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Abstract Current sheets are quasi‐1D layers of strong current density, which play a crucial role in storing
magnetic field energy and subsequently releasing it through charged particle acceleration and plasma heating.
They are observed in planetary magnetospheres and solar wind flows, where they are also known as solar wind
discontinuities. Despite significant variations in plasma parameters across different magnetospheres and the
solar wind, current sheet configurations can remain fundamentally similar. In this study, we analyze current
sheets observed in various regions, including the near‐Earth (within 30 Earth radii) and distant (50–200 Earth
radii) magnetotail, Earth's dayside and nightside magnetosheath, the near‐Earth solar wind, and Martian and
Jovian magnetotails. We examine three key plasma parameters: the plasma beta (ratio of plasma to magnetic
pressure), the Alfvénic Mach number (ratio of plasma bulk flow speed to Alfvén speed in the current sheet
reference frame), and the ion to electron temperature ratio. Additionally, we investigate the kinetic, thermal, and
magnetic field energy densities. Our cross‐system analysis demonstrates that the same current sheet
configuration can exist across a very wide parametric space spanning multiple orders of magnitude. We also
highlight the distinct plasma environments of the Martian and Jovian magnetotails, characterized by large
populations of heavy ions, emphasizing their significance in comparative magnetospheric studies.

1. Introduction
Current sheets are spatially localized, quasi‐1D layers of strong electric currents that naturally form in plasma
systems of various magnetic field configurations (Parker, 1994; Priest, 1985; Syrovatskii, 1981). They serve as
key sites for magnetic energy storage and release, driving fundamental processes such as magnetic reconnection
(e.g., Lui, 2004; Pritchett & Coroniti, 2011; Sitnov et al., 2019; Zaitsev et al., 2025). Magnetic reconnection plays
a crucial role in plasma heating and charged particle acceleration across space and astrophysical systems
(Gershman et al., 2024; Gonzalez & Parker, 2016; Hoshino & Lyubarsky, 2012; Nakamura et al., 2024; Oka
et al., 2023). While Earth's magnetosphere is our primary natural laboratory for investigating current sheet for-
mation and dynamics (Angelopoulos, McFadden, et al., 2008; Baker et al., 1996; Sitnov et al., 2019), similar
processes are believed to be important in the solar corona (e.g., Aschwanden, 2002; Pezzi et al., 2021; Zharkova
et al., 2011), the solar wind (Gosling, 2012; Khabarova et al., 2021; Phan et al., 2006, 2020), and various
astrophysical systems (e.g., Arons, 2012; Cerutti et al., 2014; Guo et al., 2024). Understanding the parametric
regimes that govern current sheet formation is therefore crucial for advancing our knowledge of magnetic
reconnection in diverse plasma environments.

Earth's magnetosphere provides an ideal setting for current sheet investigations (see discussion in An et al., 2023).
In the near‐Earth magnetotail, thin and intense current sheets are primarily supported by hot protons (Petrukovich
et al., 2015), with currents predominantly driven by proton diamagnetic drifts and cross‐field flows (see A. V.
Artemyev, Petrukovich, et al., 2011; Runov et al., 2006). In the more distant magnetotail, around and beyond the
lunar orbit, colder plasma and fast flows (almost reaching the supersonic limit) (Hoshino et al., 2000; Walia
et al., 2024) give rise to current sheets resembling slow shock waves (A. V. Artemyev, Angelopoulos, Runov, &
Vasko, 2017; Hietala et al., 2015; Hoshino et al., 1996). Due to weak plasma pressure contributions, these distant
magnetotail current sheets often adopt a so‐called force‐free configuration (see review by Neukirch, Wilson, and
Allanson (2020)), where field‐aligned currents play a dominant role (Kamaletdinov et al., 2024b; Xu et al., 2018),
similar to those observed at the magnetopause (e.g., Panov et al., 2011; A. S. Lukin et al., 2020).
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Outside the magnetopause, in the magnetosheath, subsonic plasma flows on the dayside can be accelerated (via
the magnetic tension force; see A. V. Artemyev et al., 2022; S.‐H. Chen et al., 1993; Erkaev et al., 2011) to the
supersonic regime in the nightside, distant magnetosheath. These flows often contain multiple embedded current
sheets (discontinuities), which either emerge from local magnetic field turbulence (e.g., Chaston et al., 2020; C.
H. K. Chen & Boldyrev, 2017; Sahraoui et al., 2006) or are advected from the solar wind (Kropotina et al., 2021;
Y. Y. Liu et al., 2022; A. Lukin et al., 2024). While predominantly force‐free and ion‐scale (although electron‐
scale current sheets can also be observed in the magnetosheath; see Phan et al., 2018), magnetosheath current
sheets differ from those in the solar wind due to their higher ion plasma β (ratio of thermal to magnetic pressures).
In the near‐Earth solar wind, ion‐scale current sheets (discontinuities) are quite widespread, with an occurrence
rate exceeding one intense event per hour (Vasko et al., 2022; Vasquez et al., 2007). These current sheets are
force‐free and primarily supported by field‐aligned currents (A. V. Artemyev, Angelopoulos, Vasko, Runov,
et al., 2019; Vasko et al., 2022). These current sheets in the solar wind are unique in that the electron‐to‐ion
temperature ratio, Te/ Ti, often exceed one (A. V. Artemyev, Angelopoulos, & Vasko, 2019; L. B. Wilson
et al., 2018), unlike those in Earth's magnetosheath and magnetosphere, where ions remain significantly hotter
than electrons (A. V. Artemyev, Baumjohann, et al., 2011; C.‐P. Wang et al., 2012).

Despite the diversity in plasma β and electron‐to‐ion temperate ratios, the near‐Earth plasma environment is
characterized by low plasma density (np), high temperature (Tp), and is predominantly proton‐dominated. The
relatively high temperature leads to thermal effects dominating current sheet configurations, where the proton
gyroradius (ρp = vth/Ωcp ∝

̅̅̅̅̅
Tp

√
) exceeds the proton inertial length (dp = c/ωpp ∝ 1/

̅̅̅̅̅np
√ ), except in the solar

wind where ρp/ dp =
̅̅̅
β

√
can fall below one (Vasko et al., 2022). Therefore, to extend the range of observed

current sheet regimes to low‐β plasma (β < 1), we examine the Martian magnetotail, where dense, cold plasma
dominates (e.g., Dubinin & Fraenz, 2015), and the Jovian magnetotail, where plasma is significantly more
rarefied than in Earth's magnetotail (e.g., Huscher et al., 2021; Z. Y. Liu et al., 2024; J.‐Z. Wang, Bagenal, Wilson,
Valek, et al., 2024). Both magnetotails feature current sheets with ρp/ dp < 1 (observations, statistics for Mars, and
observations for Jupiter, correspondingly A. V. Artemyev et al., 2023; A. V. Artemyev, Angelopoulos, Halekas,
et al., 2017; Grigorenko et al., 2022). Moreover, these magnetotails are characterized by a high abundance of
heavy ions: atomic and molecular oxygen ions in Martian current sheets (e.g., A. V. Artemyev, Angelopoulos,
Halekas, et al., 2017), and sulfur and oxygen ions in Jovian current sheets (e.g., J.‐Z. Wang, Bagenal, Wilson,
Nerney, et al., 2024). In contrast, Earth's magnetotail remains proton‐dominated, with heavy ion contributions—
such as oxygen—being insufficient to significantly alter current sheet properties (e.g., Kistler et al., 2005;
Mouikis et al., 2010; Petrukovich et al., 2015). The same holds true for helium ions in the solar wind (L. B. Wilson
et al., 2018).

