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Generalization to Novel Environments using Control Barrier Functions
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Abstract— Ensuring safety in the navigation of multi-robot
systems using control barrier functions has traditionally in-
volved the utilization of a pre-tuned class-/C function specifically
tailored to a given environment. However, these pre-tuned class-
K functions struggle to generalize to different environments.
In this work, we address these challenges for control-affine
systems with actuation constraints. Our key insight is that
incorporating environment-specific information implicitly into
the class-KC function can enhance generalization to unseen
environments. We introduce a parameterization of the class-
K functions for multi-robot systems using a Graph Neural
Network (GNN). We formulate safety conditions and safe
control using control barrier functions utilizing this GNN-based
class-KC function, which is optimized with both environmental
information and information perceived by the robot in its local
neighborhood leading to decentralized execution. To enable end-
to-end learning of class-/C functions and decentralized control
policy, we employ a differentiable optimization layer, facilitating
the embedding of optimization problem for computing safe
control policies jointly with class-/C functions using environment
information and information perceived by the robot in its
local neighborhood. We show through simulation results the
effectiveness of our proposed method in generating scalable
and generalizable safe control policies which are adaptable to
novel environments.

I. INTRODUCTION

While multi-robot systems (MRS) are great for boosting
task efficiency in contrast to single-robot systems [1], their
use is limited in safety-critical scenarios [2] due to their lack
of safety guarantees.

For single-robot systems, control barrier functions
(CBF) [3] have been used for synthesizing control policies
that can guaranteeing safety. CBF acts as a safety filter
for unsafe actions and guarantees the safety of the system
through forward invariance of the safe set. CBF conditions
for set invariance are employed as constraints within a
quadratic program (QP) [4] to compute a safe control action
by modifying a high-level controller [5] that achieves goal-
reaching objectives in a minimally invasive manner. Formu-
lating such conditions often entails choosing a unique class-
K function that maximizes the overall control performance
for a specific environment [6].

For MRS, the number of CBF constraints increases lin-
early with the number of robots and obstacles in an envi-
ronment. A safe set for each robot with respect to other
robots and obstacles, within the CBF necessitates a distinct
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Fig. 1: Motivating example demonstrating the generalization
challenge of CBF-based multi-robot safe control to novel
environments using unicycle dynamics. The heuristically
tuned class-K function optimized for Environment (a) with
four obstacles (in black) is used in Environment (b) featuring
two additional novel obstacles (in grey). As can be seen, the
pre-tuned class-/C function fails to generalize in Environment
(b) with robots 2 and 4 getting stuck and struggling to
advance to their goals safely.

class-K function, tailored to maximize the overall control
performance within a specific environment [6]. In real-world
applications, especially those involving safety-critical tasks,
prior knowledge of the environment is often lacking. Addi-
tionally, robots may encounter various environmental con-
ditions during their deployment. Consequently, pre-tuning a
class-IC function for each possible environment to reconcile
performance and safety for each robot becomes a challenging
endeavor. See motivating example in Fig. 1

Related Work. We present a non-exhaustive list of related
works pertinent to learning based safe multi-robot control.
For a more comprehensive review, readers are referred to [7].

CBF based methods. Despite their safety guarantees,
finding a CBF a-priori is a challenging task, which prompted
the exploration of learning-based frameworks for jointly
learning CBF certificates and control policies [8] for single-
robot systems. Such learning-based frameworks for single-
robot systems can be broadly categorized into model-
based [9]-[11] and model-free approaches [12]-[14]. Typ-
ically, all such frameworks rely on a heuristically selected
class-C function tailored to a specific environment. Conse-
quently, these methods often exhibit limited generalizability
and suffer from performance degradation when the environ-
ment undergoes changes. To address these challenges, [6],
[15] recently introduced a technique that optimizes the class-
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function using environmental data, aiming to enhance
the generalizability of control barrier certificates to novel
environments, but for single-robot systems.

