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Abstract— In this paper, we develop a method for learning a
control policy guaranteed to satisfy an affine state constraint of
high relative degree in closed loop with a black-box system. Pre-
vious reinforcement learning (RL) approaches to satisfy safety
constraints either require access to the system model, or assume
control affine dynamics, or only discourage violations with
reward shaping. Only recently have these issues been addressed
with POLICEd RL, which guarantees constraint satisfaction
for black-box systems. However, this previous work can only
enforce constraints of relative degree 1. To address this gap,
we build a novel RL algorithm explicitly designed to enforce
an affine state constraint of high relative degree in closed loop
with a black-box control system. Our key insight is to make the
learned policy be affine around the unsafe set and to use this
affine region to dissipate the inertia of the high relative degree
constraint. We prove that such policies guarantee constraint sat-
isfaction for deterministic systems and are agnostic to the choice
of the RL training algorithm. Our results demonstrate the
capacity of our approach to enforce hard constraints in the Gym
inverted pendulum and on a space shuttle landing simulation.
Website: https://iconlab.negarmehr.com/CDC-POLICEd-RL/

I. INTRODUCTION

The lack of safety guarantees in reinforcement learn-
ing (RL) has been impeding its wide deployment in real-
world settings [1]. Safety in RL is traditionally captured by
state constraints preventing the system from entering unsafe
regions [2]. This issue has been investigated by numer-
ous approaches and most commonly under the framework
of constrained Markov decision processes (CMDPs) [3].
CMDPs only encourage policies to respect safety constraints
by penalizing the expected violations [4]; however, they
do not provide any satisfaction guarantees [2]. For safety-
critical tasks, such as autonomous driving or human-robot
interactions, safety guarantees are primordial and require the
learned policy to maintain constraint respect.

A few RL attempts at learning provably safe policies
have involved control barrier functions (CBFs) [5], backward
reachable sets [6], and projection of control inputs onto
safe sets [7]. However, all these methods require precise
knowledge of the system dynamics, which is usually not
available in RL. To circumvent this issue and study black-
box systems without an analytical model of the dynamics,
the common approach has been to learn safety certificates
[8], [9]. Yet, the formal safety guarantees of these methods
hinge upon the quality of their CBF approximations. More
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Fig. 1: Phase portrait of constrained output y illustrating our High Relative
Degree POLICEd RL method on a system of relative degree 2. To prevent
states from violating constraint y ≤ ymax (red dashed line), our policy
guarantees that trajectories entering buffer region B (blue) cannot leave it
through its upper bound (blue dotted line). Our policy makes ÿ sufficiently
negative in buffer B to bring ẏ to 0 in all trajectories entering B. Once
ẏ < 0, trajectories cannot approach the constraint. Due to the states’ inertia,
it is physically impossible to prevent all constraint violations. For instance,
y = ymax, ẏ >> 1 will yield y > ymax at the next timestep. Hence, we
only aim at guaranteeing the safety of trajectories entering buffer B.

reliable safety guarantees have been established by recent
work [10], whose POLICEd RL approach designs a repulsive
buffer to enforce constraint satisfaction in closed-loop with
a black-box system. However, work [10] along with most
other safe RL works such as [7], [8], [9] are limited to
constraints of relative degree 1. In contrast, our approach
enforces inviolable constraints of high relative degree in
closed-loop with a learned control policy while exclusively
using a black-box model of the system dynamics.

The higher the relative degree of a constraint, the more
inertia it has, and the more challenging its satisfaction is
[11]. We propose a backstepping inspired approach, which
is compatible with systems non-affine in control and with
black-box systems contrary to these CBF methods.

