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Abstract 

A novel approach was proposed and implemented to assess the confidence of the individual 

class predictions made by convolutional neural networks trained to identify the type of fracture in 

metals. This approach involves utilizing contextual evidence in the form of contextual fracture 

images and contextual scores, which serve as indicators for determining the certainty of the 

predictions. This approach was first tested on both shallow and a deep convolutional neural 

network employing four publicly available image datasets: MNIST, EMNIST, FMNIST, and 

CIFAR10, and subsequently validated on an in-house steel fracture dataset - FRAC containing 

ductile and brittle fracture images. The effectiveness of the method is validated by producing 

contextual images and scores for the fracture image data and other image datasets to assess the 

confidence of selected predictions from the datasets. The CIFAR-10 dataset yielded the lowest 

mean contextual score of 78 for the shallow model, with over 50% of representative test instances 

receiving a score below 90, indicating lower confidence in the model's predictions. In contrast, the 

CNN model used for the fracture dataset achieved a mean contextual score of 99, with 0% of 

representative test instances receiving a score below 90, suggesting a high level of confidence in 

its predictions. This approach enhances the interpretability of trained convolutional neural 

networks and provides greater insight into the confidence of their outputs. 

Keywords: Ductile fracture, transgranular fracture, fractographs, Explainability; XAI; and 

Convolutional Neural Networks (CNNs). 
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Nomenclature of the symbols and abbreviations 

Symbol/ 
Abbreviation Explanation 

𝑠𝑠 Contextual score of an individual test instance 

𝑠̅𝑠 Mean contextual score 

𝑝𝑝𝛼𝛼 Fraction of test image instances with contextual scores less than 𝛼𝛼 value. 

𝑘𝑘 No. of nearest image instances in latent space 

T1 A test image instance that belongs to class A 

T2 A test image instance that belongs to class B 

ℒ Cross-entropy loss function  

𝑝𝑝𝑖𝑖 True probability of the 𝑖𝑖th class 

𝑝̂𝑝𝑖𝑖 Prediction probability of the 𝑖𝑖th class 

𝑐𝑐 No. of label or class categories in a dataset 

𝑧𝑧 Net input before activation 

𝛼𝛼 Learning rate parameter used ADAM optimizer 

𝛽𝛽1 Parameter that controls exponential decay rate for first order moment 
estimate in ADAM optimizer 

𝛽𝛽2 Parameter that controls exponential decay rate for second order moment 
estimate in ADAM optimizer 

𝜖𝜖 A small value that prevents non-zero division in ADAM optimizer 

𝐗𝐗 Matrix containing input image pixel values 

𝐳𝐳 Latent representation of 𝐗𝐗 

𝒑𝒑 Classification probabilities generated by a neural network 

𝑤𝑤 Width of an image instance 

ℎ Height of an image instance 

𝐗𝐗 Image dataset containing the matrices of image instances 

𝐙𝐙 Latent feature matrix of image dataset 𝐗𝐗 
𝑧𝑧𝑞𝑞𝑖𝑖  The 𝑖𝑖𝑡𝑡ℎ latent vector components of a query instance 

𝑧𝑧𝑟𝑟𝑖𝑖  The 𝑖𝑖𝑡𝑡ℎ latent vector components of a neighboring instance 

𝑑𝑑𝐸𝐸 Euclidean distance between a neighbor instance and a query instance 

NIST National institute of standards and technology database 

MNIST An image dataset that contains handwritten digits from 0 to 9 
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EMINST An image dataset that contains handwritten character digits derived from the 
NIST Special Database 19 

FMNIST A standard dataset of Zalando's article images 

CIFAR10 A color image dataset of Canadian institute for advanced research consisting 
of 10 classes 

FRAC An in-house steel fracture dataset 

CNN Convolutional neural network 

PINN Physics informed neural network 

XAI Explainable artificial intelligence 
 
 
1. Introduction 

The increased availability of data and processing power has propelled the use of machine 

learning and deep neural networks for engineering mechanics applications. The applications of 

machine learning/ deep neural networks in solid mechanics can be broadly classified in to five 

classes 1) models used to synthesize microstructures with superior properties employing 

generative adversarial networks1,2, 2) models that can extract or account for the surface 

morphology3,4 microstructure mechanical property relationships5-7, 3) image classification or 

characterization models where the type and extent of a specific damage8,9 or material phase 

identification10 and 4) metamodels that are used as surrogates to improve the predictive power and 

computational efficiency of numerical simulations11,12 and 5) model calibration13 and fracture and 

fatigue prediction models14-20. Several researchers reported very high accuracies in their studies 

when deep neural networks are used to solve mechanics problems. This can be attributed to the 

use of a very large number of hyperparameters and equally high mathematical transformations in 

deep neural networks. For this reason, the deep neural networks overfit the data leading to higher 

errors on newer datasets that were not used for training purposes. Hence, accuracy metrics alone 

are not enough to raise the confidence levels on data-driven models.  

With the increase in the use of data-driven mechanics models, there was also an increased 

sense of skepticism as these models do not account for the underlying physics and it is not possible 

to unwind the mathematical operations in a neural network to explain how they account for the 

complex underlying relationships. This broader concern among engineers and material scientists 

is being addressed employing physics informed neural networks (PINNs)21-26 and interpretable AI 
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methods13,14,27-29. The most popular approach in PINNs is to incorporate physics by modifying the 

cost function. On the other hand, interpretable AI encompasses several post-hoc methods that are 

used on a trained network to provide explanations to the predictions. Several researchers in 

mechanics acknowledged the need for improving the reliability of the deep neural networks in 

mechanics applications by employing PINNs, some others have embraced the Interpretable AI 

techniques to explain the predictions of trained neural networks. Both strategies aim to boost 

confidence in deep learning models used in mechanics. 

