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Abstract—The sequential design of experiments for optimizing
a reward function in causal systems can be effectively modeled
by the sequential design of interventions in causal bandits (CBs).
In the existing literature on CBs, a critical assumption is that
the causal models remain constant over time. However, this
assumption does not necessarily hold in complex systems, which
constantly undergo temporal model fluctuations. This paper
addresses the robustness of CBs to such model fluctuations.
The focus is on causal systems with linear structural equation
models (SEMs). The SEMs and the time-varying pre- and post-
interventional statistical models are all unknown. Cumulative
regret is adopted as the design criteria, based on which the
objective is to design a sequence of interventions that incur the
smallest cumulative regret with respect to an oracle aware of the
entire causal model and its fluctuations. First, it is established that
the existing approaches fail to maintain regret sub-linearity with
even a few instances of model deviation. Specifically, when the

number of instances with model deviation is as few as T
1

2L , where
T is the time horizon and L is the length of the longest causal
path in the graph, the existing algorithms will have linear regret

in T. For instance, when T = 105 and L = 3, model deviations in
6 out of 105 instances result in a linear regret. Next, a robust CB
algorithm is designed, and its regret is analyzed, where upper and
information-theoretic lower bounds on the regret are established.
Specifically, in a graph with N nodes and maximum degree d,
under a general measure of model deviation C, the cumulative

regret is upper bounded by Õ(dL− 1
2 (

√
NT + NC)) and lower

bounded by �(d
L
2
−2 max{

√
T , d2C}). Comparing these bounds

establishes that the proposed algorithm achieves nearly optimal

Õ(
√

T) regret when C is o(
√

T) and maintains sub-linear regret
for a broader range of C.

Index Terms—Causal bandit, robust statistics.

I. MOTIVATION AND OVERVIEW

C
AUSAL bandits provide a rich framework to formal-

ize and analyze the sequential experimental design in

causal networks. Such design problems appear in applications

that involve a network of interacting components that can

causally influence one another. Examples include design of

experiments in robotics [1], gene expression networks [2],

drug discovery [3], and recommendation systems [4]. In

causal systems, interventions are experimental mechanisms

that facilitate uncovering the cause-effect relationships in
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causal networks and distinguishing them from the conventional

association measures [5]. Sequential design of interventions

has the key advantage of bringing data-adaptivity in designing

the interventions, resulting in an overall reduced experiment

cost and a faster process for forming inferential decisions. For

instance, reprogramming the cell via gene perturbation exper-

iments needs a careful design of sequential interventions [6]

such that the outcome of one experiment guides the design of

the subsequent ones. Causal bandits (CBs) provide a theoreti-

cally principled way of sequentially designing interventions to

identify the one that maximizes a utility for the causal network.

Specifically, the canonical model for this utility is a function of

the observations obtained from the DAG. The utility is chosen

as the average value of a leaf node, which we denote by the

reward node. This is a model that is widely used in the causal

bandit literature. Accordingly, each intervention mechanism is

modeled by an arm, the value of the reward node under an

intervention is called the reward, and the sequential selection

of the interventions is abstracted as arm selection decisions.

The extent of information available about the causal model

critically influences the design of CB algorithms. Broadly,

there are two central pieces of information: the causal structure

(topology) and the data’s pre- and post-intervention statistical

models. Depending on the availability of each of these two

pieces, there are four possible CB settings. Designing CB algo-

rithms and their improvement over standard bandit algorithms

was first demonstrated in [7], [8] for the settings where both

the structure and interventional distributions are fully speci-

fied. Subsequently, the studies transitioned to more realistic

settings and explored how to accommodate unknown structure

and distribution information [7], [9], [10], (approximately)

known distributions but unknown structure [11], [12], and

known structure and unknown distributions [13], [14], [15].

Motivation: We investigate CBs from a new perspective.

The existing studies all focus on having a fixed causal model

over time, which applies to both directions in which the

models are known or unknown. In reality, however, large

complex causal systems undergo model fluctuations caused by

a wide range of reasons such as non-stationarity in the system

or heterogeneous data [16], [17], measurement errors [18],

selection bias [19], and missing data [20]. Temporal model

fluctuations can change the causal structure or statistical

models. For instance, in drug discovery, there are multiple

observable variables or representation nodes [21], and the

model fluctuations due to measurement errors can occur in

both the observable variables or their weights to the representa-

tion nodes. However, the algorithm for time-invariant settings

can be highly susceptible to model fluctuations. For instance,

the CB algorithm in [15] enjoys a nearly optimal growth

in the horizon T , i.e., O(
√

T). Nevertheless, it will lose the
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optimal rate with even minuscule instances of model deviation.

More specifically, as we will show in Section V-C, the regret

becomes linear in T if the system experiences model deviations

in T
1

2L instances, where L is the longest causal path in the

graph. For even small values of L, T
1

2L will be an extremely

small fraction of the instances. For instance, when T = 105

and L = 3, model deviations in 6 out of 105 instances result

in a linear regret.

Objectives: We pursue four objectives. (1) Under relevant

measures of model fluctuations, we design a robust CB

algorithm to model deviations over time. (2) We characterize

almost matching upper and lower bounds on the regret as

a function of model deviation level, time horizon, graph

parameters, and the size of the cardinality of the intervention

space. (3) We analytically assess the robustness of the relevant

existing algorithms, establishing their lack of robustness to

model fluctuations. (4) We consider a general intervention set-

ting in which each subset of nodes in the graph is intervenable,

and each intervention induces a distinct reward distribution,

resulting in an intervention space that grows exponentially

with the size of the graph. As the final objective, we show

that our algorithm circumvents the exponential growth of the

achievable regret with the cardinality of the intervention space

and breaks it down to linear growth. Our focus is on the causal

graphs that are specified by a linear structural equation model

(SEM). We assume that the structure (topology) is fixed but

the statistical models undergo temporal fluctuations.

Contribution & key observations: We design a novel weight-

ing methodology for linear regression that takes advantage of

the weighted exploration bounce. This approach enables us

to accurately accommodate the impact of model deviations

in our regret analysis. Based on that, we characterize novel

time-uniform confidence ellipsoid models for robust linear

regression, which may be of broader interest in robust linear

bandits. Furthermore, we propose a robust CB algorithm and

analyze the compounding effect under the novel confidence

ellipsoids, which offers insights into the behavior of our regret

bound. When considering a known budget of C that captures

the level of model deviations over time, the achievable regret

is Õ(dL− 1
2 (

√
NT + NC)), where N and d are the number

of nodes and maximum degree in the graph, respectively,

and L is the length of the largest causal path. Compared

to the established lower bound �(d
L
2 −2 max{

√
T , d2C}),

we observe that both bounds scale polynomially in d and

exponentially in L. Furthermore, both bounds scale with
√

T

when the model faces C = o(
√

T) and linear in C when

C = �(
√

T). This indicates that our algorithm enjoys nearly

optimal regret when C = o(
√

T), and it maintains a sub-linear

regret when the aggregate model deviation is sub-linear, which

is the best possible regret order that any algorithm can achieve.

The cost incurred to maintain such robustness is that the regret

grows linearly with the deviation amount.

Related literature: The earlier studies on CB algorithms

assume that both the graph structure and the interventional

distributions are known (fully or partially) [22], [23]. More

recent studies dispense with one or both of the assumptions.

Despite their discrepancies in model and objectives, the common

theme in all these studies is that they assumed a fixed causal

model. Among the related work that does not make either

assumption, [9] incorporates causal learning algorithms to

CBs but does not improve upon regret of non-causal bandit

algorithms; [7] focuses on atomic interventions; [11] achieves a

regret bound that scales with the cardinality of the intervention

space; and [14] focuses on binary random variables.

In a different direction, there exist studies that assume

that the graph structure is known while the distributions are

unknown. The relevant literature includes [13], [14], which

focuses on binary random variables. More recently, [15]

focuses on linear systems and generalizes the results to the

soft intervention settings, continuous random variables, and

arbitrarily large intervention spaces. In parallel, [24] uses

soft interventions and generalizes to non-linear models but

limits to the Gaussian process SEMs in reproducing kernel

Hilbert space (RKHS) and intervention space on controllable

action variables. Finally, we note that even though we focus

on linear SEMs, we observe that our reward is a non-linear

function of the unknown parameters. Hence, our CB model

fundamentally differs from linear bandits. This is the case even

in the CB settings with a fixed model [15]. Nevertheless, we

briefly comment on the literature on linear bandits with model

misspecification or contamination. These studies assume fixed

(permanent) deviation, whereas, in our setting, the deviations

can vary over time [25], [26], [27], [28]. Furthermore, in linear

bandits with contamination, the contamination is imposed on

the observed rewards [29], [30], [31], [32], [33], [34], whereas

we are focusing on model deviation.

Notations: For N ∈ Z+, we define the set [N] � {1, . . . , N}.
The Euclidean norm of a vector X ∈ R

N is denoted by ‖X‖.

For a subset S ⊆ [N], we define XS � X � 1(S), where �
denotes the Hadamard product and the vector 1(S) ∈ {0, 1}N

has 1s at the indices corresponding to S. We denote the i-th

column of matrix A ∈ R
m×n by [A]i, and the entry at i-th

row and j-th column by [A]i,j. The spectral norm of a matrix

is denoted as ‖A‖. We further define the A-norm for positive

semidefinite matrix A as ‖X‖A =
√

X�AX.

II. CAUSAL BANDIT MODEL

Causal graphical model: Consider a directed acyclic graph

(DAG) denoted by G(V, E), where V = [N] denotes the set

of nodes, and E denotes the set of edges, where the ordered

tuple (i, j) ∈ E, indicates that there is a directed edge from i

to j. Each node i ∈ [N] is associated with a random variable

Xi. Accordingly, we define the vector X � [X1, . . . , XN]�. We

consider a linear SEM, according to which

X = B�X + ε, (1)

where B ∈ R
N×N is a strictly upper triangular edge weight

matrix, and ε � (ε1, . . . , εN)� denotes the exogenous noise

variables, with a known mean ν � E[ε]. The noise vector ε is

1-sub-Gaussian, and its Euclidean norm is upper bounded by

‖ε‖ ≤ mε . The graph’s structure is assumed to be known, while

the weight matrix B associated with the graph is unknown.

For any node i ∈ [N], we denote the set of parents of i by

pa(i). We denote the maximum in-degree of the graph by d �
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maxi{|pa(i)|} and the length of the longest directed path in the

graph by L.

