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Abstract—The sequential design of experiments for optimizing
a reward function in causal systems can be effectively modeled
by the sequential design of interventions in causal bandits (CBs).
In the existing literature on CBs, a critical assumption is that
the causal models remain constant over time. However, this
assumption does not necessarily hold in complex systems, which
constantly undergo temporal model fluctuations. This paper
addresses the robustness of CBs to such model fluctuations.
The focus is on causal systems with linear structural equation
models (SEMs). The SEMs and the time-varying pre- and post-
interventional statistical models are all urnknown. Cumulative
regret is adopted as the design criteria, based on which the
objective is to design a sequence of interventions that incur the
smallest cumulative regret with respect to an oracle aware of the
entire causal model and its fluctuations. First, it is established that
the existing approaches fail to maintain regret sub-linearity with
even a few instances of model deviation. Specifically, when the

number of instances with model deviation is as few as 72L, where
T is the time horizon and L is the length of the longest causal
path in the graph, the existing algorithms will have linear regret
in 7. For instance, when 7 = 105 and L = 3, model deviations in
6 out of 10° instances result in a linear regret. Next, a robust CB
algorithm is designed, and its regret is analyzed, where upper and
information-theoretic lower bounds on the regret are established.
Specifically, in a graph with N nodes and maximum degree d,
under a general measure of model deviation C, the cumulative

~ 1
regret is upper Eounded by O(dI‘_i(a/NT + NC)) and lower
bounded by € (d 272 max{~/T , d2C}). Comparing these bounds
establishes that the proposed algorithm achieves nearly optimal

O(ﬁ ) regret when C is o(ﬁ ) and maintains sub-linear regret
for a broader range of C.

Index Terms—Causal bandit, robust statistics.

I. MOTIVATION AND OVERVIEW

AUSAL bandits provide a rich framework to formal-

ize and analyze the sequential experimental design in
causal networks. Such design problems appear in applications
that involve a network of interacting components that can
causally influence one another. Examples include design of
experiments in robotics [1], gene expression networks [2],
drug discovery [3], and recommendation systems [4]. In
causal systems, interventions are experimental mechanisms
that facilitate uncovering the cause-effect relationships in
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causal networks and distinguishing them from the conventional
association measures [5]. Sequential design of interventions
has the key advantage of bringing data-adaptivity in designing
the interventions, resulting in an overall reduced experiment
cost and a faster process for forming inferential decisions. For
instance, reprogramming the cell via gene perturbation exper-
iments needs a careful design of sequential interventions [6]
such that the outcome of one experiment guides the design of
the subsequent ones. Causal bandits (CBs) provide a theoreti-
cally principled way of sequentially designing interventions to
identify the one that maximizes a utility for the causal network.
Specifically, the canonical model for this utility is a function of
the observations obtained from the DAG. The utility is chosen
as the average value of a leaf node, which we denote by the
reward node. This is a model that is widely used in the causal
bandit literature. Accordingly, each intervention mechanism is
modeled by an arm, the value of the reward node under an
intervention is called the reward, and the sequential selection
of the interventions is abstracted as arm selection decisions.
The extent of information available about the causal model
critically influences the design of CB algorithms. Broadly,
there are two central pieces of information: the causal structure
(topology) and the data’s pre- and post-intervention statistical
models. Depending on the availability of each of these two
pieces, there are four possible CB settings. Designing CB algo-
rithms and their improvement over standard bandit algorithms
was first demonstrated in [7], [8] for the settings where both
the structure and interventional distributions are fully speci-
fied. Subsequently, the studies transitioned to more realistic
settings and explored how to accommodate unknown structure
and distribution information [7], [9], [10], (approximately)
known distributions but unknown structure [11], [12], and
known structure and unknown distributions [13], [14], [15].
Motivation: We investigate CBs from a new perspective.
The existing studies all focus on having a fixed causal model
over time, which applies to both directions in which the
models are known or unknown. In reality, however, large
complex causal systems undergo model fluctuations caused by
a wide range of reasons such as non-stationarity in the system
or heterogeneous data [16], [17], measurement errors [18],
selection bias [19], and missing data [20]. Temporal model
fluctuations can change the causal structure or statistical
models. For instance, in drug discovery, there are multiple
observable variables or representation nodes [21], and the
model fluctuations due to measurement errors can occur in
both the observable variables or their weights to the representa-
tion nodes. However, the algorithm for time-invariant settings
can be highly susceptible to model fluctuations. For instance,
the CB algorithm in [15] enjoys a nearly optimal growth
in the horizon 7T, i.e., O(ﬁ ). Nevertheless, it will lose the
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optimal rate with even minuscule instances of model deviation.
More specifically, as we will show in Section V-C, the regret
becomes linear in 7 if the system experiences model deviations
in Tﬁ instances, where L is the lon%est causal path in the
graph. For even small values of L, 72C will be an extremely
small fraction of the instances. For instance, when T = 10°
and L = 3, model deviations in 6 out of 10° instances result
in a linear regret.

Objectives: We pursue four objectives. (1) Under relevant
measures of model fluctuations, we design a robust CB
algorithm to model deviations over time. (2) We characterize
almost matching upper and lower bounds on the regret as
a function of model deviation level, time horizon, graph
parameters, and the size of the cardinality of the intervention
space. (3) We analytically assess the robustness of the relevant
existing algorithms, establishing their lack of robustness to
model fluctuations. (4) We consider a general intervention set-
ting in which each subset of nodes in the graph is intervenable,
and each intervention induces a distinct reward distribution,
resulting in an intervention space that grows exponentially
with the size of the graph. As the final objective, we show
that our algorithm circumvents the exponential growth of the
achievable regret with the cardinality of the intervention space
and breaks it down to linear growth. Our focus is on the causal
graphs that are specified by a linear structural equation model
(SEM). We assume that the structure (topology) is fixed but
the statistical models undergo temporal fluctuations.

Contribution & key observations: We design a novel weight-
ing methodology for linear regression that takes advantage of
the weighted exploration bounce. This approach enables us
to accurately accommodate the impact of model deviations
in our regret analysis. Based on that, we characterize novel
time-uniform confidence ellipsoid models for robust linear
regression, which may be of broader interest in robust linear
bandits. Furthermore, we propose a robust CB algorithm and
analyze the compounding effect under the novel confidence
ellipsoids, which offers insights into the behavior of our regret
bound. When considering a known budget of C that captures
the level of model deviations over time, the achievable regret
is @(dL_%(\/ﬁ + NC)), where N and d are the number
of nodes and maximum degree in the graph, respectively,
and L is the length of the largest causal path. Compared
to the established lower bound Q(d%_2 max{ﬁ , dzC}),
we observe that both bounds scale polynomially in d and
exponentially in L. Furthermore, both bounds scale with JT
when the model faces C = o(+/T) and linear in C when
C = Q(+/T). This indicates that our algorithm enjoys nearly
optimal regret when C = o(~+/T), and it maintains a sub-linear
regret when the aggregate model deviation is sub-linear, which
is the best possible regret order that any algorithm can achieve.
The cost incurred to maintain such robustness is that the regret
grows linearly with the deviation amount.

Related literature: The earlier studies on CB algorithms
assume that both the graph structure and the interventional
distributions are known (fully or partially) [22], [23]. More
recent studies dispense with one or both of the assumptions.
Despite their discrepancies in model and objectives, the common
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theme in all these studies is that they assumed a fixed causal
model. Among the related work that does not make either
assumption, [9] incorporates causal learning algorithms to
CBs but does not improve upon regret of non-causal bandit
algorithms; [7] focuses on atomic interventions; [11] achieves a
regret bound that scales with the cardinality of the intervention
space; and [14] focuses on binary random variables.

In a different direction, there exist studies that assume
that the graph structure is known while the distributions are
unknown. The relevant literature includes [13], [14], which
focuses on binary random variables. More recently, [15]
focuses on linear systems and generalizes the results to the
soft intervention settings, continuous random variables, and
arbitrarily large intervention spaces. In parallel, [24] uses
soft interventions and generalizes to non-linear models but
limits to the Gaussian process SEMs in reproducing kernel
Hilbert space (RKHS) and intervention space on controllable
action variables. Finally, we note that even though we focus
on linear SEMs, we observe that our reward is a non-linear
function of the unknown parameters. Hence, our CB model
fundamentally differs from linear bandits. This is the case even
in the CB settings with a fixed model [15]. Nevertheless, we
briefly comment on the literature on linear bandits with model
misspecification or contamination. These studies assume fixed
(permanent) deviation, whereas, in our setting, the deviations
can vary over time [25], [26], [27], [28]. Furthermore, in linear
bandits with contamination, the contamination is imposed on
the observed rewards [29], [30], [31], [32], [33], [34], whereas
we are focusing on model deviation.