To learn our safe controller, we draw inspiration from the
POLICEd RL method of [10] and transform the state space
surrounding the affine state constraint into a buffer region
that cannot be crossed. We overcome the major limitation
of [10] by extending POLICEd RL to constraints of high
relative degree. To dissipate the inertia of this high relative
degree constraint, our key insight is to extend the buffer
into the dimensions of the unactuated derivatives of the state
constraint. While this task appears arduous, these derivatives
are usually accessible since related to the states. In this buffer
region, we train the policy to dissipate the state’s inertia
to progressively slow its progression towards the constraint,
as illustrated in Fig. 1. This controller guarantees that tra-
jectories entering the buffer do not violate the constraint.
Since inertia cannot be dissipated instantly, some constraint
violations are physically impossible to prevent. Inspired by
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[10], to easily verify the dissipative character of the controller
in the buffer, we use the POLICE algorithm [12] to generate
an affine policy over the buffer region.

In summary, our contributions in this work are as follows.
1) We introduce High Relative Degree POLICEd RL, a novel

RL framework to guarantee satisfaction of an affine state
constraint of high relative degree using a black-box model
of the system in closed-loop with a trained policy.

2) We provide comprehensive proof, and we detail our
method to evaluate our trained policy while directly guar-
anteeing constraint satisfaction.

3) We demonstrate the safety guarantees of our approach
in a number of simulation studies involving an inverted
pendulum and a space shuttle landing.
The remainder of this work is organized as follows. In

Section II, we introduce our framework. In Section III,
we establish the theoretical guarantees of our approach in
enforcing the satisfaction of a high relative degree constraint.
In Section IV, we illustrate our method on the Gym inverted
pendulum and on a space shuttle landing scenario. More
details can be found at https://arxiv.org/abs/2407.20456

Notation: We denote the positive integer interval from a ∈
N to b ∈ N inclusive by [[a, b]]. We denote the component
i ∈ [[1, n]] of a vector x ∈ Rn by xi and the vector composed
of components i to j > i by xi:j . The set of nonnegative
real numbers is R+. We denote the kth time derivative of a
function y by y(k) = dky

dtk
. If x, y ∈ Rn, then x ≤ y denotes

the element-wise inequalities xi ≤ yi for all i ∈ [[1, n]].

II. FRAMEWORK

We consider a black-box deterministic system

ẋ(t) = f
(
x(t), u(t)

)
, u(t) ∈ U , x(0) ∈ X , (1)

with state space X ⊆ Rn and admissible control set U ⊆
Rm. We consider dynamics (1) to be an implicit black-box,
meaning that we can evaluate f but we do not have any
explicit knowledge or analytical form of f . This is similar
to the online RL setting where f is a simulator or a robot.

We assume that the system safety constraint is captured
by a single affine inequality on output

y(t) := Cx(t) ≤ ymax, for all t ≥ 0, (2)

with C ∈ R1×n and ymax ∈ R. We model our deterministic
feedback policy u(t) = πθ

(
x(t)

)
∈ U by a deep neural

network parameterized by θ. Our objective is to train policy
πθ to respect constraint (2) and maximize the following
expected discounted reward

max
θ

G(πθ) := E
x0∼ρ0

∫ ∞

0

γtR
(
x(t), πθ(x(t))

)
dt s.t. (2), (3)

where γ ∈ (0, 1] is a discount factor, R a reward function,
and ρ0 the distribution of initial states. The only stochasticity
in our setting comes from the initial state sampling x0 ∼ ρ0.
We emphasize that constraint (2) is a hard constraint to be
respected at all times. Contrary to previous work [10], we
assume that constraint (2) has a relative degree at least 2.

Definition 1. The relative degree r of output y (2) for
dynamics (1) is the order of its input-output relationship,
i.e., r := min

{
p ∈ N : ∂

∂u
∂py
∂tp (t) ̸= 0 for all x ∈ X

}
[13].

In simpler words, the relative degree is the minimal
number of times output y has to be differentiated until control
input u appears. As argued in [14], relative degree r can be
obtained by first-order principles without the knowledge of
dynamics f . Hence, knowing r is compatible with our black-
box model of f .

