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Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-
order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific com-
puting and data science. Such networks are typically computed using a tree of binary contractions. Several
critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree,
including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual depen-
dence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers
these factors in an integrated manner using a single formulation. Our approach creates a constraint system
that encodes these decisions and their interdependence, while aiming to produce reduced-order intermedi-
ate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create
the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is
lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental
evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor
compiler/library alternatives.
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1 Introduction

This article describes CoNST, a Code generator for Networks of Sparse Tensors. A tensor net-
work expresses a collection of tensor contractions over a set of tensors. Tensor contractions
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are higher-order analogs of matrix-matrix multiplication. For example, the binary contraction
Yijim = Uijk X Wiim represents the computation Vi, j,l,m : Yjjim = 2 Uijk X Wiip. Multi-tensor
product expressions, e.g., Zim = Ujjkx X Vj; X Wiy, arise commonly in many domains of scien-
tific computing and data science (e.g., high-order models in quantum chemistry [35], tensor de-
composition schemes [20]). They involve multiple tensors and multiple summation indices, e.g.,
Vi,m: Zim = Xj k.1 Uijie X Vit X Wi,

These multi-tensor products are also referred to as tensor networks,

. . . i k
represented with a node for every tensor instance and edges representing ‘“

variables that index the various tensors. The figure on the right illustrates oL
this representation. As explained later in Section 2, such a network is A
typically computed efficiently using a tree of binary contractions.

Considerable prior research has been directed at the optimization of dense  Tensor network
tensor contractions [1, 17, 22, 26, 29, 30, 36, 37, 43] and the optimization of
tensor networks where the component tensors are dense [10, 15, 32]. A few efforts have also ad-
dressed the optimization of tensor networks with sparse tensors under some restrictions [12, 16, 19,
27, 51]. However, optimization and effective code generation for arbitrary sparse tensor networks
remain an unsolved challenge.

A fundamental difficulty in developing efficient sparse versions of tensor computations in com-
parison to the corresponding dense versions is the fact that some compact representation such
as Compressed Sparse Fiber (CSF, [40, 41], detailed in Section 2) must be used to represent
the non-zero elements, with the implication that arbitrary slices of a multi-dimensional tensor
cannot be efficiently extracted. In contrast, with dense tensors, arbitrary elements or contiguous
slices along any combination of tensor modes can be easily and efficiently accessed.! Therefore,
while code generation for the application of an arbitrary combination of loop transformations like
tiling, permutation, and fusion is quite straightforward for the dense case, the same is not true for
optimization and code generation for a collection of sparse tensor contractions.

Loop fusion transforms a sequence of perfectly nested loops into an imperfectly nested loop,
where a set of one or more outermost loops with exactly matching loop bounds from each of the
loop nests is pulled out and made common surrounding loops for a sequence of lower-dimensional
loop nests containing the non-common loops. Consider the simplest case of loop fusion across a
sequence of two perfectly nested loops, where the first loop nest produces an array that is con-
sumed by the second loop nest. The cache reuse distance (defined as the number of distinct data
elements accessed between two successive accesses to a given data element) for the fused version
of the code can be significantly lower than the unfused version. This is because lower-dimensional
slices of the produced/consumed array (corresponding to fixed values of the fused loop iterators)
are produced/consumed in temporal proximity with the fused version, whereas all accesses to the
entire array happen for the first loop-nest before any accesses from the second loop-nest for the
unfused code, resulting in much larger reuse distances.

The above benefit of improved data locality and reuse in cache for fused producer/consumer
loops applies to both dense and sparse tensor contractions. However, for the sparse context, an
additional benefit accrues from loop fusion. When a set of common surrounding loops between
a producer loop-nest and a consumer loop-nest is fused, it is not necessary to allocate the full
space for the temporary array that is produced/consumed, but only as much as needed for lower-
dimensional slices corresponding to fixed values for the fused loop iterators. This is because space
used for a previous slice (corresponding to some fixed values of the fused loop iterators) can be

IWe use “mode” to refer to a tensor dimension; an order-n tensor has n modes. Terminology details are presented in
Section 2.
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reused for the next slice. Further, if a sufficient number of loops are fused and the size of the full
product data space for the lower-dimensional slice is small, a dense representation can be used
instead of an explicit sparse representation for the slices of the intermediate temporary tensor
between the producer and consumer statement, thereby lowering data access overheads [18].

