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Abstract

A novel approach was proposed and implemented to assess the confidence of the individual
class predictions made by convolutional neural networks trained to identify the type of fracture in
metals. This approach involves utilizing contextual evidence in the form of contextual fracture
images and contextual scores, which serve as indicators for determining the certainty of the
predictions. This approach was first tested on both shallow and a deep convolutional neural
network employing four publicly available image datasets: MNIST, EMNIST, FMNIST, and
CIFAR10, and subsequently validated on an in-house steel fracture dataset - FRAC containing
ductile and brittle fracture images. The effectiveness of the method is validated by producing
contextual images and scores for the fracture image data and other image datasets to assess the
confidence of selected predictions from the datasets. The CIFAR-10 dataset yielded the lowest
mean contextual score of 78 for the shallow model, with over 50% of representative test instances
receiving a score below 90, indicating lower confidence in the model's predictions. In contrast, the
CNN model used for the fracture dataset achieved a mean contextual score of 99, with 0% of
representative test instances receiving a score below 90, suggesting a high level of confidence in
its predictions. This approach enhances the interpretability of trained convolutional neural

networks and provides greater insight into the confidence of their outputs.
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Nomenclature of the symbols and abbreviations

Symbol/

Abbreviation Explanation
s Contextual score of an individual test instance
S Mean contextual score
Pa Fraction of test image instances with contextual scores less than a value.
k No. of nearest image instances in latent space
T1 A test image instance that belongs to class A
T2 A test image instance that belongs to class B
L Cross-entropy loss function
pi True probability of the i class
Di Prediction probability of the i class
No. of label or class categories in a dataset
z Net input before activation
a Learning rate parameter used ADAM optimizer
Parameter that controls exponential decay rate for first order moment
b estimate in ADAM optimizer
Parameter that controls exponential decay rate for second order moment
& estimate in ADAM optimizer
A small value that prevents non-zero division in ADAM optimizer
X Matrix containing input image pixel values
y/ Latent representation of X
14 Classification probabilities generated by a neural network
w Width of an image instance
h Height of an image instance
X Image dataset containing the matrices of image instances
Z Latent feature matrix of image dataset X
Zcil The it" latent vector components of a query instance
zL The it" latent vector components of a neighboring instance
dg Euclidean distance between a neighbor instance and a query instance
NIST National institute of standards and technology database
MNIST An image dataset that contains handwritten digits from 0 to 9



An image dataset that contains handwritten character digits derived from the

EMINST NIST Special Database 19

FMNIST A standard dataset of Zalando's article images

CIFAR10 A color image dataset of Canadian institute for advanced research consisting
of 10 classes

FRAC An in-house steel fracture dataset

CNN Convolutional neural network

PINN Physics informed neural network

XAI Explainable artificial intelligence

1. Introduction

The increased availability of data and processing power has propelled the use of machine
learning and deep neural networks for engineering mechanics applications. The applications of
machine learning/ deep neural networks in solid mechanics can be broadly classified in to five
classes 1) models used to synthesize microstructures with superior properties employing
generative adversarial networks'?, 2) models that can extract or account for the surface
morphology>* microstructure mechanical property relationships®”’, 3) image classification or
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characterization models where the type and extent of a specific damage®™” or material phase

identification'? and 4) metamodels that are used as surrogates to improve the predictive power and

112 and 5) model calibration'? and fracture and

computational efficiency of numerical simulations
fatigue prediction models!#?°. Several researchers reported very high accuracies in their studies
when deep neural networks are used to solve mechanics problems. This can be attributed to the
use of a very large number of hyperparameters and equally high mathematical transformations in
deep neural networks. For this reason, the deep neural networks overfit the data leading to higher

errors on newer datasets that were not used for training purposes. Hence, accuracy metrics alone

are not enough to raise the confidence levels on data-driven models.

With the increase in the use of data-driven mechanics models, there was also an increased
sense of skepticism as these models do not account for the underlying physics and it is not possible
to unwind the mathematical operations in a neural network to explain how they account for the
complex underlying relationships. This broader concern among engineers and material scientists
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is being addressed employing physics informed neural networks (PINNs and interpretable Al



methods'*1%272°_ The most popular approach in PINNs is to incorporate physics by modifying the
cost function. On the other hand, interpretable Al encompasses several post-hoc methods that are
used on a trained network to provide explanations to the predictions. Several researchers in
mechanics acknowledged the need for improving the reliability of the deep neural networks in
mechanics applications by employing PINNs, some others have embraced the Interpretable Al
techniques to explain the predictions of trained neural networks. Both strategies aim to boost

confidence in deep learning models used in mechanics.

In particular, convolutional neural networks (CNNs) have been increasingly used for the
classification of fracture images due to their ability to achieve high predictive accuracy without
performing complex feature extraction. For instance, Bastidas-Rodriguez et. al. proposed a
modified deep adaptive wavelet network with adaptive lifting schemes to classify the metal
fracture images into ductile, brittle and fatigue categories *°. Their model achieved 74.7% accuracy
on a real-scale dataset with a network with 174K parameters and 63.7% accuracy on SEM dataset
with 19M parameters. Similarly, Algahtani et. al. utilized CNNs to classify fatigue crack damage
in polycrystalline alloys into no-risk, low-risk and high-risk categories, achieving around 90%
accuracy °!. CNNs have also been employed to distinguish fractures into cleavage, dimple and
intergranular type 2. In all these studies, the focus was solely on the predictive power and
computational efficiency of the classifier models, with little attention given to the reliability of

individual predictions.