Having r ≥ 2 means that u does not appear in the
expression of ẏ. Thus, a change in control input will not
immediately modify y. We follow [11] and refer to the unac-
tuated derivatives of y

(
y(k) for k ∈ [[1, r−1]]

)
as generalized

inertia, by analogy to inertia in kinematic systems. To enforce
constraint (2), we need to dissipate this generalized inertia
before reaching constraint line y = ymax. To easily assess
this generalized inertia, we make the following assumption.

Assumption 1. There exists an invertible map T between
state x ∈ Rn and s ∈ Rn, whose first r components are
s1 = y, s2 = ẏ, ..., sr = y(r−1), where y is output (2).
Transformation T (x) = s gives rise to an equivalent state
space S := T (X ).

Note that this is a rather mild assumption. Indeed, a
transformation s = T (x) always exists since y = Cx and
thus sk+2 = y(k+1) = C ∂kẋ

∂t = C ∂kf
∂t (x, u). Assumption 1

is required for the invertibility of T and the fact that T can
be determined without knowledge of black-box dynamics
f . Following Assumption 1, we now have two equivalent
state representations: x denotes the original state of system
(1), while s denotes the transformed state composed of the
iterated derivatives of constrained output y.

We can now formally define our problem of interest.

Problem 1. Given:
1) black-box control system (1);
2) state space X ⊆ Rn;
3) admissible input set U ⊆ Rm;
4) affine constraint (2) of relative degree r ≥ 2;
5) neural network policy πθ(x) parameterized by θ;
6) invertible transformation T of Assumption 1;

Our goal is to solve θ∗ = argmax
θ

G(πθ) s.t. (1) and (2).

III. CONSTRAINED REINFORCEMENT LEARNING

We will solve Problem 1 by designing a buffer preventing
trajectories from breaching the constraint, as shown in Fig. 1.

A. Buffer Design

We formalize the concept of Fig. 1 and build buffer B
as the state space region where our controller will dissipate
generalized inertia ẏ,...,y(r−1) to prevent violation of con-
straint (2). To adapt B to this task, we design it in state
space S , because Assumption 1 states that the coordinates
of S are the generalized inertia components y(k).

Assume we can choose s ∈ B and let us investigate what
bounds the components of s should satisfy to remain in B.
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Following Assumption 1, the first component of s is s1 = y,
and thus should satisfy s1 ≤ ymax to respect constraint (2).
We choose a lower bound for s1 as ymin < ymax.

Following Assumption 1, the second component of s is
s2 = ẏ. To maintain y ≤ ymax, we need ẏ ≤ 0 when y =
ymax. Requiring ẏ ≤ 0 for all s ∈ B is the approach of [10]
but restricts B to only include states already moving away
from upper bound ymax, whereas we want to slow down and
stop trajectories going towards ymax. Thus, we must allow
states with ẏ > 0 in B. Let ẏmax > 0 be the maximal velocity
in B. Our controller will later require B to be a polytope.
Thus, we naturally define the upper bound on ẏ = s2 as

smax
2 := β(ymax − y) with β :=

ẏmax

ymax − ymin
, (4)

so that smax
2 (y) = ẏmax when y = ymin and smax

2 = 0
when y = ymax, as illustrated in Fig. 1. We choose a lower
bound smin

2 ≤ 0 so that smin
2 ≤ smax

2 (y) for all y. Note that

s2 = ẏ ≤ smax
2 (y) = β(ymax − y) (5)

is a differential inequality on y that we designed to maintain
y ≤ ymax. To enforce (5) we need a control input, but
only y(r) is actuated. Our key idea is then to make our
controller enforce a differential inequality on y(r), whose
iterated integrations will lead to (5).