Although a few efforts have been directed toward compiler optimization of sparse matrix and
tensor computations [7, 12, 18, 19, 24, 25, 44, 45, 50], the current state of the art does not adequately
address a number of critical inter-dependent aspects in the generation of efficient fused code for
a given tree of sparse binary contractions.

Sparse tensor layout mode order. We focus on the widely used CSF format, which is commonly
used for efficient sparse tensor computations. Since CSF uses a nested representation with n levels
for a tensor of order n, efficient access is only feasible for some groupings of non-zero elements
by traversing the hierarchical nesting structure. Selecting the nesting of the n modes of a tensor
is a key factor for achieving high performance. Prior efforts in compiler optimization and code
generation for sparse computations have not explored the impact of the choice of CSF nested
layout mode order on the performance of contraction tree evaluation.

Loop fusion to reduce intermediate tensors. The temporary intermediate tensors that correspond
to inner nodes of the contraction tree could be much larger than the input and output tensors of
the network. By fusing common loops of the nested loops that produce and consume an interme-
diate tensor, the size of that tensor can be reduced significantly (as illustrated by an example in
Section 2). A reduction of the size of an intermediate tensor can enable significant reduction in the
number of cache misses if the reduced intermediate can fit in cache but the intermediate without
loop fusion does not. Further, a dense representation of the intermediate becomes feasible, which
further improves performance due to the reduced cost of tensor element accesses [18].

Inter-dependence between loop order, mode order, and contraction order. In addition to selecting the
layout mode order for each tensor in the contraction tree, code generation needs to select a legal
loop fusion structure to implement the contractions from the tree. Such a fused structure depends
on the order of surrounding loops for each contraction, on the order in which the contractions are
executed, and on the choice of layout mode order. No existing work considers the space of these
inter-related choices in a systematic and general manner.

Our solution. We propose CoNST, a novel approach that considers the above factors in an in-
tegrated manner using a single formulation. This formulation encodes several inter-related goals.
First, for each contraction, we ensure that the order of loops that surround it (in the fused loop
nest) is compatible with the layout mode order of all tensors that participate in the contraction.
This allows for efficient traversal of non-zero elements of these tensors. Second, we produce a
valid topological sort of the contraction tree (i.e., each producer contraction appears before the
corresponding consumer contraction). Third, the surrounding loops for each producer-consumer
pair allow for valid fusion—and not only for this pair, but also for all other contractions that ap-
pear between the pair in the topological sort. Finally, the resulting fusion allows for significant
reduction of intermediates: specifically, all intermediate tensors are guaranteed to be of order at
most [, where [ is a small constant limit (e.g., [ = 1) given as a parameter to our tool.

To find a solution that satisfies these goals, we formulate a constraint system in which constraint
variables are used to encode all relevant choices: order of surrounding loops, order of tensor layout
modes, and topological order of contractions. The system is then solved by the Z3 SMT solver [11]
and the result is used to create the desired fused loop structure and tensor mode layouts for the
entire contraction tree. This structure is lowered to the IR of the Tensor Algebra Compiler
(TACO) [19], which is then used to generate the final executable code. The main contributions of
CoNST are:
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— We design a novel constraint-based approach for encoding the space of possible fused loop
structures and tensor CSF layouts, with the goal of reducing the order of intermediate ten-
sors. This is the first work that proposes such a general integrated view of code generation
for sparse tensor contraction trees.

— We develop an approach to translate the constraint solution to the concrete index notation
IR [18] of the TACO compiler.

