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A B S T R A C T

Fine particulate matter (PM2.5) is a major health and environmental concern, with significant spatiotemporal 
dynamics in urban areas. Low-cost air quality sensor (LCS) networks offer a paradigm-changing opportunity to 
acquire high spatiotemporal resolution data, revealing the urban pollution landscape with sufficient detail for 
effective policymaking and health assessment. This study advances geospatial air quality research by using 
classic and spatial Markov chains to analyze the seasonality and intra-daily variations of PM2.5 using LCS data. 
Results highlight distinctive PM2.5 seasonality, with the “Good” state predominating in summer and being least 
common in winter. Midday is the peak period for the “Good” state, while mornings and nights have poorer 
conditions, suggesting a need for stricter pollution control during evening traffic rush hours. Notably, the impact 
of temporal scale on spatial Markov analysis is substantial, showing a broader range of air pollution states, 
increased stability, and reduced variation between time intervals compared to daily assessments. Site-level 
analysis reveals that rural sites are more likely to maintain “Good” state and less likely to transition out of it. 
Overall, this study highlights the effectiveness of high spatiotemporal resolution data and demonstrates the 
capacity of Markov chains to reveal nuances in phenomena such as air pollution.

1. Introduction

Fine particulate matter less than 2.5 μm in diameter (PM2.5) is a 
prominent air pollutant, exerting substantial impacts on human health 
and the environment (Brunekreef & Holgate, 2002; Locosselli et al., 
2019; Song et al., 2022). As the leading cause of global disease burden 
(Murray et al., 2020), PM2.5 exposure is linked to premature mortality 
(Brunekreef et al., 2021; Mahler et al., 2023; Wang et al., 2022) and 
various diseases including heart disease (Alexeeff et al., 2021), lung 
cancer (Hamra et al., 2014), and other respiratory diseases (Lei et al., 
2023).

Given the notable impacts and prevalence of PM2.5 in urban envi
ronments, city decision-makers and stakeholders need high 

spatiotemporal air pollution data for policy refinement, evaluating 
mitigation efforts, and tracking progress toward urban Sustainable 
Development Goals. Two research questions are particularly important 
at the city level: How do PM2.5 levels evolve over time and how do 
spatial relationships impact these patterns? Is there discernible evidence 
of seasonal and intra-daily variability in PM2.5 levels? Many studies on 
spatiotemporal air pollution variations are often conducted on a 
regional to continental scale using median to coarse resolution data (e. 
g., Kalisa et al., 2023; Huang et al., 2021). This resolution is inadequate 
for capturing the fine-grained variations needed to estimate and miti
gate risks at the individual or community level (Hart et al., 2020). While 
the gold standard of air pollution exposure assessments is personal 
measurements, collecting such measures for large populations remains a 
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major challenge due to cost and logistical constraints (Larkin & Hystad, 
2017). Sparsely located government-regulated air quality stations are 
often found only in populated cities (Badach et al., 2023; Bi et al., 2020). 
Low-cost sensor (LCS) networks have emerged as a paradigm-shift so
lution to supplement conventional regulatory stations (Snyder et al., 
2013). These dense sensor networks make it feasible to understand 
localized spatiotemporal pollution patterns (Wang & Brauer, 2014).

One opportunity, yet a challenge, in analyzing high spatiotemporal 
resolution data is how to effectively distill useful information that 
traditional datasets cannot reveal. Markov chains, which model state 
transitions over time, have often been used for analyzing temporal dy
namics. However, they neglect the spatial complexities and interactions. 
Spatial Markov chains (Rey & Franklin, 2022) address this by incorpo
rating geographically adjacent observations, which is crucial for systems 
like air pollution with both high temporal and spatial dependence 
(Huang & Kuo, 2018; Yang et al., 2023). Previous studies have examined 
spatiotemporal patterns of air pollution distribution using Markov 
chains (Asadollahfardi et al., 2016; Caraka et al., 2019; Holmes & 
Hassini, 2021) and to a lesser extent, spatial Markov chains (Alyousifi 
et al., 2020), yet these studies possess limitations. First, seasonality was 
largely ignored despite evidence of seasonal PM2.5 variations (Bodor 
et al., 2020). Secondly, the intra-daily patterns are rarely investigated 
due to the complexity and meticulousness required to capture 
short-term pollution fluctuations, compounded by acquisition and pro
cessing limitations of data at high temporal resolutions. Thirdly, most 
previous Markov chain analyses focus on overall trends, but divergent 
trends across different sites, influenced by unique site interactions with 
the urban environment, should be considered.