Working backwards, we differentiate (5) into ÿ ≤ −βẏ,
i.e., s3 ≤ −βs2. Thus, we choose bounds smin

3 <
smax
3 (s) := −βs2. Iterating this process until y(r) leads to

lower and upper bounds b and b on the first r components
of s ∈ B. Then, s1:r ∈

[
b, b(s)

]
element-wise with

b :=
[
ymin, smin

2 , smin
3 , . . . , smin

r

]
, (6)

b(s) :=
[
ymax, β(ymax − s1), −βs2, . . . , −βsr−1

]
. (7)

The remaining n−r components of s ∈ B are not derivatives
of y and thus are not involved in the constraint enforcement
process. As mentioned previously, we will need B to be
a polytope, hence we choose to bound the last n − r
components of s ∈ B by a polytope P ⊂ Rn−r so that

B :=
{
s ∈ S : s1:r ∈

[
b, b(s)

]
, sr+1:n ∈ P

}
. (8)

Note that the bounds we just derived only delimit region B
in S , but without adequate control input, trajectories will not
respect these bounds. Similarly, the differential inequalities
obtained above only reflect the desired dynamics that we
want to enforce with our controller. On the other hand,
bounds s1:r ≥ b and sr+1:n ∈ P will not be specifically
enforced by the controller, but should be designed to en-
compass all trajectories to be safeguarded from ymax.

By design, buffer B of (8) is then a compact convex
polytope with a finite number N of vertices gathered in the
set V

(
B
)
:=

{
v1, . . . , vN

}
.

B. Controller Design

Let us now design a controller to maintain trajectories
in buffer B. Inspired by [10], we model our control policy
with a POLICEd neural network µθ := πθ ◦ T : S → U ,
with continuous piecewise affine activation functions such as

ReLU [12]. This POLICEd architecture allows us to make
the outputs of µθ affine over a polytopic region of state space
S , which we chose to be B. Then, there exist matrices Dθ ∈
Rm×n and eθ ∈ Rm such that

µθ(s) = Dθs+ eθ for all s ∈ B. (9)

Since buffer B and policy µθ are both in space S and
not X , we need to calculate the state dynamics in S . State
s = T (x) following controller µθ satisfies

ṡ =
∂T

∂t
(x) =

∂T

∂x

∂x

∂t
=

∂T

∂x
(x)f

(
x, µθ

(
T (x)

))
.

Then, by defining the map

f̃(s;µθ) :=
∂T

∂x

(
T−1(s)

)
f
(
T−1(s), µθ(s)

)
,

we can write ṡ(t) = f̃
(
s(t);µθ

)
. We are mostly interested

in the dynamics of the actuated derivative of output y:

y(r)(t) =
∂y(r−1)

∂t
(t) =

∂sr
∂t

(t) = f̃r
(
s(t);µθ

)
, (10)

where sr and f̃r denote the rth component of s and f̃
respectively. If dynamics (10) were known and affine, their
coupling with affine policy µθ on B would lead to a simple
constraint enforcement process. However, dynamics (10) are
a black-box and possibly nonlinear. We will thus use an affine
approximation of (10) inside using the following definition.

Definition 2. An approximation measure ε of dynamics (10)
in buffer (8) is any ε ≥ 0 for which there exists any matrices
A ∈ Rn×n, B ∈ Rn×m, and c ∈ Rn such that for all s ∈ B∣∣f̃r(s;µθ

)
− C

(
As+Bµθ(s) + c

)∣∣ ≤ ε. (11)

Intuitively, the value of ε quantifies how far from affine is
function f̃r over buffer B. Having access to map T , controller
µθ and to a black-box model of f , we can evaluate f̃r
and compute ε using linear least square approximation [15].
Since ε is estimated from data, it might not verify (11) for
some s ∈ B absent from the dataset. To satisfy Definition 2,
we need to over-approximate ε since any upper bound will
verify (11). With such an upper bound, we will guarantee
the satisfaction of constraint (2) with actual dynamics (1).

We now establish our central result demonstrating how
to guarantee satisfaction of constraint (2) by black-box
environment (1) armed only with an approximation measure
ε and without knowing A, B, c, f , or f̃r.