Notations: For N € Z,, we define the set [N] £ {1, ..., N}.
The Euclidean norm of a vector X € RY is denoted by || X]|.
For a subset S C [N], we define Xg £ X 0 1(S), where ©
denotes the Hadamard product and the vector 1(S) € {0, 1}V
has 1s at the indices corresponding to S. We denote the i-th
column of matrix A € R™*" by [A];, and the entry at i-th
row and j-th column by [A]; ;. The spectral norm of a matrix
is denoted as ||A||. We further define the A-norm for positive
semidefinite matrix A as || X|[4 = vVXTAX.

II. CAUSAL BANDIT MODEL

Causal graphical model: Consider a directed acyclic graph
(DAG) denoted by G(V, &), where V = [N] denotes the set
of nodes, and £ denotes the set of edges, where the ordered
tuple (i,j) € &, indicates that there is a directed edge from i
to j. Each node i € [N] is associated with a random variable

X;. Accordingly, we define the vector X 20X, ..., Xv]". We
consider a linear SEM, according to which
X=B'X+e, (1)

where B € RV*V is a strictly upper triangular edge weight
matrix, and € £ (€1, ...,eN)T denotes the exogenous noise
variables, with a known mean v £ E[e]. The noise vector € is
1-sub-Gaussian, and its Euclidean norm is upper bounded by
lle|l < me. The graph’s structure is assumed to be known, while
the weight matrix B associated with the graph is unknown.
For any node i € [N], we denote the set of parents of i by

pa(i). We denote the maximum in-degree of the graph by d £
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max;{|pa(i)|} and the length of the longest directed path in the
graph by L.

Intervention model: We consider soft interventions on the
graph nodes. A soft intervention on node i € [N] alters the
conditional distribution of X; given its parents Xy, (?), ie.,
P(X;|Xpa(i)). An intervention can be applied to a subset of
nodes simultaneously. If node i € V is intervened, the impact
of the intervention is a change in the weights of the edges
incident on node i. These weights are embedded in [B];, i.e.,
the i-th column of B. We denote the post-intervention weight
values by [B*]; # [B];. Accordingly, corresponding to the
interventional weights, we define the interventional weight
matrix B*, which is composed of the columns {[B*];:i €
[N]}. Note that soft interventions subsume commonly used
stochastic hard interventions in which a hard intervention on
node i sets [B*]; = 0.

Since we allow any arbitrary combination of nodes to be
selected for concurrent intervention, there exist 2V interven-
tional actions to choose from. We define A £ 2V as the set
of all possible interventions, i.e., all possible subsets of [N].
For any intervention a € A, we define the post-intervention
weight matrix B, such that columns corresponding to the non-
intervened nodes retain their observational values from B, and
the columns corresponding to the intervened nodes change to
their new interventional values from B*. The columns of B,
are specified by

[Boli = [Bl;- 1{i ¢ a} + [B*],- L{i € a}, 2

where 1 denotes the indicator function. The interventions
change the probability models of X. We define P, as the
probability measure of X under intervention a € A. For any
given B and B* we assume that ||[B,];|| < mp. Without loss
of generality, we assume mp = 1. Due to the boundedness of
noise € and column of B, matrices, there exists m € RT such
that || X|| < m.

Causal bandit model: Our objective is the sequential design
of interventions. The set of possible interventions can be
modeled as a multi-armed bandit setting with 2V arms, one
arm corresponding to each possible intervention. Following the
canonical CB model [8], [22], we designate node N (i.e., the
node without a descendant) as the reward node. Accordingly,
Xy specifies the reward value. We denote the expected reward
collected under intervention a € A by

MHa = Ea[XN], (3)

where E, denotes expectation under P,. We denote the
intervention that yields the highest average reward by a* £
arg max,. 4 q; denote the sequence of interventions by
{a(®) € A:t € N}; and denote the data generated at time ¢ and
under intervention a(f) by X(r) = [X((?), ... ,Xv(®]1". The
learner’s goal is to minimize the average cumulative regret
over the time horizon T with respect to the reward accumulated
by an oracle aware of the systems model, interventional
distributions, and model fluctuations. We define the expected
accumulated regret as
T
EIR(T)] & Tug = ) EXy()).

=1

“4)
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III. TEMPORAL MODEL FLUCTUATIONS

Due to the size and complexity of the graphical models that
represent complex systems, assuming that the observational
and interventional models B and B* remain unchanged over
time is a strong assumption. These models can undergo
temporal variations due to various reasons, such as model
misspecifications, stochastic behavior of the system, and
adversarial influences. To account for such variations, we refer
to B, as the nominal model of the graph at time ¢ and denote
the actual time-varying unknown model by D). Accordingly,
we define the deviation of the actual model from the nominal
model by

Aaiy = Day — Ba).- (5)

To quantify the impact of model deviations on the regret R(T),
we specify two measures that capture the extent of deviations.
The first measure captures the maximum number of times each
node deviates from the nominal model. The second measure
provides a budget for the maximum deviation in the linear
model that model deviations can inflict over time. Clearly,
if the model of node i undergoes deviation at time ¢ under
intervention a, we have [[[Ayp]ill # 0.

Measure 1 [Deviation Frequency (DF)]: This measure
accounts for how frequently each node’s model can deviate
from its nominal model, and over a horizon T it is defined as

T

A
Cor £ gy 2 s 8w} %0}

6)

This model is adopted from misspecified bandit literature [26].
To avoid unbounded deviations, we assume that the deviation
inflicted on each node at any given time is bounded by a
constant m, € Ry, i.e.,

N

max max max H

i€[N] te[T] a(ne A [A“(f)]i” = Me.

Measure 2 [Aggregate Deviation (AD)]: This measure
quantifies the aggregate deviation over time. Specifically, we
define the maximum aggregate deviation as

T

Cap £ max max ||[[A®)];]l.
s 2 ma ILA L]

®)

This measure of deviation is also standard in stochastic
bandits [34], where the deviation budget is defined as the
maximum deviation in the reward that the adversary can inflict
over time. We will observe that Cpr and Cap impact the regret
results similarly. Hence, to unify the results and present them
in a way that applies to both measures, we use C to represent
the level of model deviation. For measure 1, we define C as
the product of a constant factor m. and Cpg, while for measure
2, we define C as Cap. We assume that the model deviation
budgets specified by C are known to the learner, allowing the
CB algorithm to adapt to the varying levels of model deviation.

IV. Robust-LCB ALGORITHM

In this section, we present the details of our algorithm
and provide the performance guarantee (regret analysis) in
Section V. We also provide theoretical comparisons to the
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Algorithm 1 Robust-LCB

1: Input: Horizon 7, causal graph g, action set A, mean noise vector v,
deviation budget C

2: Initialization: Initialize B(0) = B*(0) = Oyxy and V;(0) = V;" 0) =
Iy, Vie[N].

3:fort=1,2,...,T do

4: Compute UCB(#) according to (21) for a € A.

5: Pull a() = argmax, A UCB,(#) and observe X(f) =
X (@, XN

6: forie{l,..., N} do

7 Set w;(7) as (19), update [B(#)]; according to (9) and update [B*(1)];

according to (10).
8: end for
9: end for

existing algorithms designed for CBs with fixed models,
establishing their lack of robustness against model variations.

Algorithm overview: Identifying the best intervention hinges
on determining which of the distributions {P, : a € A}
maximizes the expected reward. Nevertheless, these 2V dis-
tributions are unknown. Therefore, a direct approach entails
estimating these probability distributions, the complexity of
which grows exponentially with N. To circumvent this,
we leverage the fact that specifying these distributions has
redundancies since all depend on the observational and inter-
ventional matrices B and B*. These matrices can be fully
specified by 2Nd scalars, where d is the maximum degree of
the causal graph. Hence, at its core, our proposed approach
aims to estimate these two matrices.

We design an algorithm that has two intertwined key
objectives. One pertains to the robust estimation of matrices
B and B* when the observations are generated by the non-
nominal models. For this purpose, we design a weighted
ordinary least squares (W-OLS) estimator. The structure of
the estimator and the associated confidence ellipsoids for
the estimates are designed to circumvent model deviations
effectively. The second objective is designing a decision rule
for the sequential selection of the interventions over time. This
sequential selection, naturally, is modeled as a multi-armed
bandit problem. Therefore, we design an upper confidence
bound (UCB)-based algorithm for the sequential selection of
the interventions over time. Next, we present the details of
the Robust Linear Causal Bandit (Robust-LCB). The steps
involved in this algorithm are summarized in Algorithm 1.