This study leverages a high spatiotemporal resolution PM2.5 dataset 
obtained from a LCS network deployed across Denton County, Texas 
(Liang et al., 2023), aiming to gain a deeper understanding of air quality 
in a region historically affected by pollution (EPA, 2022). We seek to fill 
the gaps by employing Markov chains to investigate the intra-daily and 
seasonal trends of PM2.5variations, alongside analyzing the spatial pat
terns and the associated influences from the urban built environment.

2. Theory and calculation

2.1. Classic Markov chains

A (finite) discrete-time Markov chain is a stochastic process that 
follows the Markov property, which states that the conditional proba
bility of the next state Yt+1 = Xj depends solely on the current state Yt =

Xi (Hillier & Lieberman, 2010). 

P
(
Yt+1 = Xj

⃒
⃒Y1 = Xt1 , Y2 = Xt2 , …, Yt = Xi

)
= P

(
Yt+1 = Xj

⃒
⃒Yt = Xi

)
(1) 

A Markov chain can be estimated using maximum likelihood esti
mation (MLE). Given the number of transitions tij from state Xi to state 
Xj, one can estimate transition probabilities by 

p̂ij =
tij

∑N

j=1
tij

, (2) 

Transition probabilities are organized into a transition probability 
matrix P̂, of dimension k × k, where k is the number of Markov states. 
The transition matrix is the core of the Markov chain model, which 
governs the dynamics of the system under study.

Assuming a time-homogeneous Markov chain where the transition 
matrix is consistent over the study period, the system could converge to 
a steady-state distribution (π) where the probability of being in each 
state is fixed while the system’s dynamics is still governed by the tran
sition matrix. This steady-state distribution serves as a probabilistic 
prediction of the air pollution in the long run assuming the current 
transitional dynamics persists. Mathematically, this distribution π = P̂π 
can be calculated using linear algebra methods, since π is an eigenvector 

of P̂.
Another useful property is the First Mean Passage Time (FMPT), 

which represents the average number of transitions for the system to 
reach a specific state Xj from the current state Xi. The FMPT is given by 

π = Pπ (3) 

Where fijn denotes the probability of reaching state j for the first time 
after n time steps, given that the system begins in state i: 

fij
n

=
∑

k∕=j
pikfkj

n−1 (4) 

This results in a system of linear equations that can be solved using 
standard methods. In general, this expression will only converge when 
fij = 1, meaning that the system will eventually reach state j from state i. 
However, if fij < 1, the system may never reach state j from state i, 
making the FMPT infinite.

The last Markov chain property of interest is the sojourn time. The 
sojourn time for a given state represents the average number of transi
tions needed to leave that state, thus measuring the stability of each 
state. Unlike FMPT, the sojourn time only focuses on exiting a state 
without considering the transitional state for the system. If M is the 
number of transitions required to leave state i, then: 

P( M = n) = pii
n−1 × (1 − pii) (5) 

The sojourn time can then be calculated as 

ST = E(M) =
1

(1 − pii)
(6) 

2.2. Spatial Markov chains

Spatial Markov chains extend the capacities of classic Markov chains 
by accounting for spatial effects (Rey, 2001; Rey & Franklin, 2022). 
Spatial Markov modeling starts with defining the spatial relationship 
between observations. The spatial weight between pairs of observations 
represents the strength of the relationship between them. Two standard 
methods are binary weighting (assigning one to observations within a 
set distance; 0 otherwise) and inverse distance weighting (assigning 
weights reciprocal to the distance between observations within a certain 
threshold). After organizing these spatial weights into a matrix W, the 
spatial lag of an observation i at a given time Li, t is defined as a weighted 
average of neighbor states, where N is the number of sensors: 

Li,t =
∑M

j=1
Wij ∗ yj,t, (7) 

The spatial lag for each observation at each time point was further 
discretized into six air pollution states as defined in Table 1. Instead of 
assuming a single transition matrix governing the air pollution dynamics 
, the Spatial Markov approach generates k (k = 6, in this study) k × k 

Table 1 
Air quality categories based on EPA PM2.5 standards and corresponding sample 
sizes.