In this study, we compare parametric regimes of current sheets across different plasma environments, including
the near‐Earth solar wind, day‐ and nightside magnetosheath, near‐Earth and distant magnetotail, and the mag-
netotails of Mars and Jupiter. We focus on dimensionless parameters (plasma beta, Alfvénic Mach number, and
electron‐to‐ion temperature ratio) and dimensional energy densities (plasma flow, thermal, and magnetic field
energy per particle). While individual plasma systems exhibit distinct current sheet characteristics, our cross‐
system analysis reveals well‐organized trends between different energy components. We discuss these trends
and compare the parametric regimes of current sheets in Earth's space environment with those in the Martian and
Jovian magnetotails, offering new insights into the universal properties of current sheets in space plasmas.

2. Data Set and Instruments
In this study, we use two main data sets for each spacecraft mission: magnetic field vector B measured by flux gate
magnetometers and plasma moments measured by electrostatic analyzers. Specifically, we use number density,
velocity, temperature and thermal pressure for electrons (ne, ve, Te, pe = nekBTe, respectively, with kB being the
Boltzmann constant) and for each ion species that can be separated by the instrument (ni, vi, Ti,
pi = nikBTi, i = {H+,… }).

For each data set, we use electron and ion moments along with magnetic field measurements to calculate plasma
parameters inside current sheets. To define the current sheet region, we use a local coordinate system derived from
the Minimum Variance Analysis applied to magnetic field (MVAB method, Sonnerup & Scheible, 2000). In this
coordinate system, the unit vector l describes the direction of the most varying component of the magnetic field
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and lies approximately within the current sheet plane, while the unit vector n is approximately normal to the
current sheet. The third unit vector, m, completes the right‐handed coordinate system (l,m,n). In this reference
frame, we examine the region where the most varying magnetic field component, Bl = (B ⋅ l), satisfies
|Bl| < (max Bl − min Bl)/4, unless otherwise specified. In this region we determine the ion Alfvénic Mach
number, MA = 〈vΣi〉/ vA, where 〈vΣi〉 = ⟨

⃒
⃒∑ivini/ nΣi

⃒
⃒ ⟩ , the summation extends over all ion species,

nΣi = ∑ini represents the total ion number density, and vA = 〈|B|〉/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

⟨∑imini⟩μ0

√

is Alfvén velocity, with mi

denoting the ion mass. The averaging, 〈…〉, applies to measurements taken within the sheet, where
|Bl| < (max Bl − min Bl)/4 (for the exception of solar wind and magnetosheath data sets, see corresponding
subsections). In addition, we calculate the ion bulk flow (kinetic) energy in the current sheet plane for each ion
species, Ki = mi ⟨v2

i,l + v2
i,m⟩/2 for planetary magnetotails and Ki = mivCS/2 for magnetosheath and solar wind

current sheets (see definition of vCS in Section 2.3). We also calculate the plasma beta,
β = ( ∑ipi + pe)/ ( B2/2μ0), and estimate the characteristic value, βmax, as the average of the top 10% highest
values throughout the sheet. Further details, including the definition of the inside region of the current sheet and
the ion species included in the calculations, are provided for each data set below.

There are two key assumptions underlying current sheet configurations. First, we assume that current sheets are
quasi‐one‐dimensional structures, with the primary plasma and magnetic field gradients oriented across the
current sheet surface, that is, along the normal vector n. This assumption is well‐supported by observations in the
solar wind (R. Wang et al., 2024), and has also been verified in the Earth's (e.g., A. V. Artemyev et al., 2015) and
Jovian (e.g., A. V. Artemyev et al., 2014) magnetotails. For the Martian magnetotail, numerical simulations
suggest that this assumption holds as well, as they show stretched magnetic field lines on the nightside (e.g.,
Quartey & Liemohn, 2025, and references therein). Second, we assume that current sheets are approximately
balanced across their surface, following the relation ∇n ( B2

l + B2
m) ≈ 8π∇n ( ∑ipi + pe). This balance has been

confirmed by spacecraft measurements in both the Earth's magnetotail (e.g., Petrukovich et al., 1999) and the
solar wind (e.g., A. V. Artemyev, Angelopoulos, & Vasko, 2019). It is important to note, however, that current
sheets may not be fully balanced along the l direction (see discussion of this balance in Sitnov and Merkin (2016),
Sitnov and Arnold (2025), A. V. Artemyev et al. (2021)). This aspect is not addressed in this study, as single‐
spacecraft observations do not allow for verification of longitudinal balance.

2.1. THEMIS Magnetotail Observations (2009)

The first data set comprises quiet‐time magnetotail current sheets observed by THEMIS B, C, D and E spacecraft
in January‐March 2009. It includes 232 events spanning distances from 9 RE to 35 RE (RE is the Earth radius)
down tail (see details in A. V. Artemyev, Angelopoulos, and Runov (2016)). We use magnetic field data with spin
resolution (∼3 sec) from the Fluxgate Magnetometer (FGM) (Auster et al., 2008). Electron and ion moments are
calculated from the combined fluxes of Electrostatic Analyzer (ESA) (McFadden et al., 2008) and Solid State
Telescope (SST) (Angelopoulos, Sibeck, et al., 2008). All ion parameters are calculated by assuming a proton‐
electron plasma, as oxygen heavy ions do not significantly contribute to plasma moments in magnetotail cur-
rent sheets (see discussion in A. V. Artemyev et al. (2009) and Petrukovich et al. (2015)).

