking the user’s heart rate
to all people in the contact list. This is because the app needs to
read the contact list, which is not granted to any app.
Challenges. There are three main challenges in achieving this.
First, we need a way to identify all the possible behaviors of in-
dividual apps (behavior identification). Although various program
analysis techniques [6, 20, 65] exist for behavior identification, they
either suffer from false positives or false negatives [4]. Furthermore,
the use of native code [2] and obfuscation [18] further exacerbates
the problem. Second, we need to filter out which of these behaviors
are privacy sensitive (filtering). This is because users vary in their
privacy consciousness [53], and consequently, filtering privacy-
sensitive behavior is user-specific. Finally, we need to identify the
combinations of all the behaviors and report them in a user-friendly
description. This is a known hard problem [3, 70], mainly because
users’ perspectives might differ based on the phrasing of the re-
port. For instance, the report “reads storage and communicates
through the internet" seems less alarming than “leaks your data to
an external entity on the internet".

Intuition. Our intuition is that permissions’ capabilities (or behav-
iors) can be modeled as an action (or verb) and related subjects (or
nouns). For instance, one of the behaviors allowed by READ_sMs is the
“ability to read users SMS messages", here the action is “read" and
the subject is “SMS messages". User queries can also be modeled in
the same way. Given a query (i.e., action on a subject) and a list of
permissions, we try to match if the action in the query is allowed
by the permissions.
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7.1 PerQry

We implement our approach in a tool named PerQry. It consist of a
one time Analysis phase and a continuous Interaction phase.
Analysis. Here, first, the user provides a list of apps (APKs), from
which we extract the list of permissions by parsing AndroidMani fest. xml
of each of the app. Alternatively, the user can directly provide the
list of permissions. e.g., INTERNET and BoDY_SENSORS. Next, for each of
the permissions, we extract its description from the official Android
documentation 2. We then tag verbs and nouns in each of these
descriptions using Part of Speech (POS) tagging. The analysis is a
one-time phase for a given set of permissions.

Interaction. After the analysis, the user can interact by asking all
queries of interest in natural language. For every query, we perform
POS tagging to identify verbs and nouns. Then, we try to find these
verbs (actions) and nouns (subjects) in the POS tags identified in the
analysis phase. To handle related words, we use synonyms-based
matching, i.e., two words are matched if they are exactly the same
or synonyms. e.g., "leaked" and "send data" are matched as they
mean the same (synonyms) in the context of privacy.

We then measure the total number of actions and subjects from
the user query matched with that of permissions. If the matched
percentage is more than a configurable threshold, we consider the
behavior described by the query as feasible, else not. To assist
further research, we made PerQry available online and can be
accessed through a browser [51].

7.1.1  Effectiveness. To evaluate the effectiveness of PerQry, we
need a dataset of permission queries along with the expected answer.
Unfortunately, there is no labeled dataset of privacy queries.
Dataset. To handle this, we manually created a query dataset. We
create 5 categories each with 5 groups of permissions. Category 1
has items that have a single permission in each, category 2 with
two permissions in each, and so on. For each of the 25 groups, we
have one query. For each category, of the 5 queries, 3 are positive
and 2 are negative. A positive query means the answer to the query
is a “Yes" and a negative query means the answer is a “No". The mix
of positive and negative queries helps us evaluate both precision
and recall of our PerQry.

Examples. An example of a positive query (i.e., the expected result
is “Yes, it is possible”) for a permission group with two permissions
(BODY_SENSORS, ACCESS_FINE_LOCATION) is “Can the app leak where I work
out?”. Here as we can see that BoDY_SENSORS permission enables the
app to read heart rate, which can be used to infer workout activity.
Similarly, location permission enables the app to precisely find
the location. These two information pieces can be combined to
know “where” (i.e., location) the corresponding user works out. On
the other hand, a negative query, for a permission group with one
permission (BODY_SENSORS) is “Can the app leak my contacts?”. Here the
above permission only enables apps to read sensor information and
does not provide access to contacts. Hence, the expected outcome
of the above query is “No”.

Results. Table 9 shows the result of running PerQry on our dataset
by setting the matching threshold to 70%, as it gives the maximum
overall accuracy. As mentioned in Section 7.1, threshold indicates
the percentage of nouns and verbs in the given query that should

Zhttps://github.com/aosp-mirror/platform_frameworks_base
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Table 9: Effectiveness of PerQry with threshold 70%.