Air quality 
category

Acronym Concentration 
range (μg/m3)

Daily 
sample 
size

Hourly 
sample size

Good G 0–12.0 8147 221,579
Moderate M 12.1–35.4 2888 64,895
Unhealthy for 

Sensitive 
Groups

USG 35.5–55.4 134 5552

Unhealthy U 55.5–150.4 4 1239
Very Unhealthy VU 150.5–250.4 1 53
Hazardous H 250.5+ 0 19

Note: Sample sizes denote the total number of occurrences of each state, i.e., the 
number of days or hours which occupy that state.
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transition matrices, each of which is conditioned on one of k spatial lag 
states. Observations are partitioned by spatial lag, and a Markov chain is 
fit to each partition, thus enabling analysis of how spatial effects influ
ence transition dynamics.

We used Ordinary Kriging to establish neighbor sets for each sensor 
based on a distance threshold where spatial autocorrelation becomes 
insignificant, guiding the calculation of inverse distance weights 
(additional details in SI). We fitted the Spatial Markov chains using MLE 
(Equation (2)), analyzing transitions for one spatial lag at a time. We 
derived three Markov chain properties: the steady-state distribution, 
FMPT, and the sojourn time.

2.3. Hypothesis tests

To investigate temporal scale, seasonality, and intra-daily effects, we 
fitted classic and spatial Markov chains to prepared LCS datasets, 
comprising: 1) hourly and daily data for the entire year; 2) seasonal 
datasets at both hourly and daily resolutions; and 3) hourly data 
segmented by time of day. Statistical tests were employed to assess the 
significance of differences in transition matrices for seasonality and 
intra-daily patterns, using a series of Х2 tests at a significance level of 
5% to evaluate transition matrix homogeneity (Bickenbach & Bode, 
2003). The null hypothesis states identical transition dynamics across 
systems, as indicated by unchanged transition matrices capturing the 
system’s full dynamics.

3. Data and methods

3.1. Sensor network and study area

Nested within the suburban area of the Dallas-Fort Worth metroplex 
in Texas (Fig. 1), Denton County spans an area of 2468 km2 and hosts a 
densely populated community of nearly one million residents. 
Renowned as one of the fastest-growing counties in the U.S. (US Census 
Bureau, 2023), Denton faces persistent and longstanding air pollution 
issues (EPA, 2022) yet relies solely on a single regulatory PM2.5 air 

quality monitoring station (Fig. 1). In response to this challenge, an 
initiative was launched to deploy a network of 85 PurpleAir (PA) sensors 
across Denton County, each equipped with two PMS5003 laser scat
tering particle counters for cross-checking (Liang et al., 2023). When 
light collides with the particles in the air, scattering occurs, enabling the 
estimation of particle counts based on particle diameter (Plantower, 
2016). A proprietary count-to-concentration algorithm CF = ATM for 
outdoor sensors was then used to translate particle count into mass 
concentration (μg/m3) by assuming an average particle density (Liang, 
2021; Liang & Daniels, 2022). PA sensors continuously record real-time 
data, providing updates every 2 min and offering the option to download 
hourly data.

3.2. Low-cost sensor data processing

We collected 1-year hourly PA data from December 2021 to 
November 2022. Given that LCS devices (e.g., PurpleAir) can be sus
ceptible to errors in particle counts, the conversion to concentration, and 
the influence of the ambient environment on LCS performance (Liang, 
2021), we implemented a series of data pre-processing steps. We first 
removed data points with temperature values outside the 0–1000 ℉ 
range, relative humidity values exceeding 100%, or PM2.5 values above 
500 μg/m3. Additionally, we tested sensor channel agreement by dis
carding records if the two PM2.5 readings from a sensor differed by more 
than two standard deviations from the mean of the overall dataset or 5 
μg/m3 (Liang & Daniels, 2022). These two steps resulted in removal of 
143,907 and 207,730 (1.8% and 2.7%) of the data, separately. We then 
applied a neural network-based calibration method, developed using 
collocated PA and regulatory instruments across the U.S. to calibrate our 
data (Liang & Daniels, 2022). By comparing with the data collected from 
the nearby regulatory station, the calibration has improved the R2 be
tween PA and reference data to 0.94, with an RMSE of 1.5 μg/m3.

In addition to the hourly dataset, we compiled a daily aggregated 
PM2.5 dataset for assessing seasonality. Data from days with data 
completeness below 90% were removed to ensure aggregation accuracy, 
and L1 outlier detection was applied to eliminate extreme values. 