In particular, convolutional neural networks (CNNs) have been increasingly used for the 

classification of fracture images due to their ability to achieve high predictive accuracy without 

performing complex feature extraction. For instance, Bastidas-Rodriguez et. al. proposed a 

modified deep adaptive wavelet network with adaptive lifting schemes to classify the metal 

fracture images into ductile, brittle and fatigue categories 30. Their model achieved 74.7% accuracy 

on a real-scale dataset with a network with 174K parameters and 63.7% accuracy on SEM dataset 

with 19M parameters. Similarly, Alqahtani et. al. utilized CNNs to classify fatigue crack damage 

in polycrystalline alloys into no-risk, low-risk and high-risk categories, achieving around 90% 

accuracy 31. CNNs have also been employed to distinguish fractures into cleavage, dimple and 

intergranular type 32. In all these studies, the focus was solely on the predictive power and 

computational efficiency of the classifier models, with little attention given to the reliability of 

individual predictions. 

This gap highlights the growing need for interpretability measures that can complement 

predictive models by providing insights into their decision-making processes. Deep neural network 

models, with interpretability measures, can gain significant trust from users by providing a clear 

understanding of their predictive behavior. Interpretable white-box models are particularly trusted 

due to their transparency but have limitations in predictive capability and application scope33. The 

level of understanding derived from DL models also relies on the users' domain expertise. 

Attribution-based post-hoc interpretation methods are effective in capturing how inputs influence 

model predictions34,35. When combined with sanity checks, saliency maps generated by these 

methods can enhance trust in black-box DL models36. However, even users with considerable 

domain expertise face challenges in selecting the appropriate attribution approach and conducting 

sanity checks. Moreover, interpreting the saliency maps themselves requires domain expertise, 

which may not be available to end-level users who utilize deployed models. Given these 
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considerations, we require diverse methods or measures to address trust concerns at different user 

levels. 

The goal of this study is to propose new interpretability measures (contextual images and 

scores) to improve the confidence in the predictions of a convolutional neural network (CNN) that 

was trained to identify the fracture type in metals from images. In this study, contextual images, 

contextual scores, and mean contextual scores have been introduced for CNNs trained to recognize 

the fracture type in metals. The contextual images will serve as a qualitative tool for the end user 

to build confidence in CNN’s prediction. On the other hand, the contextual score will provide a 

quantitative confidence measure for individual predictions. Furthermore, by averaging this score 

over a representative sample of fractographs, a mean contextual score can be derived, providing 

an estimate of the confidence with which the trained CNN can be applied to the entire fracture 

dataset. In addition to this mean score, we also consider the proportion of samples falling below a 

specified contextual score threshold (e.g., 90%), which offers a complementary view of model 

reliability by highlighting the extent of poor predictions. In the subsequent sections, the concepts 

of contextual images and score will be introduced, and this form of interpretability will first be 

demonstrated on generic datasets and will then be applied to an in-house fracture dataset for 

complete validation.    

2. Contextual evidence 

This study introduces the concept of contextual evidence as a valuable tool to indirectly 

assess the confidence level of individual predictions made by a trained CNN model to identify 

fracture type in steels. Contextual evidence is composed of two key components: contextual 

images and a contextual score, both defined as follows: 

2.1.Contextual images:  

These are training images that are closest to a specific test image in the latent space of the 

CNN model. The latent space represents a low-dimensional representation of input images formed 

by the fully connected layer just before the SoftMax classification layer (refer to Fig.2 and Fig.3). 

Examples of contextual images generated for various applications using different trained CNN 

models is provided in Section 6 and the qualitative advantage in establishing confidence in the 

CNN predictions is demonstrated. 

2.2.Contextual score:  
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The contextual score is defined at both instance and total dataset levels, i.e., contextual 

score for an individual test instance (𝑠𝑠), and the contextual score for the entire test dataset, which 

is referred to as the mean contextual score (𝑠̅𝑠). The individual contextual score, as described in Eq. 

1, represents the percentage of 𝑘𝑘 nearest image instances (in the latent space) whose true class 

matches the predicted class of the test image. In other words, it measures the proportion of training 

images belonging to the predicted class among the 𝑘𝑘 closest training images used for exploration. 

This calculation is then multiplied by 100 to obtain a percentage value. 

𝑠𝑠 =  
𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑘𝑘)
 × 100 (1) 

The mean contextual score of a trained CNN model, described in Eq. 2, is calculated by 

taking the average of the individual contextual scores for a randomly selected percentage of test 

samples from the dataset. 

𝑠𝑠̅ =  
𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛)
 × 100 (2) 

The proportion of poor contextual score predictions, denoted as 𝑝𝑝𝛼𝛼, is calculated as the 

percentage of samples in a randomly selected subset of the test dataset that have contextual scores 

below a specified threshold (𝛼𝛼). This is expressed in Eq. (3): 

𝑝𝑝𝛼𝛼 =  
𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝛼𝛼

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛)
 × 100 (2) 

To further explain the concept of contextual score, let's refer to an example in Fig. 1, where 

we have a scatter plot representing the low-dimensional representation of training image instances 

in the latent space (the low-dimensional vectors generated from input images through a series of 

convolutions and pooling operations that feed into the final SoftMax layer of a CNN). The images 

belong to two different classes: class A shown as red-filled circles and class B as green-filled 

circles. We also have two test images, T1 and T2, with T1 predicted as class B (shown with a red-

edged circle) and T2 predicted as class A (shown with a green-edged circle). The decision 

boundary is depicted as a straight blue line. To compute the contextual score for T1 and T2 in the 

latent space, we consider the five nearest images for examination (𝑘𝑘=5). For T1, which is predicted 

as class A, three of the nearest image instances belong to class A, while two belong to class B. The 

contextual score is defined as the percentage of instances within the circle that belong to the 

predicted classes of the test image. Consequently, the contextual score for T1 is 60%. In the case 
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of T2, all five nearest image instances belong to class A, resulting in a contextual score of 100%. 

Notably, the test image (T1) near the decision boundary receives a lower contextual score 

compared to the test image (T2) situated further away from the decision boundary. 

 
Fig. 1: The plot illustrates the distribution of training images in the latent space, categorized into two 
classes with a classifier's decision boundary is represented by the blue line.  

 

3. The role of contextual evidence in building trust in CNN models 

Contextual evidence, which consists of contextual images and contextual scores, can play 

an important role in building confidence among end-users regarding CNN model predictions. 