Countering model deviations: Our approach to circumvent-
ing model deviations is to identify and filter out the samples
generated by the non-nominal models. We refer to these
samples as outlier samples. This facilitates forming estimates
for B and B* based on the samples generated by the nominal
models. Since the model deviations may happen on multiple
nodes simultaneously, the Robust-LCB is designed to identify
the nodes undergoing deviation over time and discard the
outlier samples generated by these nodes. Such filtration is
implemented via assigning time-varying and data-adaptive
weights to different nodes such that the weight assigned to
node i € [N] at time ¢ € N balance two factors: the probability
of node i € [N] undergoing deviation at ¢ and the contribution
of that sample to the estimator. These weights, subsequently,
control how the samples from different nodes contribute to
estimating B and B*.
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Robust estimation: We design the weighted ordinary least
squares (OLS) estimators for B and B*, which at time t € N
are denoted by B(¢) and B*(¢), respectively. To estimate the
observational weights [B];, we use the samples from instances
at which node i is not intervened. Conversely, to estimate
the interventional weights [B*];, we use the samples from the
instances at which node i is intervened. By defining {w;(¢) €
Ry : i € [N]} as the set of weights assigned to the nodes at
time ¢ € N, i-th columns of these estimates are specified as
follows.

[B(n)]; £ [Vi(1)] ™' Z wi($)Xpa@i) () (Xi(s) —vi),  (9)

se(t]:i¢a(s)
D wil9)Xpa@ () (Xils) — vy), (10)

se(t]:iea(s)

[B 0], 2 [Vio]™

where we have defined the weighted Gram matrices as
Viy & Y wil)Xpam (9Xpa () + Iy,
se[tl:i¢a(s)
D wil9)Xpa@ (9)Xpai (9) + Iy

s€[t]:iea(s)

(11)
Vi £ (12)

Furthermore, we define the matrices associated with the
squared weights as

Vi 2 Y wi)Xpan (9Xpae ) + Iy, (13)
seltl:i¢a(s)

Vio2 Y wi)Xpan )Xpgan () + v (14)
selt]:iea(s)

Similarly to (2), we denote the relevant and Gram matrices
for node i under intervention a € A by

Via® 2 1{i € Vi) + 1{i ¢ a}Vi(0). (15)

Confidence ellipsoids: After performing estimation in each
round, we construct the confidence ellipsoids for the OLS
estimators {C;(¢) : i € [N]} for the observational weights and
{Cf(t) : i € [N]} for the interventional weights

¢ = {oeB:

|6~ B~ l)]i||V,-(z—1)[\7,~(z—1)]_'V,-(z—l) = ﬂ’}’ (16)
O {9 e By:

|6 = B¢ - D] VI-D[V-D]" Via—1) = ﬂ’}’ 17

where B; is the unit ball in RY and {8, € Ry,t € N} is
a sequence of non-decreasing confidence radii that control
the size of the confidence ellipsoids, which we will specify.
Accordingly, we define the relevant confidence ellipsoid for
node i under intervention a € A as

Cia(t) & 1{i € a} Ci() + 1{i ¢ a} Ci().

Weight designs: Designing the weights {w;(¥) : i € [N]} at
time ¢ is instrumental in effectively winnowing out the outlier
samples. We select the weights that bring the confidence radius
B; down to nearly constant

(18)

1

1
(t £ min{ — s
wi() C’ C|Xpa@(® ||[

. (19

- -1
Vian®]
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where the weights are inversely proportional to the norm

1Xpac) @l 3 )]71 and deviation budget C, and they are
ia(t)
truncated at 1/C, which ensures that the weights are not

arbitrarily large. We refer the term |[|Xpa() (t)||[‘7 ()]_1 as
ia()
weighted exploration bonus. A higher exploration bonus means

lower confidence in the sample. Setting the weights as the
inverse of the exploration bonus avoids potentially significant
regret caused by both the stochastic noise and model devia-
tions. We scale the weights proportional to 1/C to use smaller
weights when the model deviation level is higher.

Intervention selection: We adopt a UCB-based rule for
sequentially selecting the interventions. Specifically, at each
time ¢, our algorithm selects the intervention that maximizes a
UCB, defined as the maximum value of expected reward when
the edge weights are in the confidence ellipsoids {C; (), i €
[N]}, under that intervention. Recall the expected reward u,
for a € A defined in (3) is a function of the edge weights B,
which can be decomposed according to the following lemma.

Lemma 1 [15, Lemma 1]: Consider a linear SEM G(V, &)
with intervention a € 2Y, whose weight matrix is denoted
by B, € RV*N_ Furthermore, consider the function f(A) £
Zi:o [Afly for A € RV*N where we denote At as the ¢-th
power of matrix A. We have

ta = (f(Ba), v), (20)

where v = (vq, ..., vy), and v; = E[¢;] denotes the mean of
the noise vector corresponding to node i € [N].

Thus, for any intervention a € A, the UCB is naturally
defined as

UCB,(1) =

{f(©), v). 21

max
{Vie[N]:[®];€Ci o (1)}

Based on the UCB in (21), at time ¢, our algorithm selects the
intervention that maximizes the UCB,

a(t) arg max UCB,(?).

acA

(22)

V. REGRET ANALYSIS

In this section, we present the performance guarantees for
the proposed Robust-LCB algorithm. We first provide the
upper bound on the average cumulative regret in Section V-A.
We also establish a minimax lower bound in Section V-B that
shows the tightness of our upper bound. By comparing our
regret with that of LinSEM-UCB in Section V-C, we evaluate
the robustness of our algorithm.

A. Regret Upper Bound

In order to derive the upper bound, we begin by providing
a concentration bound for the W-OLS estimator. Notably, we
investigate a vector norm that differs from existing work in
robust bandits. This norm was first investigated in [35] under
the non-stationary setting, and our investigation builds on
this to provide novel insights into the robust behavior of the
W-OLS.
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Lemma 2 (Estimator Concentration): Under a deviation
budget C, with a probability at least 1 — 2§, for any node
i € [N] and t > 0, we have

1B = Billy, 5,07 vip < PO
and [[B* ], - B

(23)
Vool v = #O, CY

where we have defined

Bi(3) £ \[2108(1/8) + dlog(1 +m1/dC?) + 1+ m. (25)

Proof: We will provide the proof corresponding to the obser-
vational weights [B(#)];, while the proof for the interventional
weights [B*(#)]; follows similarly. For any node i € [N]
and ¢t > 0, we decompose the error in estimation |[[B(#)]; —

B"”Vi(t)[f’i(t)]’lvi(t) for t > 0 as follows.

IB(®]; — [B]i”V,-(z)[V,-(z)]"V,-(z) (26)
= H[Vi(t)]_l Z Wi(S)Xpa(i)(s)I:Xg—a(,')(s)[l)(t)]i
s€(t],i¢a(t)
tel) —vi| B 27)
Vio[Vi] Vi

<|Bol-m1 (28)
Vi [Vin] ™ Vi
I;: Stochastic and regularization error

+ Y Xeao@Xga @AW . (29)

[Vi]

seltli¢a(t)

I: Fluctuation error

where ﬁ(t) refers to the auxiliary estimators which correspond
to the ridge regression estimator but with the removal of
deviation’s impact on the output, i.e.,

Bo],=Viol™" Y wil9)Xpap ()
selrliga(r)
x [Xga )[BL; + €i(s) = vi].
The stochastic and regularization errors can be bounded by
the following lemma.

Lemma 3: For all node i € [N], with probability at least
1 -4, vVt > 0, we have

[BO]; = By, w01 v

2
51+\/2log<§>+dlog(l+m‘;V(S)>, (32)

where we define W(s) = Zse[t—l],igéa(l) wiz(s).
Proof: Note that the weights w;(f) are predictable, i.e.,
Fi(t — 1) measurable, if the o-algebra is defined as

Fi(t) = 0 Xpa@)(1), €(1), Xpap) (2), €(2), .. .,

Xpa() (1), €i(®), Xpap (¢ + 1)),
which is similar to the one used in [36]. This modification of
the filtration allows weights to depend on the current value

of Xpa((#). Then the lemma results from [35, Th. 1] with
My = )\'t =1. |

(30)

L = €1V

(33)

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2025 at 04:03:58 UTC from IEEE Xplore. Restrictions apply.



YAN et al.: ROBUST CAUSAL BANDITS FOR LINEAR MODELS

Since w;(s) < % for all s € [¢] and i € [N], we can further
upper bound the stochastic and regularization error as follows.

m2t
I <1+ [2log(1/8) +dlog| 1 34
1= +\/ og(1/8) + Og( +dC2> (34

Now we need to bound the fluctuation error I, which is
bounded as follows.