—We perform extensive experimental comparison with the three most closely related sys-
tems: TACO [19], SparseLNR [12], and Sparta [25]. Using a variety of benchmarks from
quantum chemistry and tensor decomposition, we demonstrate significant performance
improvements over this state of the art.

2 Background and Overview
2.1 Tensor Networks

We first describe the abstract specification of a tensor network. Such a specification can be lowered
to many possible code implementations. Examples of such implementations are also given below.

Sparse tensors. A tensor T of order n is defined by a sequence (dy, . . ., d,—1) of modes. Each mode
dj denotes a set of index values: dp = {x € N : 0 < x < N}, where Ny is the mode extent. Note
that the numbering of modes from 0 to n — 1 is purely for notational purposes and does not imply
any particular concrete data layout representation; deciding on such a layout is one of the goals
of our work, as described later. For a sparse tensor T, its non-zero structure is defined by some
subset nz(T) of the Cartesian product dy X dy X - - - X d,,—1. All and only non-zero elements of T
have coordinates that are in nz(T). Each (xg, x1, ...) € nz(T) is associated with a non-zero value
T(xo,x1,...) € R.

The tensor expressions described below use tensor references. A reference to an order-n tensor
T is defined by a sequence (i, . ..,i,—1) of distinct iteration indices (“indices” for short). Such a
reference will be denoted by Tj,;, ... Each index iy is mapped to the corresponding mode dj of T and
denotes the values defined by that mode: iy = {x € N : 0 < x < Ni}. The same index may appear
in several tensor references, for the same tensor or for different ones. In all such occurrences, the
index denotes the same set of index values. For example, an expression discussed shortly contains
tensor references X;jqr, Aipg, and Bj,,. As an illustration, index j appears in two of these references
and is mapped to mode 1 of X and mode 0 of B (and thus both modes have the same extent).

CSF representation. Our work focuses on sparse tensors represented in the widely used CSF
format [40, 41]. CSF organizes a sparse tensor as a tree, defined by some permutation of modes
do, . ..,dp—1. This order of modes defines the CSF layout and must be decided when creating a
concrete implementation of the computation. The internal nodes of the tree store the indices of
non-zero elements in the corresponding mode. The leaves of the tree store the non-zero values. An
auxiliary root node connects the entire structure. Using the sparse format abstractions introduced
by Chou et al. [9], the outermost mode is dense (i.e., all index values are represented), while the
remaining ones are compressed (i.e., only index values with corresponding non-zero elements are
represented).

Figure 1 illustrates the CSF representation for an order-4 sparse tensor. When the abstract spec-
ification of a tensor expression (or equivalently, of a tensor network) is lowered to a concrete
implementation, both tensors and tensor references are instantiated to specific representations.
For example, suppose we have a tensor A with modes dy, d;, and d;, and a reference A;,, appears

2Qur approach also trivially applies to a CSF variation in which the outermost mode is compressed.
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WIN RPN

NN D
NN NMNNEAD
NN R

Fig. 1. The CSF format for representing an order-4 sparse tensor in memory. The table on the left shows the
indices of non-zero elements. The tree on the right shows the CSF representation (root node is not shown).

R[x,*x,*x] = 0
for i
for j
for k
for p
for q

for r
R[i,j,k] += ALi,p,ql*BLj,p,rlx
CCk,q,r1*DLj,k,r]

(a) Tensor network

(b) N-ary contraction

Fig. 2. Tensor network and code for N-ary contraction for expression R;jx = Aipg X Bjpr X Cqr X Djgy-

in the tensor network. One (of many) possible implementation is to order the modes as dy, dz, dy in
outer-to-inner CSF order. The code references to the tensor would be consistent with this order;
i.e, reference A;,4, becomes A[p,q, 1] in the code implementation.

Tensor contractions and tensor networks. Consider tensors T, S, and R and a binary contraction
Rigi,... = Tjjy... X Skok,...- Let Int, Ins, and Ing denote the sets of indices appearing in each tensor
reference, respectively. Any index i € Ing is an external index for this contraction. Any index i €
(InT U Ing) \ Ing is a contraction index for the contraction.