Intervention model: We consider soft interventions on the

graph nodes. A soft intervention on node i ∈ [N] alters the

conditional distribution of Xi given its parents Xpa(i), i.e.,

P(Xi|Xpa(i)). An intervention can be applied to a subset of

nodes simultaneously. If node i ∈ V is intervened, the impact

of the intervention is a change in the weights of the edges

incident on node i. These weights are embedded in [B]i, i.e.,

the i-th column of B. We denote the post-intervention weight

values by [B∗]i �= [B]i. Accordingly, corresponding to the

interventional weights, we define the interventional weight

matrix B∗, which is composed of the columns {[B∗]i:i ∈
[N]}. Note that soft interventions subsume commonly used

stochastic hard interventions in which a hard intervention on

node i sets [B∗]i = 0.

Since we allow any arbitrary combination of nodes to be

selected for concurrent intervention, there exist 2N interven-

tional actions to choose from. We define A � 2V as the set

of all possible interventions, i.e., all possible subsets of [N].

For any intervention a ∈ A, we define the post-intervention

weight matrix Ba such that columns corresponding to the non-

intervened nodes retain their observational values from B, and

the columns corresponding to the intervened nodes change to

their new interventional values from B∗. The columns of Ba

are specified by

[Ba]i � [B]i · 1{i /∈ a} +
[
B∗]

i
· 1{i ∈ a}, (2)

where 1 denotes the indicator function. The interventions

change the probability models of X. We define Pa as the

probability measure of X under intervention a ∈ A. For any

given B and B∗ we assume that ‖[Ba]i‖ ≤ mB. Without loss

of generality, we assume mB = 1. Due to the boundedness of

noise ε and column of Ba matrices, there exists m ∈ R
+ such

that ‖X‖ ≤ m.

Causal bandit model: Our objective is the sequential design

of interventions. The set of possible interventions can be

modeled as a multi-armed bandit setting with 2N arms, one

arm corresponding to each possible intervention. Following the

canonical CB model [8], [22], we designate node N (i.e., the

node without a descendant) as the reward node. Accordingly,

XN specifies the reward value. We denote the expected reward

collected under intervention a ∈ A by

μa � Ea[XN], (3)

where Ea denotes expectation under Pa. We denote the

intervention that yields the highest average reward by a∗ �

arg maxa∈A μa; denote the sequence of interventions by

{a(t) ∈ A:t ∈ N}; and denote the data generated at time t and

under intervention a(t) by X(t) = [X1(t), . . . , XN(t)]�. The

learner’s goal is to minimize the average cumulative regret

over the time horizon T with respect to the reward accumulated

by an oracle aware of the systems model, interventional

distributions, and model fluctuations. We define the expected

accumulated regret as

E[R(T)] � Tμa∗ −
T∑

t=1

E[XN(t)]. (4)

III. TEMPORAL MODEL FLUCTUATIONS

Due to the size and complexity of the graphical models that

represent complex systems, assuming that the observational

and interventional models B and B∗ remain unchanged over

time is a strong assumption. These models can undergo

temporal variations due to various reasons, such as model

misspecifications, stochastic behavior of the system, and

adversarial influences. To account for such variations, we refer

to Ba(t) as the nominal model of the graph at time t and denote

the actual time-varying unknown model by Da(t). Accordingly,

we define the deviation of the actual model from the nominal

model by

�a(t) � Da(t) − Ba(t). (5)

To quantify the impact of model deviations on the regret R(T),

we specify two measures that capture the extent of deviations.

The first measure captures the maximum number of times each

node deviates from the nominal model. The second measure

provides a budget for the maximum deviation in the linear

model that model deviations can inflict over time. Clearly,

if the model of node i undergoes deviation at time t under

intervention a, we have ‖[�a(t)]i‖ �= 0.

Measure 1 [Deviation Frequency (DF)]: This measure

accounts for how frequently each node’s model can deviate

from its nominal model, and over a horizon T it is defined as

CDF � max
i∈[N]

T∑

t=1

max
a(t)∈A

1
{∥∥[�a(t)

]
i

∥∥ �= 0
}
. (6)

This model is adopted from misspecified bandit literature [26].

To avoid unbounded deviations, we assume that the deviation

inflicted on each node at any given time is bounded by a

constant mc ∈ R+, i.e.,

max
i∈[N]

max
t∈[T]

max
a(t)∈A

∥∥[�a(t)

]
i

∥∥ ≤ mc. (7)

Measure 2 [Aggregate Deviation (AD)]: This measure

quantifies the aggregate deviation over time. Specifically, we

define the maximum aggregate deviation as

CAD � max
i∈[N]

T∑

t=1

max
a(t)∈A

‖[�(t)]i‖. (8)

This measure of deviation is also standard in stochastic

bandits [34], where the deviation budget is defined as the

maximum deviation in the reward that the adversary can inflict

over time. We will observe that CDF and CAD impact the regret

results similarly. Hence, to unify the results and present them

in a way that applies to both measures, we use C to represent

the level of model deviation. For measure 1, we define C as

the product of a constant factor mc and CDF, while for measure

2, we define C as CAD. We assume that the model deviation

budgets specified by C are known to the learner, allowing the

CB algorithm to adapt to the varying levels of model deviation.

IV. Robust-LCB ALGORITHM

In this section, we present the details of our algorithm

and provide the performance guarantee (regret analysis) in

Section V. We also provide theoretical comparisons to the
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Algorithm 1 Robust-LCB

1: Input: Horizon T , causal graph G, action set A, mean noise vector ν,
deviation budget C

2: Initialization: Initialize B(0) = B∗(0) = 0N×N and Vi(0) = V∗
i (0) =

IN , ∀i ∈ [N] .
3: for t = 1, 2, . . . , T do
4: Compute UCBa(t) according to (21) for a ∈ A.
5: Pull a(t) = arg maxa∈A UCBa(t) and observe X(t) =

(X1(t), . . . , XN (t))�.
6: for i ∈ {1, . . . , N} do
7: Set wi(t) as (19), update [B(t)]i according to (9) and update [B∗(t)]i

according to (10).
8: end for
9: end for

existing algorithms designed for CBs with fixed models,

establishing their lack of robustness against model variations.

Algorithm overview: Identifying the best intervention hinges

on determining which of the distributions {Pa : a ∈ A}
maximizes the expected reward. Nevertheless, these 2N dis-

tributions are unknown. Therefore, a direct approach entails

estimating these probability distributions, the complexity of

which grows exponentially with N. To circumvent this,

we leverage the fact that specifying these distributions has

redundancies since all depend on the observational and inter-

ventional matrices B and B∗. These matrices can be fully

specified by 2Nd scalars, where d is the maximum degree of

the causal graph. Hence, at its core, our proposed approach

aims to estimate these two matrices.

We design an algorithm that has two intertwined key

objectives. One pertains to the robust estimation of matrices

B and B∗ when the observations are generated by the non-

nominal models. For this purpose, we design a weighted

ordinary least squares (W-OLS) estimator. The structure of

the estimator and the associated confidence ellipsoids for

the estimates are designed to circumvent model deviations

effectively. The second objective is designing a decision rule

for the sequential selection of the interventions over time. This

sequential selection, naturally, is modeled as a multi-armed

bandit problem. Therefore, we design an upper confidence

bound (UCB)–based algorithm for the sequential selection of

the interventions over time. Next, we present the details of

the Robust Linear Causal Bandit (Robust-LCB). The steps

involved in this algorithm are summarized in Algorithm 1.

Countering model deviations: Our approach to circumvent-

ing model deviations is to identify and filter out the samples

generated by the non-nominal models. We refer to these

samples as outlier samples. This facilitates forming estimates

for B and B∗ based on the samples generated by the nominal

models. Since the model deviations may happen on multiple

nodes simultaneously, the Robust-LCB is designed to identify

the nodes undergoing deviation over time and discard the

outlier samples generated by these nodes. Such filtration is

implemented via assigning time-varying and data-adaptive

weights to different nodes such that the weight assigned to

node i ∈ [N] at time t ∈ N balance two factors: the probability

of node i ∈ [N] undergoing deviation at t and the contribution

of that sample to the estimator. These weights, subsequently,

control how the samples from different nodes contribute to

estimating B and B∗.

Robust estimation: We design the weighted ordinary least

squares (OLS) estimators for B and B∗, which at time t ∈ N

are denoted by B(t) and B∗(t), respectively. To estimate the

observational weights [B]i, we use the samples from instances

at which node i is not intervened. Conversely, to estimate

the interventional weights [B∗]i, we use the samples from the

instances at which node i is intervened. By defining {wi(t) ∈
R+ : i ∈ [N]} as the set of weights assigned to the nodes at

time t ∈ N, i-th columns of these estimates are specified as

follows.

[B(t)]i � [Vi(t)]
−1

∑

s∈[t]:i/∈a(s)

wi(s)Xpa(i)(s)(Xi(s) − νi), (9)

[
B∗(t)

]
i
�
[
V∗

i (t)
]−1

∑

s∈[t]:i∈a(s)

wi(s)Xpa(i)(s)(Xi(s) − νi), (10)

where we have defined the weighted Gram matrices as

Vi(t) �
∑

s∈[t]:i/∈a(s)

wi(s)Xpa(i)(s)X
�
pa(i)(s) + IN, (11)

V∗
i (t) �

∑

s∈[t]:i∈a(s)

wi(s)Xpa(i)(s)X
�
pa(i)(s) + IN . (12)

Furthermore, we define the matrices associated with the

squared weights as

Ṽi(t) �
∑

s∈[t]:i/∈a(s)

w2
i (s)Xpa(i)(s)X

�
pa(i)(s) + IN, (13)

Ṽ∗
i (t) �

∑

s∈[t]:i∈a(s)

w2
i (s)Xpa(i)(s)X

�
pa(i)(s) + IN . (14)

Similarly to (2), we denote the relevant and Gram matrices

for node i under intervention a ∈ A by

Ṽi,a(t) � 1{i ∈ a}Ṽ∗
i (t) + 1{i /∈ a}Ṽi(t). (15)

Confidence ellipsoids: After performing estimation in each

round, we construct the confidence ellipsoids for the OLS

estimators {Ci(t) : i ∈ [N]} for the observational weights and

{C∗
i (t) : i ∈ [N]} for the interventional weights

Ci(t) �

{
θ ∈ B1:

∥∥θ − [B(t − 1)]i

∥∥
Vi(t−1)

[
Ṽi(t−1)

]−1
Vi(t−1)

≤ βt

}
, (16)

C∗
i (t) �

{
θ ∈ B1:

∥∥θ −
[
B∗(t − 1)

]
i

∥∥
V∗

i (t−1)
[
Ṽ∗

i (t−1)
]−1

V∗
i (t−1)

≤ βt

}
, (17)

where B1 is the unit ball in R
N and {βt ∈ R+, t ∈ N} is

a sequence of non-decreasing confidence radii that control

the size of the confidence ellipsoids, which we will specify.