12:H[\~7,-(t)]_1/2 D wile)Xpa@ ()X (D[ABG)];
selt],i¢a(t)

(35)
= Y wo| Vi) Xpan 0 Xpa O1ABG)]
se(t],i¢a(t)
(36)
= > wo|[Tio] X0 )| [Xfap 1286
s€lt],i¢a(t)
37
P> wi(s)| Ap o)1 sop 09
€lr]i¢a(r)
<m Z wi) | AL [ Xpao O | 5,1 B9
selfl,i¢a(r)
< m, (40)

where (36) follows from the triangle inequality, (38) follows
from the fact that ||Xpa(,-) (s) || < m, (39) holds since we have
120 %51 = IIXIl[§,(5-1 for any s € [] and x € RN, and (40)
is obtained using the definition of the sequence of weights
{wi(s) : s € [f]}. Finally, substituting the results of Lemma 3
and (40), with probability at least 1 —§, for all > 0, we have

IB(H)]; — Bl <l+m

Vi [Vio] ' Vi =
+/210g(1/8) + dlog(1 + m1/dC?).

Similarly, for the estimators for interventional weights, with
probability at least 1 — 4, for all # > 0, we have

o

(41)

<l+m

V*(t)[V*(t)] Vi T
n \/2 log(1/8) + dlog(1 + mt/dC?).

Combining the results in (41) and (42) we complete the
proof. |

The previous lemma offers high probability error bounds for
estimators. Due to the causal structure, these errors accumulate
and propagate along the causal path, leading to the reward
node N. Consequently, we analyze the compounding impacts
of estimation errors and model deviations. This analysis
involves examining the eigenvalues of the weighted Gram
matrices V; 4 () and V; 4 (). We introduce the subsequent
lemma to show a bound on the accumulated estimation errors
on the reward node with proof provided in Section V-B.

Lemma 4: For any given intervention a € A matrices A €
R¥*N and M; € RV*N for all i € [N], define

2 A-B, AP 2 AP -BL @3

If A shares the same support with B,, M; > I and [M;]; =
[ler]j =¢; if [B];; = 0, and if the following bound holds

I[AAlillm; = 8. (44)

(42)

and
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then for all £ € [L], we have

(A1) <d 8+ 1) max Kmli (M), @5)
Next, building on the estimation error bounds established
in Lemma 2 and the compounding error bounds established
in Lemma 4, we derive a unified regret bound that applies to
both measures of model deviation. It is noteworthy that the
analysis is distinctly different from that in the time-invariant
setting since we are facing model fluctuations, for which we
have designed novel weights for the W-OLS estimator.
Theorem 1 (Regret Upper Bound): Under a deviation bud-
get C, by setting § = 2]3,—T and B;(6) according to Lemma 2, the
average cumulative regret of Robust-LCB is upper bounded

by

E[R(T)] < 2m + O(dL (\/_ n NC)) (46)

Proof Sketch: Characterizing the regret bound involves
decomposing the regret into two parts, depending on whether
the concentration inequality in Lemma 2 holds. If the con-
centration inequality does not hold, the regret is upper bound
by a constant term. Otherwise, the estimation errors are upper
bounded in Lemma 2 with their compounding effects on the
reward node N upper bounded by Lemma 4. Next, the behavior
gf the eigenvalues of weighted Gram matrices V; 4¢)(f) and
Vi a@ 1s investigated to reach the final result. See Appendix C
for the detailed proof.

The regret bound derived in Theorem 1 can be decomposed
into two parts. The first term recovers the order of the optimal
rate achieved in the time-invariant setting. The second term
captures the impact of model deviation on the regret bound,
that is, the cost of handling unknown model fluctuations. Next,
we present a lower bound that confirms the tightness and
optimality of our upper bound.

Remark 1: Robust-LCB works when replacing the devia-
tion budget C with an upper bound C. All the analyses and
performance guarantees remain valid when C is substituted
with its upper bound C.

B. Regret Lower Bound

For our analysis of the lower bound, we first show the
tightness of the second term of the upper bound that captures
the model deviation level C. Building on this insight, we
then combine this with the existing lower bound in the time-
invariant setting to show the tightness of our regret bound.

Theorem 2 (Regret Lower Bound): For any degree d and
graph length L, for any algorithm with knowledge of C, there
exists a bandit instance such that the expected regret is at least

E[R(T)] = sz(d%c). 47)

Proof: We construct two instances of causal bandits and
demonstrate that under specific deviations, no algorithm can
distinguish between them and the initial stage. We consider
two linear SEM causal bandit instances sharing the same
hierarchical graph G as shown in Figure 1.

Let us examine the parameterization of the two bandit
instances, referred to as Z; = {B,B*, ¢} and 7, = {B, B*, €}.
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Fig. 1. Example of the hierarchical graph with graph degree d = 3 and
length L = 2.

For the existing edges in graph (i,j) € £ for i < j and i,j €

[N], we define
\/T
7

(Bli; = [B]i,j = [B*]i,j = [B*]i,j
1 _
7 and [B];; = [B]i’j =0. (49

(48)

for j < N. For the case j = N, we define

[B*]i,j = _[B*]i,j
For the noises, we define

NG for el ..., d)
CTIMO 1) for ig{l,....d}

Thus, the only difference between the two bandit instances
lies in the intervention weights assigned to the reward node. In
the first bandit instance, the optimal action is when the reward
node is intervened. In contrast, in the second bandit instance,
the best action is associated with the reward node being not
intervened. The regret incurred from choosing the sub-optimal
action on the reward node is d~/2. Next, consider the scenario
where deviations only occur on the reward node during the
initial C rounds. Furthermore, consider the scenario in which,
at each time 7 € {1, ..., C}, the weights are set to 0, and the
learner only observes a random noise as the reward. In this
case, the learner has no information about the [B]y and can
only make random guesses. After C rounds, either EN;(C) or
EN?(C) is no less then % Consequently, there must exist a
bandit instance at which the algorithm plays the sub-optimal
arm at least % times. We conclude that it must incur %d%C
regret with probability at least 1/2. Ignoring the constant, by
using Markov’s inequality, we have

(50)

E[R(T)] > %d%@(R(T) > %d%c> = sz(d% c). (51)

|

Theorem 3: [15, Th. 6] For any degree d and graph length

L and any algorithm, there exists a causal bandit instance such
that the expected regret is at least

E[R(T)] > Q(d%*zﬁ). (52)

Combining the results in Theorem 2 and Theorem 3, we can
conclude a minimax lower bound in the following corollary.

Corollary 1: For any degree d and graph length L and any
algorithm, there exists a causal bandit instance such that the
expected regret is at least

E[R(T)] > Q(d%’z max{vT , d2C}). (53)
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This corollary shows both the lower bounds depend on /T,
and that the regret bound of our proposed algorithm is tight in
terms of 7 and C. Besides these, however, the achievable and
lower bounds have a gap due to mismatching dependence on the
number of nodes N and the exact order of the exponential scaling
of dimension d with graph length L. The dependence on N arises
in the techniques used in Theorem 1 and we conjecture that the
dependency of the upper bound on N can be diminishing as T
grows. We provide some insights into tightening dependence
on N. Let L; denote the length of the longest causal path that
ends at node i € [N]. If we can first bound the cumulative
estimation error for the expected value of node i with L; = 1,
then we can use induction to bound that for increasing L; and
derive a regret upper bound independent of N. The mismatch
in the exact order d with L exists in all the relevant literature,
even in simpler settings. For instance, consider linear bandits
with time-invariant models with dimension d, which can be
considered a special case of our linear causal bandit model by
setting L = 1 and no model variations. For the widely used
optimism in the face of uncertainty linear bandit algorithm
(OFUL) in [36], the lower and upper bounds behave according
to O(vdT) and Od/T), respectively. This gap in terms of
V/d and d matches exactly our gap.

C. Comparison With the Time-Invariant Setting

To highlight the robustness, we compare the analytical
results with those of the time-invariant setting [15]. While
our results in terms of the deviation budgets are general, for
illustration purposes, we consider deviation budgets that scale
sub-linearly with respect to T by setting C = 7% for o € (0, 1).

Confidence ellipsoids: In the time-invariant setting, the
confidence ellipsoid radius is set to

N
Br =

Compared with this, our choice of confidence radius is similar
to the time-invariant setting. The main contrast is the inclusion
of an additional term m, which accounts for the cost of
robustness. The difference in logarithmic terms arises from
using different weights and norms in our algorithm.

Regret bounds: In the time-invariant setting, the regret
bound scales as [15]

E[R(T)] < 2m + @(,B’TLd%\/NT).