When users examine contextual images alongside their corresponding true classes, they can 

visually comprehend the similarities between a queried test image and the nearest training images 

identified by the CNN model. This qualitative understanding allows end-users, even those without 

subject expertise in fracture mechanics, to draw conclusions about the complexity underlying the 

model's predictions. Additionally, contextual images are valuable in facilitating the comprehension 

of unique image features that differentiate one class from another. This enhanced understanding 

of the model's predictions through contextual images fosters a sense of trust and reliability among 

end-users, as they can see firsthand the alignment between the queried test images and the training 

images similar to it. By inspecting visual similarities and discerning the distinctive image features, 

T
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end-users can have greater confidence in the model's ability to make accurate predictions, thus 

strengthening their trust in the model. 

In contrast to contextual images, contextual scores provide a quantitative framework for 

assessing the level of confidence in predictions made by a CNN model. As depicted in Fig. 1, when 

input images are projected into the latent space, they form distinct clusters that correspond to their 

respective classes. Decision boundaries separate these clusters to facilitate classification. When a 

test image is located near these decision boundaries in the latent space, there is a high likelihood 

of misclassification. Conversely, as the test image moves farther away from the decision 

boundaries, the likelihood of misclassification decreases. Consequently, the class predictions of 

the test images positioned close to the decision boundaries should be associated with low 

confidence levels. The proximity of a test image in the latent space, whether nearer or farther from 

the decision boundaries, can be determined by inspecting the true classes of neighboring training 

images. This proximity influences the contextual score assigned to the test image. Hence, test 

image instances that are adjacent to image instances from other classes in the training latent space, 

typically found closer to the decision boundaries, tend to receive lower contextual scores. This 

phenomenon is exemplified in the previous section, where the test data instance T1, located near 

the decision boundary in Fig. 1, has a lower contextual score compared to the test instance T2. 

This contextual score measure enhances the trustworthiness of CNN model predictions by 

providing a transparent and quantifiable measure of confidence and empowers users to make 

informed decisions and develop a greater level of trust in the CNN model, knowing that predictions 

with higher contextual scores are more likely to be accurate. 

Apart from the contextual images and scores that enhance trust in the CNN model at the 

individual prediction level, an additional quantitative measure known as the mean contextual score 

is introduced to assess the confidence in model’s predictions across multiple instances. 

Consequently, the mean contextual score instills trust in the model by showcasing its consistency, 

robustness, and suitability for effectively handling the given dataset. 

    

4. Generic Datasets for Demonstration 

In this work, four labeled image datasets i.e., MNIST, EMNIST (letters), FMNIST, and 

CIFAR10 were employed to train the convolutional neural networks for the initial demonstration 
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purposes. MNIST37 database consists of grey images of handwritten digits ranging from 0 to 9. 

EMNIST38 is an extension of the MNIST dataset. It consists of handwritten numerical digits and 

handwritten lowercase and uppercase English letters processed binarily from the NIST dataset. 

The images include both uppercase and lowercase handwritten letters. FMNIST39 is MNIST for 

fashion images that belong to 10 categories namely t-shirt/top, trouser, pullover, dress, coat, 

sandal, shirt, sneaker, bag, and ankle boot. The CIFAR1040 dataset consists of RBG images of 

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The details of the data sets 

used in this work are summarized in Table 1. 

4.1 Metal Fracture Dataset for Demonstration 

Ductile fracture, brittle (transgranular) fracture and intergranular fracture are the three 

types of metallic fractures. Intergranular fracture is rare and occurs in tool steels with accumulated 

heterogeneities at the grain boundaries. The choice of the fracture model depends on the type of 

metallic fracture. FRAC41 dataset consists of brittle and ductile fracture images of ASTM A36, 

A572, and A992 grade steels which are popular US construction steels. The images are of 

greyscale and size 32×32 pixels. Ductile fracture is characterized by the presence of dimples at the 

microscale. These dimples are a result of micro void coalescence42,43. On the other hand, the brittle 

fracture surface is covered with river-like patterns produced as the fracture propagates across the 

grains. The ASTM A36, A572 and A992 steels for which the fracture data is available are popular 

US structural steel grades used in the construction industry. Identifying the type of fracture is 

crucial for choosing an appropriate fracture model and the type of fracture is determined from the 

fractographs. The FRAC dataset comprises 10,400 training images, with 5,200 images from each 

class (brittle and ductile fracture), and 2,000 testing images, with 1,000 images from each class.  

Table 1: Details of the datasets used for evaluating contextual scores 

Attribute MNIST EMNIST FMNIST CIFAR10 FRAC 

Size of the image (pixels) 28 × 28 28 × 28 28 × 28 32 × 32 32 × 32 

Channels 1 (grey) 1 (grey) 1 (grey) 3 (RGB) 1 (grey) 

Number of classes 10 26 10 10 2 

Training dataset size 60,000 1,24,800 50,000 50,000 10,400 

Test dataset size 10,000 4800 10,000 10,000 2,000 

Dataset nature balanced balanced balanced balanced balanced 
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Dataset details digits 0-9 alphabets: a-
z and A-Z 

fashion 
images 

animals, 
vehicles 

fracture 
images 

Reference 37 38 39 40 41 
 
5. Construction of Contextual Evidence for Classifier Predictions 

The generation of contextual evidence for an image instance (a query instance) and the 

determination of a representative contextual score for a network model were carried out in four 

stages: 1. training and configuration of a model, 2. selection of a latent layer, 2. building latent 

coordinates, 3. determination of nearest neighbors and 4. generation of contextual evidence. These 

stages are further elaborated as follows.  

Stage 1 – Training and configuration of a model: The generation of contextual evidence for a 

neural network model starts after the training and configuration of a neural network model. 

Configuration of a neural network involves arriving at a network architecture for a desired 

prediction performance for both the learned and unknown data. Configuration includes finding the 

appropriate amount and proportion of different network layers (convolutional layers, pooling 

layers, dropout layers, and so on) and their arrangements, setting the number of kernel filters in 

each convolution layer, choosing the number of neurons in each fully connected layer, fixing sizes 

of kernel filters and pooling windows and selecting suitable activation functions. Training involves 

tuning the learnable network parameters, which are normally kernel and dense layer weights and 

layer biases so that the model losses are minimized at each network model configuration. Training 

and configuration are interactively performed to obtain the best-performing model. More about the 

training and configuration of a neural network, particularly a convolution neural network, can be 

found in the literature44,45. 