This gap highlights the growing need for interpretability measures that can complement
predictive models by providing insights into their decision-making processes. Deep neural network
models, with interpretability measures, can gain significant trust from users by providing a clear
understanding of their predictive behavior. Interpretable white-box models are particularly trusted
due to their transparency but have limitations in predictive capability and application scope®®. The
level of understanding derived from DL models also relies on the users' domain expertise.
Attribution-based post-hoc interpretation methods are effective in capturing how inputs influence
model predictions**3>. When combined with sanity checks, saliency maps generated by these
methods can enhance trust in black-box DL models*®. However, even users with considerable
domain expertise face challenges in selecting the appropriate attribution approach and conducting
sanity checks. Moreover, interpreting the saliency maps themselves requires domain expertise,

which may not be available to end-level users who utilize deployed models. Given these
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considerations, we require diverse methods or measures to address trust concerns at different user

levels.

The goal of this study is to propose new interpretability measures (contextual images and
scores) to improve the confidence in the predictions of a convolutional neural network (CNN) that
was trained to identify the fracture type in metals from images. In this study, contextual images,
contextual scores, and mean contextual scores have been introduced for CNNs trained to recognize
the fracture type in metals. The contextual images will serve as a qualitative tool for the end user
to build confidence in CNN’s prediction. On the other hand, the contextual score will provide a
quantitative confidence measure for individual predictions. Furthermore, by averaging this score
over a representative sample of fractographs, a mean contextual score can be derived, providing
an estimate of the confidence with which the trained CNN can be applied to the entire fracture
dataset. In addition to this mean score, we also consider the proportion of samples falling below a
specified contextual score threshold (e.g., 90%), which offers a complementary view of model
reliability by highlighting the extent of poor predictions. In the subsequent sections, the concepts
of contextual images and score will be introduced, and this form of interpretability will first be
demonstrated on generic datasets and will then be applied to an in-house fracture dataset for

complete validation.
2. Contextual evidence

This study introduces the concept of contextual evidence as a valuable tool to indirectly
assess the confidence level of individual predictions made by a trained CNN model to identify
fracture type in steels. Contextual evidence is composed of two key components: contextual

images and a contextual score, both defined as follows:
2.1.Contextual images:

These are training images that are closest to a specific test image in the latent space of the
CNN model. The latent space represents a low-dimensional representation of input images formed
by the fully connected layer just before the SoftMax classification layer (refer to Fig.2 and Fig.3).
Examples of contextual images generated for various applications using different trained CNN
models is provided in Section 6 and the qualitative advantage in establishing confidence in the

CNN predictions is demonstrated.

2.2.Contextual score:



The contextual score is defined at both instance and total dataset levels, i.e., contextual
score for an individual test instance (), and the contextual score for the entire test dataset, which
is referred to as the mean contextual score (§). The individual contextual score, as described in Eq.
1, represents the percentage of k nearest image instances (in the latent space) whose true class
matches the predicted class of the test image. In other words, it measures the proportion of training
images belonging to the predicted class among the k closest training images used for exploration.

This calculation is then multiplied by 100 to obtain a percentage value.

_ no of training images instances that belong to the predicted class of the test image % 100 (1)
$= no of training images used for the exploration (k)

The mean contextual score of a trained CNN model, described in Eq. 2, is calculated by
taking the average of the individual contextual scores for a randomly selected percentage of test

samples from the dataset.

sum of the contextual scores of images in a random sample
5= f f tmag P %100 (2)

random sample size (n)

The proportion of poor contextual score predictions, denoted as p,, is calculated as the
percentage of samples in a randomly selected subset of the test dataset that have contextual scores

below a specified threshold («). This is expressed in Eq. (3):

no of test instances with contextual score less than a
Po = , x 100 (2)
random sample size (n)

To further explain the concept of contextual score, let's refer to an example in Fig. 1, where
we have a scatter plot representing the low-dimensional representation of training image instances
in the latent space (the low-dimensional vectors generated from input images through a series of
convolutions and pooling operations that feed into the final SoftMax layer of a CNN). The images
belong to two different classes: class A shown as red-filled circles and class B as green-filled
circles. We also have two test images, T1 and T2, with T1 predicted as class B (shown with a red-
edged circle) and T2 predicted as class A (shown with a green-edged circle). The decision
boundary is depicted as a straight blue line. To compute the contextual score for T1 and T2 in the
latent space, we consider the five nearest images for examination (k=5). For T1, which is predicted
as class A, three of the nearest image instances belong to class A, while two belong to class B. The
contextual score is defined as the percentage of instances within the circle that belong to the

predicted classes of the test image. Consequently, the contextual score for T1 is 60%. In the case



of T2, all five nearest image instances belong to class A, resulting in a contextual score of 100%.
Notably, the test image (T1) near the decision boundary receives a lower contextual score
compared to the test image (T2) situated further away from the decision boundary.
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Fig. 1: The plot illustrates the distribution of training images in the latent space, categorized into two
classes with a classifier's decision boundary is represented by the blue line.

3. The role of contextual evidence in building trust in CNN models

Contextual evidence, which consists of contextual images and contextual scores, can play
an important role in building confidence among end-users regarding CNN model predictions.
When users examine contextual images alongside their corresponding true classes, they can
visually comprehend the similarities between a queried test image and the nearest training images
identified by the CNN model. This qualitative understanding allows end-users, even those without
subject expertise in fracture mechanics, to draw conclusions about the complexity underlying the
model's predictions. Additionally, contextual images are valuable in facilitating the comprehension
of unique image features that differentiate one class from another. This enhanced understanding
of the model's predictions through contextual images fosters a sense of trust and reliability among
end-users, as they can see firsthand the alignment between the queried test images and the training

images similar to it. By inspecting visual similarities and discerning the distinctive image features,



end-users can have greater confidence in the model's ability to make accurate predictions, thus

strengthening their trust in the model.