Fig. 1. The spatial distribution of deployed LCS sensors (a) in Denton County, Texas (state and regional location shown in b, c). The annual means of PM2.5 collected 
by the sensors were color-coded according to the EPA standard.
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Subsequently, we averaged all hourly data by day. For detailed pre
processing steps, refer to Liang et al. (2023). Subsequently, we dis
cretized the PM2.5 concentration data into six distinct states representing 
varying levels of air quality standards (Table 1), serving as input for the 
Markov chain models.

Data gaps at a location can stem from prolonged sensor disconnec
tion from Wi-Fi or random missing timesteps caused by inaccuracies, 
resulting in significant discrepancies between two sensor channels. 
These data gaps pose challenges in subsequent Markov chain modeling, 
though the impact of any form of missing data is unclear. To address 
this, we conducted sensitivity analyses and artificial removal tests, 
finding that missing data chunks over 20% of the time period notably 
impact results, while randomly missing timesteps have negligible effects 
(additional details in SI). Consequently, we excluded sensors with 
missing chunks exceeding this threshold of the time period in question 
for each time period we are fitting a Markov chain for (i.e., the entire 
year and each season).

3.3. Defining seasons and time of day

We defined the seasons in Denton County as March to May (spring), 
June to August (summer), September to November (fall), and December 
to February (winter). For the intra-daily analysis, we categorized the 
hourly data into distinct time-of-day segments based on local traffic 
patterns and preliminary exploration of PM2.5 data. The DFW area’s 
typical morning and evening rush hours are 6:30 a.m.-9:30 a.m. and 
3:00 p.m.-7:30 p.m. (Sneed, 2022; TexasView, nd). Moreover, the 
exploratory data analysis of PM2.5 intra-daily patterns reveals a consis
tent trend across all seasons: an initial rise at 5 a.m., peaking at 8 a.m., 
descending until 5 p.m., followed by a renewed uptick (Fig. 2). This 
observation led to the definition of the following time segments: 5 a. 
m.–10 a.m. as morning, 10 a.m.-3 PM as midday, 3 p.m.–9 p.m. as 
afternoon/evening, and 10 p.m.-5 a.m. as night. A Markov chain model 
was then fitted to each time segment, running for the entire year and 
each season.

3.4. Spatial pattern analysis of site-level Markov chain

To understand the spatial trends and their environmental drivers, we 
conducted site-specific Markov chain analyses across the LCS network. 
For each site, we computed four properties: steady probabilities of 

“Good” and “Moderate” state, and sojourn times in each state. We 
further quantified nine different built environment variables—percent
age of impervious surface, average tree height, and average building 
height—at three buffer sizes (200 m, 500 m, 1000 m). Impervious sur
face data was derived from a 2022 land cover map produced using im
agery from the National Agriculture Imagery Program and classified 
with the deep-learning UrbanWatch FLUTE framework (Zhang et al., 
2022). Building and tree height models were generated from 1-m 
airborne LiDAR data, achieving an accuracy of less than 0.286 m by 
comparing against the ground truth. Further methodological details can 
be found in Liang et al., 2023. We then correlated each built environ
ment variables with the Markov chain properties to discern potential 
drivers.

4. Results

4.1. Classic Markov chain results

4.1.1. Diurnal and hourly patterns
Throughout the entire year, we observed daily transitions among the 

“Good”, “Moderate”, and “USG” states (Fig. 3a and 4). Specifically, the 
“Good” state showed a high likelihood of remaining “Good” (0.817), 
while the “Moderate” state had nearly equal probabilities of persisting as 
“Moderate” (0.499) or transitioning to “Good” (0.481). The “USG” state 
showed a strong probability of transitioning to “Moderate” (0.823). The 
“Good” state had the longest sojourn time (5.5 days), meaning it took an 
average of 5.5 days to leave the “Good” state. In contrast, it did not take 
long to leave the “Moderate” state (2.0 days) and “USG” state (1.0 day). 
These trends align with FMPT results, where the “Good” state requires 
1.4 days to revert to itself and 5.6 days to transition to the “Moderate” 
state. In contrast, the “Moderate” state takes 3.7 days to return to itself 
and 2.1 days to reach the “Good” state. The steady-state distribution 
reveals that air quality is predominantly “Good” for most days (71.8%), 
followed by 26.9% in the “Moderate” state in the long run.