The non-zero structure of R is defined by the non-zero structure of T and S as follows:
(20,21, .. .) € nz(R) if and only if there exists at least one pair of tuples (xg,x1,...) € nz(T)
and (yo, Y1, ...) € nz(S) such that for each index i € Iny U Ing U Ing, the values correspond-
ing to i in the three tuples (if present) are the same. For any (zo,z1,...) € nz(R), the asso-
ciated value R(zg,zi1,...) € R is the sum of T(xq,x1,...) X S(yo,yi,...) for all such “match-
ing” pairs of tuples (xo,x1,...) € nz(T) and (yo,y1,...) € nz(S). As a simple example, R;; =
Tix X S;j represents a standard matrix multiplication: for any (a,b) € nz(R) we have R(a, b) =
2 {e(a,c)en(T)n(e.byenz(s)y T(a, €) X S(c, b).

A general (non-binary) contraction expression of the form R =TI X---X Tn_ is defined
similarly. Such an expression can be equivalently represented as a tensor network, with one vertex
for each tensor reference in the expression, and a hyper-edge for every index. An example of a
tensor network representing the tensor expression R;jx = Aipg X Bjpr X Crgr X Djgr is shown in
Figure 2(a). Here dashed hyperedges are used to distinguish the contraction indices in the tensor
expression (i.e., i, j, and k) from the external indices.

The direct computation of any tensor network (multi-tensor product expression) can be per-
formed via a nested loop, with one loop corresponding to each index, and a single statement that
mirrors the tensor expression. Figure 2(b) shows pseudo-code for such an N-ary contraction, where
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oo
Yijkr = Xijqr X qur
@ @ Rijk = Yijkr X Djgr

@ @ (c) Binary contractions
(a) Tensor network

(b) Contraction tree

Fig. 3. Contraction tree for a tensor network.

N is the number of operand tensors. Here and for later examples that apply in both the dense and
sparse context, we often do not explicitly indicate loop bounds because the form will differ for
the dense and sparse case. Note that the figure shows a specific code version with a concrete loop
order (e.g., i in the outermost position) and tensor data layouts (e.g., j is the outermost CSF level
of D). There are many possible choices for the loop order and the tensor layout. While the loops
are straightforward in the dense case, for sparse CSF tensors the code is much more complex, and
general techniques for such iteration have been developed [19].

For the dense case, the complexity of such an implementation is O(M; M;M; M, MM, ), where
M, are the corresponding extents. By exploiting associativity and distributivity, the multi-term
product can be rewritten as a sequence of binary contractions, with temporary intermediate ten-
sors X and Y as shown in Figure 3(c). By using a sequence of binary contractionsinstead of an N-ary
contraction, the complexity is reduced to O(M; M;M, My M, + M;M;M MM, + M;M;M; M, ).If all
tensor modes have the same extent M, the complexity reduces from O(M°®) to O(M>).

There exist many different sequences of binary tensor contractions to compute a tensor net-
work, with varying computational complexity. The problem of identifying an operation-optimal
sequence of binary contractions for a multi-term product expression is NP-complete [8], but prac-
tically effective solutions have been developed for this problem [15, 32, 38]. We assume that one of
these solutions has been applied to produce a binary contraction tree and consider the orthogonal
problem of generating efficient code to implement that contraction tree.

2.2 Challenges and Overview of Solution

The problem we address in this article is the following: Given a binary tensor contraction tree for a
sparse tensor network, generate efficient code for its evaluation.

Loop fusion and dimension reduction of intermediates. Figure 4(a) shows one possible code imple-
mentation for the contraction tree from Figure 3(b). Since identical loops over indices i and j exist
in the loop code for all three binary contractions, we can fuse those loops to create the imperfectly
nested loop structure in Figure 4(b). We note that the unfused code version in Figure 4(a) requires
4-D intermediate arrays X|i, j, q,r] and Y[i, j, k, r], but the fused code in Figure 4(b) can use 2-D
intermediate arrays X[q,r] and Y[k, r]. This is because i and j are common surrounding loops,
thus producing and consuming 2-D slices of the 4-D intermediate arrays. The same space can be
reused for a later slice since all values produced for a previous slice have been fully used.