# permissions # queries TP FP -
Cat. per group Positive Negative Rate Rate Precision Recall
1 1 3 2 [ o5 0.75 1
2 2 3 2 0.5 0.75 1
3 3 3 2 0.6 1
4 4 3 2 0.66 1 0.66
5 5 3 2 033 [0 1 0.33
Cumulative 15 10 0.6 0.3 0.75 0.75

* As mentioned in Section 7.1.1, each category contains 5 groups of permissions.
The number of permissions in a group varies with different permissions. There is
one query (positive or negative) per each permission group.

be matched in the permissions description. The overall precision
and recall of PerQry is 75% on our dataset.

Finding 5: It is feasible to answer users’ multi-device privacy-
related questions using NLP techniques on permissions.

7.1.2  Limitations. Although we aim to answer all user queries pre-
cisely, the tool currently cannot handle “non-first-order queries".
PerQry tries to answer user queries under the assumption that
the queried behavior is present directly in the behaviors extracted
from the apps’ permissions. We call such queries first-order as
there is a direct correspondence between queried behavior and
apps’ behaviors. However, there are certain behaviors that cannot
be identified directly from the apps behavior as they require addi-
tional reasoning over apps behaviors. For instance, as shown by
the recent study [55], we can detect user emotions using INTERNET
and BODY_SENSORS permissions. However, according to PerQry, this
is not possible because additional reasoning of mapping human
emotions to heart rate is missing in the behaviors extracted from
apps permissions. We call such queries non-first order queries. These
cannot be answered by PerQry.

7.2 Integration

Here, we discuss how PerQry can be integrated into the mobile OS
to improve the security and privacy of users’ devices.

Play Store service. The current mechanism adopted by most mo-
bile OSes for capturing malware apps focuses their effort on the app
submission process. Here, developers must follow market guide-
lines and pass many filters to be able to publish an application in
the app market. However, as it has become evident, this process
has faults and does not constitute the best way to detect malicious
applications [57, 67]. A malware app may bypass the Google Play
Store security mechanism and attack thousands or even millions
of victims before Google takes it down. We propose to enhance
this process by integrating tools such as PerQry. In the proposed
scheme, the market app (i.e., Google Play Store) has a more active
role in detecting possible security infringement, besides making
the user more aware of permissions requested by apps she intends
to install on their devices. For example, the market app can alert
the user of unusual permission requests by an app or possible collu-
sion attack from a set of apps, including apps already installed and
the app intended to be installed by the user. In the latter scenario,
PerQry can analyze the union set of permissions from apps that
can communicate with each other—communication partners can be
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detected through static analysis techniques. To this end, we build a
prototype application that mimics the Google Play Store app’s func-
tionality, called GPlay Secure. In contrast to the default market app,
our prototype warns the user of possible privacy vulnerabilities on
her devices. For example, GPlay Secure alerts when an app requests
sensitive permissions (e.g., BODY_SENSOR), or when a collusion attack
is plausible.

Evaluation. We conduct a user study in AMT to assess the effective-
ness of GPlay Secure minimizing privacy attacks on multi-platform
scenarios. We deployed GPlay Secure on an Android emulator and
crafted ten independent scenarios for the study. In each scenario,
we asked the participants to install two different apps on two paired
devices (i.e., a mobile and a wearable)—one app per device. Our
dataset included malware apps that can collude with each other
to orchestrate a privacy attack. We divided the participants into
two groups. The first group (experimental) interacted with GPlay
Secure to install the apps. In contrast, the second group (control)
used a market app that did not include our modifications. This app’s
functionality mimicked the Google Play Store and was used to vali-
date if GPlay Secure provides any improvements to the default app.
We had 120 participants in the study but removed those that failed
the control questions for quality purposes, leaving us with 51 and
52 in the experimental and control group, respectively (103 total).
Results. Overall, our proposed solution was able to reduce the
number of malicious apps installed by 8% (381 in the control group
vs. 352 in the experimental group). Moreover, GPlay Secure was
not only useful to reduce malwares, but also to increment the en-
gagement of the participants in 20s per scenario with respect to the
participant from the control group.