Extending such learning frameworks from single-robot
systems to MRS presents challenges. Recent approaches
to certificate-based learning for MRS involves the param-
eterization of CBF and policies using feedforward neural
networks [16], as well as GNN [17]. While these frameworks
excel in decentralization and scalability of safe control poli-
cies, a limitation arises due to the inherent conservatism [6],
[15] of the classical CBF conditions, primarily stemming
from the use of a fixed class- function in enforcing these
conditions using data collected from different environments.
The performance of the control policy can be degraded
when environmental conditions change. To address feasi-
bility issues in computing control with a fixed class-
function, [18] proposed a model-free reinforcement learning
method using adaptive policies parameterized by a GNN
that dynamically adjusts class- functions online, leveraging
locally perceived information. Unlike our approach, this
work focuses on the guaranteed feasibility of computing a
safe control action. Moreover, our proposed framework is
end-to-end trainable. Other notable works [19]-[21] employ
GNN to learn complex multi-robot behaviors for safe motion
planning in multi-robot scenarios, albeit without directly
incorporating environmental information into the learning
process.

Statement of Contributions. For MRS with control affine
dynamics subject to control input constraints, given a CBF
(or safety constraints), our contributions include:

1) We introduce a novel parameterization of the class-

functions using GNN, aiming to learn inter-robot

interactions for improved generalizability of the CBF

to changing environments while retaining the set-

invariant guarantees associated with classic CBF con-
ditions.

2) We present a method for the end-to-end learning of de-
centralized safe control policies, achieved jointly with
the optimization of the GNN-based class- function
using differentiable-optimization layers with environ-
mental and local neighborhood information perceived
by the robot.

To the best of our knowledge, this is the first work for
MRS that considers optimizing class- function in an end-to-
end manner using environmental information for improving
the generalizability of a given CBF candidate to novel
environments. The overall framework is shown in Fig. 2.

II. PRELIMINARIES

Consider a multi-robot system with N robots denoted by

= A; Y, in an environment with M static obstacles
denoted by O; . Assume that each robot has a control-
affine dynamics' of the form

i = f(xi) + g(zi)us, (1)

"While in this work we consider robots with same dynamics, it is possible
to consider heterogeneous MRS where the dynamics of robots are different.
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Fig. 2: Overview of our proposed framework. Our framework
has three key components: a performance controller, GNN
based class- function o”-Net, and a differentiable optimiza-
tion layer CBF-QP (dCBF-QP) for end-to-end learning.

where ; i R™ is the state and wu; i R™
is the control input of robot A;. The vector fields f :
R" R™ and g : R R™ are assumed to be locally
Lipschitz continuous. We omit the time dependence of state
and control input in (1) for brevity. We define node set
= 1,2,3,....IN as the set containing the index of robots.
We use a:,(it) to denote the state of robot A; for ¢ at time
t. Each robot A; has a sensing radius ¢ R that provides
partial observation of the environment. We assume that each
robot gets to observe the states of the other robots z; jen,
and the positions of the obstacles p;o 1cn, Wwithin the
neighborhood of radius o. Here, ; is the neighbor set of
A; defined as  ; := j  p; — pi o, j=1iJl
Plo — Pi o, Il=1,..,M ,and p; and p; , refers to the
position states of robot A; and the obstacles O; respectively.
In this work, we will consider decentralized control policies
similar to [18] of the form

ﬂ—i(ui Li, Tj jeN;» Plo !Equb) i (2)

where ¢ R¥ is a vector with implicitly encoded environ-
ment information. We assume just like in prior works [6],
[15] that information vector ¢ depends on the environment
(e.g., size/shape of obstacles, velocity of dynamic obstacles,
etc.) and is sampled from a distribution . In this work,
we assume that start and goal positions are known to every
robot and focus on designing control policy m; ¥, that
drive robots from the initial states J:ED N | to goal states

& N | safely with local neighborhood information ~; :=

Ij jeN:» Plo 1en; in different environments.

We begin by reviewing the concept of CBF commonly
employed in the literature for addressing safety require-
ments [22].

Definition 1: [23] For each robot A;, consider a contin-
uously differentiable function h; : ; R and a safe set ;
defined as superlevel set of h; ie. ;== x; i hi(x;)

0 . Then h; is a CBF if there exists a class- [24]function
a such that for the control-affine system (1), we have

sup Lghi(zi) + Lghi(zi)ui  —a(hi(z:),  (3)

u; EU;
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where () = —— () and () =
— (). A quadratic program is proposed in [23] to
compute safe control action by integrating (3) as a constraint
in the following way
(CBF-QP)

=argmin| — ||
s.t. sup ( )+ () =—((C)

where  is usually a high-level performance controller [5]
for each robot that can achieve the goal-reaching perfor-
mance objectives.