2.2. ARTEMIS Magnetotail Observations (2010)

The second data set consists of Earth's distant magnetotail observations collected by ARTEMIS P1 and P2
spacecraft during their trans‐lunar injection phase (March‐September 2010). It includes 393 events spanning
distances from 65 RE to 170 RE downtail (see discussion in A. V. Artemyev, Angelopoulos, Runov, and
Vasko (2017)). Most events observed by P1 are located near the lunar orbit, closer to the end of the injection. The
methodology for magnetic field sampling and moment calculations are the same as in the THEMIS magnetotail
data set. However, only full‐mode moments (∼1 min time resolution) were available at that time. To improve
temporal resolution, we estimate number density and ion and electron temperatures using the omnidirectional
phase space density measurements from ESA's reduced mode (∼3−4 sec resolution). Number density is inte-
grated from phase space density and cross‐validated with lower‐time‐resolution values calculated from full
distribution onboard ARTEMIS (McFadden et al., 2008). Ion and electron temperatures are calculated as the
second central moments of the phase space density, with electron temperature adjusted by removing the energy
range below the spacecraft potential to mitigate photoelectron contamination.
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2.3. THEMIS Dayside Magnetosheath Observations

The dayside magnetosheath data set consists of ∼100 current sheet events observed by THEMIS‐A spacecraft in
February–March 2021. As these current sheets have considerably smaller spatial scales (see one example from
Figure 1), we use high‐resolution magnetic field data (∼0.25 seconds sampling rate) and restricted the data set to
events where plasma moments exist both inside and around the current sheet crossing intervals (>6 sec). Due to
the high bulk flow velocity in the magnetosheath and solar wind, current sheets are transported across spacecraft
by these plasma flows, and estimation of normal to the current sheet could be very unreliable (R. Wang
et al., 2024). We estimate the plasma velocity in the reference frame of the current sheet, assuming that the current
sheet behaves as a rotational discontinuity (see discussion in A. V. Artemyev, Angelopoulos, and Vasko (2019)
and Shen et al. (2024)). Under this assumption, we estimate the ion velocity in the reference frame of the current
sheet as the variation in ion velocity along the most varying magnetic field component Bl (determined via the
MVAB method): vCS = max(v ⋅ l) − min(v ⋅ l). Note, because in solar wind current sheets the plasma parameters
may vary from boundary to boundary, without symmetrical maximum/minimum relative to the current sheet
center (see, e.g., A. V. Artemyev, Angelopoulos, & Vasko, 2019), averaging 〈…〉 is considered across the entire
current sheet region where |Bl| < (max Bl − min Bl).

2.4. ARTEMIS Nightside Magnetosheath Observations

This data set for the nightside magnetosheath includes ∼100 events during ARTEMIS spacecrafts magnetosheath
crossings near the lunar orbit in May–December 2021. The data source and processing approach are the same as
that used for the dayside magnetosheath observations.

Figure 1. (a) Example current sheets from all regions analyzed in this study. The upper panels show the magnetic field components in the coordinate system of the
current sheet (see text for details); the middle panels show ion and electron beta measurements across the current sheets; the lower panels show plasma current estimates,
jm = −(dBl/dt)/ vnμ0 across the current sheets, along with spatial scale estimates (L) based on current sheet flapping motion (Hoshino et al., 1996; Sergeev et al., 1998;
Vasko et al., 2015). The ion inertial length, di = c/ωpi, is calculated for the dominant ion species: protons for Earth's space environment, O+

2 for the Martian magnetotail,
and S++ for the Jovian magnetotail. For solar wind and magnetosheath events, plasma flow speed is used to estimate the spatial scale (see text for details). In the Jovian
magnetotail, the spatial scale is estimated using the flapping motion speed asymptotic: L = 225 km ⋅ tan(9.5°) ⋅ (Δt/1 sec) (Kim et al., 2020b). (b) Months coverage for
each data set (color‐filled areas) over daily (black line) and monthly averaged (red line) sunspot numbers (Clette & Lefèvre, 2015).
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2.5. ARTEMIS Solar Wind Observations

This final Earth‐based data set includes 527 current sheet events captured by ARTEMIS spacecraft in the solar
wind near lunar orbit during 2011–2012 (see details in A. V. Artemyev, Angelopoulos, & Vasko, 2019). Spin‐
resolution magnetic field data (∼4 s at the time) and plasma moments are used. Since ESA is not optimized
for measuring cold solar wind ions, the ion temperature Ti is reconstructed based on its correlation with 1‐min
OMNI data (King & Papitashvili, 2005). Details of this reconstruction technique can be found in A. V. Arte-
myev et al. (2018).

2.6. Martian Magnetotail Observations

For Martian magnetotail current sheet crossings, we analyze 2 months of MAVEN observations (April and May
2015), with a total of 200 events (see details in A. V. Artemyev, Angelopoulos, Halekas, et al., 2017). During this
period, MAVEN traversed the magnetotail at distances up to 3RM (RM is the radius of Mars). We use magne-
tometer (MAG) data (Connerney, Espley, DiBraccio, et al., 2015; Connerney, Espley, Lawton, et al., 2015) with a
1‐s time resolution. Ion moments are obtained from the Suprathermal And Thermal Ion Composition (STATIC)
sensor (McFadden et al., 2015), which distinguishes ion species with a 15‐s time resolution. Electron moments
come from the Solar Wind Electron Analyzer (SWEA) (Mitchell et al., 2016) with a 2‐s time resolution. Due to
spacecraft potential effects, estimating the electron density (ne) can be challenging. Thus we use the total density
sum of all ion species, i = {H+,H+

2 ,He+,O+,O+
2 }. The electron temperature is estimated using the electron

thermal pressure relation, Te = pe/ nΣi. Apart from these considerations, plasma parameter calculations are
similar to those in the THEMIS/ARTEMIS data sets.

2.7. Jovian Magnetotail Observations

To compile a statistical data set of current sheets in the Jovian magnetotail, we examine Juno's 4th, 5th, 10th and
11th orbits (January–April 2017 and January–February 2018) (Bagenal et al., 2017), during which the spacecraft
crossed the current sheet at distances of 30RJ to 105RJ (RJ is the Jovian radius) at the nightside to dawn sector
(MLT 3–6) (see details in Z. Y. Liu et al. (2021, 2024)). This data set includes 47 events. We use the fluxgate
magnetometer (MAG) data (Connerney, Adriani, et al., 2017; Connerney, Benn, et al., 2017) in the sun‐state
coordinate system with a 1‐s sampling rate. Electron and ion moments are obtained from the Jovian Auroral
Distributions Experiment (JADE) (McComas, Alexander, et al., 2017; McComas, Szalay, et al., 2017), following
the methodology described in Kim et al. (2020a, 2020b). JADE differentiates ion species, and we use proton and
heavy ion moments. For heavy ions, we assume the dominant contribution comes from equal mix of O+ and S++

ions (see details in Kim et al., 2020b; J.‐Z. Wang, Bagenal, Wilson, Valek, et al., 2024).