Theorem 1. Assume that for some approximation measure
ε, dissipation condition

f̃r(v;µθ) ≤ −2ε− βvr, (12)

holds for all v ∈ V
(
B
)
, where vr is the rth component of v

and β comes from (4). If a trajectory s steered by µθ verifies

s1:r(t0) < b
(
s(t0)

)
(13)

for some t0 ≥ 0, and satisfies

s1:r(t) ≥ b and sr+1:n(t) ∈ P (14)
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for all t ∈ [t0, t1), then s1:r(t) < b
(
s(t)

)
for all t ∈ [t0, t1).

In simpler words, Theorem 1 guarantees that trajectories
entering buffer B below upper bound b cannot exit B through
b as long as dissipation condition (12) is satisfied. Theorem 1
generates the bent arrows of the flow illustrated in Fig. 1
which prevent trajectories from violating constraint (2). The
major strength of our approach is that dissipation condition
(12) only needs to be enforced at the vertices of B and thus
does not require knowledge of f or f̃r.

Proof of Theorem 1. The intuition behind this proof is to use
the convexity of buffer B and affine approximation (11) to
extend condition (12) to the entire B. By combining this
condition with the specific design of upper bound (7), we
can derive bounds on the output derivatives y, ..., y(r−1) and
show that they cannot cross upper bound b.

We divide the proof into three lemmas. First, we show in
Lemma 1 that condition (12) yields ṡr ≤ −βsr for all s in B.
This condition combined in Lemma 2 with (14) yields the
differential inequalities to be respected by y, ẏ,..., y(r−1)

as long as trajectory s remains in B. In Lemma 3 these
differential equations are then paired with initial conditions
(13) to obtain s1:r(t) < b

(
s(t)

)
for all t ∈ [t0, t1).

C. Supporting Lemmata
Lemma 1. If for some approximation measure ε, condi-
tion (12) holds for all v ∈ V(B), then controller µθ yields

ṡr(t) ≤ −βsr(t), i.e., y(r)(t) ≤ −βy(r−1)(t), (15)

for all s(t) ∈ B.

Proof. Since ε is an approximation measure, there exist A,
B and c verifying (11) which we evaluate at s = v ∈ V

(
B
)

C
(
Av +Bµθ(v) + c

)
≤

∣∣C(
Av +Bµθ(v) + c

)
− f̃r(v;µθ)

∣∣+ f̃r(v;µθ)

≤ ε− 2ε− βvr, (16)

where the first inequality is a triangular inequality, the second
follows from (11) and (12). Using the convexity of polytope
B of vertices V

(
B
)
=

{
v1, . . . , vN

}
, for any s ∈ B, there

exist α1, . . . , αN ∈ R+ such that
∑N

k=1 α
k = 1 and s =∑N

k=1 α
kvk. Controller (9) applied at s ∈ B yields

C
(
As+Bµθ(s) + c

)
= C

(
As+B(Dθs+ eθ) + c

)
= C(A+BDθ)s+ C(Beθ + c)

= C(A+BDθ)

N∑
k=1

αkvk + C(Beθ + c)
N∑

k=1

αk

=

N∑
k=1

αkC
(
(A+BDθ)v

k +Beθ + c
)

=
N∑

k=1

αkC
(
Avk +Bµθ(v

k) + c
)

≤
N∑

k=1

αk
(
− ε− βvkr

)
= −ε

N∑
k=1

αk − β
N∑

k=1

αkvkr

= −ε− βsr, (17)

where the only inequality comes from (16) on each vertex
vk and the last equality stems from the linear decomposition
of component r of state s between component r of vertices
vk. For any state s ∈ B, (10) yields

y(r) = f̃r(s, µθ)

≤
∣∣f̃r(s, µθ)−C

(
As+Bµθ(s)+c

)∣∣+C
(
As+Bµθ(s) + c

)
≤ ε− ε− βsr = −βy(r−1),

where we first use the triangular inequality, then (11) and
(17), and the last equality comes from the definition of state
s in Assumption 1.