Our technique, GPlay Secure, dissuaded 20 of the 51 partici-
pants (on 45 total occasions) from installing a malicious app on
the devices, which means that participants acknowledged the
possible risk and decided to install another app.

8 Related Work

Privacy attack on Android and contextual inferencing. Pri-
vacy attacks on Android phones is a widely explored area, including
privacy threats due to location sharing [14], sharing of crowdsensed
or crowdsourced information [15], or sharing of other context, such
as which apps are being used together [13]. The defense mecha-
nism spans techniques from using randomization, adding noisea
la differential privacy [40], applying holomorphic identity-based
encryption (IBE) [25], and many others. However, these works fail
to consider using information from multiple devices belonging to
the same user. Zimmeck et al. [72] puts together information for a
specific user across devices but focuses on vastly different contexts
involving browsing websites. More directly, our work it is inspired
on early research that leverages context for designing accurate in-
ferencing on mobile phones or for mobile crowdsensing [46, 69].
Our attack work turns this on its head and uses context, from two
devices, to expose the privacy attack surface. Some of this context-
based work has also been done for wearables [26]. As noted earlier,
we borrow this idea of inferring context and then apply it to decide
the most opportune time window for a privacy attack.
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Privacy attack on wearables. An early seminal work that sounded
the alarm on possible privacy breaches due to the use of wear-
able sensors was by Raij et al. [52]. Several other works have shed
more light on the privacy implications of widespread wearable
usage [16, 17, 73]. A common pattern is called the “input infer-
ence attack", which consists of two steps: keystroke detection and
keystroke inference [38, 44, 62]. Keystroke detection can also be
performed by utilizing the audio signal [38] recorded by the mi-
crophone available on the smartwatch. Our work can be thought
of as a logical extension of this line of work. We infer the context
from multiple devices related to user’s physical signals (e.g., heart
rate) from the wearable and cyber signals (e.g., location) from the
smartphone. Further, so far there has been a separation between
two domains. Some take a human-centric view of the privacy is-
sues (and perform user surveys and/or qualitative interviews) and
a disjoint set of works take a technology-centric view outlining
attacks and defenses. Our work bridges the two and uses the survey
and app executed by the users to understand the attack surface and
then to design practical attacks on real devices.

NLP for privacy. It is known that privacy policies are hard to
understand for common users [53]. Therefore, automated privacy
policy creators [3, 70] have been proposed and shown to be effective.
Nan et al.[45] used keyword matching to identify privacy-sensitive
APIs. Our work focuses on custom queries based on the given data.
Unlike prior works, we have neither a known set of keywords (e.g.,
privacy-related keywords) nor a known format of the questions.
Extensive work on using NLP techniques to analyze app reviews [32,
59] use supervised learning techniques and require a large amount
of labeled data. Unfortunately, there is no dataset for first-order
privacy queries, which makes the existing techniques inapplicable.

9 Conclusion

We have raised the issue of user-centric privacy in the context
of multiple personal devices, e.g., mobiles, wearables, and smart
appliances. The tight coupling between these devices raises a new
attack surface for privacy violations. Further, context as gathered
from one or more devices can make these attacks more stealthy. Our
user study through a survey, a permission discovery tool Permeso,
and an NLP query tool for privacy scenarios PerQry provide three
key insights. First, a significant majority of the users have no qualms
about granting permissive permissions spanning multiple devices
(Table 1). Second, there is a significant discrepancy between the
survey responses on what permissions the user feels safe providing
and the actual permissions they have provided on their wearable
and mobile devices (Table 4). This discrepancy is more pronounced
for some categories of apps, such as Music & Audio and Productivity.
We find that counter-intuitively, this discrepancy is not dependent
on the popularity of the apps (Figure 1), i.e., it is not the case that
the user is granting more permissions to popular apps relative to
what she says in the survey, compared to apps from obscure sources
(within each application category). Third, looking at the top 193
wearable apps, we discover that even when permissions given by
a single app are not enough to enable many of the multi-device
privacy attacks, multiple apps can collude to achieve many of the
attacks (Figure 3 and Table 7). Finally, our proposed solution based
on the integration of PerQry to the Google Play Store services,
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provides a better barrier to catch malicious coordination between
apps; thus enhancing user privacy.
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