3. Comparison of Current Sheet Parametric Regimes
3.1. MA − β Parametric Space

Figure 2a shows the parametric domains occupied by current sheets within the ( MA,βmax) space. Contours of
magnetosonic Mach number are also plotted, M = MA/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + γβmax/2

√
(γ = 5/3, Goertz & Baumjohann, 1991).

Solar wind current sheets (discontinuities; yellow region) are observed in low‐β (with βmax ∈ [0.5, 20]) and
mostly sub‐Alfvénic (with MA < 1) regimes (note that we examine plasma flows in the discontinuity reference
frame, with the solar wind bulk flow removed). Due to the low β, even sub‐Alfvénic conditions may be close to
super‐sonic, and when MA reaches one, M approaches one.

As solar wind current sheets traverse the dayside bow shock and penetrate into the dayside magnetosheath (white
region), thermalization of solar wind flows significantly increases plasma β, with βmax ∈ [2,180]. The plasma
flow speed in the current sheet reference frame remains largely unchanged, MA < 2 and M < 1. Similar conditions
are observed in the nightside distant magnetosheath (black region), but with the decrease on upper bound of
βmax ∈ [2, 60] and slight increase in Alfveénic Mach number, although still in M < 1,indicating that plasma flow
acceleration (e.g., Erkaev et al., 2011; Harris et al., 2013) and adiabatic cooling (e.g., A. V. Artemyev et al., 2022)
do not significantly change the parametric space of current sheets.

As plasma from the distant magnetosheath crosses the flank magnetopause, it fully thermalizes and fills the
distant magnetotail (e.g., Hasegawa, 2012; A. S. Lukin et al., 2020). Consequently, current sheets observed in the
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distant magnetotail (dark blue region) exhibit higher βmax ∈ [5,1000]. Such high‐β environments are associated
with strong (intense) diamagnetic currents, which are unstable to magnetic reconnection (see review by Gonzalez
and Parker (2016)). Indeed, the distant magnetotail hosts fast plasma flows reaching M ∼ 1 (see also Hietala
et al., 2015; Hoshino et al., 2000; Walia et al., 2024). Solar wind, day‐ and nightside magnetosheath, and distant
magnetotail current sheets collectively exhibit a trend within the ( MA,βmax) space: their parametric regions align
with the M ∼ 1 boundary and extend toward higher MA as βmax increases. This suggests that M ∼ 1 acts as a
natural limit for fast plasma flows; beyond this threshold (M > 1), flow instabilities may disrupt current sheets
(see discussion in Hoshino and Higashimori (2015), Shi et al. (2021), and Shi (2022)). However, due to the
prevalence of current sheets in stagnant plasma (MA < 1) , this trend becomes apparent only when examining
multiple regions (from solar wind to the distant magnetotail) together.

In the near‐Earth magnetotail, proton temperatures are significantly higher (∼10 keV) (A. V. Artemyev,
Baumjohann, et al., 2011; C.‐P. Wang et al., 2012) than in the distant magnetotail (just a thermalized solar wind
flow with the thermal energy ∼1 keV; see A. V. Artemyev, Angelopoulos, Runov, Wang, & Zelenyi, 2017; A. S.
Lukin et al., 2020). This hot plasma environment inhibits the formation of reconnection‐driven plasma flows with
M ∼ 1 (see An et al., 2022; Birn & Hesse, 2005, 2014; Lu et al., 2018, for details of energy conversion in the
magnetotail magnetic reconnection), resulting in near‐Earth current sheets (light blue) occupying a distinct
parametric region. Note that the magnetic field is also stronger in the near‐Earth magnetotail, reducing βmax
compared to the distant tail.

Current sheets in the Jovian (orange region) and Martian (red region) magnetotails occupy a similar parametric
domain to the Earth's distant magnetotail but extend across the M = 1 boundary. These current sheets form in
high‐β ( βmax ∈ [2,800]) environments with fast plasma flows (high M).

In the Jovian magnetotail (>30RJ), plasma density is very low (∼ [10−2, 10−1] cm−3, see statistics in Huscher
et al. (2021)), but a significant fraction consists of a mixture of oxygen ions O+ and sulfur ions S++ with
mi/ qi = 16mp/e (see statistics in Kim et al. (2020b) and Z. Y. Liu et al. (2024)); that is, the mass density
min > mp ⋅ 0.6 cm−3 is comparable with that in Earth's magnetotail. The magnetic field is comparable to the Earth's
distant magnetotail (∼5−15 nT, see Z. Y. Liu et al., 2021). Therefore, reconnection‐driven flows
(∼100−1000 km/s, see Kasahara et al., 2011; J.‐Z. Wang, Bagenal, Wilson, Valek, et al., 2024) can be highly
super‐Alfvénic (MA > 10 for some events) and even supersonic (M > 1). Although these conditions are more
extreme than those in Earth's distant magnetotail, where M ∼ 1 is rarely reached (e.g., Hoshino et al., 2000;
Walia et al., 2024), the magnetic field configuration of Jovian magnetotail current sheets closely resembles that of
Earth's magnetotail. In both systems, the magnetic field gradients (across the current sheet, ∇nB2

l , and along the

Figure 2. Distributions of plasma parameters for all current sheet data sets in (a) βmax − MA and (b) Ti/ Te − MA space. Each
contour represents the region where ∼80% of the events are located. Dashed lines in panel (a) represent levels of Mach
number M = 〈vi〉/ cms, where cms = vA

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (5/6) ⋅ β

√
is the magnetosonic speed. Ion speed is estimated in the reference

frame of the current sheet. Contours are defined using One‐Class Support Vector Machine with Gaussian Radius Basis Function
kernel (for derivation and application see Schölkopf et al., 2001). Scatterplots for these and following figures with all events are
provided in Supporting Information S1.
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current sheet, Bn∇nBl) for the majority of current sheets are balanced by plasma (ion) pressure gradients (∇npi and
∇lpi), while a subset of force‐free current sheets with ∇nB2

l ≈ ∇n − B2
m and ∇npi ≈ 0 is also observed (A. V.

Artemyev et al., 2014; Kamaletdinov et al., 2024b).