Lemma 1 uses the convexity of B and affine approxima-
tion (11) to extend (12), valid only at the vertices of B, into
(15), valid all over B. Without the POLICE algorithm [12],
µθ would not be affine over B, and dissipation condition (12)
would need to be enforced everywhere on the buffer at a
prohibitive computational cost.

Lemma 2. If (15) holds for all s ∈ B, s(t0) ∈ B, and (14)
holds for all t ∈ [t0, t1) for some t1 > t0 ≥ 0, then

y(t) ≤
(
y(t0)− ymax

)
e−β(t−t0) + ymax (18)

and
y(k)(t) ≤ y(k)(t0)e

−β(t−t0) (19)

for all k ∈ [[1, r − 1]] and all t ∈ [t0, t1).

Proof. We apply the comparison lemma of [16] to
differential inequality (15), which yields y(r−1)(t) ≤
y(r−1)(t0)e

−β(t−t0).
Initial condition s(t0) ∈ B yields

sr(t0) = y(r−1)(t0) ≤ −βsr−1(t0) = −βy(r−2)(t0).

Define function g(t) := y(r−1)(t) + βy(r−2)(t). Then, (15)
is equivalent to ġ(t) ≤ 0 and our initial condition is
g(t0) ≤ 0. Therefore, g(t) ≤ 0 for all t ∈ [t0, t1), i.e.,
y(r−1)(t) ≤ −βy(r−2)(t). Using the comparison lemma of
[16], we can solve this differential inequality and obtain
y(r−2)(t) ≤ y(r−2)(t0)e

−β(t−t0).
We can iterate this process for k ∈ {r − 3, . . . , 1} and

obtain y(k+1)(t) ≤ −βy(k)(t), which yields y(k)(t) ≤
y(k)(t0)e

−β(t−t0) for all t ∈ [t0, t1).
For k = 1, we thus have ÿ(t)+βẏ(t) ≤ 0. Initial condition

s(t0) ∈ B yields ẏ(t0) ≤ β̇
(
ymax − y(t0)

)
, or equivalently

ẏ(t0)+βy(t0) ≤ βymax. As previously, with g(t) := ẏ(t)+
βy(t), we have ġ(t) ≤ 0 and g(t0) ≤ βymax. Thus, g(t) ≤
βymax, i.e., ẏ(t) + βy(t) ≤ βymax for all t ∈ [t0, t1). We
solve this differential inequality using the comparison lemma
of [16] and obtain (18) for all t ∈ [t0, t1).

Lemma 2 used (15) and upper bound b of (7) to obtain
the differential equations verified by the output derivatives
in B. We will now use initial condition (13) to show that
trajectories cannot leave B through its upper bound b.

Lemma 3. If (15) holds for all s ∈ B, (18) and (19) hold
for all t ∈ [t0, t1), then (13) implies s1:r(t) ≤ b(s(t)) for all
t ∈ [t0, t1).
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Proof. Condition s(t0) < b(s(t0)) yields y(t0) < ymax. This
initial condition combined with (18) leads to y(t) < ymax

for all t ∈ [t0, t1), i.e., s1(t) < b(s(t))1.
Initial condition s2(t0) < b(s(t0))2 yields ẏ(t0) < β(ymax−
y(t0)). Starting from (19) for k = 1, we have

ẏ(t) ≤ ẏ(t0)e
−β(t−t0) < β(ymax − y(t0))e

−β(t−t0) (20)

for all t ∈ [t0, t1). Reorganizing (18) leads to
−y(t0)e

−β(t−t0) ≤ −y(t)+ymax(1−e−β(t−t0)), which can
be combined with (20) into

ẏ(t) < β
(
ymaxe

−β(t−t0) − y(t) + ymax(1− e−β(t−t0))
)

< β
(
ymax − y(t)

)
e−β(t−t0),

i.e., s2(t) < b(s(t))2 for all t ∈ [t0, t1).
Similarly for k ∈ [[2, r − 1]], (19) combined with initial

condition y(k)(t0) < −βy(k−1)(t0) leads to

y(k)(t) ≤ y(k)(t0)e
−β(t−t0) < −βy(k−1)(t0)e

−β(t−t0) (21)

for all t ∈ [t0, t1). Reversing (19) at k − 1 leads to
−y(k−1)(t0)e

−β(t−t0) ≤ −y(k−1)(t), which can be com-
bined with (21) into y(k)(t) < −βy(k−1)(t), i.e., sk+1(t) <
b(s(t))k+1 for all t ∈ [t0, t1).