In contrast to contextual images, contextual scores provide a quantitative framework for
assessing the level of confidence in predictions made by a CNN model. As depicted in Fig. 1, when
input images are projected into the latent space, they form distinct clusters that correspond to their
respective classes. Decision boundaries separate these clusters to facilitate classification. When a
test image is located near these decision boundaries in the latent space, there is a high likelihood
of misclassification. Conversely, as the test image moves farther away from the decision
boundaries, the likelihood of misclassification decreases. Consequently, the class predictions of
the test images positioned close to the decision boundaries should be associated with low
confidence levels. The proximity of a test image in the latent space, whether nearer or farther from
the decision boundaries, can be determined by inspecting the true classes of neighboring training
images. This proximity influences the contextual score assigned to the test image. Hence, test
image instances that are adjacent to image instances from other classes in the training latent space,
typically found closer to the decision boundaries, tend to receive lower contextual scores. This
phenomenon is exemplified in the previous section, where the test data instance T1, located near
the decision boundary in Fig. 1, has a lower contextual score compared to the test instance T2.
This contextual score measure enhances the trustworthiness of CNN model predictions by
providing a transparent and quantifiable measure of confidence and empowers users to make
informed decisions and develop a greater level of trust in the CNN model, knowing that predictions

with higher contextual scores are more likely to be accurate.

Apart from the contextual images and scores that enhance trust in the CNN model at the
individual prediction level, an additional quantitative measure known as the mean contextual score
is introduced to assess the confidence in model’s predictions across multiple instances.
Consequently, the mean contextual score instills trust in the model by showcasing its consistency,

robustness, and suitability for effectively handling the given dataset.

4. Generic Datasets for Demonstration

In this work, four labeled image datasets i.e., MNIST, EMNIST (letters), FMNIST, and

CIFAR10 were employed to train the convolutional neural networks for the initial demonstration



purposes. MNIST?? database consists of grey images of handwritten digits ranging from 0 to 9.
EMNIST? is an extension of the MNIST dataset. It consists of handwritten numerical digits and
handwritten lowercase and uppercase English letters processed binarily from the NIST dataset.
The images include both uppercase and lowercase handwritten letters. FMNIST?® is MNIST for
fashion images that belong to 10 categories namely t-shirt/top, trouser, pullover, dress, coat,
sandal, shirt, sneaker, bag, and ankle boot. The CIFAR10*’ dataset consists of RBG images of
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The details of the data sets

used in this work are summarized in Table 1.
4.1 Metal Fracture Dataset for Demonstration

Ductile fracture, brittle (transgranular) fracture and intergranular fracture are the three
types of metallic fractures. Intergranular fracture is rare and occurs in tool steels with accumulated
heterogeneities at the grain boundaries. The choice of the fracture model depends on the type of
metallic fracture. FRAC*! dataset consists of brittle and ductile fracture images of ASTM A36,
AS572, and A992 grade steels which are popular US construction steels. The images are of
greyscale and size 32x32 pixels. Ductile fracture is characterized by the presence of dimples at the
microscale. These dimples are a result of micro void coalescence*>*. On the other hand, the brittle
fracture surface is covered with river-like patterns produced as the fracture propagates across the
grains. The ASTM A36, A572 and A992 steels for which the fracture data is available are popular
US structural steel grades used in the construction industry. Identifying the type of fracture is
crucial for choosing an appropriate fracture model and the type of fracture is determined from the
fractographs. The FRAC dataset comprises 10,400 training images, with 5,200 images from each

class (brittle and ductile fracture), and 2,000 testing images, with 1,000 images from each class.

Table 1: Details of the datasets used for evaluating contextual scores

Attribute MNIST EMNIST FMNIST CIFAR10  FRAC
Size of the image (pixels) 28 x 28 28 x 28 28 x 28 32 x32 32 x32
Channels 1 (grey) 1 (grey) 1 (grey) 3(RGB) 1 (grey)
Number of classes 10 26 10 10 2
Training dataset size 60,000 1,24,800 50,000 50,000 10,400
Test dataset size 10,000 4800 10,000 10,000 2,000
Dataset nature balanced balanced balanced  balanced balanced



alphabets: a-  fashion animals,  fracture
zand A-Z images vehicles images

37 38 39 40 41

Dataset details digits 0-9

Reference

5. Construction of Contextual Evidence for Classifier Predictions

The generation of contextual evidence for an image instance (a query instance) and the
determination of a representative contextual score for a network model were carried out in four
stages: 1. training and configuration of a model, 2. selection of a latent layer, 2. building latent
coordinates, 3. determination of nearest neighbors and 4. generation of contextual evidence. These

stages are further elaborated as follows.

Stage 1 — Training and configuration of a model: The generation of contextual evidence for a
neural network model starts after the training and configuration of a neural network model.
Configuration of a neural network involves arriving at a network architecture for a desired
prediction performance for both the learned and unknown data. Configuration includes finding the
appropriate amount and proportion of different network layers (convolutional layers, pooling
layers, dropout layers, and so on) and their arrangements, setting the number of kernel filters in
each convolution layer, choosing the number of neurons in each fully connected layer, fixing sizes
of kernel filters and pooling windows and selecting suitable activation functions. Training involves
tuning the learnable network parameters, which are normally kernel and dense layer weights and
layer biases so that the model losses are minimized at each network model configuration. Training
and configuration are interactively performed to obtain the best-performing model. More about the
training and configuration of a neural network, particularly a convolution neural network, can be

found in the literature***.