In the Martian magnetotail, plasma density is significantly higher (∼10−100 cm−3, see in Dubinin et al., 2011;
Inui et al., 2018), and ion composition is dominated by ionized oxygen atoms with mO/ mp = 16 and molecular
ions with mO2/ mp = 32 (Carlsson et al., 2006; Maes et al., 2021). These ions are of ionospheric origin with low
temperature (<1 keV; see Fedorov et al., 2006; Dubinin et al., 2013; Harada et al., 2015). The magnetic field
(∼5−15 nT, see A. V. Artemyev, Angelopoulos, Halekas, et al., 2017; Grigorenko et al., 2019; Zhang
et al., 2023) is comparable to the Earth's distant magnetotail. Therefore, the Alfvén speed and magnetosonic speed
in the Martian magnetotail are significantly lower than those in Earth's magnetotail, whereas the plasma flow
velocities in these two systems are comparable, ≥100 km/s (e.g., Dubinin et al., 2011; Harada et al., 2015, 2020).
Therefore, current sheets in the Martian magnetotail can form in super‐Alfvenic (MA reaching 10) and supersonic
(M > 1) plasma. Despite these differences in plasma parameters, the configuration of current sheets in the Martian
magnetotail closely resembles that observed in Earth's distant magnetotail, with both pressure‐balanced and force‐
free current sheets present (A. V. Artemyev, Angelopoulos, Halekas, et al., 2017; DiBraccio et al., 2015; Gri-
gorenko et al., 2022; Li et al., 2023). The main difference is that in the Martian magnetotail, electrons contribute
comparably (with ions) to the pressure balance, because hot solar wind electrons (∼100 eV) have a temperature
comparable to cold ionospheric ions (see discussion below).

3.2. MA − Ti/ Te Parametric Space

Figure 2b shows the parametric regime of current sheets in (MA, T∑ i/ Te) space, where T∑ i is the average ion

temperature. This differs from the proton temperature only in MAVEN and Juno observations, as the electrostatic
analyzer onboard THEMIS/ARTEMIS does not distinguish between ion species. For current sheets in slow
plasma flows (MA < 1) , the temperature ratio primarily determines the dominant contributor to thermal plasma
pressure in the stress balance. In contrast, for current sheets associated with fast flows (MA ≥ 1) , this ratio
provides insight into the redistribution of flow energy between ions and electrons in flow‐generating regions (e.g.,
reconnection region; see discussion in Phan et al. (2014) and Øieroset et al. (2024)).

In current sheets (discontinuities) observed in the solar wind (yellow region), electron temperatures can be
significantly higher than proton temperatures (see statistics for solar wind plasma in L. B. Wilson et al. (2018)).
These current sheets are either balanced by plasma flows ( MA ∼ 1) , as in Alfvénic‐type rotational discontinuities
(e.g., A. V. Artemyev, Angelopoulos, Vasko, Runov, et al., 2019; De Keyser & Roth, 1998; Vasquez & Holl-
weg, 2001), or by thermal pressure gradients (MA < 1) , as in tangential discontinuities (e.g.,Neukirch, Vasko,
et al., 2020; Neukirch, Wilson, & Allanson, 2020). In the latter case, electrons likely dominate the pressure
balance.

Except for the solar wind, the only plasma system having substantial population of current sheets with
T∑ i/ Te ∼ 1 is the Martian magnetotail (red region). Here, hot solar wind electrons may mix with cold iono-

spheric ions, both with thermal energies around ∼100eV (e.g., Curry et al., 2022; DiBraccio et al., 2015). This
cold plasma background favors the formation of force‐free current sheets balanced by plasma flow gradients (see
discussion in An et al., 2023). Indeed, MAVEN observations confirm the presence of force‐free current sheets in
the Martian magnetotail (A. V. Artemyev, Angelopoulos, Halekas, et al., 2017), with properties similar to those of
solar wind discontinuities.

As the solar wind crosses the bow shock, plasma thermalization significantly increases ion temperature, leading to
T∑ i/ Te > 1 (white and black regions of dayside and nightside magnetosheath). Further ion heating due to plasma

flow thermalization at the magnetopause in the distant tail (A. V. Artemyev, Angelopoulos, Runov, Wang, &
Zelenyi, 2017; A. S. Lukin et al., 2020) results in T∑ i/ Te ∼ 10 for current sheets detected there (blue region).

Here, plasma flows—likely due to distant magnetic reconnection—can be quite fast, reaching MA > 1. Interest-
ingly, observations in the Martian magnetotail (red region) span all parametric regimes, from T∑ i/ Te < 1 (solar

wind‐like) to T∑ i/ Te ∼ 3 (magnetosheath‐like), and up to T∑ i/ Te ∼ 10 (distant magnetotail‐like). This

variability makes Martian magnetotail a unique system for investigating current sheet configurations.
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The Jovian magnetotail (orange region) and near‐Earth magnetotail (light blue region) exhibit relatively hot
electrons, with T∑ i/ Te ∈ [2,8]. However, these two systems differ significantly in plasma flow speeds: in the

near‐Earth magnetotail, strong magnetic field and weak plasma flows result in MA < 1, whereas in the Jovian
magnetotail, the presence of heavy ions lowers the Alfvén speed, allowing the plasma flows to become super‐
Alfvénic (MA > 1) . The mechanisms of electron heating in these two plasma systems are also distinct. In the near‐
Earth magnetotail, current sheets form in electron populations transported from the distant tail and heated by the
convection electric field (see A. V. Artemyev et al., 2012; Shustov et al., 2021). This heating is more effective for
electrons than for ions, causing T∑ i/ Te to decrease with decreasing radial distance from Earth (see C.‐P. Wang

et al., 2012). In contrast, in the Jovian magnetotail, ion and electron temperatures remain relatively constant with
radial distance (Z. Y. Liu et al., 2024), as hot ions and electrons originate in the inner magnetosphere and are
transported tailward without significant energy change (see discussion in Jackman et al., 2014; Krupp
et al., 2015).

Overall, Figure 2b demonstrates that the Earth's space environment spans a broad range of
T∑ i/ Te ∈ [10−1, 4 ⋅ 102] , with MA primarily around/below one. A similarly wide range of T∑ i/ Te is observed

in the Martian magnetotail, suggesting that current sheets in this system can exhibit pressure balance configu-
rations resembling those found in the solar wind, magnetosheath, and distant magnetotail. Meanwhile, current
sheets in the near‐Earth magnetotail resemble those in the Jovian magnetotail in T∑ i/ Te, but the latter features

much faster plasma flows.

3.3. Ki − Ti Parametric Space

Figure 2 shows the distribution of current sheets in the space of dimensionless system parameters. However, we
also aim to investigate the ranges of different energy types accessible in Earth's space environment and compare
them with those found in the Martian and Jovian magnetotails. We consider three types (forms) of energies
associated with current sheet plasma and magnetic field dynamics (see An et al., 2022; Birn & Hesse, 2005;
Eastwood et al., 2013; Lu et al., 2020): ion thermal energy (temperature), ion kinetic energy (Ki) , and magnetic
field energy per particle ( miv2

A,i/2). Except for the second distribution for MAVEN, all data are shown for proton
mass. Note, for most of the current sheets we cannot determine a local coordinate system accurately enough to
consistently separate three components of the kinetic energy. Therefore, we consider Ki as a sum of miv2

i,l/2 and
miv2

i,m/2, energy of plasma flows within the current sheet plane.