Remark 1. Control set U of (1) might prevent the existence
of an admissible stabilizing policy µθ. That is why we use
RL to find policy µθ and we verify its safety with Theorem 1.

IV. NUMERICAL SIMULATIONS

A. Gym Inverted Pendulum

We consider the Inverted Pendulum Gym environment
with the MuJoCo dynamics engine. The environment state
x is composed, in that order, of the cart position p, the
pole angle θ, and their derivatives ṗ and θ̇. The objective
within this environment is to maintain the pole close to the
vertical, i.e., |θ| ≤ 0.2 rad. Let us focus on enforcing the
upper constraint, y := θ ≤ 0.2 rad. This constraint has a
relative degree r = 2 since the control input is the force
exerted on the cart, which directly impacts θ̈.

Given y = θ, we define state s :=
[
y, ẏ, s3, s4

]
= T (x) :=[

θ, θ̇, p, ṗ
]

by simply reordering state x.
Following Section III-A, we will now design buffer B,

whose architecture should help dissipate the inertia of tra-
jectories arriving at θ = ymin with velocities θ̇ ≤ ẏmax. We
choose ymax := 0.2 rad, ymin = 0.1 rad, smin

2 = 0 rad/s
and ẏmax = 1 rad/s, and define buffer B :=

{
s ∈ S : s1 =

y = θ ∈ [0.1, 0.2], s2 = ẏ = θ̇ ∈ [0, 2 − 10θ], s3 = p ∈
[−0.9, 0.9], s4 = ṗ ∈ [−1, 1]

}
. This choice of B allows only

θ̇ = 0 rad/s when θ = 0.2 rad, hence preventing θ in B from
growing past 0.2 rad.

Following Definition 2, we sample states in B and perform
a linear regression on θ̈ to obtain an approximation measure
ε = 0.53. We model controller µθ with a deep neural network
trained to stabilize the pole at θ = 0 in a reinforcement
learning fashion using proximal policy optimization (PPO)
[17]. We train two such policies, one being a standard multi-
layer perceptron (MLP) to form a baseline, and the other

Fig. 2: Phase portrait of
(
θ, θ̇

)
for the inverted pendulum. None of the

POLICEd trajectories (blue) entering buffer B (green) cross constraint line
θ = 0.2 rad (dashed red), whereas some of the baseline trajectories do
(dotted orange). Our approach guarantees that a pole arriving at θ = 0.1
rad with a velocity θ̇ < 1 rad/s will satisfy θ ≤ 0.2 rad. We do not guarantee
the safety of POLICEd trajectories not entering the buffer.

having POLICEd layers [12] enforcing affine condition (9).
Both policies follow the same training and are encouraged to
enforce dissipation condition (12) at the vertices of B, which
translates to θ̈ ≤ −2ε− 10θ̇.

To illustrate Theorem 1, assume that our POLICEd con-
troller µθ enforces dissipation condition (12) and let us
consider a trajectory s entering buffer B at time t0. If
initial state condition (13) holds, i.e., if θ(t0) < 0.2 rad
and θ̇(t0) < 2 − 10θ(t0), then as long as θ(t) ≥ 0.1 rad,
θ̇(t) ≥ 0 rad/s, and

(
p(t), ṗ(t)

)
∈ P , we have θ(t) < 0.2

rad and θ̇(t) < 2 − 10θ(t). These equations generate the
phase portrait of Fig. 2, which successfully reproduces the
desired behavior exhibited in Fig. 1.