In this work, convolutional neural networks (CNNs) were designed for the classification 

of the employed datasets. Two networks were trained on each of the demonstration datasets and 

the FRAC dataset, namely "deep" and "shallow". The "deep" network was designed with more 

convolutional and fully connected layers than the "shallow" network, in order to analyze the effect 

of the deeper architecture on the mean contextual score. The shallow and the deep models trained 

on the FRAC dataset are given in Fig. 2 and Fig. 3, respectively. 
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Fig. 2: Architecture of the shallow convolutional neural network model trained on the FRAC dataset. 

 

Fig. 3: Architecture of the deep convolutional neural network model trained on the FRAC dataset. 

All the CNNs employed consist of alternating layers of convolutional layers and 

maxpooling layers. In all cases, the head of the networks comprises a global maxpooling layer 

followed by a fully connected layer and a SoftMax output layer. ReLU activation functions were 

used for the convolutional layers. Convolutional layers use a kernel of size 3×3 with a stride of 1. 

Maxpooling layers use a pooling size of 3×3 with a stride of 2 which results in a halving of feature 



12 
 

maps size along both dimensions. Shallow CNN architecture involved dropout layers for the 

regularization of the network. Deep CNN architectures did not include any dropout layers, and two 

convolutional layers were alternated with maxpooling layers. For comparison, a shallow and a 

deep network architecture trained on the FRAC dataset is shown in Table 2 and Table 3. The 

number of trainable parameters in deep CNN models is two to three times that in shallow CNN 

models. The number of trainable network parameters of the CNN models used in this work is 

summarized in Table 4. 

Table 2: Network architecture of shallow network, used to classify FRAC data. 
 

 
Table 3: Network architecture of deep network used to classify FRAC data. 

Layer Layer size Activation 
function Data size 

Input - - 80×80×1 
Convolution 1 32×3×3 ReLU 80×80×32 
Convolution 2 32×3×3 ReLU 80×80×32 
Maxpooling 1 2×2 - 40×40×32 
Convolution 3 64×3×3 ReLU 40×40×64 
Convolution 4 64×3×3 ReLU 40×40×64 
Maxpooling 2 2×2 - 20×20×64 
Convolution 5 128×3×3 ReLU 20×20×128 
Convolution 6 128×3×3 ReLU 20×20×128 
Global Maxpooling - - 128 

Layer Layer size Activation 
function Data size 

Input -  - 80×80×1 
Convolution 1 32×3×3 ReLU 80×80×32 
Maxpooling 1 2×2 - 40×40×32 
Dropout (0.25)       
Convolution 2 64×3×3 ReLU 40×40×64 
Maxpooling 2 2×2 - 20×20×64 
Dropout (0.25)       
Convolution 3 128×3×3 ReLU 20×20×128 
Global Maxpooling - - 128 
Fully connected 2×1 ReLU 2×1 
SoftMax 2×1 SoftMax 2×1 



13 
 

Fully connected 2×1 ReLU 2×1 
SoftMax 2×1 SoftMax 2×1 

 
Table 4: Network sizes of CNN models employed in the study. 

Model training 
data 

Number of network parameters 

Deep network Shallow network 

MNIST 72,442 23,946 

EMNIST 289,786 96,026 

FMNIST 1,174,250 390,410 

CIFAR10 1,174,826 390,986 

FRAC 286,690 55,874 

Efficient training and configuration of a network model also require defining an 

appropriate model loss function. Mean squared error, mean absolute error, Kullback-Leibler 

divergence, and cross-entropy are commonly used loss functions for neural networks46. In this 

work, CNN models were employed for the classification of image datasets, hence, the categorical 

cross-entropy function was used as the loss function. The expression used to compute the loss 

function is given as 

ℒ(𝑝𝑝, 𝑝̂𝑝)  = −� 𝑝𝑝𝑖𝑖 log( 𝑝̂𝑝𝑖𝑖
𝑐𝑐
𝑖𝑖=1 )  (3) 

where, 𝑝̂𝑝𝑖𝑖 is the probability of prediction for the 𝑖𝑖th class, 𝑝𝑝𝑖𝑖 is the actual probability of the 𝑖𝑖th class, 

and 𝑐𝑐 is the number of classes. The probability of prediction for a class is estimated from the net 

input 𝑧𝑧 using the Softmax function as given below,  

𝑝̂𝑝𝑖𝑖  = 𝑒𝑒𝑧𝑧𝑖𝑖/∑ 𝑒𝑒𝑧𝑧𝑖𝑖𝑐𝑐
𝑖𝑖=1   (4) 

The losses were minimized by backpropagating the network gradients using the ADAM 

algorithm47. The hyperparameters used for the ADAM optimization are shown in Table 5. The 

initial learning rate (𝛼𝛼) determines the magnitude of each parameter update during training. The 

exponential decay rates 𝛽𝛽1 and 𝛽𝛽2 are applied to the first and second moment estimates of the 

gradients. The first moment corresponds to the exponentially decaying average of past gradients 

(akin to momentum), while the second moment tracks the uncentered variance, capturing the scale 

of the gradients. Together, these parameters enable adaptive learning rates for each weight in the 
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network, improving stability and convergence speed, particularly in the presence of sparse 

gradients or noisy updates. 𝜖𝜖 – the small value is used to prevent nonzero division error. The 

training and testing accuracy achieved for the models are shown in Fig. 4.  

Table 5: Hyperparameters used in the ADAM optimization. 

Parameter 𝛽𝛽1 𝛽𝛽2 𝜖𝜖 𝛼𝛼 

Value 0.9 0.999 10−8 0.001 

 

  
Fig. 4: Comparison of training accuracies and test accuracies for the CNN models employed in the study. 
 