IIT. PROBLEM FORMULATION

In this work, we assume that robots and obstacles are
disk-shaped® with radii { } and { }  respectively.
Let { } and { }  be the positions and goal states
of robot . The goal is to move robots toward goal states
while avoiding collision in a decentralized manner. The des-
tination convergence is equivalent to the state convergence
as lim = with  being the maximal time instant
for =1 . The state of a robot  for €V at time
is safe (collision free) when it belongs to the following sets,
termed as safe sets given by,

C ={ € | (z0Vev £} ©
¢c ={ e [ (=0 =12 }©
where (+) is a CBF for collision avoidance between the

robots and ,and  (:)is a CBF for collision avoidance
between robot and obstacle . The combined safe set
for robot isC =C nNnC ,withC andC being

time-varying safe sets (for robot ) w.r.t other robots and
obstacles respectively. Due to the changing cardinality of the
neighbor set A/ of robot with time , the safe sets are
time-varying.

The definition of safe sets allows us to formulate the
problem of multi-robot navigation as follows.

Problem 1 (Decentralized Safe Multi-Robot Naviga-
tion). For the MRS A with dynamics (1) and control
input constraints, goal states { } , homogeneous sensing
radius , environment-dependent vector and candidate
control barrier functions {  (+) ()}, design decen-
tralized safe control policies , conditioned on local neigh-
borhood and environment information, that guarantee safety
and liveness for all € [0 ] defined as

(Liveness) lim || —
(7

s.t. (Safety) eC NnC

while generalizing to a new environment.

To address liveness problem in Problem 1, we as-
sume the presence of a high-level performance controller
{ | )} similar to other works [5], [11] for each

2We can also consider non-circular obstacles. If the shape of the obstacle
is non-circular, one can define as the minimum circular radius of a disc
that fully encloses the entire obstacle.

robot that fulfills the liveness property by steering robots
from the initial states { }  to the goal states { }
but may not necessarily satisfy the safety property. We
then design a decentralized control policy based on CBF
to supplementarily ensure satisfaction of the safety property,
especially in novel environments.

IV. METHODOLOGY

We propose addressing Problem 1 by employing a decen-
tralized control policy, as described in (2), to ensure scalabil-
ity for an arbitrary number of robots. We use CBF conditions
to guarantee safety through the invariance of the safe set,
leveraging local neighborhood information. To enhance the
generalizability of classical decentralized CBF conditions,
we propose parameterizing the class-/C function using a GNN
and implicitly embedding environment-dependent informa-
tion into this function. We ensure by construction that the
GNN-based parameterization satisfies the properties of class-
K and thus maintains the set-invariance guarantees associated
with classical CBF conditions [23] utilizing this GNN-based
class-/C function. We employ differentiable optimization lay-
ers [25] to incorporate CBF-based quadratic programming
(dCBF-QP) for computing safe control actions into a neural
network. We then propose a loss function to jointly optimize
the parameters of the GNN and safe-control policies for each
robot in an end-to-end manner. Specifically, at each time step

for each robot , we formulate the dCBF-QP problem as
dCBF-QP

argmin || —

I+ C )

) +(

) is the safe policy parameterized
by  for each robot and conditioned on the high-level
performance control input  (-) which accomplishes the goal
reaching objectives, environmental information , and local
neighborhood information . We refer to () as -Net,
which is a class-XC function parameterized by  for each
robot . The parameter € is a penalty for slack
variable € . The slack variable guarantees the
feasibility of the optimization problem. For each robot ,
U c denotes the control input constraint set. Here
(1) is a CBF candidate (safety constraint) for robot

wrt eN

) >0V eN (8

where, (|

-Net.

We aim to employ learning-based approaches to capture
environment-dependent interactions among multiple robots.
Specifically, for each robot , we consider a special struc-
ture for the class-KC function ( ( )):= ( ( )) .
where { } are parameters of CBFs constrained to be
positive. We parameterize  ({ o ) in (8) as a
neural network with parameters  conditioned on  and

A. Structure of the
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Here  denotes the local information set of robot (e.g.
states of other robots and obstacles in the sensed region).