In this work, convolutional neural networks (CNNs) were designed for the classification
of the employed datasets. Two networks were trained on each of the demonstration datasets and
the FRAC dataset, namely "deep" and "shallow". The "deep" network was designed with more
convolutional and fully connected layers than the "shallow" network, in order to analyze the effect
of the deeper architecture on the mean contextual score. The shallow and the deep models trained

on the FRAC dataset are given in Fig. 2 and Fig. 3, respectively.
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Fig. 2: Architecture of the shallow convolutional neural network model trained on the FRAC dataset.
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Fig. 3: Architecture of the deep convolutional neural network model trained on the FRAC dataset.

All the CNNs employed consist of alternating layers of convolutional layers and

maxpooling layers. In all cases, the head of the networks comprises a global maxpooling layer

followed by a fully connected layer and a SoftMax output layer. ReLU activation functions were

used for the convolutional layers. Convolutional layers use a kernel of size 3x3 with a stride of 1.

Maxpooling layers use a pooling size of 3x3 with a stride of 2 which results in a halving of feature
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maps size along both dimensions. Shallow CNN architecture involved dropout layers for the
regularization of the network. Deep CNN architectures did not include any dropout layers, and two
convolutional layers were alternated with maxpooling layers. For comparison, a shallow and a
deep network architecture trained on the FRAC dataset is shown in Table 2 and Table 3. The
number of trainable parameters in deep CNN models is two to three times that in shallow CNN
models. The number of trainable network parameters of the CNN models used in this work is

summarized in Table 4.

Table 2: Network architecture of shallow network, used to classify FRAC data.

Activation

Layer Layer size function Data size
Input - - 80x80x1
Convolution 1 32%3x%3 ReLU 80x80x32
Maxpooling 1 2x2 - 40x40%32
Dropout (0.25)
Convolution 2 64%3%3 ReLU 40x40x64
Maxpooling 2 2x2 - 20x20x64
Dropout (0.25)
Convolution 3 128%x3x%3 ReLU 20x20x128
Global Maxpooling - - 128
Fully connected 2x1 ReLU 2x1
SoftMax 2x1 SoftMax 2x1

Table 3: Network architecture of deep network used to classify FRAC data.

Layer Layer size ﬁ.ﬁizzggn Data size

Input - - 80x80x1

Convolution 1 32x3x3 ReLU 80x80x%32
Convolution 2 32x3x3 ReLU 80x80x%32
Maxpooling 1 2x2 - 40x40x32
Convolution 3 64x3x3 ReLU 40x40%64
Convolution 4 64x3x3 ReLU 40x40%64
Maxpooling 2 2x2 - 20x20x64
Convolution 5 128%3%3 ReLU 20%x20x128
Convolution 6 128%3%3 ReLU 20%x20x128
Global Maxpooling - - 128
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Fully connected 2x1 ReLU 2x1
SoftMax 2x1 SoftMax 2x1

Table 4: Network sizes of CNN models employed in the study.

Model training Number of network parameters

data

Deep network Shallow network
MNIST 72,442 23,946
EMNIST 289,786 96,026
FMNIST 1,174,250 390,410
CIFARIO 1,174,826 390,986
FRAC 286,690 55,874

Efficient training and configuration of a network model also require defining an
appropriate model loss function. Mean squared error, mean absolute error, Kullback-Leibler
divergence, and cross-entropy are commonly used loss functions for neural networks*®. In this
work, CNN models were employed for the classification of image datasets, hence, the categorical
cross-entropy function was used as the loss function. The expression used to compute the loss

function is given as

Lp.p) =— Y. pilog(p;) 3)

where, P; is the probability of prediction for the i'" class, p; is the actual probability of the i class,
and c is the number of classes. The probability of prediction for a class is estimated from the net

input z using the Softmax function as given below,
Pi = e”i/Xi-,e” 4

The losses were minimized by backpropagating the network gradients using the ADAM
algorithm*’. The hyperparameters used for the ADAM optimization are shown in Table 5. The
initial learning rate () determines the magnitude of each parameter update during training. The
exponential decay rates f; and [, are applied to the first and second moment estimates of the
gradients. The first moment corresponds to the exponentially decaying average of past gradients
(akin to momentum), while the second moment tracks the uncentered variance, capturing the scale

of the gradients. Together, these parameters enable adaptive learning rates for each weight in the
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network, improving stability and convergence speed, particularly in the presence of sparse
gradients or noisy updates. € — the small value is used to prevent nonzero division error. The

training and testing accuracy achieved for the models are shown in Fig. 4.

Table 5: Hyperparameters used in the ADAM optimization.

Parameter b1 B2 € a
Value 0.9 0.999 | 1078 | 0.001
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Fig. 4: Comparison of training accuracies and test accuracies for the CNN models employed in the study.

Stage 2 — Selection of a latent layer: After training and configuring a classification model, a neural
network layer, called a latent layer, that produces a lower-dimensional representation of the image
data was selected. A fully connected layer (one-dimensional layer) is preferred for the latent
representation of the image data due to the reduced sparsity in the data representation and the lower
computational effort required to determine neighbor instances. In our analysis, the penultimate
layer, which is a fully connected layer, was used as the latent layer for all the CNN models. The
penultimate latent layer of each CNN model was followed by the SoftMax layer which outputs the
classification probabilities of the input images. An intermediate model with the latent layer as the
output layer was constructed from the trained CNN model. This new intermediate model
transforms and maps the higher-dimensional image inputs sparsely spread on the input space to
lower-dimensional numerical vector outputs densely structured in a latent space as illustrated in

Fig. 5.
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Fig. 5: Latent transformation of inputs: The high-dimensional image input, X, is transformed into a low-
dimensional, information-rich, latent feature vector, z. Classification probabilities (p) for each class of
data are generated by a classification head operating on these latent features.