I+ /210g2NT) + dlog(1 + mT2/d).  (54)

(55)

If we directly apply the algorithm designed for the time-
invariant setting to the model fluctuation setting with proper
adjustments, we observed it would exhibit model deviation
robustness but only for substantially small deviation levels.
Specifically, to make the time-invariant algorithm robust, we
need to adjust the term B so that it scales linearly with C
(see [39, Appendix D] for details). This, in turn, induces a term
CL in the regret bound. Consequently, to preserve a sub-linear
regret growth T, « need to fall in the interval (0, ﬁ), which is
a highly restrictive regime of model deviations, especially for
graphs with long directed paths. For instance, under the DF
measure, for T = 10° and a graph with L = 3, a node cannot
be compromised more than 6 samples to maintain sub-linear
regret. This deviation level can be well below the noise level
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Fig. 2.

of the model, establishing that the algorithms designed for
the time-invariant setting lack robustness.

On the other hand, our Robust-LCB algorithm achieves a
regret scaling of Tmax{%'“}, which preserves the optimal rate
@(ﬁ ) under the regime o < %, which is independent of
other parameters. Furthermore, a non-linear growth of regret
in T is achieved for deviation with o € (l, 1), which is a
significant improvement over the regime (0, 57 ). In the context
of the earlier example with 7 = 10, this indicates that the
algorithm remains OWKT) regret when the model faces C <
316 outlier samples and achieves sub-linear regret later on.
The cost incurred for integrating robustness is reflected in the
additional low-order terms we have in our regret bounds. We
also remark that by setting C = 1, our regret bound recovers
the order of the time-invariant setting.

VI. EMPIRICAL EVALUATIONS

In this section, we assess the robustness of the Robust-
LCB algorithm and its scaling behavior with the graph
parameters. To the best of our knowledge, there is no baseline
CB algorithm that can be used as a natural baseline for
performance comparisons. Furthermore, soft interventions on
continuous variables of a CB model are implemented by only
LinSEM-UCB of [15]. Therefore, to assess the robustness, we
compare our Robust-LCB algorithm with LinSEM-UCB and
the standard non-causal UCB algorithm.

Parameter setting: We consider three types of graph: chain
graph (Figure 2)(a), confounded parallel graph (Figure 2)(b)
and hierarchical graph (Figure 2)(c). The noise terms are
uniformly sampled from [0, 2]. We consider the general setting
that all nodes that have parents can suffer from model deviations.
The norm of both observational weights |[[B];|| and the
interventional weights |[[B*];|| are set to 0.5 and 1 respectively.

o Chain graph: The chain graph in Figure 2(a) is a fun-
damental element of causal graphs. The observational
weights [B];_;; and interventional weights [B*];,_; ; for
node i € [N] are set to 0.5 and 1, respectively.

e Hierarchical graph: For the experiments reported in
Figure 3, we use the graph structure with L = 2
layers, and each layer has the same number of nodes
d e {1,2,3,4,5}. For the experiments illustrated in
Figures 4(c) and 5(c), we set the number of nodes in
Layer 2 to 3 and Layer 1 to 9. We set the observa-
tional and interventional weights for node i € [N] to
0.5/{/|pa(@| and 1/,/|pa(i)|, respectively.

o Confounded parallel graph: The confounded parallel
graph, as shown in Figure 2(b), is a mixture of the parallel
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(a) Chain graph with N = 4. (b) Confounded parallel graph N = 5. (c) Hierarchical graph with d =3 and L = 2.

10 " Robust-LCB Pt 10"
. —e— Lower bound Jes
°§D104 —-—- Upper bound ,-’/ .
> 10
~ —=
S e
g el
310 - 10"
= -
o] 1%

13
10° 10
1 2 3 4 5

graph degree d

Fig. 3. Cumulative regret of Robust-LCB with different graph degree d and
L=2, N=Ld+1.

graph and confounded graph in [8], where node 1 is the
parent of all other nodes, and the reward node N is the
child of all other nodes. We set the observational and
the interventional weights for nodes i € {2,...,N — 1}
to 0.5 and 1, respectively. For the reward node N, its
parents’ observational and interventional weights are set
to 0.5/+/N — 1 and 1/+/N — 1, respectively.
We let the deviations on the model occur at earlier rounds
to simulate the worst-case scenario for a given deviation
level C. When a deviation occurs on node i € [N], the weights
are deliberately altered to change the optimal action, thereby
challenging the algorithm’s performance. The simulations are
repeated 100 times, and the average cumulative regret is reported.

Scaling behavior with degree d: Figure 3 illustrates the
variations of the cumulative regret E[R(T)] versus the graph
degree d when T = 40000. We compare the regret of the
Robust-LCB algorithm (blue curve with its scale on the left
axis), the lower bound characterized in Section V-B (black
curve with its scale on the left axis), and the upper bound
specified in (46) (red curve with its scale on the right axis).
All three curves suggest a polynomial behavior in d, which
conforms to our theoretical results.

Comparison of the bounds: Figure 4 compares the cumu-
lative regret of Robust-LCB with that of LinSEM-UCB
and UCB under a model deviation level of C = T3, It
demonstrates that only Robust-LCB achieves sub-linear regret,
whereas the other two algorithms incur linear regret with
respect to the horizon 7. Furthermore, it is noteworthy that the
LinSEM-UCB always exhibits nearly the worst possible regret
as the design of the deviation also showcases the worst case for
LinSEM-UCB. In contrast, the regret of UCB tends to be the
worst possible outcome as the graph’s complexity increases
even when the deviation is not designed for it. Nevertheless,
these findings imply that the estimators of these algorithms
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Fig. 5. Cumulative regret at 7 = 40000 for different deviation levels C.

become ineffective when faced with such deviations, resulting
in the selection of a sub-optimal (possibly the worst) arm.

Robustness against C: Figure 5 plots the cumulative regret
at T = 40000 when the model deviation budget C changes
from 2 to 2000. We observe that Robust-LCB and UCB
perform slightly better than our algorithm when there is
almost no deviation. This can be viewed as the compromise
needed to guarantee the robustness of our algorithm. However,
both Robust-LCB and UCB begin to fail with even a minor
model deviation, as small as C = 15 for all three scenarios.
Furthermore, they tend to reach nearly the worst possible
regret when the deviation level rises high enough (e.g., 200 for
the hierarchical graph). In the chain graph scenario, the UCB
algorithm exhibits moderate regret when C < 300. However,
as demonstrated in Figure 4(a), it mistakenly treats a non-
optimal arm as the optimal one, resulting in linear regret,
which happens when C > 10. In comparison, Robust-LCB
outperforms when the deviation is more than negligible, as its
regret scales sub-linear with the deviation level C.

VII. CONCLUDING REMARKS

In this paper, we have studied the sequential design of
interventions over graphical causal models where both the
observational and interventional models are unknown and
undergo temporal variations. We have considered the general
soft intervention model and have designed an algorithm
for identifying the intervention mechanism that optimizes a
utility function over the graph while exhibiting robustness
against model variations. This objective has been naturally cast
and analyzed as a causal bandit problem. We have focused
on causal structures described by linear structural equation
models. We have analyzed the proposed algorithm from a
cumulative regret perspective, where we have characterized the
dependence of the regret on the graph parameters. The main

observations are the following. (i) The proposed algorithm
maintains sub-linear or nearly optimal regret under a wide
range of relevant model deviation measures. This contrasts
sharply with the existing algorithms designed for fixed models,
which lose their sub-linear regret rate with a minimum level of
model variations. (ii) While the cardinality of the intervention
space grows exponentially with the graph size, our regret
maintains a linear growth in the graph size. (iii) The regret
bound depends on the graph structure only through its param-
eters (maximum degree and the length of the longest causal
path). Finally, we have established an information-theoretic
lower bound to demonstrate the tightness of our upper
bound.

We conclude by providing some potential future directions.
The first direction is tightening the gap between the graph-
dependent parameters in the upper and lower bounds. Secondly,
an alternative model to consider is the setting is the case of
non-stationary bandits, in which the temporal variations can
be potentially permanent. In such settings, the relevant metric
to analyze is the dynamic regret specifically designed for non-
stationary bandits. This metric becomes relevant when assuming
the absence of a nominal model and the permanent effects of
deviations. Lastly, we expect that our insights in this paper,
including the effectiveness of weighted exploration bonus, can
be extended into more general causal bandit settings, as well
as other structured bandit settings involving model deviation.
Examples include extending it to causal bandits with general
link functions and combinatorial bandits.

APPENDIX A
ADDITIONAL NOTATIONS

First, we provide notations that are useful in our analyses.
Since we are dealing with matrices, we denote the singular

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2025 at 04:03:58 UTC from IEEE Xplore. Restrictions apply.