Our POLICEd controller guarantees that all trajectories
entering B cannot cross its upper bound b and hence cannot
violate the constraint, whereas some baseline trajectories
cross b and violate the constraint as shown in Fig. 2.

B. Space Shuttle Landing

We now study the highly-nonlinear dynamics of the space
shuttle landing [18]. Original state x ∈ R3 is composed of
the altitude h of the shuttle, its flight path angle γ, and its
velocity v. The dynamics of these state are

ḣ(t) = v(t) sin γ(t) (22a)

γ̇(t) = ρ(t)v(t)CL(t)
S

2m
− g cos γ(t)

v(t)
(22b)

v̇(t) = −ρ(t)v2(t)CD(t)
S

2m
− g sin γ(t), (22c)

where the air density satisfies ρ(t) = ρ0e
−h(t)/H and the lift

and drag coefficients take the form

CL(t) = CL0 sin
2α(t) cosα(t)

CD(t) = CD0
+KC2

L(t).
(23)

The control input is the angle-of-attack α of the shuttle,
which makes these dynamics non-affine in control, and hence
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Fig. 3: Phase portrait of the space shuttle landing. POLICEd trajectories
(blue) entering buffer B (green) all converge to a set of target conditions
(pink) with small vertical velocity from which landing is feasible. However,
the baseline trajectories (dotted orange) reach the ground h = 0 with high
vertical velocities ḣ ≤ −6 ft/s resulting in a crash of the shuttle (x).

cannot be handled directly by any CBF method1 [11], [20].
In this scenario, the shuttle starts from a descent configura-

tion with high vertical velocity ḣ, which must be drastically
reduced to allow for a soft landing. More specifically, we
consider initial states typical of a descent phase from a height
h0 = 500 ft, velocities v0 ∈ [300, 400] ft/s and flight path
angles γ0 ∈ [−30◦,−10◦]. The objective of our controller is
to bring the shuttle to a low altitude h ≤ 50 ft with vertical
velocity ḣ ≤ 6 ft/s sufficiently small to allow for a soft
landing [18]. We choose an output constraint y := −h ≤ 0,
which has a relative degree 2 for control input α. We build
a buffer with ymin = −50 ft, ymax = 0 ft, smin

2 = 6ft/s
and ẏmax = 100 ft/s.

We introduce state s :=
(
h, ḣ, γ

)
and invertible transfor-

mation T (x) = s is easily obtainable from pure geometric
considerations as it only needs (22a). Thus, Assumption 1 is
verified and determining T does not violate our black-box
assumption on dynamics (22), (23).

We train two PPO policies [17] to minimize the vertical
velocity at touchdown. One of these policies is a standard
MLP used as a baseline and the other is our POLICEd ver-
sion [10]. As seen in Fig. 3 our POLICEd policy successfully
enforces the dissipative buffer of Theorem 1 and ensures soft
landing of the shuttle contrary to the baseline PPO policy.

V. CONCLUSION AND FUTURE WORK

In this work, we established High Relative Degree PO-
LICEd RL, a novel method to enforce a hard constraint of
high relative degree on learned policies, while only using
an implicit black-box model of the environment. We built
a buffer region where the policy dissipates the generalized
inertia of the high relative degree constraint to prevent
trajectories from reaching the constraint line. We illustrated
our theory on the MuJoCo inverted pendulum and on a space
shuttle landing scenario.

1Adding an integrator α̇(t) = u(t) renders dynamics (22) affine in
control at the price of a higher relative degree [19].

Several avenues for future work seem especially interest-
ing. Extending the POLICE algorithm of [12] to enforce
multiple affine regions would allow a straightforward ex-
tension of this work to guarantee the satisfaction of mul-
tiple constraints of high relative degree. Another interesting
pursuit would be to investigate how to guarantee constraint
satisfaction during the training process of the policy.
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