Figures 3a and 3c show distributions of current sheets in the (Ti,Ki) space and distributions of Tp/ Kp. In the near‐
Earth solar wind, nearly half of observed current sheets have Kp > Tp (main ion population), with majority
distributed around Ti ≈ Ki within the [1,40]eV range. After thermalization at the bow shock, thermal energy
increases significantly. In the dayside magnetosheath, current sheets exhibit Ti > Ki with Ti ∈ [100, 600] eV.
Most likely the plasma adiabatic cooling occurs as the plasma propagates through the expanding magnetosheath
toward the nightside (A. Artemyev et al., 2021, and references therein), resulting in Ti ∈ [20, 200] eV for current
sheets in the night‐side magnetosheath, but still satisfying Ti > Ki in the majority of events. Upon crossing the
magnetopause, plasma flow is further thermalized, yielding Ti ∈ [200,3300] eV in the distant magnetotail. The
large Ki in this region is associated with fast plasma flows from magnetic reconnection, where Ki may reach
1 keV, but observed current sheets almost never cross Ti = Ki line, at best only reaching the slow shock regime
(see discussion in Hoshino et al., 2000; Walia et al., 2024). Therefore, additional plasma heating in the distant
magnetotail is likely associated with the thermalization of plasma flows from the magnetic reconnection region
(see reviews by Pontin and Priest (2022); Y.‐H. Liu et al. (2024), and references therein). Overall, current sheets
in solar wind, day‐ and nightside magnetosheath, and distant magnetotail form a well‐defined trend around the
Ti ≈ Ki diagonal, spanning four orders of magnitude in Ti ( [1,104] eV).

A similar trend is observed in the MAVEN data set, where majority of current sheets distribute around Tp ≥ Kp

and proton temperature falls in the range of Ti ∈ [30, 1000] eV. In the Martian magnetotail, fast plasma flows
arise from magnetic reconnection and magnetic field tension forces (see observations in Harada et al., 2015;
DiBraccio et al., 2015; Harada et al., 2020). Thermalization of these flows likely contributes to the observed
Ti ≈ Ki trend. Interestingly, for heavy ions, the kinetic energy, Ki, can even exceed thermal energy Ti (see red
dashed contour), suggesting additional heating for heavy ions (mostly oxygen ions and ionized molecules) from
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magnetic reconnection (see discussion in Karimabadi et al., 2011; Liang et al., 2016). The domain of proton Tp

and Kp for current sheets observed in the Jovian magnetotail (orange region) naturally extends the MAVEN
domain to Ti > 1 keV, while maintaining the Ti ≥ Ki trend. Fast plasma flows in the Jovian magnetotail are
similarly associated with magnetic reconnection (e.g., Kasahara et al., 2013), and their thermalization likely
contributes to proton heating (see Z. Y. Liu et al., 2024; J.‐Z. Wang, Bagenal, Wilson, Valek, et al., 2024, for the
trend of proton temperature increase closer to Jupiter, where most of plasma flows are expected to break by the
strong magnetic field).

In contrast, current sheets in the near‐Earth magnetotail (light blue region) exhibit Ti ≫ Ki, that is, thermalization
of plasma flows no longer significantly heats protons. This results from efficient proton heating via plasma
convection (from ∼1 keV in the distant tail to ∼5 keV in the near‐Earth tail; see A. V. Artemyev, Angelopoulos,
Hietala, et al., 2017), whereas the kinetic energy of plasma flows mostly remains below 1 keV within the
magnetotail (see statistics in Kissinger et al., 2012; Juusola, Østgaard, & Tanskanen, 2011; Juusola, Østgaard,
Tanskanen, Partamies, & Snekvik, 2011). In the near‐Earth magnetotail, the fastest plasma flows occur after
substorm onset, when thin current sheet breaks and the magnetic field dipolarizes (see reviews by Sitnov

Figure 3. Distributions of plasma parameters for all data sets in panel (a) ion temperature Ti to ion bulk flow energy (per ion)
Ki for protons (solid lines) and O+

2 ions (for Mars' magnetotail, dashed line). (b) Magnetic field energy per ion miv2
A,i/2 for

protons and O+
2 ions against the bulk flow energy Ki. Dotted orange lines for Jovian magnetotail in panels (a) and (b) mark 65%

contours where core of the distribution is located. (c) and (d) Distributions of Tp/ Kp and ( mpv2
A,p/2)/ Kp (for protons) for each

data set, box plots show first, third quartiles (in black) and median value (in white); top panels show total cumulative distribution
function, each data set is normalized have equal value, solid black and white lines show first, third quartiles and median value;
dashed lines show ratio Tp = Kp and mpv2

A,p/2 = Kp.
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et al. (2019) and Runov et al. (2021)); this explains why the statistics of thin current sheets in Figure 3a may not
include the fastest flows with Ki > 1keV.

3.4. Ki − miv2
A,i/2 Parametric Space

Figures 3b and 3d show current sheet observations in the ( Ki,miv2
A,i/2) space and distributions of protons

( mpv2
A,p/2)/ Kp ratio. The magnetic field energy per particle, miv2

A,i/2, represents the energy available for particle
acceleration in magnetic reconnection (see discussion in Phan et al. (2014), Barbhuiya et al. (2022), and Øieroset
et al. (2024)). Some relation between Ki and miv2

A,i/2 is thus expected. Indeed, all current sheet regions are
clustered around the diagonal Ki = miv2

A,i/2 (i.e., flow speed near the Alfvén speed). In the solar wind, dayside
and nightside magnetosheath, and the Earth's distant magnetotail, current sheets exist within both sub‐Alfvénic
( Ki < miv2

A,i/2) and super‐Alfvenic ( Ki > miv2
A,i/2) flows. This implies that while magnetic reconnection con-

tributes significantly to plasma kinetic energy, alternative plasma acceleration mechanisms also exist to result in
Ki > miv2

A,i/2 (e.g., magnetic field line tension force in the magnetosheath (A. Artemyev et al., 2021; Erkaev
et al., 2011)). Comparison of Figures 3a and 3b shows that plasma flows generated by magnetic reconnection are
thermalized, leading to proton heating following the classical energy conversion scenario: from magnetic field
energy to plasma flows, and then to thermal energy (see reviews by Forbes, 2001; Kulsrud, 2001; Pontin &
Priest, 2022; Y.‐H. Liu et al., 2024).