YAN et al.: ROBUST CAUSAL BANDITS FOR LINEAR MODELS

values of a matrix A € RM*N | where M > N, by

o01(A) = 02(A) > --- > on(A). (56)

In the proof, we often work with zero-padded vectors and
corresponding matrices. As a result, the matrices that contain
these vectors have non-trivial null space leading to zero singu-
lar values. In such cases, we use the effective smallest singular
value that is non-zero. We denote the effective largest and
smallest eigenvalues that correspond to effective dimensions
of a positive semidefinite matrix A with rank k by

Omax(A) £ 01(A), and  omin(A) £ 0x(A).  (57)

For a square matrix U = AAT € RVV we denote the

effective largest and smallest eigenvalues by'

hnax(U) 2 hnan (AAT) = 0py (A), (58)
and  Amin(U) 2 Jmin (AAT) =02 (A). (59)

Then we construct data matrices that are highly related to
Gram matrices. At time f € N and for any node i € [N], the
data matrices U;(r) € R™N and Ui € RN consist of the
weighted observational and interventional data, respectively.
Specifically, for any s € [f] and i € [N], we define

(U] 0], £ 11 ¢ a0V wi(9)Xpa0) (), (60)
and [UZ‘T(t)]S £ 1{ie a(s)},/wi(s)xga(,.)(s). (61)

Similarly to (2), we denote the relevant data matrices for node
i € [N] under intervention a € A by

U, () £ 1{i € a}UF(t) + 1{i ¢ a}U;(0) (62)

Via() £ 1{i € a}VF(t) + 1{i ¢ a}Vi(0). (63)
Combining (60) and (63), we have

Via(®) = U/, (OUiq(t) + Iy (64)

Similarly we define the data matrices that are related to
Via(t) as

(1>

(65)
(66)

[T7 0], 2 140 ¢ a®)wi)X o0 (),
and [U;T (0], 2 1 {i € a()}wi(9)X a0 ).

The relevant data matrices for node i € [N] under intervention
ac A are

Ui u(t) 2 1{i € AYUF (1) + 1{i ¢ A)U;(2),
and Vi ,(1) = U/, (00U (1) + L.

(67)
(68)

Define N} (f) as the number of times that node i € [N] is
intervened, and N;(¢) as its complement, i.e.,

t
Nf () £ ) 1{i e a()}, and Ni(t) £t — Nf (). (69)

s=1

Accordingly, for any i € [N] and ¢ € N, define

Nio(t) & 1{i € a}NF(t) + 1{i ¢ a}N;(D), (70)

For matrix V = U + I, we denote the effective smallest eigenvalues by
Amin(V) 2 02, (A) + 1.

min
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Furthermore, we define the error and its [-th power of the
estimator of B matrices as

Aq(t) £ By(t) — By, Vi€ [N, (71)
and AP () 2 BL(r) — B (72)

APPENDIX B
PROOF OF LEMMA 4

Proof: When it is clear from context, we use the shorthand
terms B for B, in this proof. According to the given definitions
Aff) = [Aa + B]f — BY, each term in the binomial expansion
of Aff) can be represented as a product involving factors of
A and B. For any £ € [L] and k € [£] U {0}, there exist (i)
terms that consist of the Ap factor appearing k times and the
B factor appearing(¢ — k) times. We denote the set of these
product terms by

Hex 2 {H: Hhas Ay k times and B £ — k times}. (73)

Therefore, sets Hy 1, ..., H¢ ¢ contain all valid products com-
posed of B and Ax. Hence, we can write the expansion of
A as

A

t
A= n

k=1 HeH

(74)

To bound the norm of Aff), we first bound the norm of each
element in the summation. We show by induction that for any
Lell], ke [£]U{0}, and H € Hyt,

IH]| < d'T g4k Vi e [N), (75)

where A £ max;e[n] A;iln/z (Ml) Consider £ = 1. For k = 0,
we have Hi o = {B} and ||[B];|| < 1.Fork =1, H1,1 = {Aa},
and

IAALT < I[AAL © 1(Pa@®)) Iy A2

(76)
= [AALlIv At ? (M) < B (77)

Therefore, (75) holds for £ = 1. Now assume that (75) holds
for every 1,...,£¢ — 1, for some £ > 2. Consider a product
term H € Hy x, for some k € [£]U{0}. The first factor of H is
either B, or Aa, and we analyze the induction step for each
of these possibilities separately.

Case 1: Tf H starts with B, represent it by H = BH,
where H € H¢_ 14 and k € [¢ — 1] U {0}. Using the
induction assumption for the elements of set H,_1x we
obtain

IHLI? = | (BA),|* = > Bl B, H H, (78)

(M)

u,vepa(i
— 12
<d Y ([Bl.:)|H (79)
uepa(i)
<d"7'p*2 Y (Bl,)’ (80)
uepa(i)
= a7 BB <a B @D
N —
<1
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where in (79) we use Cauchy—Schwarz inequality and the
inductive hypothesis (75).

Case 2: If H starts with A represent it by H = AxH,
where H € He—1.xk—1 and k € [£]. Similarly to the first case,
we have

IHLI2 = |[AH]| (82)

= 3 [AalglAal[H][H],  63)
u,vepa(i)

<d Y (Iaal)’([A], ] (84)
uepa(i)

< d7IpRRE2 N ([Aal)” (89)

uepa(i)
=d"7 BT AP (86)
< d[ 1ﬂ2k 2)\.2k Zﬂ A-mlln(M) (87)
———
<22
S df—lﬂzk)\gk. (88)

where (84) we use Cauchy-Schwarz inequality, and in (87) we
use the fact that [Ax]; = [Aal; © 1(pa(i)) and [[[Aalill <
||[AA],~||MI.)\;i1n/ 2(M,~). Taking the square-roots of both sides

in (81) and (88) yields

IH) < d'T ghak, (89)

which is the desired inequality for all k € [£] U {0}. This
completes the proof of (75) by induction. The final result
follows by applying (89) to each term in the sum (74).

a1 =X ¥ m o0
k=1 HeH,
4
Z > lH| ©1)
=1HeH
. V4
<dT Y [HealpErk (92)
k=1
¢ ¢ V4
—d7 kyk 93
; <k>ﬁ 93)
< ﬁ(ﬂ + 1) (94)
T+ max xm}n/ (M), (95)

where (94) is due to the binomial expansion of (8 + 1)t and
M; =1, Vi € [N] such that A < 1. [ ]

APPENDIX C
PROOF OF THEOREM 1

The proof mechanism follows the same line of arguments
as [15, Th. 5] but with major distinctions. Firstly, we provide
a new lemma on the bound on the power of estimation error
AP () & B! (t— 1)~ B, Furthermore, the effect of the weighted
ridge regression, distinct confidence ellipsoids, and the definition
of error events, namely &;,(f) and c‘f , () are investigated.
Finally, we bound a new function of eigenvalues of weighted
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Gram matrices V; 4 (¢) and \~7,',a(,). To begin with, we first state
the lemma which upper bounds the estimation error.

Based on the above estimation error, we start the proof by
decomposing the regret in (4) as

E _XT: (tar — Ma(z))]

Lt=1
r T

> Bar) —f (Baw). e(r))} 97)

E[R(D)] = (96)

=E
Li=1
r T

Z(f(Ba*) _f(Ba(t))v v>:| s (98)

L=1

=E

where the second equation is a result of [15, Lemma 1], which
is stated as Lemma 1. The last equation is due to the inner
product being a linear function and E[e] = v.

Now define the error events &; and & for i € [N] for each
estimator

&= fvrem:

1B = D1 = Blilly, 5,01 vy = Ar]-
2 fvie

I[B*¢ - D], — [B*],.||V?U)[‘~,?(I)]-1V;Fm < ﬂt}, (100)

where the §; is chosen as

99)
&

1

S \/2 10g2NT) + dlog(1 + m2t/dC2) + 1 + m. (101)

Let &n denote the event that all of the events {&;, £ : i € [N]}
occur simultaneously, i.e.,
N
5m_(ﬂ5)ﬂ(ﬂ ) (102)
i=1
Then by Lemma 2, we have
N N
&) = ) B(E) + D _P(E") (103)
i=1 i=1
N
1 1 1
< ;(W_T-’_ZN_T) 27,. (104)
Then we can bound the regret as follows.
T
R(T) < E[ﬂ{é‘a}Z(f(Ba»«) — F(Buw)- v>} (105)
=1
T
+E|:]1{gm} > r(r)} (106)
=1
T
< 2mTP(E) + E[]l{é’m} > r(t)] 107)
=1

T
<2m+ ]E[Il{gm} Z(f(Ba*) —f(Baw), v)].(lOS)
t=1
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According to thg arm selection rules, we have UCB.+(f) <
UCBg) (7). Let B, be the matrix that attains UCB,(?), i.e.,

~

B, = argmax (f(®), v). (109)
[01;€Ci.a()
Then under the event £, we have
(fBs) —f(Baw). v) (110)
< UCB (1) — {f(Baw), v) (111)
< UCBu () — {f(Bay). V) (112)
= (f(Baw) —f(Ba). »)- (113)

Subsequently, we use (113) to derive an upper bound for the
expectation term in (108), thereby eliminating the dependence
on a*.