This lower dimensional latent space with a manifold structure of input image data was used
to search for instances nearer to a query instance. The number of neurons in the latent layer formed
the dimension of the latent space used as the search space. The latent dimension in our analysis
was equal to the number of class labels (c¢) of the image dataset. The dimensions of the latent space
differed for the individual datasets used in the analysis. For example, the latent dimension of the
FRAC dataset was two representing the class labels: brittle and ductile. The summary of the latent

dimensions of the different datasets used in the current analysis is given in Table 6.

Table 6: Latent dimensions of the datasets used in the analysis.

Latent space

Model training data dimension
MNIST 10
EMNIST 26
FMNIST 10
CIFAR10 10

FRAC 2

Stage 3 — Building latent coordinates: The extracted dimensional reduction model takes an image
input, X;(€ R¥*"), and outputs a latent feature vector, z; = [z},z7, ..., z{]. Where, w and h are
the pixel width and the pixel height of an input image, respectively, and c is the number of output
components in a latent feature vector or number of classes. The latent feature vector, z;, is

considered to represent the positional coordinates of the input image, X;, in a lower dimensional
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(latent) space with a zero vector as the origin. Accordingly, the latent feature matrix, Z =
[Z1,Z;, ..., 2, |7 € R™*¢, for the input dataset, X = [X{,X,, ..., X, ] € RW"*" contains the
positional coordinates of all the image instances in an input dataset, in the latent space. In the
current work, latent feature matrices were generated for all ten CNN models for both the training
and the testing datasets. The generated latent feature matrices were stored in ‘.csv’ files during the
first computation of a contextual score or a generation of contextual evidence to reduce the
computational effort and time spent on determining the latent coordinates repeatedly. The
subsequent computation of contextual scores for the same model involved loading the already

stored latent coordinates databases.

Stage 4 — Generation of contextual evidence: The latent search space built for each model was then
used to find the nearest instances to the query instances. Our analysis employed the ‘Euclidean’
distance metric to find the nearest instances. Other distance metrics such as Manhattan,
Minkowski, and cosine distances are also commonly employed to evaluate similarity between data
points—particularly in tasks like clustering or retrieval. However, these metrics are generally not
suitable for comparing classifier predictions. Take cosine distance, for example: while it is widely
used in text analysis and information retrieval due to its sensitivity to vector orientation rather than
magnitude, it performs poorly when applied to classification logits. This mismatch arises because
classifiers — especially neural networks — produce output vectors whose magnitudes carry critical
information. As illustrated in Fig. 10, the logit vectors tend to disperse perpendicularly to the
decision boundaries, meaning that the distance from the origin (i.e., magnitude) reflects confidence
or separability, not just direction. Using cosine distance in such contexts effectively discards this
magnitude information, leading to misleading assessments of similarity. Similarly, Manhattan
distance, which sums absolute differences across dimensions, is typically more appropriate in
high-dimensional or sparse, discrete feature spaces — conditions that don’t align well with the
smooth, dense, continuous-valued outputs of modern classifiers. Therefore, Euclidean distance
remains a more aligned choice in this context, as it naturally incorporates both magnitude and

direction, better capturing the underlying geometry of the classifier's output space.

The Euclidean distance between a neighbor instance and a query instance is the L, norm of the
relative coordinates between the neighbor instance and the query instance and it was computed as

follows,
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dy= (@ -2) ++(z - 2) + 4 (@ -2 (5)
Zfl and z. are the it" latent vector components of a query instance and a neighboring instance,
respectively. Subsequently, k nearest image instances were identified by ranking the latent vectors
in an ascending fashion based on the relative distances. In our study, k was fixed to 100 to compute
the contextual score. However, only the top 10 nearest image instances were used as contextual
images. The parameter k = 100 was chosen to ensure a sufficiently large neighborhood for stable
and reliable contextual score computation. In contrast, the use of the top 10 nearest image instances
for display is not a tunable parameter related to score computation. Instead, it serves solely as a
visual aid to help users intuitively assess the plausibility of the prediction based on the similarity
of neighboring instances. While more images could be shown, doing so often introduces visual
clutter and reduces interpretability, defeating the purpose of this qualitative insight. The true and
predicted class labels of the nearest image instances were then used to compute the contextual
scores as described in Section 2. The contextual images along with the contextual score constitute
the contextual evidence of the queried image. Finally, the mean contextual score of a model ()
and proportion of poor contextual score predictions (p,) was determined by randomly selecting
10 percent of test image instances of the respective dataset and averaging the individual contextual

scores of the selected test image instances.

6. Generic Datasets: Demonstration of Contextual Images and Score

In order to demonstrate the utility of contextual images and contextual scores in enhancing
confidence in CNN model predictions, one case example is randomly chosen from each of the
trained CNN models utilized in the study. These case examples, based on 'shallow' and ‘deep’
convolutional neural network models, are presented in Fig. 6 and Fig. 7, respectively. For each set
of images, the top row represents the image we want to gather contextual evidence for (known as
the query image), while the subsequent two rows consist of contextual images that are closest to
the query image. In this illustration, 10 contextual images are generated for each example case.
This number can be chosen based on the user’s preference. The captions below show the class
labels of the respective images. The captions below the images indicate their respective class
labels. The letter 't' preceding the class labels signifies the true class, while 'p' indicates the

predicted class. The figure also includes contextual scores for the queried image examples.
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The CNN trained on CIFAR10 dataset yielded an accuracy of 77.8% on the shallow
network which implies that this is a relatively less accurate model. The contextual images for a
specific image in the CIFAR10 dataset are provided in Fig. 6a. As depicted in Fig. 6a, the queried
test image belongs to the cat class. Firstly, this was classified as a frog image by CNN which is
incorrect. In addition, the contextual images associated with this test image consist of a mix of
images from the cat class as well as other classes like dog, frog, and bird yielding a relatively low
contextual score of 22%. The contextual images are mixed, and the contextual score is low which

makes this individual prediction less reliable.