In the near‐Earth, Jovian, and Martian (for the protons) magnetotails, the available magnetic field energy exceeds
plasma kinetic energy in majority of events ( Kp < mpv2

A,p/2) . This confirms that in these plasma environments,
magnetic reconnection transfers a portion of the magnetic field energy into plasma kinetic energy (plasma flows)
(e.g., Øieroset et al., 2024; Phan et al., 2014), with no alternative acceleration mechanisms, keeping plasma flows
consistently sub‐Alfvénic. However, heavy ions observed in the Martian magnetotail (red dashed region) exhibit
super‐Alfvénic and (compare with panel (a)) likely super‐sonic flows.

Overall, Figure 3 demonstrates that current sheets in various plasma systems adhere to expected trends: Ti ≳ Ki,
Ki ∼ miv2

A,i/2. While these trends may be less apparent in individual plasma systems, they emerge clearly when
plotted over a broad parametric range (Ti,Ki,miv2

A,i/2 ∈ [1, 104] eV). We can also confirm that by looking at
distribution functions among all data sets on upper panels of Figures 3c and 3d, where each data set gives the same
total contribution to the distribution function (weight of each event is inversely proportional to the length of the
corresponding data set). Here we can see that third and first quartiles of such distributions lay within
Tp/ Kp ∈ [2,20] and ( mpv2

A,p/2)/ Kp ∈ [1,8].

3.5. ρi − di Parametric Space

In the fluid stress balance equation, two key terms counteract the magnetic field tension: the inertial term
mini(v ⋅ ∇)v and pressure gradient term ∇P. For Alfvénic flows where MA ∼ 1, the ratio of these terms is
βi = ρ2

i / d2
i , where di = c/ωpi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
mic2/4πe2ni

√
is the ion inertial length and ρi = vth/Ωci =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2kBTimic2/ e2B2

√

is the ion gyroradius. In high‐beta plasmas, the thermal pressure dominates the balance, making ρi the primary
spatial scale; in contrast, the ion inertial length is the primary spatial scale in low‐beta plasmas. The relationship
between these scales follows a simple relation: di/ρi = 1/

̅̅̅̅
βi

√
; but how are the parametric domains of observed

current sheets structured in the ( di, ρi) space? We examine plasma systems spanning a wide range of βi from
∼10−1 (typical of the solar wind and Martian magnetotail) to 102 (found in the Earth's distant magnetotail). Given
this broad range, one might expect little correlation between di and ρi. Yet, Figure 4 demonstrates that current
sheet are well organized within the ( di,ρi) space. Specifically, solar wind current sheets (yellow region) occupy
the domain di ∼ 100 km, ρi ∼ di/2, showing a clear trend of increasing di with ρi increase for βi ∈ [10−1, 2].
Current sheets in dayside and nightside magnetosheath (white and black regions) reproduce the solar wind trend
but for βi ∈ [2,50], with di ∼ 50 km and ρi ∼ di. Martian magnetotail current sheets (red region) extend the
solar wind and magnetosheath domains to di ∈ [100, 1000] km and ρi ∈ [50, 800] km. For heavy oxygen ions,
this domain still shows a the same trend between di and ρi, but for βi ∈ [1,102]. The largest βi are observed in the
Earth's magnetotail (light blue and blue regions), where di ∈ [300,1000]km and ρi ∈ [700, 8000] km. Jovian
magnetotail current sheets (orange regions) occupy an even larger domain, spanning di ∈ [1000, 20000] km and
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ρi ∈ [1000, 50000] km, while still maintaining similar range within
βi = ρ2

i / d2
i ∈ [10−1, 102] . Overall, Figure 4 demonstrates that the spatial

scales of current sheets, governed by ion inertial and thermal pressure, exhibit
a general trend of increasing di with ρi increase when analyzed over a suf-
ficiently broad range. This suggests that Earth's space environment (including
the distant tail) can replicate regimes of current sheets found in the Martian
magnetotail (see also Figures 2 and 3). However, current sheets in the Jovian
magnetotail appear more distinct in plasma parameters and are not mirrored in
Earth's space environment.

4. Discussion and Conclusions
In this study, we provide a comparative analysis of current sheets observed in
various space plasma environments, spanning three orders of magnitude in
plasma β ( ∈ [1,103]) , nearly three orders of magnitude in ion‐to‐electron
temperature ratio ( Ti/ Te ∈ [10−1, 50]) , two orders of magnitude in Alf-
vénic Mach number ( MA ∈ [10−1, 101]) , nearly four orders of magnitude in
ion thermal energy (Ti ∈ [1,104] eV), at least three orders of magnitude in
ion kinetic energy (Ki ∈ [1,103] eV), and four orders of magnitude in
magnetic field energy (miv2

A,i/2 ∈ [1,104] eV), with ranges for environments
presented in Table 1. This broad parametric range allows us to reveal several
key trends, reinforcing widely discussed energy transformation mechanisms

in current sheets (energy storage in the form of magnetic field, energy release in the form of plasma flows due to
the reconnection, plasma flow thermalization, and kinetic energy transfer to thermal energy; see Y.‐H. Liu
et al., 2024; Pontin & Priest, 2022, and references therein):

• Investigated current sheets exhibit a general trend of kinetic energy increase with an increase of magnetic field
(per particle) energy, and for protons at least for 80% of population Kp ≤ mpv2

A,p/2. For heavy ion population in
Martian magnetotail this was not the case: heavy ion flows result in Ki > miv2

A,i/2.
• Majority of current sheets lay within Ti ≥ Ki and show a general trend of increase of Ti as Ki increases, with the

exception of solar wind with median Ti/ Ki ≈ 1 and heavy ion population of Martian magnetotail with heavy
ion flow Ki > Ti.

• Most current sheets are observed in the sub‐sonic regime (M < 1), while Jovian and Martian magnetotails may
contain super‐sonic current sheets.

The distribution of current sheet in the ( βmax, MA) space is consistent with the existence of two primary equi-
librium regimes (see also discussion in An et al., 2023; A. Artemyev et al., 2022):

Figure 4. Distributions of plasma parameters for all data sets in the ion
gyroradius ρi and ion inertial length di space. Solid lines represent proton‐
based parameter space, while dashed lines indicate data for the most abundant
heavy ions (O+

2 in Martian magnetotail, O+ in the Jovian magnetotail).