Stage 2 – Selection of a latent layer: After training and configuring a classification model, a neural 

network layer, called a latent layer, that produces a lower-dimensional representation of the image 

data was selected. A fully connected layer (one-dimensional layer) is preferred for the latent 

representation of the image data due to the reduced sparsity in the data representation and the lower 

computational effort required to determine neighbor instances. In our analysis, the penultimate 

layer, which is a fully connected layer, was used as the latent layer for all the CNN models. The 

penultimate latent layer of each CNN model was followed by the SoftMax layer which outputs the 

classification probabilities of the input images. An intermediate model with the latent layer as the 

output layer was constructed from the trained CNN model. This new intermediate model 

transforms and maps the higher-dimensional image inputs sparsely spread on the input space to 

lower-dimensional numerical vector outputs densely structured in a latent space as illustrated in 

Fig. 5.  
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Fig. 5: Latent transformation of inputs: The high-dimensional image input, 𝑿𝑿, is transformed into a low-
dimensional, information-rich, latent feature vector, 𝒛𝒛. Classification probabilities (𝒑𝒑) for each class of 
data are generated by a classification head operating on these latent features.  

This lower dimensional latent space with a manifold structure of input image data was used 

to search for instances nearer to a query instance. The number of neurons in the latent layer formed 

the dimension of the latent space used as the search space. The latent dimension in our analysis 

was equal to the number of class labels (𝑐𝑐) of the image dataset. The dimensions of the latent space 

differed for the individual datasets used in the analysis. For example, the latent dimension of the 

FRAC dataset was two representing the class labels: brittle and ductile. The summary of the latent 

dimensions of the different datasets used in the current analysis is given in Table 6.  

Table 6: Latent dimensions of the datasets used in the analysis. 

Model training data Latent space 
dimension 

MNIST 10 
EMNIST 26 
FMNIST 10 
CIFAR10 10 
FRAC 2 

 
Stage 3 – Building latent coordinates: The extracted dimensional reduction model takes an image 

input, 𝐗𝐗𝑖𝑖(∈ ℝ𝑤𝑤×ℎ), and outputs a latent feature vector, 𝐳𝐳𝑖𝑖 = [𝑧𝑧𝑖𝑖1, 𝑧𝑧𝑖𝑖2, … , 𝑧𝑧𝑖𝑖𝑐𝑐]. Where, 𝑤𝑤 and ℎ are 

the pixel width and the pixel height of an input image, respectively, and 𝑐𝑐 is the number of output 

components in a latent feature vector or number of classes. The latent feature vector, 𝐳𝐳𝑖𝑖, is 

considered to represent the positional coordinates of the input image, X𝑖𝑖, in a lower dimensional 

 

Latent 
representation 

𝐳𝐳 

𝐳𝐳 =  𝑓𝑓(𝐗𝐗) 

Input, 𝐗𝐗 

Convolution + 
Pooling + affine 
transformation 

𝐩𝐩 

Classification 
head 
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(latent) space with a zero vector as the origin. Accordingly, the latent feature matrix, 𝐙𝐙 =

[𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑛𝑛 ]𝑇𝑇 ∈ ℝ𝑛𝑛×𝑐𝑐, for the input dataset, 𝓧𝓧 = [𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗𝑛𝑛 ] ∈ ℝ𝑛𝑛×𝑤𝑤×ℎ, contains the 

positional coordinates of all the image instances in an input dataset, in the latent space.  In the 

current work, latent feature matrices were generated for all ten CNN models for both the training 

and the testing datasets. The generated latent feature matrices were stored in ‘.csv’ files during the 

first computation of a contextual score or a generation of contextual evidence to reduce the 

computational effort and time spent on determining the latent coordinates repeatedly. The 

subsequent computation of contextual scores for the same model involved loading the already 

stored latent coordinates databases.  

Stage 4 – Generation of contextual evidence: The latent search space built for each model was then 

used to find the nearest instances to the query instances. Our analysis employed the ‘Euclidean’ 

distance metric to find the nearest instances. Other distance metrics such as Manhattan, 

Minkowski, and cosine distances are also commonly employed to evaluate similarity between data 

points—particularly in tasks like clustering or retrieval. However, these metrics are generally not 

suitable for comparing classifier predictions. Take cosine distance, for example: while it is widely 

used in text analysis and information retrieval due to its sensitivity to vector orientation rather than 

magnitude, it performs poorly when applied to classification logits. This mismatch arises because 

classifiers – especially neural networks – produce output vectors whose magnitudes carry critical 

information. As illustrated in Fig. 10, the logit vectors tend to disperse perpendicularly to the 

decision boundaries, meaning that the distance from the origin (i.e., magnitude) reflects confidence 

or separability, not just direction. Using cosine distance in such contexts effectively discards this 

magnitude information, leading to misleading assessments of similarity. Similarly, Manhattan 

distance, which sums absolute differences across dimensions, is typically more appropriate in 

high-dimensional or sparse, discrete feature spaces – conditions that don’t align well with the 

smooth, dense, continuous-valued outputs of modern classifiers. Therefore, Euclidean distance 

remains a more aligned choice in this context, as it naturally incorporates both magnitude and 

direction, better capturing the underlying geometry of the classifier's output space.  

The Euclidean distance between a neighbor instance and a query instance is the 𝐿𝐿2 norm of the 

relative coordinates between the neighbor instance and the query instance and it was computed as 

follows, 
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𝑑𝑑𝐸𝐸 = ��𝑧𝑧𝑞𝑞1 − 𝑧𝑧𝑟𝑟1�
2

+ +�𝑧𝑧𝑞𝑞2 − 𝑧𝑧𝑟𝑟2�
2

+ ⋯+  �𝑧𝑧𝑞𝑞𝑛𝑛 − 𝑧𝑧𝑟𝑟𝑛𝑛�
2
  (5) 

𝑧𝑧𝑞𝑞𝑖𝑖  and 𝑧𝑧𝑟𝑟𝑖𝑖  are the 𝑖𝑖𝑡𝑡ℎ latent vector components of a query instance and a neighboring instance, 

respectively. Subsequently, 𝑘𝑘 nearest image instances were identified by ranking the latent vectors 

in an ascending fashion based on the relative distances. In our study, 𝑘𝑘 was fixed to 100 to compute 

the contextual score. However, only the top 10 nearest image instances were used as contextual 

images. The parameter 𝑘𝑘 = 100 was chosen to ensure a sufficiently large neighborhood for stable 

and reliable contextual score computation. In contrast, the use of the top 10 nearest image instances 

for display is not a tunable parameter related to score computation. Instead, it serves solely as a 

visual aid to help users intuitively assess the plausibility of the prediction based on the similarity 

of neighboring instances. While more images could be shown, doing so often introduces visual 

clutter and reduces interpretability, defeating the purpose of this qualitative insight. The true and 

predicted class labels of the nearest image instances were then used to compute the contextual 

scores as described in Section 2. The contextual images along with the contextual score constitute 

the contextual evidence of the queried image. Finally, the mean contextual score of a model (𝑠̅𝑠) 

and proportion of poor contextual score predictions (𝑝𝑝𝛼𝛼) was determined by randomly selecting 

10 percent of test image instances of the respective dataset and averaging the individual contextual 

scores of the selected test image instances.  