Accordingly, we define the relevant confidence ellipsoid for

node i under intervention a ∈ A as

Ci,a(t) � 1{i ∈ a} C∗
i (t) + 1{i /∈ a} Ci(t). (18)

Weight designs: Designing the weights {wi(t) : i ∈ [N]} at

time t is instrumental in effectively winnowing out the outlier

samples. We select the weights that bring the confidence radius

βt down to nearly constant

wi(t) � min

§
¨
©

1

C
,

1

C
∥∥Xpa(i)(t)

∥∥[
Ṽi,a(t)(t)

]−1

«
¬
­, (19)
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where the weights are inversely proportional to the norm

‖Xpa(i)(t)‖[
Ṽi,a(t)(t)

]−1 and deviation budget C, and they are

truncated at 1/C, which ensures that the weights are not

arbitrarily large. We refer the term ‖Xpa(i)(t)‖[
Ṽi,a(t)(t)

]−1 as

weighted exploration bonus. A higher exploration bonus means

lower confidence in the sample. Setting the weights as the

inverse of the exploration bonus avoids potentially significant

regret caused by both the stochastic noise and model devia-

tions. We scale the weights proportional to 1/C to use smaller

weights when the model deviation level is higher.

Intervention selection: We adopt a UCB-based rule for

sequentially selecting the interventions. Specifically, at each

time t, our algorithm selects the intervention that maximizes a

UCB, defined as the maximum value of expected reward when

the edge weights are in the confidence ellipsoids {Ci,a(t), i ∈
[N]}, under that intervention. Recall the expected reward μa

for a ∈ A defined in (3) is a function of the edge weights Ba,

which can be decomposed according to the following lemma.

Lemma 1 [15, Lemma 1]: Consider a linear SEM G(V, E)

with intervention a ∈ 2V, whose weight matrix is denoted

by Ba ∈ R
N×N . Furthermore, consider the function f (A) �∑L

�=0 [A�]N for A ∈ R
N×N , where we denote A� as the �-th

power of matrix A. We have

μa = 〈f (Ba), ν〉, (20)

where ν = (ν1, . . . , νN), and νi = E[εi] denotes the mean of

the noise vector corresponding to node i ∈ [N].

Thus, for any intervention a ∈ A, the UCB is naturally

defined as

UCBa(t) � max
{∀i∈[N]:[	]i∈Ci,a(t)}

〈f (	), ν〉. (21)

Based on the UCB in (21), at time t, our algorithm selects the

intervention that maximizes the UCB,

a(t) = arg max
a∈A

UCBa(t). (22)

V. REGRET ANALYSIS

In this section, we present the performance guarantees for

the proposed Robust-LCB algorithm. We first provide the

upper bound on the average cumulative regret in Section V-A.

We also establish a minimax lower bound in Section V-B that

shows the tightness of our upper bound. By comparing our

regret with that of LinSEM-UCB in Section V-C, we evaluate

the robustness of our algorithm.

A. Regret Upper Bound

In order to derive the upper bound, we begin by providing

a concentration bound for the W-OLS estimator. Notably, we

investigate a vector norm that differs from existing work in

robust bandits. This norm was first investigated in [35] under

the non-stationary setting, and our investigation builds on

this to provide novel insights into the robust behavior of the

W-OLS.

Lemma 2 (Estimator Concentration): Under a deviation

budget C, with a probability at least 1 − 2δ, for any node

i ∈ [N] and t ≥ 0, we have

‖[B(t)]i − Bi‖Vi(t)
[
Ṽi(t)

]−1
Vi(t)

≤ βt(δ), (23)

and ‖
[
B∗(t)

]
i
− B∗

i ‖V∗
i (t)

[
Ṽ∗

i (t)
]−1

V∗
i (t)

≤ βt(δ), (24)

where we have defined

βt(δ) �

√
2 log(1/δ) + d log

(
1 + m2t/dC2

)
+ 1 + m. (25)

Proof: We will provide the proof corresponding to the obser-

vational weights [B(t)]i, while the proof for the interventional

weights [B∗(t)]i follows similarly. For any node i ∈ [N]

and t ≥ 0, we decompose the error in estimation ‖[B(t)]i −
Bi‖Vi(t)

[
Ṽi(t)

]−1
Vi(t)

for t ≥ 0 as follows.

‖[B(t)]i − [B]i‖Vi(t)
[
Ṽi(t)

]−1
Vi(t)

(26)

=
∥∥∥∥[Vi(t)]

−1
∑

s∈[t],i/∈a(t)

wi(s)Xpa(i)(s)
[
X�
pa(i)(s)[D(t)]i

+ εi(s) − νi

]
− [B]i

∥∥∥∥
Vi(t)

[
Ṽi(t)

]−1
Vi(t)

(27)

≤
∥∥∥∥
[
B̂(t)

]
i
− [B]i

∥∥∥∥
Vi(t)

[
Ṽi(t)

]−1
Vi(t)︸ ︷︷ ︸

I1: Stochastic and regularization error

(28)

+
∥∥∥∥

∑

s∈[t],i/∈a(t)

Xpa(i)(s)X
�
pa(i)(s)[�(s)]i

∥∥∥∥[
Ṽi(t)

]−1

︸ ︷︷ ︸
I2: Fluctuation error

. (29)

where B̂(t) refers to the auxiliary estimators which correspond

to the ridge regression estimator but with the removal of

deviation’s impact on the output, i.e.,
[
B̂(t)

]
i
= [Vi(t)]

−1
∑

s∈[t],i/∈a(t)

wi(s)Xpa(i)(s)

×
[
X�
pa(i)(s)[B]i + εi(s) − νi

]
. (30)

The stochastic and regularization errors can be bounded by

the following lemma.

Lemma 3: For all node i ∈ [N], with probability at least

1 − δ, ∀t ≥ 0, we have

I1 =
∥∥[B̂(t)

]
i
− [B]i

∥∥
Vi(t)

[
Ṽi(t)

]−1
Vi(t)

(31)

≤ 1 +

√
2 log

(1

δ

)
+ d log

(
1 +

m2W(s)

d

)
, (32)

where we define W(s) =
∑

s∈[t−1],i/∈a(t) w2
i (s).

Proof: Note that the weights wi(t) are predictable, i.e.,

Fi(t − 1) measurable, if the σ -algebra is defined as

Fi(t) = σ(Xpa(i)(1), εi(1), Xpa(i)(2), εi(2), . . . ,

Xpa(i)(t), εi(t), Xpa(i)(t + 1)), (33)

which is similar to the one used in [36]. This modification of

the filtration allows weights to depend on the current value

of Xpa(i)(t). Then the lemma results from [35, Th. 1] with

μt = λt = 1.
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Since wi(s) ≤ 1
C

for all s ∈ [t] and i ∈ [N], we can further

upper bound the stochastic and regularization error as follows.

I1 ≤ 1 +

√
2 log(1/δ) + d log

(
1 +

m2t

dC2

)
. (34)

Now we need to bound the fluctuation error I2, which is

bounded as follows.

I2 =
∥∥∥
[
Ṽi(t)

]−1/2
∑

s∈[t],i/∈a(t)

wi(s)Xpa(i)(s)X
�
pa(i)(s)[�B(s)]i

∥∥∥

(35)

≤
∑

s∈[t],i/∈a(t)

wi(s)

∥∥∥
[
Ṽi(t)

]−1/2
Xpa(i)(s)X

�
pa(i)(s)[�B(s)]i

∥∥∥

(36)

=
∑

s∈[t],i/∈a(t)

wi(s)

∥∥∥
[
Ṽi(t)

]−1/2
Xpa(i)(s)

∥∥∥
∣∣∣X�

pa(i)(s)[�B(s)]i

∣∣∣

(37)

≤ m
∑

s∈[t],i/∈a(t)

wi(s)

∥∥∥�B(s)]i

∥∥∥
∥∥∥Xpa(i)(s)

∥∥∥[
Ṽi(t)

]−1 (38)

≤ m
∑

s∈[t],i/∈a(t)

wi(s)

∥∥∥�B(s)]i

∥∥∥
∥∥Xpa(i)(s)

∥∥[
Ṽi(s)

]−1 (39)

≤ m, (40)

where (36) follows from the triangle inequality, (38) follows

from the fact that
∥∥Xpa(i)(s)

∥∥ ≤ m, (39) holds since we have

‖x‖[Ṽi(t)]−1 ≤ ‖x‖[Ṽi(s)]−1 for any s ∈ [t] and x ∈ R
N , and (40)

is obtained using the definition of the sequence of weights

{wi(s) : s ∈ [t]}. Finally, substituting the results of Lemma 3

and (40), with probability at least 1− δ, for all t ≥ 0, we have

‖[B(t)]i − Bi‖Vi(t)
[
Ṽi(t)

]−1
Vi(t)

≤ 1 + m

+
√

2 log(1/δ) + d log
(
1 + m2t/dC2

)
. (41)

Similarly, for the estimators for interventional weights, with

probability at least 1 − δ, for all t ≥ 0, we have∥∥∥
[
B∗(t)

]
i
− B∗

i

∥∥∥
V∗

i (t)
[
Ṽ∗

i (t)
]−1

V∗
i (t)

≤ 1 + m

+
√

2 log(1/δ) + d log
(
1 + m2t/dC2

)
. (42)

Combining the results in (41) and (42) we complete the

proof.

The previous lemma offers high probability error bounds for

estimators. Due to the causal structure, these errors accumulate

and propagate along the causal path, leading to the reward

node N. Consequently, we analyze the compounding impacts

of estimation errors and model deviations. This analysis

involves examining the eigenvalues of the weighted Gram

matrices Vi,a(t)(t) and Ṽi,a(t)(t). We introduce the subsequent

lemma to show a bound on the accumulated estimation errors

on the reward node with proof provided in Section V-B.