Hourly patterns closely mirror daily patterns, albeit with minor 
variations. The “Good” state occupies 75.6% of the time, while the 
“Moderate” state accounts for 22.1% in the long run. A fair degree of 
stability prevailed throughout the year, with less stability for more se
vere pollution states. For instance, the sojourn time of the “Good” state 
notably exceeds that of the other states by four to 13 times (Fig. 4). 
FMPT indicates that the “Good” state requires significantly less time to 

Fig. 2. Hourly average PM2.5 concentrations for each season.
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return to itself (1.3 h) than transition to the “Moderate” state (26.5 h). 
The “Moderate” state reverts in about 4.5 h, reaches the “Good” state in 
around 8.5 h, and requires notably more time to transition to worse 
states. Additionally, the USG and Unhealthy states usually shift to the 
“Moderate” state after 5.8 h and 9.2 h, respectively.

4.1.2. Seasonality patterns
Seasonal differences in transition probabilities are statistically sig

nificant, as indicated by Х2 tests for Markov homogeneity (Fig. 3b–e). 
Sojourn times generally followed consistent seasonal trends when 

compared to the entire year. However, a notable exception was observed 
in summer, during which the “Good” state displayed an extended 
sojourn time of 9.6 days. Steady-state distributions also displayed sea
sonal variability, with spring resembling the overall pattern. In summer, 
a greater portion of days (83.8%) were in the “Good” state, which 
dropped to 63%–66% in fall and winter (Fig. 5).

Unlike the daily-scale results, we did not identify any exceptional 
cases at the hourly-scale. Although each season’s transition probability 
matrix patterns appear like the overall year’s pattern (Fig. 3g–j, Fig. 4), 
the Х2 tests indicate their noteworthy distinctions (Table S5). Similar 

Fig. 3. Transition probabilities: daily (a–e) and hourly (f–j) scales for the whole year, spring, summer, fall, and winter. Grayed boxes indicate small sample sizes (less 
than 150 transitions). G: Good; M: Moderate; USG: Unhealthy for Sensitive Groups; U: Unhealthy; VU: Very Unhealthy; H: Hazardous.

Fig. 4. State diagrams of classic Markov models for daily scale (top row) and hourly scale (bottom row). Larger circle nodes indicate longer sojourn times and thicker 
lines indicate larger FMPTs. Transition probabilities are labeled. G: Good; M: Moderate; USG: Unhealthy for Sensitive Groups; U: Unhealthy; VU: Very Unhealthy; 
H: Hazardous.
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trends are noted in the sojourn times for each season, mirroring the 
overall year’s pattern, with the “Good” state showing notably height
ened stability during summer (additional information in SI). Addition
ally, the trends in steady-state distributions broadly resemble those 
observed at the daily scale. Summer still commands the largest share of 
the “Good” state (84.9%), compared to the overall yearly pattern’s 
75.6%, while winter exhibits the smallest portion of the “Good” state 
(69.9%).

4.1.3. Intra-daily pattern of PM2.5 variation
During morning hours, the “Good” state dominates, ranging from 

55.5% in spring to 83.7% in summer, with a yearly average of 71.6%. 
Morning sojourn times often surpass the actual time window, implying 
high stability. Midday sees higher stability for the “Good” state across all 
seasons than the morning period, evident through greater transition 
probabilities and longer sojourn times. For example, in the fall, the Good 
state’s sojourn time is around 27 h compared to 7.3 and 2.2 h for the 
Moderate and USG states, respectively. Generally, the “Good” state oc
cupies 87%–90.5% of the midday period, with fall and winter displaying 
a larger proportion than spring and summer. Afternoon/evening is 
relatively stable in the “Good”, “Moderate”, and USG states. Seasonal 
“Good” state proportions vary more dramatically among seasons, 
ranging from 72.8% yearly average to 86.3% peak in summer and 57.8% 
trough in winter. While the “Good” state predominates during nighttime 
on average, it occupies less time than other periods. This is particularly 
evident in fall and winter, with their lower proportions (59% and 
62.8%) than in spring and summer (72.4% and 82.2%).

4.2. Spatial Markov results

4.2.1. Daily and hourly patterns for an entire year
At the daily scale, spatial Markov chains showed significant spatial 

dependence among LCS sites, with average lags of Good and Moderate, 
indicating neighbors’ states as “Good” or “Moderate”. A χ2 hypothesis 
test indicates the statistical significance of spatial effects at the daily 
scale, meaning a location’s PM2.5 air quality state depends on the state of 
its neighbors. The “Good” state shows more substantial stability under 
an average lag of Good than Moderate: the staying probability decreases 
from 82.6% to 77.9%, and the sojourn time decreases from 5.7 to 4.5 
days. While the “Moderate” state generally exhibits lower stability, its 
stability improves under a “Moderate” average lag compared to a 
“Good” average lag, as indicated by an increased probability of 
remaining from 43.4% to 52.2% and a longer sojourn time from 1.8 to 
2.1 days. Furthermore, despite its small sample size (n = 58), the USG 
state was observed more frequently and demonstrated lower stability, 
with a high likelihood (84.5%) of transitioning to “Moderate”.