Table 1
Estimated Ranges for Plasma Parameters Inside the Current Sheets

βmax MA Ti/ Te Ti, eV Ki, eV miv2
A,i/2, eV

Earth magnetotail (9RE − 35RE) 10 − 500 0.07 − 1.4 2 − 8 103 − 4 ⋅ 103 ≤500 ≤1500

Earth magnetotail (65RE − 170RE) 5 − 103 0.3 − 5 3 − 30 200 − 3.3 ⋅ 103 ≤1000 ≤480

Earth's dayside magnetosheath 2 − 180 0.2 − 2 3 − 13 100 − 600 ≤150 ≤170

Earth's nightside magnetosheath 2 − 60 0.3 − 3 1.5 − 11 18 − 230 ≤70 ≤70

Solar wind (1 AU) 0.5 − 20 0.2 − 2 0.1 − 2.2 1.4 − 40 ≤50 ≤60

Martian magnetotail (<3RM) H+ ions 2 − 800 0.6 − 15 0.5 − 25 2.5 − 1000 ≤300 ≤1600

Martian magnetotail (<3RM) O+
2 ions 2 − 800 0.6 − 15 0.5 − 25 2.5 − 1450 ≤2200 ≤600

Jovian magnetotail (30RJ − 105RJ) H+ ions 5 − 700 2 − 12 1 − 6 1600 − 7000 ≤1800 ≤1.2 ⋅ 104

Note. Values estimated from distribution boundaries presented on Figures 2 and 3.
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• Current sheets with high βmax ( ≥102) are balanced predominantly by thermal pressure gradients
(4π ∇ P = [[∇ × B] × B]) and can be found in nearly stagnant plasma with MA ≪ 1. A typical example is
the near‐Earth magnetotail.

• Current sheets with moderate to small βmax (≤10) may have insufficient thermal pressure gradients to balance
the magnetic tension force, requiring fast plasma flows for pressure balance
(4πmin(v ⋅ ∇) v = [[∇ × B] × B]) with MA ∼ 1. This scenario is characteristic of the solar wind and the
Earth's distant magnetotail. Interestingly, current sheets in the Jovian and Martian magnetotails, typically
embedded in fast flows (MA > 1), can be balanced by plasma flows in the small βmax regime.

By combining Ti/ Te with ( βmax,MA) space, we can further classify current sheets. Except for the solar wind and
certain portions of the Martian magnetotail, most current sheets are found in plasmas where ions are hotter than
electrons (Ti/ Te > 1). The distinction (Ti/ Te > 1 vs. Ti/ Te < 1) becomes evident when examining the two‐fluid
equations for stationary current sheets.

For current sheets balanced by thermal pressure gradients, 4π ∇ P = [[∇ × B] × B], ion and electron current
densities follow:

ji,e = qi,enc
E × B

B2 + c
B × ∇Pi,e

B2 ,

where n is the plasma density and qi,e = ±e are ion and electron charges. In intense (thin) current sheets, the main
current carries are electrons (see theoretical explanations in Hesse et al. (1998), Zelenyi et al. (2010), and Lu
et al. (2016), with observational confirmations in A. V. Artemyev et al. (2009) and Lu et al. (2019)). Under these
conditions, the ion equation simplifies to eE = n−1 ∇ Pi.

Current sheets with hot ions: In the limit of Ti/ Te ≫ 1, the current density is primarily due to the Hall effect

j ≈ je = −enc
E × B

B2 .

This scenario works in near‐Earth magnetotail (e.g., Lu et al., 2019) and distant magnetotail (e.g., Kamaletdinov
et al., 2024a), and is expected to apply to Martian and Jovian magnetotail current sheets with hot ions.

Current sheets with hot electrons: In the limit of Ti/ Te ≤ 1 and for strongly anisotropic electrons,
Te‖/ Te⊥ ∼ 1 + 2β−1

e , the current density is dominated by electron curvature drifts (A. V. Artemyev, Vasko,
et al., 2016; Zelenyi et al., 2022)

j ≈ je =
1
2

βe (
Te‖

Te⊥
− 1)

[B × (B ⋅ ∇)B]

B2 .

This mechanism works in the near‐Earth (A. V. Artemyev, Angelopoulos, Liu, & Runov, 2017) and Jovian
magnetotails (A. V. Artemyev et al., 2023), and is applicable to Martian magnetotail current sheets with hot
electrons.

Low‐β current sheets: For low‐β thin current sheets the stress balance can be considered separately along n and l
directions. Across current sheets (along n) the stress balance is often provided by the force‐free current sheet
configuration with j‖B within the current sheet plane (e.g., Neukirch, Vasko, et al., 2020; Vasko et al., 2022).
Along l direction plasma flows dominate the stress balance, 4πmin(v ⋅ ∇) v = [[∇ × B] × B] . Such current
sheets are mainly observed in the solar wind (where Ti/ Te < 1; see A. V. Artemyev, Angelopoulos, &
Vasko, 2019; Vasko et al., 2022, for examples of current sheets with j‖B) and in the cold plasma of the Martian
magnetotail (where Ti/ Te can reach one; see A. V. Artemyev, Angelopoulos, Halekas, et al., 2017, for examples
of current sheets with j‖B).

Conclusions of our statistical study can be summarized as follows:

• Current sheet observations across Earth's space environment (solar wind, magnetosheath, and magnetotail)
show a general trend of Ti ≳ Ki and miv2

A,i/2 ∼ Ki. These correlations are less apparent for individual systems.
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• The parameter space of current sheets in the Martian magnetotail well overlaps with that of Earth's space
environment (about 40% of current sheets observed in Martian magnetotail appear within the ( MA,βmax)

parametric space determined by the Earth's magnetotail current sheets), making it an excellent testbed for
current sheet investigations.

• Current sheets in the Jovian magnetotail occupy a parameter space (Ki, Ti, miv2
A,i/2, di, and ρi) that is inac-

cessible in both Earth's space environment and Martian magnetotail. Low plasma density and hot heavy ion
populations make the Jovian magnetotail a distinct environment for investigating current sheet structures and
dynamics.

Data Availability Statement
THEMIS A‐D FGM (Glassmeier et al., 2021), ESA (Carlson & McFadden, 2017b), MOM (Carlson &
McFadden, 2017a) data sets, and MAVEN magnetic field data in Sun‐State coordinates (Connerney, 2017) were
accessed and processed using pySPEDAS V.1.7.3 (Grimes et al., 2024). MAVEN ion moments (STATIC,
McFadden et al., 2015) and electron moments (SWEA, Mitchell et al., 2016) were accessed and processed using
SPEDAS V4.1 (Angelopoulos et al., 2019, 2024). JUNO MAG (Connerney, 2024) and JADE‐I L5 (R. J. Wil-
son, 2023) data was processed using pySPEDAS. Sunspot numbers data is available at Solar Influences Data
analysis Center (SIDC) website (Clette & Lefèvre, 2015). Figures created using Matplotlib V.3.10.0 (Hunt-
er, 2007; Team, 2024). Scikit‐learn V.1.6.1 (Pedregosa et al., 2011) was used for One‐Class SVM imple-
mentation. The complete set of events and processed data are archived at Zenodo repository (Tonoian, 2025).
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