Lemma 4: For any given intervention a ∈ A matrices A ∈
R

N×N and Mi ∈ R
N×N for all i ∈ [N], define

�A � A − Ba, and �
(�)

A � A� − B�
a. (43)

If A shares the same support with Ba, Mi � I and [Mi]j =
[M�

i ]j = ei if [B]j,i = 0, and if the following bound holds

‖[�A]i‖Mi
≤ β, (44)

then for all � ∈ [L], we have
∥∥∥
[
�

(�)

A

]
N

∥∥∥ < d
�−1

2 (β + 1)� max
i∈[N]

λ
− 1

2

min

(
Mi

)
. (45)

Next, building on the estimation error bounds established

in Lemma 2 and the compounding error bounds established

in Lemma 4, we derive a unified regret bound that applies to

both measures of model deviation. It is noteworthy that the

analysis is distinctly different from that in the time-invariant

setting since we are facing model fluctuations, for which we

have designed novel weights for the W-OLS estimator.

Theorem 1 (Regret Upper Bound): Under a deviation bud-

get C, by setting δ = 1
2NT

and βt(δ) according to Lemma 2, the

average cumulative regret of Robust-LCB is upper bounded

by

E[R(T)] ≤ 2m + Õ
(

dL− 1
2

(√
NT + NC

))
. (46)

Proof Sketch: Characterizing the regret bound involves

decomposing the regret into two parts, depending on whether

the concentration inequality in Lemma 2 holds. If the con-

centration inequality does not hold, the regret is upper bound

by a constant term. Otherwise, the estimation errors are upper

bounded in Lemma 2 with their compounding effects on the

reward node N upper bounded by Lemma 4. Next, the behavior

of the eigenvalues of weighted Gram matrices Vi,a(t)(t) and

Ṽi,a(t) is investigated to reach the final result. See Appendix C

for the detailed proof.

The regret bound derived in Theorem 1 can be decomposed

into two parts. The first term recovers the order of the optimal

rate achieved in the time-invariant setting. The second term

captures the impact of model deviation on the regret bound,

that is, the cost of handling unknown model fluctuations. Next,

we present a lower bound that confirms the tightness and

optimality of our upper bound.

Remark 1: Robust-LCB works when replacing the devia-

tion budget C with an upper bound C̄. All the analyses and

performance guarantees remain valid when C is substituted

with its upper bound C̄.

B. Regret Lower Bound

For our analysis of the lower bound, we first show the

tightness of the second term of the upper bound that captures

the model deviation level C. Building on this insight, we

then combine this with the existing lower bound in the time-

invariant setting to show the tightness of our regret bound.

Theorem 2 (Regret Lower Bound): For any degree d and

graph length L, for any algorithm with knowledge of C, there

exists a bandit instance such that the expected regret is at least

E[R(T)] ≥ �

(
d

L
2 C
)
. (47)

Proof: We construct two instances of causal bandits and

demonstrate that under specific deviations, no algorithm can

distinguish between them and the initial stage. We consider

two linear SEM causal bandit instances sharing the same

hierarchical graph G as shown in Figure 1.

Let us examine the parameterization of the two bandit

instances, referred to as I1 = {B, B∗, ε} and I2 = {B̄, B̄∗, ε}.
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Fig. 1. Example of the hierarchical graph with graph degree d = 3 and
length L = 2.

For the existing edges in graph (i, j) ∈ E for i < j and i, j ∈
[N], we define

[B]i,j =
[
B̄
]

i,j
=
[
B∗]

i,j
=
[
B̄∗]

i,j
=
√

1

d
. (48)

for j < N. For the case j = N, we define

[
B∗]

i,j
= −

[
B̄∗]

i,j
=
√

1

d
and [B]i,j =

[
B̄
]

i,j
= 0. (49)

For the noises, we define

εi ∼
{
N(1, 1) for i ∈ {1, . . . , d}
N(0, 1) for i /∈ {1, . . . , d} . (50)

Thus, the only difference between the two bandit instances

lies in the intervention weights assigned to the reward node. In

the first bandit instance, the optimal action is when the reward

node is intervened. In contrast, in the second bandit instance,

the best action is associated with the reward node being not

intervened. The regret incurred from choosing the sub-optimal

action on the reward node is dL/2. Next, consider the scenario

where deviations only occur on the reward node during the

initial C rounds. Furthermore, consider the scenario in which,

at each time t ∈ {1, . . . , C}, the weights are set to 0, and the

learner only observes a random noise as the reward. In this

case, the learner has no information about the [B]N and can

only make random guesses. After C rounds, either ENi(C) or

EN∗
i (C) is no less then C

2
. Consequently, there must exist a

bandit instance at which the algorithm plays the sub-optimal

arm at least C
2

times. We conclude that it must incur 1
2
d

L
2 C

regret with probability at least 1/2. Ignoring the constant, by

using Markov’s inequality, we have

E[R(T)] ≥
1

2
d

L
2 CP

(
R(T) ≥

1

2
d

L
2 C

)
= �

(
d

L
2 C
)
. (51)

Theorem 3: [15, Th. 6] For any degree d and graph length

L and any algorithm, there exists a causal bandit instance such

that the expected regret is at least

E[R(T)] ≥ �

(
d

L
2 −2

√
T
)
. (52)

Combining the results in Theorem 2 and Theorem 3, we can

conclude a minimax lower bound in the following corollary.

Corollary 1: For any degree d and graph length L and any

algorithm, there exists a causal bandit instance such that the

expected regret is at least

E[R(T)] ≥ �

(
d

L
2 −2 max{

√
T , d2C}

)
. (53)

This corollary shows both the lower bounds depend on
√

T ,

and that the regret bound of our proposed algorithm is tight in

terms of T and C. Besides these, however, the achievable and

lower bounds have a gap due to mismatching dependence on the

number of nodes N and the exact order of the exponential scaling

of dimension d with graph length L. The dependence on N arises

in the techniques used in Theorem 1 and we conjecture that the

dependency of the upper bound on N can be diminishing as T

grows. We provide some insights into tightening dependence

on N. Let Li denote the length of the longest causal path that

ends at node i ∈ [N]. If we can first bound the cumulative

estimation error for the expected value of node i with Li = 1,

then we can use induction to bound that for increasing Li and

derive a regret upper bound independent of N. The mismatch

in the exact order d with L exists in all the relevant literature,

even in simpler settings. For instance, consider linear bandits

with time-invariant models with dimension d, which can be

considered a special case of our linear causal bandit model by

setting L = 1 and no model variations. For the widely used

optimism in the face of uncertainty linear bandit algorithm

(OFUL) in [36], the lower and upper bounds behave according

to Õ(
√

dT) and Õ(d
√

T), respectively. This gap in terms of√
d and d matches exactly our gap.

C. Comparison With the Time-Invariant Setting

To highlight the robustness, we compare the analytical

results with those of the time-invariant setting [15]. While

our results in terms of the deviation budgets are general, for

illustration purposes, we consider deviation budgets that scale

sub-linearly with respect to T by setting C = Tα for α ∈ (0, 1).

Confidence ellipsoids: In the time-invariant setting, the

confidence ellipsoid radius is set to

β ′
T � 1 +

√
2 log(2NT) + d log

(
1 + mT2/d

)
. (54)

Compared with this, our choice of confidence radius is similar

to the time-invariant setting. The main contrast is the inclusion

of an additional term m, which accounts for the cost of

robustness. The difference in logarithmic terms arises from

using different weights and norms in our algorithm.

Regret bounds: In the time-invariant setting, the regret

bound scales as [15]

E[R(T)] ≤ 2m + Õ
(
β ′L

T d
L
2

√
NT
)
. (55)

If we directly apply the algorithm designed for the time-

invariant setting to the model fluctuation setting with proper

adjustments, we observed it would exhibit model deviation

robustness but only for substantially small deviation levels.

Specifically, to make the time-invariant algorithm robust, we

need to adjust the term β ′
T so that it scales linearly with C

(see [39, Appendix D] for details). This, in turn, induces a term

CL in the regret bound. Consequently, to preserve a sub-linear

regret growth T , α need to fall in the interval (0, 1
2L

), which is

a highly restrictive regime of model deviations, especially for

graphs with long directed paths. For instance, under the DF

measure, for T = 105 and a graph with L = 3, a node cannot

be compromised more than 6 samples to maintain sub-linear

regret. This deviation level can be well below the noise level
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(a) (b) (c)

Fig. 2. (a) Chain graph with N = 4. (b) Confounded parallel graph N = 5. (c) Hierarchical graph with d = 3 and L = 2.

of the model, establishing that the algorithms designed for

the time-invariant setting lack robustness.

On the other hand, our Robust-LCB algorithm achieves a

regret scaling of Tmax{ 1
2 ,α}, which preserves the optimal rate

Õ(
√

T) under the regime α ≤ 1
2
, which is independent of

other parameters. Furthermore, a non-linear growth of regret

in T is achieved for deviation with α ∈ ( 1
2
, 1), which is a

significant improvement over the regime (0, 1
2L

). In the context

of the earlier example with T = 105, this indicates that the

algorithm remains Õ(
√

T) regret when the model faces C ≤
316 outlier samples and achieves sub-linear regret later on.

The cost incurred for integrating robustness is reflected in the

additional low-order terms we have in our regret bounds. We

also remark that by setting C = 1, our regret bound recovers

the order of the time-invariant setting.

VI. EMPIRICAL EVALUATIONS

In this section, we assess the robustness of the Robust-

LCB algorithm and its scaling behavior with the graph

parameters. To the best of our knowledge, there is no baseline

CB algorithm that can be used as a natural baseline for

performance comparisons. Furthermore, soft interventions on

continuous variables of a CB model are implemented by only

LinSEM-UCB of [15]. Therefore, to assess the robustness, we

compare our Robust-LCB algorithm with LinSEM-UCB and

the standard non-causal UCB algorithm.

Parameter setting: We consider three types of graph: chain

graph (Figure 2)(a), confounded parallel graph (Figure 2)(b)

and hierarchical graph (Figure 2)(c). The noise terms are

uniformly sampled from [0, 2]. We consider the general setting

that all nodes that have parents can suffer from model deviations.

The norm of both observational weights ‖[B]i‖ and the

interventional weights ‖[B∗]i‖ are set to 0.5 and 1 respectively.