At the hourly scale, in addition to lags of Good and Moderate across 
all seasons, there were also limited instances of average lags for “USG” 
and “Unhealthy” states. Across all lags, we observed a notable level of 
hour-to-hour stability, as evidenced by elevated probabilities along the 
diagonals of the transition matrix. Under an average lag of Good, the 
“Good” state maintains a predominant role, occupying 72% of the time 
with a 106-h sojourn time. The “Moderate” state follows with a 26%- 

time occupancy and a 39-h sojourn time, while the remaining “USG” 
state has a 25-h sojourn time. In scenarios of “Moderate” average lag, a 
subtle shift occurs: the dominance of the “Good” state decreases to 68% 
and a 91-h sojourn time, while the “Moderate” state gains more influ
ence, taking up 28% of the time with a 41-h sojourn time. The “USG” 
state, now occupying 4% of the time, maintains its 25-h sojourn time 
(Fig. 6).

Interestingly, the hypothesis test conducted at the hourly scale fails 
to reject the null hypothesis of spatial homogeneity (p = 0.128), likely 
due to less hour-to-hour variation. As a result, the findings from the 
hourly spatial Markov analysis align with those from the classic Markov 
analysis.

4.2.2. Seasonality of daily and hourly patterns
At the daily scale, spatial Markov analysis reveals seasonal patterns 

similar to traditional Markov chains, particularly evident under “Good” 
average lag conditions. However, under “Moderate” average lag con
ditions, the “Moderate” state shows distinct seasonal patterns, remain
ing stable in summer and winter, transitioning more to “Good” state in 
spring and displaying variability in fall. Notably, under “Moderate” 
average lag conditions, spring and fall exhibit reduced stability in the 
“Moderate” state, with shorter sojourn times and increased probabilities 
of transitioning out of, less pronounced in summer or winter.

We observed seasonality in the hourly-scale spatial Markov results 
(Fig. 6). In fall, akin to the overall year, the “Good” state prevails with an 
average lag of “Good” (74% the of time; sojourn time of 127 h). With a 
“Moderate” average lag, the “Good” state decreases to 54% of the time 
and a 56-h sojourn time. Summer shows a similar trend, with the “Good” 
state dominant for both “Good” (85% of the time) and “Moderate” lags 
(79% of the time). Spring has mixed results. The “Moderate” state be
comes slightly more stable but less prominent when the average lag is 
“Moderate” compared to “Good”, with the occupancy time increasing 
from 15% to 24% and the sojourn time increasing from 35 to 37 h. 
Winter follows a comparable pattern to spring, albeit with the addition 
of the “USG” state. Under an average lag of “Good”, the “Good”, 
“Moderate”, and “USG” states respectively account for 63%, 33%, and 
4% of the time. These proportions shift to 64%, 28%, and 7% when the 
average lag is moderate. The stability of the “Moderate” state remains 
relatively consistent with sojourn times of 41 h compared to 41.4 h, and 
an unchanged probability of 97.6% for remaining in the “Moderate” 
state.

Spatial effects were insignificant at the hourly scale during spring, 
summer, and winter, with p-values of 0.605, 0.846, and 0.898, respec
tively. Nonetheless, during fall, spatial effects were found to be signifi
cant at the hourly scale with a p-value of 0.031.

4.3. Site-level Markov chain analysis

The site-specific Markov chain analysis reveals a clear spatial strat
ification across the landscape, with a noticeable trend of decreasing 
steady probabilities of “Good” state observed from rural to suburban to 
urban areas (Fig. 7a and Fig. 8a). Sojourn times in “Good” state exhibit a 
similar trend, where urban sites tend to be more likely to transit out of 

Fig. 5. Steady-state distributions for classic Markov at the daily scale (a), classic Markov at the hourly scale (b), spatial Markov at the daily scale with an average lag 
of Good (c), spatial Markov at the hourly scale with an average lag of Good (d), and spatial Markov at the hourly scale with an average lag of Moderate (e).
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“Good” state (Fig. 8c). This trend shows similar patterns across all sea
sons, with the summer showing the least variations of steady probability 
in “Good” state and winter showing the largest variations across 
different urbanization levels. For “Moderate” state, a reversed spatial 
pattern was observed, wherein sites at densely urbanized strata, char
acterized by high impervious surface levels and closer proximity to road 
networks, exhibited higher probability and longer sojourn times in the 
“Moderate” state (Fig. 7b–d, Fig. 8d).