Modeling as a neural network, conditioned on the local
neighborhood information vector and an environment-
dependent vector , presents a challenge. The information
in is structured as a graph, requiring the network to
be permutation invariant (i.e., insensitive to the order of
neighboring robots) and handle variable input size due to
the changing cardinality of the neighbor set ' for robot
over time

To tackle these challenges, we use GNN especially be-
cause of their permutation invariant characteristics [26]. Re-
fer to [27] for preliminaries on GNN. These neural networks
take node and edge features as input, accommodating varying
input sizes. They also demonstrate the capacity to generalize
across unseen graph topologies [28], [29] and allow for
decentralized execution. We model the class-/C function,
parameterized by , using GNN. We exploit the observation
that robot safety can be analyzed through relative infor-
mation, such as the relative position of robot w.r.t other
obstacles [30], and devise a GNN that is translation-invariant,
employing neural message passing in which vector messages
are exchanged between nodes in the graph to generate CBF
parameters based on relative information.

For each robot with its state , the states of other

neighbouring robots { } , environment vector  and
the positions of neighboring obstacles {  } , our GNN
generates the CBF parameters { } as

{ }= ©))

where denotes a differentiable, permutation invariant
function (e.g. sum), and and denote differentiable
functions such as MLPs (Multi-Layer Perceptrons) [31]. We
use to denote edge features (e.g. relative distance) at
time from — ,and are learnable parameters. We use
the states of the robots , directly as node features in our
GNN. The GNN-based parameterization allows for decen-
tralized execution, translation invariance, and permutation
invariance.

Remark 1: Tt is crucial to emphasize that our use of a
GNN to parameterize the class-X function does not jeopar-
dize the set-invariance guarantees inherent in classical CBF
conditions. This is guaranteed by construction, as we ensure
that the GNN satisfies the properties of a typical class-KC
function by constraining { } to be positive.

B. End-to-End Offline Training

We jointly learn -Net and decentralized control policy
for all robots with safety guarantees in an end-to-end manner
by embedding the dCBF-QP in (8) as shown in Fig. 2. as a
layer on the top of GNN -Net defined in (9) and optimize

min

st { ;= : v

(10)

(| ) v
()+ () Vv

where  is the environment vector sampled from an en-
vironment distribution D, is the performance control
input provided by high-level performance controller and

= | represents trajectory rollouts for a time
horizon  using the safe control action  generated by the
policy for robot . We evaluate the loss at the state
for each time step . Note that £ is the cost along a trajectory
instead of the cost at each time step, In general, a loss
function can be designed with any performance evaluation
metric such as £ = I — . We also include
slack variable penalty to address the infeasibility issue of
solving the dCBF-QP in (8). Our loss function comprises
two components, drawing inspiration from previous works
on single-robot systems [6]

L( )=£ )+ () (11)

where represents the value of slack variable at each time
step as defined in (8), and coefficient is a slack variable
penalty. The computed performance loss over the joint tra-
jectories of all robots with time duration is backpropagated
through the dCBF-QP to the -Net, facilitating updates to the
learnable parameters = { }. The training is done
offline and the GNN-based class-K function can be deployed
to different environments sampled from D.

V. EXPERIMENTS

We conduct a multi-robot simulation with robots having
the unicycle dynamics:

(12)
where = | denotes the position,  denotes
the orientation and = | | is the control input
of robot . We consider static obstacles in the 2D-

plane at positions = ] for =1 .
We consider CBF candidates (safety constraints) based on
Euclidean distance

(=1 -
()=0 -

=C + )
)+ = )=
(13)

—arctan ———— - + )

The safety constraints above are formulated to ensure that
the Euclidean distance between the robot and other robots

the learnable parameters = { } offline by  (or obstacles) exceeds a predefined safety margin to ensure
minimizing the following loss function safety. The resulting pairwise CBF constraints are
8426
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Fig. 3: Multi-robot safe navigation with GNN-based class-
class-

N Ours
s Fied-CBF
0.8
0.6
i
2
0.4
0.2
T s i 5 o oo
- - . N=4 N=§ N=12 N=16
m Number of Robots
(c) (d)

functions using unicycle dynamics. Leveraging our GNN-based
function, robots successfully navigate to their goal positions while avoiding collisions across different environments

with increasing density of robots and type of obstacles. Environment (a) depicts 4 robots with circular and square obstacles,
(b) shows 8 robots with rectangular obstacles, and (c) displays 8 robots with a mix of circular and square obstacles. Fig. (d)
illustrates a performance comparison, showcasing a higher weighted success rate of our approach compared to fixed class-
function baselines across 100 different environment configurations with varying number of robots.