• Chain graph: The chain graph in Figure 2(a) is a fun-

damental element of causal graphs. The observational

weights [B]i−1,i and interventional weights [B∗]i−1,i for

node i ∈ [N] are set to 0.5 and 1, respectively.

• Hierarchical graph: For the experiments reported in

Figure 3, we use the graph structure with L = 2

layers, and each layer has the same number of nodes

d ∈ {1, 2, 3, 4, 5}. For the experiments illustrated in

Figures 4(c) and 5(c), we set the number of nodes in

Layer 2 to 3 and Layer 1 to 9. We set the observa-

tional and interventional weights for node i ∈ [N] to

0.5/
√

|pa(i)| and 1/
√

|pa(i)|, respectively.

• Confounded parallel graph: The confounded parallel

graph, as shown in Figure 2(b), is a mixture of the parallel

Fig. 3. Cumulative regret of Robust-LCB with different graph degree d and
L = 2, N = Ld + 1.

graph and confounded graph in [8], where node 1 is the

parent of all other nodes, and the reward node N is the

child of all other nodes. We set the observational and

the interventional weights for nodes i ∈ {2, . . . , N − 1}
to 0.5 and 1, respectively. For the reward node N, its

parents’ observational and interventional weights are set

to 0.5/
√

N − 1 and 1/
√

N − 1, respectively.

We let the deviations on the model occur at earlier rounds

to simulate the worst-case scenario for a given deviation

level C. When a deviation occurs on node i ∈ [N], the weights

are deliberately altered to change the optimal action, thereby

challenging the algorithm’s performance. The simulations are

repeated 100 times, and the average cumulative regret is reported.

Scaling behavior with degree d: Figure 3 illustrates the

variations of the cumulative regret E[R(T)] versus the graph

degree d when T = 40000. We compare the regret of the

Robust-LCB algorithm (blue curve with its scale on the left

axis), the lower bound characterized in Section V-B (black

curve with its scale on the left axis), and the upper bound

specified in (46) (red curve with its scale on the right axis).

All three curves suggest a polynomial behavior in d, which

conforms to our theoretical results.

Comparison of the bounds: Figure 4 compares the cumu-

lative regret of Robust-LCB with that of LinSEM-UCB

and UCB under a model deviation level of C = T0.5. It

demonstrates that only Robust-LCB achieves sub-linear regret,

whereas the other two algorithms incur linear regret with

respect to the horizon T . Furthermore, it is noteworthy that the

LinSEM-UCB always exhibits nearly the worst possible regret

as the design of the deviation also showcases the worst case for

LinSEM-UCB. In contrast, the regret of UCB tends to be the

worst possible outcome as the graph’s complexity increases

even when the deviation is not designed for it. Nevertheless,

these findings imply that the estimators of these algorithms
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Fig. 4. Cumulative regret when C =
√

T for different algorithms.

Fig. 5. Cumulative regret at T = 40000 for different deviation levels C.

become ineffective when faced with such deviations, resulting

in the selection of a sub-optimal (possibly the worst) arm.

Robustness against C: Figure 5 plots the cumulative regret

at T = 40000 when the model deviation budget C changes

from 2 to 2000. We observe that Robust-LCB and UCB

perform slightly better than our algorithm when there is

almost no deviation. This can be viewed as the compromise

needed to guarantee the robustness of our algorithm. However,

both Robust-LCB and UCB begin to fail with even a minor

model deviation, as small as C = 15 for all three scenarios.

Furthermore, they tend to reach nearly the worst possible

regret when the deviation level rises high enough (e.g., 200 for

the hierarchical graph). In the chain graph scenario, the UCB

algorithm exhibits moderate regret when C ≤ 300. However,

as demonstrated in Figure 4(a), it mistakenly treats a non-

optimal arm as the optimal one, resulting in linear regret,

which happens when C ≥ 10. In comparison, Robust-LCB

outperforms when the deviation is more than negligible, as its

regret scales sub-linear with the deviation level C.

VII. CONCLUDING REMARKS

In this paper, we have studied the sequential design of

interventions over graphical causal models where both the

observational and interventional models are unknown and

undergo temporal variations. We have considered the general

soft intervention model and have designed an algorithm

for identifying the intervention mechanism that optimizes a

utility function over the graph while exhibiting robustness

against model variations. This objective has been naturally cast

and analyzed as a causal bandit problem. We have focused

on causal structures described by linear structural equation

models. We have analyzed the proposed algorithm from a

cumulative regret perspective, where we have characterized the

dependence of the regret on the graph parameters. The main

observations are the following. (i) The proposed algorithm

maintains sub-linear or nearly optimal regret under a wide

range of relevant model deviation measures. This contrasts

sharply with the existing algorithms designed for fixed models,

which lose their sub-linear regret rate with a minimum level of

model variations. (ii) While the cardinality of the intervention

space grows exponentially with the graph size, our regret

maintains a linear growth in the graph size. (iii) The regret

bound depends on the graph structure only through its param-

eters (maximum degree and the length of the longest causal

path). Finally, we have established an information-theoretic

lower bound to demonstrate the tightness of our upper

bound.

We conclude by providing some potential future directions.

The first direction is tightening the gap between the graph-

dependent parameters in the upper and lower bounds. Secondly,

an alternative model to consider is the setting is the case of

non-stationary bandits, in which the temporal variations can

be potentially permanent. In such settings, the relevant metric

to analyze is the dynamic regret specifically designed for non-

stationary bandits. This metric becomes relevant when assuming

the absence of a nominal model and the permanent effects of

deviations. Lastly, we expect that our insights in this paper,

including the effectiveness of weighted exploration bonus, can

be extended into more general causal bandit settings, as well

as other structured bandit settings involving model deviation.

Examples include extending it to causal bandits with general

link functions and combinatorial bandits.

APPENDIX A

ADDITIONAL NOTATIONS

First, we provide notations that are useful in our analyses.

Since we are dealing with matrices, we denote the singular
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values of a matrix A ∈ R
M×N , where M ≥ N, by

σ1(A) ≥ σ2(A) ≥ · · · ≥ σN(A). (56)

In the proof, we often work with zero-padded vectors and

corresponding matrices. As a result, the matrices that contain

these vectors have non-trivial null space leading to zero singu-

lar values. In such cases, we use the effective smallest singular

value that is non-zero. We denote the effective largest and

smallest eigenvalues that correspond to effective dimensions

of a positive semidefinite matrix A with rank k by

σmax(A) � σ1(A), and σmin(A) � σk(A). (57)

For a square matrix U = AA� ∈ R
N×N , we denote the

effective largest and smallest eigenvalues by1

λmax(U) � λmax

(
AA�

)
= σ 2

max(A), (58)

and λmin(U) � λmin

(
AA�

)
= σ 2

min(A). (59)

Then we construct data matrices that are highly related to

Gram matrices. At time t ∈ N and for any node i ∈ [N], the

data matrices Ui(t) ∈ R
t×N and U∗

i (t) ∈ R
t×N consist of the

weighted observational and interventional data, respectively.

Specifically, for any s ∈ [t] and i ∈ [N], we define

[
U�

i (t)
]

s
� 1{i /∈ a(s)}

√
wi(s)X

�
pa(i)(s), (60)

and
[
U∗

i
�
(t)
]

s
� 1{i ∈ a(s)}

√
wi(s)X

�
pa(i)(s). (61)

Similarly to (2), we denote the relevant data matrices for node

i ∈ [N] under intervention a ∈ A by

Ui,a(t) � 1{i ∈ a}U∗
i (t) + 1{i /∈ a}Ui(t) (62)

Vi,a(t) � 1{i ∈ a}V∗
i (t) + 1{i /∈ a}Vi(t). (63)

Combining (60) and (63), we have

Vi,a(t) = U�
i,a(t)Ui,a(t) + IN . (64)

Similarly we define the data matrices that are related to

Ṽi,a(t) as

[
Ũ�

i (t)
]

s
� 1{i /∈ a(s)}wi(s)X

�
pa(i)(s), (65)

and
[
Ũ∗

i
�(t)

]
s
� 1 {i ∈ a(s)}wi(s)X

�
pa(i)(s). (66)

The relevant data matrices for node i ∈ [N] under intervention

a ∈ A are

Ũi,a(t) � 1{i ∈ A}U∗
i (t) + 1{i /∈ A}Ui(t), (67)

and Ṽi,a(t) = Ũ�
i,a(t)Ũi,a(t) + IN . (68)

Define N∗
i (t) as the number of times that node i ∈ [N] is

intervened, and Ni(t) as its complement, i.e.,

N∗
i (t) �

t∑

s=1

1{i ∈ a(s)}, and Ni(t) � t − N∗
i (t). (69)

Accordingly, for any i ∈ [N] and t ∈ N, define

Ni,a(t) � 1{i ∈ a}N∗
i (t) + 1{i /∈ a}Ni(t), (70)

1For matrix V = U + I, we denote the effective smallest eigenvalues by

λmin(V) � σ 2
min

(A) + 1.

Furthermore, we define the error and its l-th power of the

estimator of B matrices as

�a(t) � Ba(t) − Ba, ∀i ∈ [N], (71)

and �(�)
a (t) � B�

a(t) − B�
a. (72)

APPENDIX B

PROOF OF LEMMA 4

Proof: When it is clear from context, we use the shorthand

terms B for Ba in this proof. According to the given definitions

�
(�)

A = [�A + B]� − B�, each term in the binomial expansion

of �
(�)

A can be represented as a product involving factors of

�A and B. For any � ∈ [L] and k ∈ [�] ∪ {0}, there exist
(
�
k

)

terms that consist of the �A factor appearing k times and the

B factor appearing(� − k) times. We denote the set of these

product terms by

H�,k � {H : H has �A k times and B � − k times}. (73)

Therefore, sets H�,1, . . . ,H�,� contain all valid products com-

posed of B and �A. Hence, we can write the expansion of

�
(�)

A as

�
(�)

A =
�∑

k=1

∑

H∈H�,k

H. (74)

To bound the norm of �
(�)

A , we first bound the norm of each

element in the summation. We show by induction that for any

� ∈ [L], k ∈ [�] ∪ {0}, and H ∈ H�,k,

‖[H]i‖ ≤ d
�−1

2 βkλk ∀i ∈ [N], (75)

where λ � maxi∈[N] λ
−1/2
min

(
Mi

)
. Consider � = 1. For k = 0,

we have H1,0 = {B} and ‖[B]i‖ ≤ 1. For k = 1, H1,1 = {�A},
and

‖[�A]i‖ ≤ ‖[�A]i � 1(pa(i))‖Mi
λ

−1/2
min

(
Mi

)
(76)

= ‖[�A]i‖Mi
λ

−1/2
min

(
Mi

)
≤ βλ. (77)

Therefore, (75) holds for � = 1. Now assume that (75) holds

for every 1, . . . , � − 1, for some � ≥ 2. Consider a product

term H ∈ H�,k, for some k ∈ [�]∪{0}. The first factor of H is

either Ba or �A, and we analyze the induction step for each

of these possibilities separately.