The correlation between Markov chain properties and nine built 

environment variables reveals an interesting pattern (Figs. S8–11). 
Higher impervious surface percentages, taller trees and taller buildings 
exhibit negative associations with steady state probabilities in “Good” 
state but positive correlations with probabilities in “Moderate” state. 
The sojourn times of “Good” state show a similar pattern with built 
environment variables. Conversely, the sojourn times of “Moderate” 
state display essentially no significant relationship with any variables.

Fig. 6. Sojourn times for hourly-scale Spatial Markov with average lags of Good (a) and Moderate (b).

Fig. 7. Spatial distribution of Markov chain results across LCS networks. (a) Steady probabilities of “Good” state; (b) Steady probabilities of “Moderate” state; (c) 
Sojourn times of “Good” state; (d) Sojourn times of “Moderate” state.
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5. Discussion

5.1. Comparison between classic and spatial Markov chains

This study advances the underexplored utilization and comparison of 
classic and spatial Markov chains in understanding the air quality dy
namics. While classic Markov captures dominant state trends, spatial 
Markov reveals nuanced insights often overlooked. In our study, classic 
Markov’s effectiveness diminishes for less dominant states like “Mod
erate”, contrasting with spatial Markov’s comprehensive approach. In 
essence, classic Markov results are a weighted average across all spatial 
lags, strongly shaped by the dominant cases, which is evident from result 
comparison and hypothesis tests.

For scenarios without spatial effects or focusing solely on dominant 
cases, classic Markov is preferred considering its simpler parameter re
quirements and explicit results. However, for a holistic view across all 
scenarios, spatial Markov is superior, particularly in contexts like air 
pollution, where community and stakeholders concerns often focus on 
instances of poorer air quality, which may not be dominant cases. These 
findings align with previous research in various domains, emphasizing 
the importance of considering spatial effects in Markov processes 

(Shepero & Munkhammar, 2018; Wang et al., 2023; Wei et al., 2021).
One challenge in spatial Markov, especially at finer scale like hourly, 

is its computational costs. While fitting the Markov chain is not 
computationally demanding, defining the necessary neighbor sets can be 
challenging, as methods like Ordinary Kriging require substantial time 
and memory resources.

5.2. Effects of time scales on Markov chains

Hourly-scale Markov results reveal a wider range of air pollution 
states compared to daily-scale results, suggesting potential oversight of 
short-lived PM2.5 spikes. While hourly variation is less than daily vari
ation due to the brief duration of 1-h periods, this scale demonstrates a 
broader range of states with minimal variation between consecutive 
timesteps.

Despite short duration of deteriorated air quality states, exposure to 
air pollution over brief periods can have adverse health impacts (Ai 
et al., 2019; Cheng et al., 2021; Xu et al., 2023), highlighting the sig
nificance of monitoring at hourly intervals. This urges the need to sup
plement current national ambient air quality standards, which primarily 
focus on 24-h and annual measurements. While much of the current 

Fig. 8. Boxplot of Markov chain results across different urbanization levels. (a) Steady probabilities of “Good” state; (b) Steady probabilities of “Moderate” state; (c) 
Sojourn times in “Good” state; (d) Sojourn times in “Moderate” state. “n” represents sample size.

M. Biancardi et al.                                                                                                                                                                                                                              Applied Geography 172 (2024) 103414 

8 



research, including deep learning models for PM2.5 prediction (e.g., 
Muthukumar et al., 2022; Qiao et al., 2019; Xiao et al., 2020) and other 
data-driven models of air quality (e.g., Huang & Kuo, 2018) focus on the 
daily scale, future research should consider expanding PM2.5 modeling 
to the hourly scale.

5.3. Seasonal and intra-daily trends

Our study reveals distinct seasonal trends in PM2.5 air quality, with 
“Good” state prevailing across all seasons, most prominently and stably 
in summer, and least in winter, indicating summer as having the most 
favorable air quality. Our findings align with literature from various 
regions (Bodor et al., 2020; Schauer et al., 2003), albeit with some 
discrepancies (Zhao et al., 2018). Lower concentrations were observed 
during the summer, often below the annual mean. Mornings and nights 
generally showed higher levels, with midday having the lowest levels 
except in winter.