In contrast to the dense case, with sparse tensor contractions a fundamental challenge is that of
insertion of each additive contribution from the product of a pair of elements of the input tensors
to the appropriate element of a sparse output tensor. The TACO compiler [19] defines a workspaces
optimization [18] to address this challenge, where a dense multidimensional temporary array is
used to assemble multidimensional slices of the output tensor during the contraction of sparse

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024.
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X[x,x,%,%] = 0 R[*’ﬂf”szo
for i,j
Y[x,*,%,*x] =0
X[*,*]:@
R[x,*,*x] = 0
.l Y[*,%*]=0
for i,j,p,q,r for p.a.r
X[i,j,q,r] += Ali,p,ql*B[]j,p,r] T . .
SRR P aIEt P X[q,rl += ALi,p,qI*BLj,p,r]
for i,j,k,q,r for K.q,r
Y[i,j,k += X[i,] *C[k T
'[1,_3, ,rl [i,j,q,r1xClk,q,r] YOk.r] += X[q,r1%Clk.q,r]
for i,j,k,r
for k,r

RLi,j,k = Y[i,j,k DLj,k
H 3 v gk et ko RLE, 3,k += YIK,r3+D[3,k,r]

(a) Unfused sequence of contractions (b) Common loops i and j fused

Fig. 4. Reduction of dimensionality of intermediate tensors via loop fusion.

input tensors. By using a dense “workspace,” very efficient O(1) cost access to arbitrary elements
in the slice is achieved for assembling the irregularly scattered contributions generated during
the contraction. A significant consideration with the use of the dense workspaces is the space
required: the extents of the workspace array must equal the extents of the corresponding modes
of the sparse output tensor and thus can become excessive. By use of loop fusion between producer
and consumer contractions to reduce the number of explicitly represented modes in intermediate
tensors, we represent all intermediates as dense workspaces and thus make efficient use of TACO’s
workspaces optimization.

In addition to fusion, a critical factor for high performance is the compatibility between loop
order and layout order. For sparse CSF tensors, efficient access to the non-zero elements is only
feasible if the outer-to-inner order of nested loop indices in the code implementation is consistent
with the layout order of tensor modes, in relation to the loop indices that index them. For example,
the elements referenced by A[i,p,q] can be accessed efficiently only if i appears earlier than p
(which itself appears earlier than g) in the loops surrounding this reference.

To summarize, given a binary contraction tree to implement a general sparse tensor contraction
expression, three critical inter-related decisions affect the performance of the generated code:

— Linear execution order of contractions: The fusibility of loops between a producer contraction
of an intermediate tensor and a subsequent consumer contraction is affected by the linear
execution order of the contractions.

— Loop permutation order for each contraction: All surrounding loops of a contraction are
fully permutable. The chosen permutation affects both the fusibility of loops across tensor
contractions and the efficiency of access of non-zero elements of sparse tensors.

— Mode layout order for each tensor: The compatibility of the layout order of each tensor with
the loop order of the surrounding loops is essential for efficient access.

These three decisions are inter-dependent. The linear execution order (i.e., the topological sort
of the contraction tree) affects which loop fusion structures are possible. The order of loops for
each contraction determines what fusion can be achieved, while also imposing constraints on the
data layouts of tensors that appear in the contraction tree. In this article, we propose a novel
integrated solution that considers these three decisions in a single formulation. Our approach
creates a constraint system that encodes the space of possible decisions and their interdependence.
This system is then solved using the Z3 SMT solver [11]. The solution is used to create a legal
fused loop structure that reduces the size of intermediate tensors while ensuring the compatibility
constraints described above.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024.
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Table 1. Comparison with State-of-the-art Systems for Sparse Tensor Computations

TACO | SparseLNR | Sparta | CoNST (ours)
Loop fusion X v X v
Data layout selection X X X v
Schedule for contraction trees X X X 4

To the best of our knowledge, this is the first work that takes such an integrated view and
provides a general approach for code generation for arbitrary tensor contraction trees. Table 1
contrasts our work with the three most closely related state-of-the-art systems for sparse tensor
computations described below. Our experimental evaluation presents comparisons with all three
existing systems. Section 6 provides further details on these and other related efforts.