Case 1: If H starts with B, represent it by H = BH̄,

where H̄ ∈ H�−1,k and k ∈ [� − 1] ∪ {0}. Using the

induction assumption for the elements of set H�−1,k we

obtain

‖[H]i‖2 =
∥∥(BH̄

)
i

∥∥2 =
∑

u,v∈pa(i)

[B]u,i[B]v,iH̄
�
v H̄u (78)

≤ d
∑

u∈pa(i)

(
[B]u,i

)2∥∥H̄u

∥∥2
(79)

≤ d�−1β2kλ2
∑

u∈pa(i)

(
[B]u,i

)2
(80)

= d�−1β2kλ2k‖[B]i‖2

︸ ︷︷ ︸
≤1

≤ d�−1β2kλ2k, (81)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2025 at 04:03:58 UTC from IEEE Xplore.  Restrictions apply. 



88 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 5, 2024

where in (79) we use Cauchy–Schwarz inequality and the

inductive hypothesis (75).

Case 2: If H starts with �A represent it by H = �AH̄,

where H̄ ∈ H�−1,k−1 and k ∈ [�]. Similarly to the first case,

we have

‖[H]i‖2 =
∥∥[�AH̄

]
i

∥∥2
(82)

=
∑

u,v∈pa(i)

[�A]u,i[�A]v,i

[
H̄
]�

v

[
H̄
]

u
(83)

≤ d
∑

u∈pa(i)

(
[�A]u,i

)2∥∥[H̄
]

u

∥∥2
(84)

≤ d�−1β2k−2λ2k−2
∑

u∈pa(i)

(
[�A]u,i

)2
(85)

= d�−1β2k−2λ2k−2‖[�A]i‖2 (86)

≤ d�−1β2k−2λ2k−2β2λ−1
min

(
Mi

)
︸ ︷︷ ︸

≤λ2

(87)

≤ d�−1β2kλ2k. (88)

where (84) we use Cauchy-Schwarz inequality, and in (87) we

use the fact that [�A]i = [�A]i � 1(pa(i)) and ‖[�A]i‖ ≤
‖[�A]i‖Mi

λ
−1/2
min

(
Mi

)
. Taking the square-roots of both sides

in (81) and (88) yields

‖[H]i‖ ≤ d
�−1

2 βkλk, (89)

which is the desired inequality for all k ∈ [�] ∪ {0}. This

completes the proof of (75) by induction. The final result

follows by applying (89) to each term in the sum (74).

∥∥∥
[
�

(�)

A

]
i

∥∥∥ =
∥∥∥∥

�∑

k=1

∑

H∈H�,k

[H]i

∥∥∥∥ (90)

≤
�∑

k=1

∑

H∈H�,k

‖[H]i‖ (91)

≤ d
�−1

2

�∑

k=1

|H�,k|βkλk (92)

= d
�−1

2

�∑

k=1

(
�

k

)
βkλk (93)

< d
�−1

2 (β + 1)�λ (94)

= d
�−1

2 (β + 1)� max
i∈[N]

λ
−1/2
min

(
Mi

)
, (95)

where (94) is due to the binomial expansion of (β + 1)� and

Mi � I, ∀i ∈ [N] such that λ ≤ 1.

APPENDIX C

PROOF OF THEOREM 1

The proof mechanism follows the same line of arguments

as [15, Th. 5] but with major distinctions. Firstly, we provide

a new lemma on the bound on the power of estimation error

�
(�)
a (t) � B�

a(t−1)−B�
a, Furthermore, the effect of the weighted

ridge regression, distinct confidence ellipsoids, and the definition

of error events, namely Ẽi,n(t) and Ẽ
∗
i,n(t) are investigated.

Finally, we bound a new function of eigenvalues of weighted

Gram matrices Vi,a(t)(t) and Ṽi,a(t). To begin with, we first state

the lemma which upper bounds the estimation error.

Based on the above estimation error, we start the proof by

decomposing the regret in (4) as

E[R(T)] = E

[
T∑

t=1

(
μa∗ − μa(t)

)
]

(96)

= E

[
T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ε(t)

〉
]

(97)

= E

[
T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉
]
, (98)

where the second equation is a result of [15, Lemma 1], which

is stated as Lemma 1. The last equation is due to the inner

product being a linear function and E[ε] = ν.

Now define the error events Ei and E∗
i for i ∈ [N] for each

estimator

Ei �

{
∀t ∈ [T]:

‖[B(t − 1)]i − [B]i‖Vi(t)
[
Ṽi(t)

]−1
Vi(t)

≤ βt

}
, (99)

E∗
i �

{
∀t ∈ [T]:

∥∥[B∗(t − 1)
]

i
−
[
B∗]

i

∥∥
V∗

i (t)
[
Ṽ∗

i (t)
]−1

V∗
i (t)

≤ βt

}
, (100)

where the βt is chosen as

βt �

√
2 log(2NT) + d log

(
1 + m2t/dC2

)
+ 1 + m,(101)

Let E∩ denote the event that all of the events {Ei, E
∗
i : i ∈ [N]}

occur simultaneously, i.e.,

E∩ �

( N⋂

i=1

Ei

)⋂( N⋂

i=1

E∗
i

)
. (102)

Then by Lemma 2, we have

P
(
Ec

∩
)

≤
N∑

i=1

P
(
Ec

i

)
+

N∑

i=1

P
(
E∗

i
c)

(103)

≤
N∑

i=1

(
1

2NT
+

1

2NT

)
=

1

T
. (104)

Then we can bound the regret as follows.

R(T) ≤ E

[
1{Ec

∩}
T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉]

(105)

+E

[
1{E∩}

T∑

t=1

r(t)

]
(106)

≤ 2mTP
(
Ec

∩
)
+ E

[
1{E∩}

T∑

t=1

r(t)

]
(107)

≤ 2m + E

[
1{E∩}

T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉]

. (108)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2025 at 04:03:58 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: ROBUST CAUSAL BANDITS FOR LINEAR MODELS 89

According to the arm selection rules, we have UCBa∗(t) ≤
UCBa(t)(t). Let B̃a be the matrix that attains UCBa(t), i.e.,

B̃a = arg max
[	]i∈Ci,a(t)

〈f (	), ν〉. (109)

Then under the event E∩, we have
〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉

(110)

≤ UCBa∗(t) −
〈
f
(
Ba(t)

)
, ν
〉

(111)

≤ UCBa(t)(t) −
〈
f
(
Ba(t)

)
, ν
〉

(112)

= 〈f
(
B̃a(t)

)
− f

(
Ba(t)

)
, ν〉. (113)

Subsequently, we use (113) to derive an upper bound for the

expectation term in (108), thereby eliminating the dependence

on a∗.

E

[
1{E∩}

T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉
]

(114)

≤ E

[
1{E∩}

T∑

t=1

〈
f
(
B̃a(t)

)
− f

(
Ba(t)

)
, ν
〉
]

(115)

≤ ‖ν‖E
[
1{E∩}

T∑

t=1

∥∥f
(
B̃a(t)

)
− f

(
Ba(t)

)∥∥
]

(116)

≤ ‖ν‖E
[
1{E∩}

T∑

t=1

∥∥f
(
B̃a(t)

)
− f

(
Ba(t)(t)

)∥∥
]

+ ‖ν‖E
[
1{E∩}

T∑

t=1

∥∥f
(
B̃a(t)(t)

)
− f

(
Ba(t)

)∥∥
]
. (117)

Note that (117) follows from the Cauchy-Schwarz inequality

while (117) is due to the triangle inequality. Next, we examine

the norm term within the expectation expression in (117). By

applying the definition of f , we obtain∥∥∥f
(
B̃a(t)

)
− f

(
Ba(t)(t)

)∥∥∥

≤
L∑

�=1

∥∥∥
[
B̃�

a(t)

]
N

−
[
B�

a(t)(t)
]

N

∥∥∥, (118)

∥∥∥f
(
B̃a(t)(t)

)
− f

(
Ba(t)

)∥∥∥

≤
L∑

�=1

∥∥∥
[
B�

a(t)(t)
]

N
−
[
B�

a(t)

]
N

∥∥∥. (119)

By the definition of Gram matrices, we have

Ṽi,a(t)(t) � Vi,a(t)(t), (120)

Vi,a(t)(t)
[
Ṽi,a(t)(t)

]−1
Vi,a(t)(t) � Vi,a(t)(t) � IN . (121)

We consider the following tuple of matrices for i ∈ [N]
(

B̃a(t), Ba(t)(t), Vi,a(t)(t)
[
Ṽi,a(t)(t)

]−1
Vi,a(t)(t)

)
,

(
Ba(t)(t), Ba(t), Vi,a(t)(t)

[
Ṽi,a(t)(t)

]−1
Vi,a(t)(t)

)
. (122)

These tuple of matrices satisfy the condition of Lemma 4.

We further define the maximum confidence radius βT �√
2 log(2NT) + d log(1 + m2T/dC2) + 1 + m and

λ(t) � max
i∈[N]

√
λmax

(
Ṽi,a(t)(t)

)

λmin

(
Vi,a(t)(t)

) , (123)

λT � E

[
T∑

t=1

λ(t)

]
. (124)

By using Lemma 4 to upper bound the tow terms in (119),

we have

E

[
1{E∩}

T∑

t=1

〈
f (Ba∗) − f

(
Ba(t)

)
, ν
〉
]

(125)

< 2

L∑

�=1

d
�−1

2
(
βT + 1

)�
E

[
1{E∩}

T∑

t=1

λ(t)

]
(126)

≤ 2λT

L∑

�=1

d
�−1

2
(
βT + 1

)�
(127)

≤ 4λT

(
βT + 1

)L
d

L−1
2 , (128)

where in (128), we use the fact that
∑L

i=1 qL ≤ 2qL for q ≥ 2

and
√

d(βT + 1) > 2.

a) Bounding E[
∑T

i=1 λ(t)]: What remains is to bound

the term E[
∑T

i=1 λ(t)], where λ(t) is a function involving

the eigenvalues of both Gram matrices Vi,a(t)(t) and Ṽi,a(t)(t).