During summer, Denton’s high surface heating likely creates unsta
ble atmospheric conditions, promoting wind blow and particle disper
sion, especially in the absence of high-rise buildings to block the wind. 
The increase of wintertime PM2.5 levels could be attributed to enhanced 
anthropogenic emissions for large-scale heating and unfavorable mete
orological conditions, such as low mixed boundary layer height (Chen 
et al., 2020). The nighttime worsening of PM2.5 levels may be due to 
stable atmospheric conditions hindering pollutant dispersion. The 
finding of low midday concentrations implies the role of high temper
atures in lowering air pollution, which coincides with the low concen
trations observed in summer. The influence of morning and evening rush 
hour traffic on air quality is evident. Our findings broadly align with 
existing literature (Javed et al., 2021; Shen et al., 2014; Zhang et al., 
2022).

5.4. Spatial patterns and the association with urban form drivers

The site-specific analysis reveals that while rural sites are more likely 
to maintain “Good” state compared to urban and suburban areas, and 
they are also less prone to transition out of this state. The trend of 
decreasing steady probabilities and easier transitions out of “Good” state 
from urban to suburban to rural areas could be due to their proximity to 
emission sources. The percentage of impervious surface, a key built 
environment factors reflecting urbanization levels, positively correlates 
with lower probability and shorter durations of maintaining in “Good” 
state. Building height serves as an indicator of urban 3D dimension. In 
cities like Denton, where most buildings are not high-rise, taller build
ings appear to hinder pollution dispersion. The unexpected negative 
impact of trees on air pollution regulation contrasts with previous 
findings that highlight their effectiveness in mitigating pollution. 
Despite their potential to reduce pollutants, trees can also emit particles, 
particularly when stressed, and act as vertical infrastructure that traps 
air pollutants. Given Denton’s susceptibility to heat stress, further 
investigation into the role of trees in air pollution mitigation is needed.

5.5. Key findings and implications for urban planning

Spatial Markov results indicate strong evidence for spatial effects 
across all seasons. If neighbors have “Good” air quality, a location is 
more likely to remain or transition to “Good”, while “Moderate” 
neighbors imply stability in the “Moderate” state. This spatial depen
dence aligns with the First Law of Geography, suggesting that improving 
air quality in one area may require improvements in surrounding areas. 
Although our study focuses on the intra-county scale, evidence indicates 
similar effects at larger scales (Liang & Gong, 2020). It is worth noting 
that within our dataset, no location exhibited spatial lags in more severe 
air quality states such as “Unhealthy”, limiting our ability to determine 
spatial effects at worse pollution levels. Nonetheless, future research in 
cities with pronounced air quality issues may shed light on this 

phenomenon.
The evident seasonality and intra-daily variability also have impor

tant implications for policymakers and urban planners. It emphasizes 
the necessity of considering seasonality when assessing policy effects to 
ensure credible outcomes. For example, attributing a drop in average 
PM2.5 concentration from May to August solely to a new policy enacted 
in May requires statistical separation from expected seasonal shifts.

The low concentration during summer and midday highlights the 
strong influence of meteorological factors on air pollution dispersion. 
While meteorological conditions cannot be changed, urban planners 
should consider environmental engineering projects like wind-corridors 
to facilitate PM2.5 dispersion (Beijing Municipal Government, 2017). For 
traffic management, since morning rush hours are typically followed by 
favorable meteorological conditions and evening rush hours by unfa
vorable condition, it is crucial to implement better traffic control during 
the evening to reduce emissions and prevent worsening nighttime 
pollution.

6. Conclusions

This study examines the spatiotemporal patterns of PM2.5 across 
various time scales using classic and spatial Markov chain models. The 
findings reveal distinctive seasonality in PM2.5, with the “Good” state 
prevailing in summer and least in winter. Midday is the time when 
“Good” state is most pronounced, while mornings and nights exhibit 
lower prevalence. While our study confirms the role of grey infrastruc
ture in increasing the air pollution levels, it highlights the need for urban 
planners to consider the adverse impacts of green infrastructure more 
thoroughly. This study, pioneering the use of spatial Markov chain 
methods with high spatiotemporal resolution data from LCSs, highlights 
the potential value of such data and novel approaches for uncovering the 
nuances aspects of the urban pollution landscape that traditional 
observational methods often miss. This methodology allows us to 
identify and analyze fine-scale variations and patterns that are crucial 
for effective policymaking and health assessments.
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