The CoNST system leverages, as its last stage, the code generator for sparse tensor compu-
tations in TACO [19]. The main focus of TACO is the generation of efficient code for N-ary
contractions with arbitrarily complex tensor expressions. While TACO can be used to generate
code for a sequence of binary sparse tensor contractions, it does not address optimizations like
loop fusion across tensor contractions, tensor mode layout choice, or the choice of sequence of
tensor contractions for a given contraction tree. In our experimental evaluation (Section 5), we
show that code generated by CoNST achieves significant speedup over code directly generated
by TACO.

SparseLNR [12] builds on TACO to implement loop fusion optimization. It takes a multi-term
tensor product expression as input and generates fused loop code for a sequence of binary tensor
contractions corresponding to the input tensor product expression. In our experimental evaluation,
we compare the performance of code generated by SparseLNR with code generated by CoNST and
demonstrate significant speedups.

Sparta [25] implements a library for efficient tensor contraction of arbitrary pairs of sparse
tensors. Since a library is being created, this work does not address any optimizations like loop
fusion across contractions, data layout choice for tensors, or the schedule of contractions for a
contraction tree. We performed extensive experimentation to compare the performance of code
generated by CoNST with the best performance among all valid tensor layout permutations for
unfused sequences of contractions executed using Sparta. These experiments demonstrate very
significant performance gains for CoNST.

3 Constraint-based Integrated Fusion and Data Layout Selection

Our approach aims to generate a concrete implementation of a given contraction tree by automat-
ically determining (1) the order of modes in the data layout of each tensor and (2) a structure of
fused loops that minimizes the order of intermediate tensors. We formulate a constraint system
that answers the following question: For the given contraction tree, does there exist an imple-
mentation for which all intermediate tensors are of order at most [, for some given integer [? We
first ask this question for [ = 1. If the answer is positive, the constraint system solution is used to
construct a code implementation for the contraction tree. If the answer is negative, we formulate
and solve a constraint system for [ = 2, seeking a solution in which all intermediates are at most
2-D matrices. This process continues until we find a solution. Note that a trivial solution without
any fusion is guaranteed to exist for a sufficiently large value of .

In each of these steps, we employ the Z3 SMT solver [11] to provide either (1) a negative answer
(“the constraint system is unsatisfiable”) or (2) a positive answer with a concrete constraint solution
that defines the desired tensor layouts and loop structure. The generated constraints are based
on quantifier-free integer difference logic. While in general the search space is exponential in
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the number of contractions and the number of indices, our experience shows that Z3 solves the
generated constraint systems with very practical running times (as detailed in Section 5).

3.1 Input and Output

The input to our approach is a set of contractions {Cy, Cy,. .., Cp-1} organized in a contraction
tree. Each leaf node corresponds to an input tensor reference, the root node corresponds to a
result tensor reference, and every other node corresponds to an intermediate tensor reference. As
an example, the contraction tree for Xjjqr = Aipg X Bjpr; Yijkr = Xijgr X Ckgri Rijk = Yijkr X Djkr
was shown earlier in Figure 3(b). Here A, B, and C are input tensors; X and Y are intermediate
tensors; and R is the result tensor.

A naive implementation of a given tree would contain a sequence of perfectly nested loops
(one loop nest per contraction), based on some valid topological sort order of tree nodes. For each
contraction, the loop nest would be some permutation of the set of indices that appear in the
tensor references, and the loop body would be a single assignment. For example, the loop nest for
Xijgr = Aipgq X Bjpr would contain loops for r, g, i, j, and p in some order.