The second example depicts the contextual evidence of a queried test image from the
EMNIST test dataset. In this case, the test image belongs to the class letter-Q and was correctly
classified as letter-Q. Furthermore, unlike the CNN trained on the CIFAR10 dataset, the CNN
trained on the EMNIST dataset enjoys an accuracy of 92.8%. Contextual evidence was generated
to test the reliability of this individual prediction. A significant majority of the contextual images
shown in Fig. 6b, however, belong to the /etter-A class. This inference is further supported by the
low contextual score of 21% indicating a low confidence in the prediction. The lower contextual
score can be attributed to the fact that the queried image is surrounded by a higher proportion of
images from the letter-A and letter-G classes. This occurrence is expected since the letter-Q in the
queried image bears a close visual resemblance to the letters A and G. When contextual scores are

low the predictions should be viewed with skepticism irrespective of the accuracy of the model.

Similarly, in the FMNIST dataset case, the shallow CNN enjoys a higher accuracy of
91.3%. The queried image of the coat is predicted correctly as coat by the trained network.
However, a considerable proportion of the contextual images are shirt images resulting in a
contextual score of 45% making this particular prediction less reliable although correct. On the
other hand, the shallow CNN trained on the MNIST dataset has an accuracy of 97.7% which is
quite impressive. digit-0 has been queried and was predicted as digit-0 by the network.
Furthermore, most of the contextual images belonged to digit-0 yielding a contextual score of 83%

making this a reliable prediction.

In the case of the deep network model, the same queried image (see Fig. 7a) is incorrectly
predicted as a dog with a high contextual score of 94, even though it actually belongs to the cat
class. However, the contextual images clearly show a lack of similarity, revealing the model’s

poorly constructed decision boundary. This highlights a key limitation of the proposed approach:
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when the model predicts the wrong class, but the neighboring (contextual) images belong to that
predicted class, it still receives a high contextual score. This happens because the model has low
bias, making it difficult to distinguish between the predicted and true classes. Nonetheless, the
contextual images still provide valuable insight by exposing such misclassifications. In the
EMNIST example (see Fig. 7b), the contextual score improved to 70%, and many contextual
images belong to the letter-Q class, indicating an improved model fit. A similar trend is observed
in the MNIST dataset (see Fig. 7c), where the contextual score increased to 100%, and all
contextual images are unambiguously similar to the queried image. An exception is seen in the
FMNIST example (see Fig. 7d), where the queried coat image received a lower contextual score,

and the prediction changed to shirt.

Dataset: CIFAR, Model: shallow, Contextual Score: 22.0 Dataset: EMNIST, Model: shallow, Contextual Score: 21.0
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Dataset: MNIST, Model: shallow, Contextual Score: 83.0
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Fig. 6: Contextual images and scores generated for an image example from a) CIFARI0, b) EMNIST, ¢)
FMNIST, and d) MNIST dataset trained on ‘shallow’ convolutional neural network models. The captions

‘

under the images are the class labels and the letters: ‘p’ or ‘t’ before the labels denote whether the class
label is predicted or true.

From this discussion it is clear that accuracy metrics cannot boost confidence on individual
predictions and contextual evidence serves as a problem agnostic approach to improve the

reliability of neural network predictions.
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Dataset: CIFAR, Model: deep, Contextual Score: 94.0 Dataset: EMNIST, Model: deep, Contextual Score: 70.0
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Fig. 7: Contextual images and scores generated for an image example from a) CIFARI0, b) EMNIST, ¢)
FMNIST, and d) MNIST dataset trained on deep convolutional neural network models. The captions under

‘

the images are the class labels and the letters ‘p’ or ‘t’ before the labels denote whether the class label is

predicted or true.

6.1 Metal Fracture Dataset: Demonstration of Contextual Images and Score

The trained CNN model accuracy on the training dataset was 99.8% and the accuracy on
the testing dataset was 99.9%. However, as mentioned previously, accuracy is an overall metric
does not provide confidence on individual predictions, whereas contextual images and contextual
score can improve the confidence of an individual prediction. For the fracture classification model,
one ductile and one brittle fracture image were queried from both the shallow and deep models, as
shown in Fig. 8 and Fig. 9, respectively. In all cases, the trained CNN correctly predicted the true
class. Additionally, for each queried image, 10 contextual images were generated. The predicted
classes of these contextual images largely matched the true class, yielding a contextual score close
to 100% for ductile fractures. For brittle fractures, the shallow model resulted in a 94% contextual
score, whereas the deep model achieved a perfect score of 100%. In both cases, the deep model
achieved a higher contextual score than the shallow model, indicating a better overall fit.

Moreover, the contextual images retrieved by the deep model appeared more visually similar to
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the queried image compared to those from the shallow model. With this, the trained network

predictions are accurate, and the contextual score and images add confidence to these predictions.

Dataset: FRACTURE, Model: shallow, Contextual Score: 98.0
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t: ductile t: ductile t: ductile

Dataset: FRACTURE, Model: deep, Contextual Score: 100.0

= by %
t: ductile t: ductile

Fig. 8: Ductile fracture queried images predicted as ductile fracture and with a majority of contextual
images belonging to the ductile fracture making the contextual score close to 100%.
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Fig. 9: Brittle fracture queried images predicted as brittle fracture and with a majority of contextual
images belonging to the brittle fracture resulting in high contextual scores (94-98%,).