hij(zi) + a% (hija(zi)) 0 (14)
hii(zi) + % (higo(zs) 0, (15)

where o% () := n;( )% and 1;,& are the parameters of
dCBF-QP. For simplicity, we assume that, both the robot-to-
robot and robot-to-obstacle CBF constraints share the same
set of CBF parameters #;,&; for each robot A;.

Results: Generalizability. Incorporating environment-
specific information into the class- function and param-
eterizing it through GNN facilitates the fine-tuning of the
function for generating safe control actions that can adapt to
novel scenarios. In Fig. 1b, robots 2 and 4 initially struggled
to reach their goals safely with a fixed class- function.
However, they successfully achieved this task with our GNN-
based class- function capable of adapting to changing
environments as shown in Fig. 3a.

Using local neighborhood information presented as a time-
varying graph, the class- function dynamically adjusts its
value, as demonstrated in Fig. 3a, to produce feasible and
safe control actions. Notably, robot 4 (depicted in blue)
undergoes a mid-way switch in the class- function. This
switch is strategically employed to navigate between obsta-
cles and reach its goal, indicating a transition from a hard
constraint to a soft constraint within the CBF framework.
This switching allows the robot to safely maneuver through
obstacles. Our goal is to achieve this precise switching
between conservative maneuvers with hard constraints and
more aggressive maneuvers with soft constraints in different
environments, accomplished through a parameterized class-

function that implicitly depends on the environment.

Scalable and Decentralized Execution. Using GNN
based parameterization of the class- function and CBF
conditions as outlined in (8) enables the decentralized ex-
ecution of each controller by leveraging local-neighborhood
information. GNN exhibits invariance to the order of robots
and possesses the ability to handle graphs with dynamically

changing nodes and edges, offering scalability to accommo-
date an arbitrary number of robots.

To evaluate the scalability and generalizability of our
framework, we first train the class- function for four
robots. Subsequently, we investigate whether the learned
interactions captured within the «-Net for four robots can
be transferred to an additional group of four robots with
randomly assigned initial and goal positions. To achieve this,
we replicate the parameters of the a-Net between robots,
ie, 6; £, Y 0, 8_,. and simulate a safe-navigation
scenario for N = 8 robots, as illustrated in Fig. 3b and 3c.
The supplementary robots successfully leverage the learned
interactions, originally learned for the four-robot MRS, to
navigate safely to their goals. This shows that learned class-

functions can adapt to arbitrary graph topologies without
the need for retraining. The trajectories of these additional
robots are denoted in black in Figs. 3b and 3c.

For a quantitative assessment of our work with other
baselines, we employ the Success Weighted by Path Length
(SPL) metric [32] which combines success rate and path
length towards the goal. In particular, we compare our work
with heuristic-based methods that pre-tune CBF class-
through an exhaustive grid search in a fixed environment,
as illustrated in Fig. 3a. To evaluate the generalizability of
both approaches, we systematically alter the environment by
changing obstacle shapes (circular, rectangular, square) and
gradually modifying their positions. We conduct tests across
100 different environmental configurations, varying the num-
ber of robots. The results, presented in Fig. 3d, indicate that
our framework demonstrates a higher (normalized) success
rate with lower standard deviations compared to the heuristic-
based fixed-CBF parameter baseline.

VI. CONCLUSION

We introduce a novel parameterization of class- func-
tions for enhancing the generalizability of control barrier
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functions for safe multi-robot navigation to novel envi-
ronments. Our approach involves embedding environment-
specific information into class-/C functions parameterized by
GNN implicitly and employing differentiable optimization
layers to optimize it jointly with the control policy in an end-
to-end manner using local neighborhood data. The GNN-
based class-/C function dynamically adjusts its values in
novel environments and this adaptive approach addresses
the inherent challenges posed by fixed class-/C functions,
aiming to achieve a suitable balance between performance
and safety in novel environments. Future work involves
optimizing class-KC functions directly in high-dimensional
observation spaces.
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