To proceed, we define the second-moment matrices and its

effective largest and smallest eigenvalues as

�i,a(t) � EX∼Pa

[
Xpa(i)(t)X

�
pa(i)(t)

]
, (129)

κmin � min
i∈[N],a∈A,t∈[T]

σmin

(
�i,a(t)

)
, (130)

κmax � max
i∈[N],a∈A,t∈[T]

σmax

(
�i,a(t)

)
, (131)

where κmin > 0 is guaranteed since there is no deterministic

relation between nodes and their patients. These variables

are inherent to the system and remain unknown to the

learner. Given our focus on the weighted OLS estimator, we

also introduce singular values related to auxiliary variables

X′
pa(i)(t) �

√
wi(t)Xpa(i)(t) and X̃pa(i)(t) � wi(t)Xpa(i)(t).

Accordingly, we define the second weighted moment matrices

as follows.

�′
i,a,wi

(t) � EX∼Pa

[
wi(t)Xpa(i)(t)X

�
pa(i)(t)

]
, (132)

�̃i,a,wi(t) � EX∼Pa

[
w2

i (t)Xpa(i)(t)X
�
pa(i)(t)

]
. (133)

To bound the singular value of the weighted second moment,

we first need uniform bounds for the weights. We find a bound

for the norm of ‖Xpa(i)(t)‖[Ṽi,a(t)]−1 across all a ∈ A. This

yields the following result.

‖Xpa(i)(t)‖[Ṽi,a(t)(t)
]−1

≤
1

λ
1/2
min

(
Ṽi,a(t)(t)

)‖Xpa(i)(t)‖ ≤ m. (134)

Then, the weights can be bounded by

1

Cm
≤ wi(t) = min

§
¨
©

1

C
,

1

C‖Xpa(i)(t)‖[Ṽi,a(t)(t)
]−1

«
¬
­ ≤

1

C
. (135)

Subsequently, we can bound the minimum and maximum

singular values of matrices �′
i,a,wi

(t) and �̃i,a,wi(t).

κ ′
min =

1

Cm
κmin ≤ σmin

(
�′

i,a,wi
(t)
)

(136)
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≤ σmax

(
�′

i,a,wi
(t)
)

≤
1

C
κmax = κ ′

max, (137)

κ̃min =
1

C2m2
κmin ≤ σmin

(
�̃i,a,wi(t)

)
(138)

≤ σmax

(
�̃i,a,wi(t)

)
≤

1

C2
κmax = κ̃max. (139)

Moreover, we have ‖X′
pa(i)(t)‖ ≤ m′ = 1√

C
m and

‖X̃pa(i)(t)‖ ≤ m̃ = 1
C

m. In order to proceed, we need upper

and lower bounds for the maximum and minimum singular

values of Ui,a(t)(t). However, these bounds depend on the

number of non-zero rows of Ui,a(t)(t) matrices, which equals

to values of the random variable Ni,a(t)(t). Firstly, we define

the weighted constants

γn � max
{
αm2

√
n, α2m2

}
, (140)

γ ′
n � max

{
αm′2√n, α2m′2

}
, (141)

γ̃n � max
{
αm̃2

√
n, α2m̃2

}
, ∀n ∈ [T]. (142)

Then for every i ∈ [N], t ∈ [T], and n ∈ [t], we define the error

events corresponding to the maximum and minimum singular

values of Ui(t) and Ũi(t) as

Ei,n(t) �

{
Ni(t) = n

and

{
σmin(Ui(t)) ≤

√
max

{
0, nκ ′

min − γ ′
n

}

or σmax(Ui(t)) ≥
√

nκ ′
max + γ ′

n

}}
, (143)

E∗
i,n(t) �

{
N∗

i (t) = n

and

{
σmin

(
U∗

i (t)
)

≤
√

max
{
0, nκ ′

min − γ ′
n

}

or σmax

(
U∗

i (t)
)

≥
√

nκ ′
max + γ ′

n

}}
, (144)

Ẽi,n(t) �

{
Ni(t) = n

and
{
σmin

(
Ũi(t)

)
≤
√

max{0, nκ̃min − γ̃n}

or σmax

(
Ũi(t)

)
≥
√

nκ̃max + γ̃n

}}
, (145)

Ẽ
∗
i,n(t) �

{
N∗

i (t) = n

and
{
σmin

(
Ũ∗

i (t)
)

≤
√

max{0, nκ̃min − γ̃n}

or σmax

(
Ũ∗

i (t)
)

≥
√

nκ̃max + γ̃n

}}
. (146)

In other words, the event Ei,n(t) indicates the situation in

which either σmin(Ui(t)) or σmax(Ui(t)) violates the established

lower and upper bounds. Likewise, E∗
i,n(t), Ẽi,n(t) and Ẽ

∗
i,n(t)

are associated with the singular values of U∗
i (t), Ũi(t) and

Ũ∗
i (t). The next result shows that these events occur with a

low probability.

Lemma 5: The probability of the error events Ei,n(t), E
∗
i,n(t),

Ẽi,n(t) and Ẽ
∗
i,n(t) defined in (143) to (146) are upper

bounded as

P
(
Ei,n(t)

)
≤ d exp

(
−

3α2

16

)
,P
(
E∗

i,n(t)
)

≤ d exp

(
−

3α2

16

)
,

(147)

P
(̃
Ei,n(t)

)
≤ d exp

(
−

3α2

16

)
,P

(
Ẽ

∗
i,n(t)

)
≤ d exp

(
−

3α2

16

)
.

(148)

Proof: This is a direct result from [15, Lemma 3], where

we use κ ′
min, κ

′
max and γ ′ for events Ei,n(t) and E∗

i,n(t) and

using κ̃min, κ̃max and γ̃ for events Ẽi,n(t) and Ẽ
∗
i,n(t). The only

difference is that one need to use the following lemma, which

is an immediate result of [15, Lemma 6].

Lemma 6: Consider matrices U and A that satisfy
∥∥∥U�U − A

∥∥∥ ≤ γ. (149)

Then we have,

σmax(U) ≤
√

σmax(A) + γ , (150)

and σmin(U) ≥
√

max{0, σmin(A) − γ }. (151)

Now that we have bounds on the probability of error events,

we define the union error event E∪ as

E∪ � {∃ (i, t, n) : i ∈ [N], t ∈ [T], n ∈ [t], Ei,n(t)

or E∗
i,n(t) or Ẽi,n(t) or Ẽ

∗
i,n(t)}. (152)

By taking a union bound and using Lemma 5 we have

P(E∪) ≤
N∑

i=1

T∑

t=1

t∑

n=1

(
P
(
Ei,n(t)

)
+ P

(
E∗

i,n(t)
)

(153)

+P
(̃
Ei,n(t)

)
+ P

(
Ẽ

∗
i,n(t)

))
(154)

≤ 2NT(T + 1)d exp

(
−

3α2

16

)
. (155)

b) Bounding E[1{E∪}
∑T

t=1 λ(t)]:

Since λmin

(
Vi,a(t)(t)

)
≥ 1, we have the following uncondi-

tional upper bound.

λ(t) = max
i∈[N]

√
λmax

(
Ṽi,a(t)(t)

)

λmin

(
Vi,a(t)(t)

) (156)

≤ max
i∈[N]

√
λmax

(
Ṽi,a(t)(t)

)
(157)

= max
i∈[N]

√√√√λmax

(
t∑

s=1

1{i ∈ a(s)}w2
i (s)Xpa(i)(s)X

�
pa(i)(s) + IN

)

(158)

≤ max
i∈[N]

√√√√1 +
1

C2

t∑

s=1

1{i ∈ a(s)}λmax

(
Xpa(i)(s)X

�
pa(i)(s)

)
(159)

≤ max
i∈[N]

√√√√1 +
1

C2

t∑

s=1

λmax

(
Xpa(i)(s)X

�
pa(i)(s)

)
(160)

= max
i∈[N]

√√√√1 +
1

C2

t∑

s=1

∥∥Xpa(i)(s)
∥∥2

(161)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2025 at 04:03:58 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: ROBUST CAUSAL BANDITS FOR LINEAR MODELS 91

≤

√
m2

C2
t + 1, (162)

where (162) follows from the fact that ‖X‖ ≤ m. Hence, we

have

E

[
1{E∪}

T∑

t=1

λ(t)

]
(163)

(157)
≤ E

[
1{E∪}

T∑

t=1

√
λmax

(
ṼN,a(t)(t)

)
]

(164)

(162)
≤ E

⎡
£1{E∪}

T∑

t=1

√
m2

C2
t + 1

¤
⎦ (165)

= E
[
1{E∪}

] T∑

t=1

√
m2

C2
t + 1 (166)

= P(E∪)

T∑

t=1

√
m2

C2
t + 1

︸ ︷︷ ︸
A1

. (167)

Furthermore, A1 is bounded as

T∑

t=1

√
m2

C2
t + 1 ≤

m

C

√
T + 1 +

T−1∑

t=1

(m

C

√
t + 1

)
(168)

≤
m

C

√
T + T +

∫ T

t=1

m

C

√
tdt (169)

=
m

C

√
T + T +

2m

3C

(
T3/2 − 1

)
. (170)

By setting α =
√

16
3

log(2dNT5/2(T + 1)), we obtain

E

[
1{E∪}

T∑

t=1

√
m2t + 1

]
(171)

(167)
≤ P(E∪)

T∑

t=1

√
m2t + 1 (172)

(155)
≤

NT(T + 1)d

exp
(
log(dNT5/2(T + 1))

)
︸ ︷︷ ︸

=T−3/2

T∑

t=1

√
m2t + 1 (173)

(170)
≤ T−3/2

(
m

C

√
T + T +

2m

3C

(
T3/2 − 1

))
(174)

<
m

CT
+

2m

3C
+ 1. (175)

c) Bounding E[1{Ec
∪}
∑T

t=1 λ(t)]:

Considering the event Ec
∪, which encompasses all the events

{Ec
i,n(t), E

∗
i,n

c(t), Ẽ
c

i,n(t), Ẽ
∗
i,n

c(t):i ∈ [N], t ∈ [T], n ∈ [t]} being

hold. Therefore, we can use the following bounds on the

singular values

σmin

(
Ui,a(t)(t)