As discussed earlier in Section 2, for any (unfused or fused) implementation, a fundamental con-
straint is that the order of surrounding loops must match the data layout order of modes in the
CSF tensor representation. This is needed to allow for efficient iteration over the sparse represen-
tation. For example, consider reference A;,4. Recall from the earlier discussion that each index is
mapped to the corresponding mode of A: i is mapped to dy, p is mapped to d;, and g is mapped
to dy. A concrete implementation would select a particular order of dy, dq, and d, as the outer,
middle, and inner level in the CSF representation, respectively. For example, suppose that this or-
der is, from outer to inner, {d, ds, dp). In the code implementation, the tensor reference would be
Alp,q,i]. Efficient iteration over elements of A would require that the loop structure surround-
ing the reference matches this order: the p loop must appear before the g loop, which must appear
before the i loop. The constraint-based approach described below incorporates such constraints
for the loops that surround (in a fused code structure) each tensor reference from the contraction
tree.

Each of the fused loop structures we would like to explore can be uniquely defined by (1) a
topological sort order of the non-leaf nodes in the contraction tree and (2) for each such node,
an ordering of the indices that appear in it. The index order for a node defines the order of
loops that would surround the corresponding assignment in the fused loop nest. This order
also defines the CSF layout order for the corresponding tensors.

For example, consider the code structure in
Figure 5, which is derived from the solution of
our constraint system for the running exam-
ple. Here there is a single valid topological sort
Xlq,il += Alp,q,1]*BLr,J,pl] for the assignments. The ordering of surround-

for r,j
for p,q,i

for g,k ' i . ing loops for the assignments is (r,j,p,q, 1),
Ylk,11 += X[q,i]xCLr,q,k] (r,j,q,k, i), and (r,j, k, i), respectively. The fu-
for k,i

sion of the common r and j loops allows X and
Y to be reduced to 2-D tensors. The order of in-
Fig. 5. Fused code structure. dices in all tensor references is consistent with
the order of surrounding loops.

RCj,k,1i] += Y[k,i1*D[r,j, k]

3.2 Constraint Formulation

The space of targeted code structures is encoded via constraints over integer-typed constraint
variables, as described below.
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3.2.1 Ordering of Assignments. For each contraction C;, the position of the corresponding as-
signment relative to the other assignments in the code is encoded by a constraint variable ap; (short
for “assignment position for C;”) such that 0 < ap; < m, ap; # ap; for all k # i, and ap; < ap; if
C; is a child of C; in the contraction tree. Here m is the number of contractions. The first two
constraints guarantee uniqueness and appropriate range for all ap;. The last constraint ensures a
valid topological sort order.

Example. For the running example, we have ap, for Xjjqr = Ajpg X Bjpr, ap; for Yiji, = Xijqr X
Ckgr> and ap, for R;jx = Yjjkr X Dji,. For this contraction tree (Figure 3) the only valid topological
sort is Cy, C1, C, and thus the only possible solution is ap; = i. In a more general tree, there may
be multiple valid assignments of values to ap;, each corresponding to one topological sort order.

3.2.2  Ordering of Tensor Modes. For each order-n tensor T that has references in the contraction
tree, and each mode d; of T (0 < j < n), we use a constraint variable dpy ; to encode the position
of dj in the CSF layout of the tensor. The following constraints are used: 0 < dpy ; < nand dpy ; #
dpr y forall j # j. Any constraint variable values that satisfy these constraints define a particular
permutation of the modes of tensor T and thus a concrete CSF data layout.

Example. In the running example, A has three modes and thus three constraint variables dp ,,
dp, 1> and dp, ,. In the code structure shown in Figure 5, abstract tensor reference A;j,4 is mapped
to concrete reference ALp,q,1]. This corresponds to the following assignment of values to the
constraint variables: dp, o = 2, dp, ; = 0,and dp, , = 1. Thus, the outermost level in the CSF rep-
resentation corresponds to mode d; (indexed by p), the next CSF level corresponds to d; (indexed
by ¢), and the inner CSF level corresponds to d (indexed by i).