T
E[ﬂ{&}Z(f(Bao —f(Buw)» v)} (114)
=1
T ~
< ]E|:11{50}Z(f(3a(z)) —f(Bay): v>} (115)
=1

T
< ||v||E|:11{5m} Z“f(ﬁa(t)) _f(Ba(t))||:| (116)

=1

T
<lv ||E|:Il{5rw} Z I Baw) — F(Bagy @) H
=1

T

+ ||v||E[1{5m} > 1 Baiy (1) — £ (Bagsy) H}. (117)
=1

Note that (117) follows from the Cauchy-Schwarz inequality

while (117) is due to the triangle inequality. Next, we examine

the norm term within the expectation expression in (117). By

applying the definition of f, we obtain

Hf(ﬁa(t)) — f(Bagy (1) H

L
= ZH [sz(t)]N - [Bﬁ(t) O]yl (118)

=1

Hf(ﬁa(t) ®) —f(Bar) H

L
= 3| Bl @]y — [Blio L. (119)

=1

By the definition of Gram matrices, we have

Via(® = Vian(®). (120)

= -1
ViawyO[Vian D] Viaw® = Viap @) = Iy. (121)
We consider the following tuple of matrices for i € [NV]

~ - -1
(Ba(t)7 Buty@), Viaty O[Viary®] Viaw (l)),

S —1
(Batr 0. Butoy: Viaty O[Viiat 0] Viatn @) (122)

These tuple of matrices satisfy the condition of Lemma 4.
We further define the maximum confidence radius 7 =
V210g(2NT) + dlog(1 + m2T/dC?) + 1 + m and

)\max (vi,a(t) (t))
)hmin (Vi,a(t) (t)) ’

A(f) £ max
i€[N]

(123)

89

(124)

T
Ar 2 E[Z )»(t)i|.
=1

By using Lemma 4 to upper bound the tow terms in (119),
we have

T
E|:]l{gm} Z(f(Ba*) _f(Ba(T))’ v>:|
=1

(125)

L T
< 2Zd%(ﬁT + 1)%@[1{&} Z)\(z)] (126)

=1 =1
L
<27 d7T (Br+1) (127)
=1
<aar(Br+1)HdT, (128)

where in (128), we use the fact that ZiLzl gt < 24" forg =2
and Vd(Br + 1) > 2.

a) Bounding E[ Zszl A(H)]: What remains is to bound
the term E[ZiTzl)L(t)], where A(7) is a function involving
the eigenvalues of both Gram matrices V; 4 (#) and V; 40 (?).
To proceed, we define the second-moment matrices and its
effective largest and smallest eigenvalues as

Zia(0) 2 Exer, [ Xpao 0Xga® ], (129)

Kmin = min Umin(zi,a(t))’ (130)
i€[N],aeA,1€[T]

Kmax 2 max O—max(zi,a(t))a (131)

ie[N],acA,te[T]

where xmin > 0 is guaranteed since there is no deterministic
relation between nodes and their patients. These variables
are inherent to the system and remain unknown to the
learner. Given our focus on the weighted OLS estimator, we
also introduce singular values related to auxiliary variables
Xbag) (0 £ Jwi®)Xpa@) (@ and Xpai) () = wi()Xpag (@)
Accordingly, we define the second weighted moment matrices
as follows.

5 a0 2 Bxer, [ Wi0Xpat) (0X [ 0], (132)
Siam (0 2 Exer, [WHOXpat) (0X [y (0] (133)

To bound the singular value of the weighted second moment,
we first need uniform bounds for the weights. We find a bound
for the norm of || Xpa() (t)||[§,i,a(t)],1 across all a € A. This
yields the following result.

Xpaty Ol ]!

= 7= Xpay Ol = m. (134)
2 pa(i)
)"Iln/in (Viaw(®)
Then, the weights can be bounded by
. 1 1
—— < w;(t) = min{ —, < —.(135)
Cm C’ ClXpai) @l C

["714(1(/) (l)] -

Subsequently, we can bound the minimum and maximum
singular values of matrices X/ w; () and Xj g, (0).

1

! ——Kmin = O'min(zlfya,wi(t))

Kin = Cm =

(136)
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1

= O’max(ztf,a,wi(t)) = E’Cmax = Kr/naxa (137)
- 1 ~
Kmin = m’(min = O'min(zi,a,wi(t)) (138)
=< O'max(ii,a,wi(t)) = Ekmax = Kmax- (139)
Moreover, we have || < mw = -Lm and

I Xy O e
Xpahy DI < m = %m In order to proceed, we need upper
and lower bounds for the maximum and minimum singular
values of U 4, (#). However, these bounds depend on the
number of non-zero rows of U; 4, (f) matrices, which equals
to values of the random variable N; 4 (¢). Firstly, we define
the weighted constants

2 2

o max{am n, o m2} (140)
— max{amQﬁ, azm’z}, (141)
5, & max{amzﬁ, a2ﬁ12}, VaelT].  (142)

Then for every i € [N], t € [T], and n € [¢t], we define the error
events corresponding to the maximum and minimum singular
values of U;(¢) and U;(¢) as

Ein() = {Ni(f) =n

and {amm(U,-(r» < \/max{0, niy, — v}

O Oimax (Ui(1)) = /i + y,:}}, (143)
Ea0) = {N,-*m =n

and {amin (Ur ) < \/max{O, Petnin = Vi)

or om(UF0) = Vi £} | (14

Einlt) 2 {Nlm =n

and lamin (sz(t)) = \/max{O, NKmin — Vn}

or omax (Ui(0)) = m}} (145)
&2 {N;‘(t) =n

and {amin (Ur (1)) < v/max{0, nkmin — 7}

or omax (U7 (1) = m}} (146)

In other words, the event & ,(f) indicates the situation in
which either omin (Ui (?)) or omax (U;(2)) violates the establlshed
lower and upper bounds. Likewise, &, (1), & 2 (1) and 51 20
are associated with the singular values of Ur@), U (t) and
U*(t) The next result shows that these events occur with a
low probability.
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Lemma 5: The probability of the error events &; ,,(7), l &L,

,,n(t) and I-’n(t) defined in (143) to (146) are upper
bounded as
3a? 3a?
P(&in(0) < dCXp<—1—6), P(& (1) < dexp(—ﬁ>
(147)
3a? 3a?
P(Ein(0) < deXp(—F) (fln(t)) < dexp< T )
(148)

Proof: This is a direct result from [15, Lemma 3], where

we use k. . kp.. and y’ for events & ,(f) and & (1) and

using Kmin, kmax and y for events E,,n(z) and Ein(t). The only
difference is that one need to use the following lemma, which
is an immediate result of [15, Lemma 6].

Lemma 6: Consider matrices U and A that satisfy

HUTU _ A” <y. (149)

Then we have,
omax(U) < Vv Omax(A) + Y, (150)
and  omin(U) > v/max{0, omin(A) — y}.  (151)

Now that we have bounds on the probability of error events,
we define the union error event £ as

EoE3 G t,n)ie[Nl,telTlnelt, @
E,(1) or & (1) or &, (1)) (152)

By taking a union bound and using Lemma 5 we have

P() <ZZZ( Ein() +P(E], (1)

i=1 t=1 n=1

(153)

+P(Ea 1) + P(Eﬁjn(t))) (154)

2
< 2NT(T + 1)dexp(—3i) (155)

16

b) Bounding E[1{E,} YL, »()]:
Since Amin(V,',a(,) (t)) > 1, we have the following uncondi-
tional upper bound.