To further explore this, we can examine the spread of the training data in the latent space
of the FRAC dataset, as depicted in Fig. 10. In this dataset, which consists of only two classes,
each data instance in the latent space is defined by two latent coordinates (z;and z,). The red-
colored data instances in the figure represent the brittle class, while the blue-colored instances
represent the ductile class. The green line in the image represents the decision surface of the model
in the latent space. From the plot, we can observe that the model fits the training data well. Some
brittle fracture data instances fall below the decision surface line, and some ductile fracture data
instances fall above it, resulting in misclassifications. However, with a training model accuracy of
99.8% and a testing model accuracy of 99.9%, only a small percentage of the training or testing

data instances are misclassified. It's important to note that any testing data instance closer to the
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decision boundary has a higher likelihood of being misclassified, leading to less confidence in the

prediction. However, in the current case, the queried image, represented by a yellow-filled circle

in Fig. 10, falls near the center of its class group, and all the k-nearest neighbor image instances

belong to the predicted class of the queried image. As a result, it achieves a contextual score of

100%, indicating a high level of confidence in the prediction. The queried ductile and brittle

instances for the shallow model from Fig. 8 and Fig. 9, respectively, are represented by blue and

pink circles in Fig. 10. Their proximity to decision boundaries and overlap with other class

instances, as seen in Fig. 10, help explain their slightly lower contextual scores reported in Fig. 8

and Fig. 9.
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Fig. 10: Training latent space of the shallow CNN model trained on in-house FRAC dataset. The test data
instance, the yellow-filled circle, in the plot, occupies the center of its class group (ductile) and has a

contextual score of 100% which indicates high confidence in the prediction. The ductile and brittle

instances queried in Fig. 8 and Fig. 9 are shown in pink and purple, respectively.

6.2: Sensitivity of contextual score to number of nearest neighbors (k)

To examine how sensitive the contextual scores are to the number of nearest neighbors (k),

we analyzed the queried images from different datasets using the shallow model, as shown in Figs.

6, 8, and 9. In addition to the original k value, we tested two other values: k = 200 and k = 50.

Contextual scores were recalculated using these alternative k values, and the results were

compared in Fig. 11. As observed in Fig. 11, the contextual scores do not exhibit significant

variation across different k values. This suggests a level of robustness, but it is still difficult to
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generalize whether the scores will increase or decrease with a change in k. The effect appears to
depend heavily on the specific image being analyzed and how its class relates to the surrounding
neighboring classes in the feature space. To maintain a meaningful local context, we recommend
choosing k such that it remains below 1% of the total training set size. Setting k too high may
dilute the relevance of the local neighborhood, while setting it too low (e.g., k = 10) may make the

scores overly sensitive to noise or outliers in the dataset.
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Fig. 11: Influence of the number of nearest neighboring instances (k) on the contextual scores of queried
image examples used in Figs. 69 for the shallow models. Here, Frac-D and Frac-B indicate ductile and
brittle instance used from the fracture dataset, respectively.

6.3: Contextual Scores for the Metal Fractographs

Heatmaps are generated individually for the ductile fracture and brittle fracture predictions
to examine the distribution of contextual scores across the latent coordinate range of the FRAC
dataset (refer to Fig. 10), as shown in Fig. 12. These heatmaps reveal the level of confidence
associated with the class prediction of an image instance using its latent coordinates. The heatmap
color range represents contextual scores from 0 to 100, with a smooth transition from blue (0) to
red (100). The variation of the contextual scores is observed as color bands oriented approximately
along the 45° line parallel to the decision surface. As depicted in Fig. 12, the variation is highly
pronounced near a narrow-banded region close to the decision surface, and it remains constant for
most of the upper right and bottom left regions of a heatmap. Fig. 12.a shows the heatmap of

contextual scores generated for the prediction of the ductile class. A high degree of confidence in
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predicting an image instance in the ductile class is indicated by the major red region on the upper
left (contextual score of 100). As we move toward the decision surface, the confidence level is
progressively lowered, and it becomes even lower when we move below the decision surface.
Thus, the major blue region on the bottom right (contextual score of 0) indicates the lowest degree
of confidence if an image instance is predicted as ductile, suggesting that the prediction of any
image instance falling inside the blue region is more likely a misclassification. This explanation
extends to Fig. 12.b, which depicts the contextual heatmap for image instances predicted as the
brittle class. The important distinction here in the brittle heatmap is that it is a diagonally flipped
version of the ductile heatmap shown in Fig. 12.a. This is because the contextual score in this case
is the proportion of brittle fracture training data instances that are closer to the query instance and

these brittle fracture instances are predominantly distributed below the decision surface.
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Fig. 12: Heat map of contextual scores for the testing instances that belong to a) ductile fracture class and
b) brittle fracture class in the latent space of the CNN model trained on the FRAC dataset. Red indicates a
contextual score of 100 and blue color indicates a contextual score of 0.

6.4 Mean Contextual Scores

To assess prediction certainty across the entire test datasets, average contextual scores — both
mean and median — were calculated for all model cases. A representative sample comprising 10%
of the test images was selected to obtain an overall measure. Fig. 13 shows the distribution of
contextual scores for these representative samples from the shallow models trained on the various

datasets used in this study. Deep models exhibit similar distributions and are therefore not shown.
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Since all models achieved good fits across the datasets, the distributions are generally skewed
toward high contextual scores, with longer tails observed for CIFAR, EMNIST, and FMNIST. For
FRAC (fracture) and MNIST, where the model fits were excellent, the distributions are tightly

concentrated between 95-100%, with no observable tails.