 

6. Generic Datasets: Demonstration of Contextual Images and Score  

In order to demonstrate the utility of contextual images and contextual scores in enhancing 

confidence in CNN model predictions, one case example is randomly chosen from each of the 

trained CNN models utilized in the study. These case examples, based on 'shallow' and ‘deep’ 

convolutional neural network models, are presented in Fig. 6 and Fig. 7, respectively. For each set 

of images, the top row represents the image we want to gather contextual evidence for (known as 

the query image), while the subsequent two rows consist of contextual images that are closest to 

the query image. In this illustration, 10 contextual images are generated for each example case. 

This number can be chosen based on the user’s preference. The captions below show the class 

labels of the respective images. The captions below the images indicate their respective class 

labels. The letter 't' preceding the class labels signifies the true class, while 'p' indicates the 

predicted class. The figure also includes contextual scores for the queried image examples.  
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The CNN trained on CIFAR10 dataset yielded an accuracy of 77.8% on the shallow 

network which implies that this is a relatively less accurate model. The contextual images for a 

specific image in the CIFAR10 dataset are provided in Fig. 6a. As depicted in Fig. 6a, the queried 

test image belongs to the cat class. Firstly, this was classified as a frog image by CNN which is 

incorrect. In addition, the contextual images associated with this test image consist of a mix of 

images from the cat class as well as other classes like dog, frog, and bird yielding a relatively low 

contextual score of 22%. The contextual images are mixed, and the contextual score is low which 

makes this individual prediction less reliable.  

The second example depicts the contextual evidence of a queried test image from the 

EMNIST test dataset. In this case, the test image belongs to the class letter-Q and was correctly 

classified as letter-Q. Furthermore, unlike the CNN trained on the CIFAR10 dataset, the CNN 

trained on the EMNIST dataset enjoys an accuracy of 92.8%. Contextual evidence was generated 

to test the reliability of this individual prediction. A significant majority of the contextual images 

shown in Fig. 6b, however, belong to the letter-A class. This inference is further supported by the 

low contextual score of 21% indicating a low confidence in the prediction. The lower contextual 

score can be attributed to the fact that the queried image is surrounded by a higher proportion of 

images from the letter-A and letter-G classes. This occurrence is expected since the letter-Q in the 

queried image bears a close visual resemblance to the letters A and G. When contextual scores are 

low the predictions should be viewed with skepticism irrespective of the accuracy of the model.    

Similarly, in the FMNIST dataset case, the shallow CNN enjoys a higher accuracy of 

91.3%. The queried image of the coat is predicted correctly as coat by the trained network. 

However, a considerable proportion of the contextual images are shirt images resulting in a 

contextual score of 45% making this particular prediction less reliable although correct. On the 

other hand, the shallow CNN trained on the MNIST dataset has an accuracy of 97.7% which is 

quite impressive. digit-0 has been queried and was predicted as digit-0 by the network. 

Furthermore, most of the contextual images belonged to digit-0 yielding a contextual score of 83% 

making this a reliable prediction. 

In the case of the deep network model, the same queried image (see Fig. 7a) is incorrectly 

predicted as a dog with a high contextual score of 94, even though it actually belongs to the cat 

class. However, the contextual images clearly show a lack of similarity, revealing the model’s 

poorly constructed decision boundary. This highlights a key limitation of the proposed approach: 
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when the model predicts the wrong class, but the neighboring (contextual) images belong to that 

predicted class, it still receives a high contextual score. This happens because the model has low 

bias, making it difficult to distinguish between the predicted and true classes. Nonetheless, the 

contextual images still provide valuable insight by exposing such misclassifications. In the 

EMNIST example (see Fig. 7b), the contextual score improved to 70%, and many contextual 

images belong to the letter-Q class, indicating an improved model fit. A similar trend is observed 

in the MNIST dataset (see Fig. 7c), where the contextual score increased to 100%, and all 

contextual images are unambiguously similar to the queried image. An exception is seen in the 

FMNIST example (see Fig. 7d), where the queried coat image received a lower contextual score, 

and the prediction changed to shirt. 

  

  
Fig. 6: Contextual images and scores generated for an image example from a) CIFAR10, b) EMNIST, c) 
FMNIST, and d) MNIST dataset trained on ‘shallow’ convolutional neural network models. The captions 
under the images are the class labels and the letters: ‘p’ or ‘t’ before the labels denote whether the class 
label is predicted or true.  

From this discussion it is clear that accuracy metrics cannot boost confidence on individual 

predictions and contextual evidence serves as a problem agnostic approach to improve the 

reliability of neural network predictions. 

a) b) 

c) d) 
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Fig. 7: Contextual images and scores generated for an image example from a) CIFAR10, b) EMNIST, c) 
FMNIST, and d) MNIST dataset trained on deep convolutional neural network models. The captions under 
the images are the class labels and the letters ‘p’ or ‘t’ before the labels denote whether the class label is 
predicted or true.  
 