Amax (vi,a(t) )

(1) = max Y———— = 156
®= 112[2}"] Amin (Viao (0) (156)
= max Amax (Vi,a(t) ) (157)

1
= max | Amax | D 1{i € a(s)}w?($)Xpa ()X () + Iy
I o
(158)
i
smax |1+ 5 Z} 1{i € a(5)Vma (Xpat (X o (5)) (159)
1 t
.
smax |1+ 5 ;xmx (Xpat) X oy ) (160)
1 < )
= max +E§||Xpa(i)(s)|{ (161)
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2

m
<=+l

- (162)

where (162) follows from the fact that || X|| < m. Hence, we
have

T
E|:IL{€@ZA(0:| (163)
t=1
(157) T =
< E| 1HE Y rmax(VN.atr ) (164)
t=1
(162) L Im2
< E 11{&)}; Et—i—l (165)
=E[1{€U}]§ ikl (166)
=PEY) Y it (167)
=1
Aq
Furthermore, A; is bounded as
T m2 m T—1 m
; R Eﬁ+1+z(5ﬁ+1) (168)
= ZVT+T+ CJdr (169)
t=1
_" 3/2
- f+T+3C(T 1). (170)
By setting o = \/% log(2dNT5/%(T + 1)), we obtain
T
E[IL{SU} > Vmlt+ 1} 71)
(167)
P(&J)Z\/ 241 (172)
(155) NT(T + 1)d LS
< (0@ RT T ) §\/m t+1 (173)
—_T7-3/2
(170) T7-3/2 3/2
< ( f+T+3C(T 1)) (174)
ﬁ+2—m+ (175)
CT ' 3C

¢) Bounding E[1{E} S0 A (1)]:
Considering the event &), which encompasses all the events
{E,(0, &,50, & 0. & Sz € [N, t € [T], n € [1]} being
hold. Therefore, we can use the following bounds on the

singular values

> \Jmax{0. Noay (0, — 74} (176)

< \/Niato Oima + 7. (177)

Omin (Ui,a(t) (t))

Omax (fji,a(t) (t))

91

Thus, the targeted sum can be upper-bounded by

T
E[H{E&} Zxo)] (178)

t=1

\/ max Vl ,a(r) (t))
=F ]I{EC}Z max m (179)
\/ Onax Ul La(t) (t)) +1
=E|1 1
{gc } Z lrn% Umln(Ul a(r) (t)) +1 (150

Nia( (t yn + 1
< EZma N Ok T 4L g
— iciN1| max{0, Nja Dk — Vo) + 1

min

It is worth noting that the term in the summation has a critical
point, and we bound the two regions separately. To initiate
this process, we define the function k(x) as

Xikmax + Vn + 1
il + 1
In order to analyze the behavior of the function 4, we introduce

2
T& ¢ m as the critical point. Note that when x < 7, we have

hx) & x> 0. (182)

max { 0, XKmm

XKI/nin < yn. In this case, h(x) is equal to

h(x) = /XKmax + )7n +1, (183)

which is an increasing function over the region. To upper
bound the & function when x > t, we define the g function
when x > t as follows.

A VXKmax + am?/x

£ . (184
8 XKmin/M — AM2/X  Xkmin/m — am?/x (184)
Then when x > 7, we establish the following relation.
oy = Y I+ L Vo v+ O o)
Xpin — Vo + 1 XKmin/m —yn +C
< N XKmax + Vn = g(x), (186)

XKmin/M — Vn
where the equality holds due to the definitions in (140)-(142)

x+a? ﬁ + 4
TyFa y
when a > 0. Moreover, when x > t, we have y,, = amzﬁ.

Based on this, we can use the g function to upper bound &
function when x > t. However, since g tends to infinity at
7, we begin bounding from a larger constant, specifically 4t.
However, for the summation when bounding x < 47, we need
to consider the following monotonicity.

Lemma 7: h(x) and g(x) are both decreasing functions

when x > 7, where 7 is defined as %%

min

Proof: See [39, Appendix EJ. |
Now we are ready to bound the last term

and the inequality holds due to the fact that ~——

T T
E[H{E@} > A(r)} <EY maxh(Niaw (). (187)
t=1 t=1

We define the set of time indices at which the chosen actions
are under-explored as

Kn2{telT1|3ie[N]: Niap® <4t}.  (188)
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It can be readily verified that |KCj| < 8Nt. Furthermore, when
x € K, we have

1
h(x) < h(r) < E\/Kmaxl' +oam?J/T+1, x<t1. (189)

Then we can upper bound the summation when Kj, occurs as
follows.

[Z 1{r € Ky} maxh( ,a(,)(t))j| (190)
=1
N 4t
< 222;@) (191)
=1 n=1
< 8Nt <%\/Kmax‘f +am?T + 1). (192)

Now we only need to bound the remaining part when ¢ & Cp,

|:Z 1{t e K§ }maxh( [a(t)(t))i|

Note that when € K}, we have N; 4 (1) > t for all i € [N],
and we have

(193)

max h( Lan (D) < max g( La( (D). (194)

i€[N]

Furthermore, note that there mlght be multiple nodes that
achieve max;ec(n] §(N; qa((¢)). Without loss of generality, we
select the solution with minimum index as argmax (or
arg min). We denote the node that achieves the maximum value
of the function g as i;.

iy £ argmax g(Nj a( (1)) = argmin N; 41 (1),  (195)
i€[N]

ie[N]
where the last equality is a result of the fact that g is a
decreasing function when x > t. Note that #; does not capture
whether i belongs to a(f) or not. To address this challenge, we
define the sets of time indices where i; = i for each of these
two cases as follows for i € [N].

SiE{telTl:t €Ky, ir=1,
and SFE{telT]:t€Ky, i=1i,

i ¢ a(},
i €a()).

(196)
(197)
Denote the elements of S; by S;1,...,S;s,. Until time S; ,,

the event {i; = i,i ¢ a(t)} occurs exactly n times outside K,
set. Similarly {i; = i,i € a(¢)} occurs n times outside Kj, set

until time S;’j ,- Then
S,',,, SLn
Ni(Sin) =) Ui ¢a®} = > i, =i, i ¢ a(®}(198)
=1 t=1
= n + 4, (199)
St St

NE(S7) =D Wiea®}y =Y Ui =i.i € a®)}(200)
=1 =1

= n+ 4r. (201)

Using the above results and noting that g is a decreasing
function, we obtain
T

Z 1{r e K3} glﬁv’ﬁg(NinaU) )

t=1

(202)
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M~

=Y "1{r e K5} e(Niatn ) (203)
=1
N N
ZZ Z (N (g) Z Z (N*()  (204)
i=1 rteS; i=1 r1eS}
N S| N IS”,‘I
=30 e (NiSin) + 30D g(NF(SE,))  (205)
i=ln=1 T i=lp=l T
(199) (201)
< gn+4t) < gn+41)
N |Sil+4t N ISfI+4T
<D gm+Y Y g (206)
i=1 n=4t+1 i=1 n=4t+1

We bound the discrete sums through integrals and define

'
@@=/
x=4t1

Since g(x) is a positive, non-increasing function, for any k €
N, k > 4t + 1 we have

k k

) g(n)s/

n=4t+1 x=dt

gdx, y>4r. (207)

g(0)dx = G (k). (208)

Then, the summation is upper bounded by
T

; 1{r € K5} max 8(Nip.an (1)

N |Sf|+4T

gm+Y > g

i=1 n=4t+1

(209)

N |Si|+4t

=22

i=1 n=4t+1

N
ey ZG1<|S|+4‘E> +3 G, (18! +41). 1)
i=1

(210)

Since g(x) is positive and decreasing, and G(y) is defined as
an integral of the g function with a positive first derivative
and negative second derivative, it can be deduced that G is a
concave function.

N N
D G (Sil+41) + Y Go(ISF| + 41) (212)

i=1 i=1
| & 1 &
< 2N x Gf<ﬁ le 1Sil + 5 le |71 +4r> (213)
= =

T
< 2N x Gf(ﬁ + 4r>. (214)
Next, we proceed to establish an upper bound for the func-
tion G.
Lemma 8: The G function can be upper bounded as

T
G, (— + 4r
‘/meax T T
- 1 [ —
Kmin 2N + ﬁ 8 2N + ﬁ

Kmm

JT ,/2N+f+1
+2 10
mm f,4/%+ﬁ—l
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2mlog<’('r‘:j“ %, + amz)
+ C. (215)
Kmin
Proof: See [39, Appendix F] |

Combining the results in (175), (206), (214) and (215),
let E; denote the accumulation of terms that exhibit at most
logarithmic growth rates with respect to 7 and C.

/ T
Ey = aNYE22 riog( [ — + VT (216)
Kmin 2N
5 V/£43l+-@q—kl
+4N [T g [ YL 217)
min \/24 % + w —1

1
+ 8Nt (E\/Kmax‘[ + am?/T + 1) (218)

+ + 2m + 219)
CT 3C
Therefore, the final result for the bound is
T
4./ 8 4 N3T
E[ S x| < M UNT ¢ 220 (220)
— Kmin Kmin 2

4N o [T
P log( Emin /4 am? |C + Ey. (221)
Kmin m V2N

Plugging (221) into (128), we have

—+

T

EIR(T)] < 4(Br + DY TE| Y Ay | (222)
=1

= @(dL—% JNT + dL—%NC). (223)

|
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