)
≥
√

max
{
0, Ni,a(t)(t)κ

′
min − γ ′

n

}
, (176)

σmax

(
Ũi,a(t)(t)

)
≤
√

Ni,a(t)(t)κ̃max + γ̃n. (177)

Thus, the targeted sum can be upper-bounded by

E

[
1{Ec

∪}
T∑

t=1

λ(t)

]
(178)

= E

⎡
£1{Ec

∪}
T∑

t=1

max
i∈[N]

√
λmax

(
Ṽi,a(t)(t)

)

λmin

(
Vi,a(t)(t)

)

¤
⎦ (179)

= E

⎡
£1{Ec

∪}
T∑

t=1

max
i∈[N]

√
σ 2

max

(
Ũi,a(t)(t)

)
+ 1

σ 2
min

(
Ui,a(t)(t)

)
+ 1

¤
⎦ (180)

≤ E

T∑

t=1

max
i∈[N]

[ √
Ni,a(t)(t)κ̃max + γ̃n + 1

max
{
0, Ni,a(t)(t)κ

′
min − γ ′

n

}
+ 1

]
. (181)

It is worth noting that the term in the summation has a critical

point, and we bound the two regions separately. To initiate

this process, we define the function h(x) as

h(x) �

√
xκ̃max + γ̃n + 1

max
{
0, xκ ′

min − γ ′
n

}
+ 1

, x > 0. (182)

In order to analyze the behavior of the function h, we introduce

τ � α2m6

κ2
min

as the critical point. Note that when x ≤ τ , we have

xκ ′
min < γn. In this case, h(x) is equal to

h(x) =
√

xκ̃max + γ̃n + 1, (183)

which is an increasing function over the region. To upper

bound the h function when x > τ , we define the g function

when x > τ as follows.

g(x) �

√
xκmax + αm2

√
x

xκmin/m − αm2
√

x
+

C

xκmin/m − αm2
√

x
. (184)

Then when x > τ , we establish the following relation.

h(x) =
√

xκ̃max + γ̃n + 1

xκ ′
min − γ ′

n + 1
=
√

xκmax + γn + C2

xκmin/m − γn + C
(185)

<

√
xκmax + γn

xκmin/m − γn

= g(x), (186)

where the equality holds due to the definitions in (140)-(142)

and the inequality holds due to the fact that

√
x+a2

y+a
<

√
x

y
+ a

y

when a > 0. Moreover, when x > τ , we have γn = αm2
√

n.

Based on this, we can use the g function to upper bound h

function when x > τ . However, since g tends to infinity at

τ , we begin bounding from a larger constant, specifically 4τ .

However, for the summation when bounding x ≤ 4τ , we need

to consider the following monotonicity.

Lemma 7: h(x) and g(x) are both decreasing functions

when x > τ , where τ is defined as α2m6

κ2
min

.

Proof: See [39, Appendix E].

Now we are ready to bound the last term

E

[
1{Ec

∪}
T∑

t=1

λ(t)

]
≤ E

T∑

t=1

max
i∈[N]

h
(
Ni,a(t)(t)

)
. (187)

We define the set of time indices at which the chosen actions

are under-explored as

Kh �
{
t ∈ [T] | ∃ i ∈ [N] : Ni,a(t)(t) ≤ 4τ

}
. (188)
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It can be readily verified that |Kh| ≤ 8Nτ . Furthermore, when

x ∈ Kh, we have

h(x) ≤ h(τ ) ≤
1

C

√
κmaxτ + αm2

√
τ + 1, x ≤ τ. (189)

Then we can upper bound the summation when Kh occurs as

follows.

E

[ T∑

t=1

1{t ∈ Kh} max
i∈[N]

h
(
Ni,a(t)(t)

)]
(190)

≤ 2

N∑

i=1

4τ∑

n=1

h(n) (191)

≤ 8Nτ

(
1

C

√
κmaxτ + αm2

√
τ + 1

)
. (192)

Now we only need to bound the remaining part when t �∈ Kh

E

[ T∑

t=1

1{t ∈ Kc
h} max

i∈[N]
h
(
Ni,a(t)(t)

)]
. (193)

Note that when t ∈ Kc
h, we have Ni,a(t)(t) > τ for all i ∈ [N],

and we have

max
i∈[N]

h
(
Ni,a(t)(t)

)
≤ max

i∈[N]
g
(
Ni,a(t)(t)

)
. (194)

Furthermore, note that there might be multiple nodes that

achieve maxi∈[N] g(Ni,a(t)(t)). Without loss of generality, we

select the solution with minimum index as arg max (or

arg min). We denote the node that achieves the maximum value

of the function g as it.

it � arg max
i∈[N]

g
(
Ni,a(t)(t)

)
= arg min

i∈[N]

Ni,a(t)(t), (195)

where the last equality is a result of the fact that g is a

decreasing function when x ≥ τ . Note that it does not capture

whether i belongs to a(t) or not. To address this challenge, we

define the sets of time indices where it = i for each of these

two cases as follows for i ∈ [N].

Si � {t ∈ [T] : t �∈ Kh, it = i, i /∈ a(t)}, (196)

and S∗
i � {t ∈ [T] : t �∈ Kh, it = i, i ∈ a(t)}. (197)

Denote the elements of Si by Si,1, . . . , Si,|Si|. Until time Si,n,

the event {it = i, i /∈ a(t)} occurs exactly n times outside Kh

set. Similarly {it = i, i ∈ a(t)} occurs n times outside Kh set

until time S∗
i,n. Then

Ni

(
Si,n

)
=

Si,n∑

t=1

1{i /∈ a(t)} ≥
Si,n∑

t=1

1{it = i, i /∈ a(t)} (198)

= n + 4τ, (199)

N∗
i

(
S∗

i,n

)
=

S∗
i,n∑

t=1

1{i ∈ a(t)} ≥
S∗

i,n∑

t=1

1{it = i, i ∈ a(t)} (200)

= n + 4τ. (201)

Using the above results and noting that g is a decreasing

function, we obtain

T∑

t=1

1
{
t ∈ Kc

h

}
max
i∈[N]

g
(
Nit,a(t)(t)

)
(202)

=
T∑

t=1

1
{
t ∈ Kc

h

}
g
(
Nit,a(t)(t)

)
(203)

=
N∑

i=1

∑

t:t∈Si

g

(
Ni(t)

)
+

N∑

i=1

∑

t:t∈S∗
i

g
(
N∗

i (t)
)

(204)

=
N∑

i=1

|Si|∑

n=1

g
(
Ni(Si,n)

)
︸ ︷︷ ︸
(199)

≤ g(n+4τ)

+
N∑

i=1

|S∗
i |∑

n=1

g
(
N∗

i (S∗
i,n)
)

︸ ︷︷ ︸
(201)

≤ g(n+4τ)

(205)

≤
N∑

i=1

|Si|+4τ∑

n=4τ+1

g(n) +
N∑

i=1

|S∗
i |+4τ∑

n=4τ+1

g(n). (206)

We bound the discrete sums through integrals and define

Gτ (y) =
∫ y

x=4τ

g(x)dx, y ≥ 4τ. (207)

Since g(x) is a positive, non-increasing function, for any k ∈
N, k ≥ 4τ + 1 we have

k∑

n=4τ+1

g(n) ≤
∫ k

x=4τ

g(x)dx = Gτ (k). (208)

Then, the summation is upper bounded by

T∑

t=1

1
{
t ∈ Kc

h

}
max
i∈[N]

g
(
Nit,a(t)(t)

)
(209)

≤
N∑

i=1

|Si|+4τ∑

n=4τ+1

g(n) +
N∑

i=1

|S∗
i |+4τ∑

n=4τ+1

g(n) (210)

(208)
≤

N∑

i=1

Gτ

(
|Si| + 4τ

)
+

N∑

i=1

Gτ

(
|S∗

i | + 4τ
)
. (211)

Since g(x) is positive and decreasing, and G(y) is defined as

an integral of the g function with a positive first derivative

and negative second derivative, it can be deduced that G is a

concave function.

N∑

i=1

Gτ (|Si| + 4τ) +
N∑

i=1

Gτ

(
|S∗

i | + 4τ
)

(212)

≤ 2N × Gτ

(
1

2N

N∑

i=1

|Si| +
1

2N

N∑

i=1

|S∗
i | + 4τ

)
(213)

≤ 2N × Gτ

(
T

2N
+ 4τ

)
. (214)

Next, we proceed to establish an upper bound for the func-

tion G.

Lemma 8: The G function can be upper bounded as

Gτ

(
T

2N
+ 4τ

)

≤ 2

√
mκmax

κmin

(√
T

2N
+

√
τ log

(√
T

2N
+

√
τ

))

+
4

κmin

4

√
T

2N
+ 2

√
αm5

κ3
min

log

»
¼½

√
1
τ

4

√
T

2N
+ 4

√
4 + 1

√
1
τ

4

√
T

2N
+ 4

√
4 − 1

¾
¿À
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+
2m log

(
κmin

m

√
T

2N
+ αm2

)

κmin
C. (215)

Proof: See [39, Appendix F]

Combining the results in (175), (206), (214) and (215),

let E1 denote the accumulation of terms that exhibit at most

logarithmic growth rates with respect to T and C.

E1 = 4N

√
mκmax

κmin

√
τ log

(√
T

2N
+

√
τ

)
(216)

+ 4N

√
αm5

κ3
min

log

»
¼½

√
1
τ

4

√
T

2N
+ 4

√
4 + 1

√
1
τ

4

√
T

2N
+ 4

√
4 − 1

¾
¿À (217)

+ 8Nτ

(
1

C

√
κmaxτ + αm2

√
τ + 1

)
(218)

+
m

CT
+

2m

3C
+ 1. (219)

Therefore, the final result for the bound is

E

[
T∑

t=1

λ(t)

]
≤

4
√

mκmax

κmin

√
NT +

8

κmin

4

√
N3T

2
(220)

+
4Nm

κmin
log

(
κmin

m

√
T

2N
+ αm2

)
C + E1. (221)

Plugging (221) into (128), we have

E[R(T)] ≤ 4(βT + 1)Ld
L−1

2 E

[
T∑

t=1

λ(t)

]
(222)

= Õ
(

dL− 1
2

√
NT + dL− 1

2 NC
)
. (223)
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