6.1 Metal Fracture Dataset: Demonstration of Contextual Images and Score  

The trained CNN model accuracy on the training dataset was 99.8% and the accuracy on 

the testing dataset was 99.9%. However, as mentioned previously, accuracy is an overall metric 

does not provide confidence on individual predictions, whereas contextual images and contextual 

score can improve the confidence of an individual prediction. For the fracture classification model, 

one ductile and one brittle fracture image were queried from both the shallow and deep models, as 

shown in Fig. 8 and Fig. 9, respectively. In all cases, the trained CNN correctly predicted the true 

class. Additionally, for each queried image, 10 contextual images were generated. The predicted 

classes of these contextual images largely matched the true class, yielding a contextual score close 

to 100% for ductile fractures. For brittle fractures, the shallow model resulted in a 94% contextual 

score, whereas the deep model achieved a perfect score of 100%. In both cases, the deep model 

achieved a higher contextual score than the shallow model, indicating a better overall fit. 

Moreover, the contextual images retrieved by the deep model appeared more visually similar to 

a) b) 

c) d) 
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the queried image compared to those from the shallow model. With this, the trained network 

predictions are accurate, and the contextual score and images add confidence to these predictions.  

 

Fig. 8: Ductile fracture queried images predicted as ductile fracture and with a majority of contextual 
images belonging to the ductile fracture making the contextual score close to 100%. 

25µ 

25µ 
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 Fig. 9: Brittle fracture queried images predicted as brittle fracture and with a majority of contextual 
images belonging to the brittle fracture resulting in high contextual scores (94-98%). 

To further explore this, we can examine the spread of the training data in the latent space 

of the FRAC dataset, as depicted in Fig. 10. In this dataset, which consists of only two classes, 

each data instance in the latent space is defined by two latent coordinates (𝑧𝑧1and 𝑧𝑧2). The red-

colored data instances in the figure represent the brittle class, while the blue-colored instances 

represent the ductile class. The green line in the image represents the decision surface of the model 

in the latent space. From the plot, we can observe that the model fits the training data well. Some 

brittle fracture data instances fall below the decision surface line, and some ductile fracture data 

instances fall above it, resulting in misclassifications. However, with a training model accuracy of 

99.8% and a testing model accuracy of 99.9%, only a small percentage of the training or testing 

data instances are misclassified. It's important to note that any testing data instance closer to the 

25µ 

25µ 
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decision boundary has a higher likelihood of being misclassified, leading to less confidence in the 

prediction. However, in the current case, the queried image, represented by a yellow-filled circle 

in Fig. 10, falls near the center of its class group, and all the 𝑘𝑘-nearest neighbor image instances 

belong to the predicted class of the queried image. As a result, it achieves a contextual score of 

100%, indicating a high level of confidence in the prediction. The queried ductile and brittle 

instances for the shallow model from Fig. 8 and Fig. 9, respectively, are represented by blue and 

pink circles in Fig. 10. Their proximity to decision boundaries and overlap with other class 

instances, as seen in Fig. 10, help explain their slightly lower contextual scores reported in Fig. 8 

and Fig. 9. 

 

Fig. 10: Training latent space of the shallow CNN model trained on in-house FRAC dataset. The test data 
instance, the yellow-filled circle, in the plot, occupies the center of its class group (ductile) and has a 
contextual score of 100% which indicates high confidence in the prediction.  The ductile and brittle 
instances queried in Fig. 8 and Fig. 9 are shown in pink and purple, respectively. 
 

6.2: Sensitivity of contextual score to number of nearest neighbors (k) 

To examine how sensitive the contextual scores are to the number of nearest neighbors (𝑘𝑘), 

we analyzed the queried images from different datasets using the shallow model, as shown in Figs. 

6, 8, and 9. In addition to the original k value, we tested two other values: 𝑘𝑘 = 200 and 𝑘𝑘 = 50. 

Contextual scores were recalculated using these alternative 𝑘𝑘 values, and the results were 

compared in Fig. 11. As observed in Fig. 11, the contextual scores do not exhibit significant 

variation across different 𝑘𝑘 values. This suggests a level of robustness, but it is still difficult to 
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generalize whether the scores will increase or decrease with a change in 𝑘𝑘. The effect appears to 

depend heavily on the specific image being analyzed and how its class relates to the surrounding 

neighboring classes in the feature space. To maintain a meaningful local context, we recommend 

choosing 𝑘𝑘 such that it remains below 1% of the total training set size. Setting 𝑘𝑘 too high may 

dilute the relevance of the local neighborhood, while setting it too low (e.g., 𝑘𝑘 = 10) may make the 

scores overly sensitive to noise or outliers in the dataset. 

 

Fig. 11: Influence of the number of nearest neighboring instances (k) on the contextual scores of queried 
image examples used in Figs. 6–9 for the shallow models. Here, Frac-D and Frac-B indicate ductile and 
brittle instance used from the fracture dataset, respectively. 
 

6.3: Contextual Scores for the Metal Fractographs 

Heatmaps are generated individually for the ductile fracture and brittle fracture predictions 

to examine the distribution of contextual scores across the latent coordinate range of the FRAC 

dataset (refer to Fig. 10), as shown in Fig. 12. These heatmaps reveal the level of confidence 

associated with the class prediction of an image instance using its latent coordinates. The heatmap 

color range represents contextual scores from 0 to 100, with a smooth transition from blue (0) to 

red (100). The variation of the contextual scores is observed as color bands oriented approximately 

along the 45° line parallel to the decision surface. As depicted in Fig. 12, the variation is highly 

pronounced near a narrow-banded region close to the decision surface, and it remains constant for 

most of the upper right and bottom left regions of a heatmap. Fig. 12.a shows the heatmap of 

contextual scores generated for the prediction of the ductile class. A high degree of confidence in 
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predicting an image instance in the ductile class is indicated by the major red region on the upper 

left (contextual score of 100). As we move toward the decision surface, the confidence level is 

progressively lowered, and it becomes even lower when we move below the decision surface. 

Thus, the major blue region on the bottom right (contextual score of 0) indicates the lowest degree 

of confidence if an image instance is predicted as ductile, suggesting that the prediction of any 

image instance falling inside the blue region is more likely a misclassification. This explanation 

extends to Fig. 12.b, which depicts the contextual heatmap for image instances predicted as the 

brittle class. The important distinction here in the brittle heatmap is that it is a diagonally flipped 

version of the ductile heatmap shown in Fig. 12.a. This is because the contextual score in this case 

is the proportion of brittle fracture training data instances that are closer to the query instance and 

these brittle fracture instances are predominantly distributed below the decision surface. 