501 80 80

2 CIFAR EMNIST FMNIST

T 401 60 - 60

2 30+

@ 40 - 40 -

= 20 1

S 10- 20 - 20 -

38

O I 1 1 O I 1 0 I 1
25 50 75 100 25 50 75 0 25 50 75 100

100 100 ~ contextual score
e FRAC MNIST
< 804 80 -

(o]
5 60 - 60 -

[
E 40 40 1

5 20 20 -

8

O I 1 1 0 I 1
25 50 75 100 25 50 75 100
contextual score contextual score

Fig. 13: Distribution of contextual scores for representative samples drawn from the test datasets of shallow
models trained on the employed datasets.

Although the median is generally a better measure of central tendency for skewed distributions,
it fails to capture the influence of low contextual scores present in the model’s outputs. This is
particularly relevant here, as a well-fitting model will naturally produce contextual scores clustered
near 100, which inflates the median and masks underperforming cases. This behavior is also
evident in Fig. 14, where the median scores across all datasets appear high, yet do not reflect the
presence of poor predictions. Therefore, the mean is preferred in this context, as it accounts for the
full distribution of scores and provides a more comprehensive view of the model’s overall
performance on the test dataset. The results displayed in Fig. 14 also depict the mean contextual
scores of all the CNN models employed in this study. The figure also compares the mean
contextual scores of shallow and deep models. For EMNIST and FMNIST datasets, the contextual
scores ranged from 89 to 93. A higher mean contextual score indicates greater confidence in the
multiple predictions made within the dataset. The CIFAR10 dataset exhibited relatively lower
mean contextual scores compared to the other datasets, with scores of 79 and 86 for shallow and

deep models, respectively. The deep models consistently outperformed the shallow models in
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terms of mean contextual scores across all cases, though the differences were generally not that
significant. Notably, a large difference was observed only in the case of the CIFAR10 deep model.
The observed difference in performance between the shallow and deep models, particularly in the
case of the CIFARI0 dataset, can be attributed to the shallow model's limited capability to
effectively separate images into distinct classes within the latent space compared to the deep
model. On the other hand, the CNNs trained with FRAC and MNIST datasets, both shallow and
deep models achieved remarkably high contextual scores ranging from 98 to 100. A mean
contextual score ranging from 95 to 100 indicates a high level of confidence in individual
predictions made within the dataset. Consequently, this instills greater confidence and trust in any

predictions made by the CNNss.
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Fig. 14: Comparison of mean and median contextual scores of the deep and shallow models for various
datasets employed in this study.

While the mean score offers a reliable indicator for comparing overall model performance, an
additional metric is considered: the proportion of samples with contextual scores below 90% in a
representative dataset. This metric adds interpretability by quantifying the extent of poor
predictions. The 90% threshold, while somewhat subjective, is chosen based on domain-specific
expectations of acceptable performance. Analysts may adjust this cutoff depending on the

sensitivity of the application or the tolerance for prediction errors in real-world deployment.
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Fig. 15: Comparison of the proportion of samples with contextual scores below 90% between deep and
shallow models across the different datasets used in this study.

To further illustrate this point, we examine the proportion of samples with contextual scores below
a more stringent threshold of 90%, offering a focused view of extreme underperformance. As
shown in Fig. 15, the shallow models consistently yield a higher proportion of low-scoring samples
compared to their deep counterparts across all datasets. This disparity is particularly pronounced
in complex datasets such as EMNIST and FMNIST, suggesting that deeper architectures are more
robust against severe contextual failures. These findings underscore the importance of examining
tail-end performance, especially in applications where even a small fraction of highly unreliable
predictions could have significant consequences. Consistent with the observations in Fig. 14, the
fracture dataset (FRAC) contains no test image instances with contextual scores below 90,

indicating a high level of confidence in individual predictions.

7. Conclusions

This study introduces contextual evidence, comprising contextual images and scores, as a
tool to enhance trust in CNN model predictions used for classifying metal fractographs. The
following are the key outcomes of this study:

1) Contextual images allow users to visually understand the similarities and unique features
between queried test images and nearest training images. This visual comprehension
enabled by contextual images allows users to draw conclusions about the complexity of

model predictions, fostering trust and reliability, despite a lack of subject matter expertise.
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2) The CNN model trained on the fracture dataset had 99.8% accuracy on the training dataset
99.9% accuracy on the testing dataset.

3) Contextual scores provide a quantitative framework for assessing confidence based on the
proximity to decision boundaries in the latent space. Test images closer to decision
boundaries could receive lower contextual scores, indicating lower confidence in
predictions. This empowers users to make informed decisions and foster a higher level of
trust in the trained CNN model. The CNN model trained on the fracture dataset had very
high contextual scores improving confidence on the CNN predictions.

4) The mean contextual score provides a quantitative measure to assess the confidence in the
model's predictions across multiple instances. The mean contextual score serves to instill
trust in the model by demonstrating its consistency and suitability in effectively handling
the dataset at hand. The mean contextual score of the fracture dataset is 98 implying that
the predictions over the entire dataset are very reliable.

5) The study also demonstrates the effectiveness of contextual evidence in enhancing trust

and confidence by applying it on diverse datasets, including MNIST, EMNIST, FMNIST, and

CIFARI10.

Overall, contextual evidence improves transparency, understanding, and trust in CNN models,
reinforcing confidence in their outcomes. The framework of contextual evidence can be extended
to various neural network architectures used in engineering mechanics, addressing trust concerns

at different user levels.
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