 

Fig. 12: Heat map of contextual scores for the testing instances that belong to a) ductile fracture class and 
b) brittle fracture class in the latent space of the CNN model trained on the FRAC dataset. Red indicates a 
contextual score of 100 and blue color indicates a contextual score of 0.  
 

6.4 Mean Contextual Scores 

To assess prediction certainty across the entire test datasets, average contextual scores – both 

mean and median – were calculated for all model cases. A representative sample comprising 10% 

of the test images was selected to obtain an overall measure. Fig. 13 shows the distribution of 

contextual scores for these representative samples from the shallow models trained on the various 

datasets used in this study. Deep models exhibit similar distributions and are therefore not shown. 

a) b) 
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Since all models achieved good fits across the datasets, the distributions are generally skewed 

toward high contextual scores, with longer tails observed for CIFAR, EMNIST, and FMNIST. For 

FRAC (fracture) and MNIST, where the model fits were excellent, the distributions are tightly 

concentrated between 95–100%, with no observable tails. 

 
Fig. 13: Distribution of contextual scores for representative samples drawn from the test datasets of shallow 
models trained on the employed datasets. 

Although the median is generally a better measure of central tendency for skewed distributions, 

it fails to capture the influence of low contextual scores present in the model’s outputs. This is 

particularly relevant here, as a well-fitting model will naturally produce contextual scores clustered 

near 100, which inflates the median and masks underperforming cases. This behavior is also 

evident in Fig. 14, where the median scores across all datasets appear high, yet do not reflect the 

presence of poor predictions. Therefore, the mean is preferred in this context, as it accounts for the 

full distribution of scores and provides a more comprehensive view of the model’s overall 

performance on the test dataset. The results displayed in Fig. 14 also depict the mean contextual 

scores of all the CNN models employed in this study. The figure also compares the mean 

contextual scores of shallow and deep models. For EMNIST and FMNIST datasets, the contextual 

scores ranged from 89 to 93. A higher mean contextual score indicates greater confidence in the 

multiple predictions made within the dataset. The CIFAR10 dataset exhibited relatively lower 

mean contextual scores compared to the other datasets, with scores of 79 and 86 for shallow and 

deep models, respectively. The deep models consistently outperformed the shallow models in 
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terms of mean contextual scores across all cases, though the differences were generally not that 

significant. Notably, a large difference was observed only in the case of the CIFAR10 deep model.  

The observed difference in performance between the shallow and deep models, particularly in the 

case of the CIFAR10 dataset, can be attributed to the shallow model's limited capability to 

effectively separate images into distinct classes within the latent space compared to the deep 

model. On the other hand, the CNNs trained with FRAC and MNIST datasets, both shallow and 

deep models achieved remarkably high contextual scores ranging from 98 to 100. A mean 

contextual score ranging from 95 to 100 indicates a high level of confidence in individual 

predictions made within the dataset. Consequently, this instills greater confidence and trust in any 

predictions made by the CNNs. 

 
Fig. 14: Comparison of mean and median contextual scores of the deep and shallow models for various 
datasets employed in this study. 

While the mean score offers a reliable indicator for comparing overall model performance, an 

additional metric is considered: the proportion of samples with contextual scores below 90% in a 

representative dataset. This metric adds interpretability by quantifying the extent of poor 

predictions. The 90% threshold, while somewhat subjective, is chosen based on domain-specific 

expectations of acceptable performance. Analysts may adjust this cutoff depending on the 

sensitivity of the application or the tolerance for prediction errors in real-world deployment.  
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Fig. 15: Comparison of the proportion of samples with contextual scores below 90% between deep and 
shallow models across the different datasets used in this study. 

To further illustrate this point, we examine the proportion of samples with contextual scores below 

a more stringent threshold of 90%, offering a focused view of extreme underperformance. As 

shown in Fig. 15, the shallow models consistently yield a higher proportion of low-scoring samples 

compared to their deep counterparts across all datasets. This disparity is particularly pronounced 

in complex datasets such as EMNIST and FMNIST, suggesting that deeper architectures are more 

robust against severe contextual failures. These findings underscore the importance of examining 

tail-end performance, especially in applications where even a small fraction of highly unreliable 

predictions could have significant consequences. Consistent with the observations in Fig. 14, the 

fracture dataset (FRAC) contains no test image instances with contextual scores below 90, 

indicating a high level of confidence in individual predictions. 

7. Conclusions 

This study introduces contextual evidence, comprising contextual images and scores, as a 

tool to enhance trust in CNN model predictions used for classifying metal fractographs. The 

following are the key outcomes of this study:  

1) Contextual images allow users to visually understand the similarities and unique features 

between queried test images and nearest training images. This visual comprehension 

enabled by contextual images allows users to draw conclusions about the complexity of 

model predictions, fostering trust and reliability, despite a lack of subject matter expertise.  
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2) The CNN model trained on the fracture dataset had 99.8% accuracy on the training dataset 

99.9% accuracy on the testing dataset.  

3) Contextual scores provide a quantitative framework for assessing confidence based on the 

proximity to decision boundaries in the latent space. Test images closer to decision 

boundaries could receive lower contextual scores, indicating lower confidence in 

predictions. This empowers users to make informed decisions and foster a higher level of 

trust in the trained CNN model. The CNN model trained on the fracture dataset had very 

high contextual scores improving confidence on the CNN predictions. 

4) The mean contextual score provides a quantitative measure to assess the confidence in the 

model's predictions across multiple instances. The mean contextual score serves to instill 

trust in the model by demonstrating its consistency and suitability in effectively handling 

the dataset at hand. The mean contextual score of the fracture dataset is 98 implying that 

the predictions over the entire dataset are very reliable.  

5) The study also demonstrates the effectiveness of contextual evidence in enhancing trust 

and confidence by applying it on diverse datasets, including MNIST, EMNIST, FMNIST, and 

CIFAR10.  

 

Overall, contextual evidence improves transparency, understanding, and trust in CNN models, 

reinforcing confidence in their outcomes. The framework of contextual evidence can be extended 

to various neural network architectures used in engineering mechanics, addressing trust concerns 

at different user levels. 
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