3.2.3  Ordering of Loops. Next, we consider constraints that encode the fused loop structure. For
any contraction C;, we need to encode the loop order of the loops surrounding the corresponding
assignment. Let In; be the set of indices that appear in C;. For each k € In;, we define an integer
constraint variable Ip; ; (short for “loop position of index k for C;”). These variables will encode a
permutation of the elements of In;, that is, a loop order for the loops surrounding the assignment
for C;. If Ip; 4 has a value of 0, index k will be the outermost loop surrounding the assignment. If
the value is 1, the index will be the second-outermost loop, and so forth. To encode a permutation,
for each k € In; we have constraints 0 < Ip; , < |In;| and Ip; ; # Ip; ;, for all k" € In; \ {k}.

Example. In the running example, for contraction Cy : Xjjqr = Ajpg X Bjpr We have Iny =
{i.j.p.g.r}. For this contraction we will use constraint variables Ip, ;, Ip, ;. Ip, . Ipo g 1Py, - In
the code structure shown in Figure 5, the loop order for C is (r, j, p, q, i). This order corresponds
to a constraint solution in which Ip, ; = 4, Ip, ; = 1, Ip, , = 2, Ip, , = 3, and Ip, , = 0.

3.24 Consistency between Mode Order and Loop Order. Next, we need to ensure that the order
of loops defined by Ip, , is consistent with the order of modes for each tensor appearing in con-
traction C;, as encoded by dpr. ;. Consider a reference to T appearing in contraction C;. For each
pair of modes d; and dj» of T, let k and k’ be the indices that correspond to these modes in the
reference. The following constraint enforces the consistency between mode order and loop order:

(dpr; < dpr ;) = (Ip; i < Ip; 1)

Here dpy ; < dpr j is true if and only if mode d; appears earlier than mode dj in the concrete
CSF data layout of tensor T. If this is the case, we want to enforce that the index corresponding
to d; (i.e., k) appears earlier than the index corresponding to d; (i.e., k”) in the loop order of loops
surrounding the assignment for C;. As discussed earlier, this constraint ensures that the order
of iteration defined by the loop order allows an efficient traversal of the CSF data structure for
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T. Such constraints are introduced for all input tensors. For intermediates that are represented
through dense workspaces, such constraints are not necessary. In our implementation, we use
dense workspaces for all intermediates.

Example. Consider reference A;,q from the running example and the pair of modes dj and do,
with corresponding indices i and g. The relationship between variables dp,, , (for do), dp, , (for
da), Ipy,; (for i), and Ip, , (for g) is captured by the following two constraints:

(dpao < dpaz) = (py; < Ipgq) (dpay < dpyo) = (Ipg g < Ipy ;)

As described earlier, in the constraint solution we have dp, , = 2,dp, , = 1, Ip, ; = 4,and Ip, ¢=3
Of course, these values satisfy both constraints.

3.2.5 Producer—consumer Pairs. Finally, we consider every pair of contractions C;, C; such that
C; is a child of C; in the contraction tree. In this case C; produces a reference to a tensor T that is
then consumed by C;. Let n be the order of T. Our goal is to identify a loop fusion structure that
reduces the order of this intermediate tensor T to be some n’ < [ for a given parameter /. Recall
that in our overall scheme, we first define a constraint system with [ = 1. If this system cannot be
satisfied, we define a new system with [ = 2, and so forth.

Let In7 be the set of indices that appear in the reference to T. We define constraints that include
Ip; . (for the producer C;) and Ip; ;. (for the consumer C;), for all k € Iny. The constraints ensure
that a valid fusion structure exists to achieve the desired reduced order n” of T.

Producer constraints. First, we consider the outermost n — [ indices in the loop order associated
with the producer C; and ensure that they are all indices of the result reference. Specifically, for
each s such that 0 < s <n—1 and for each k € Int, we create terms of the form Ip; ; = s and
introduce an OR constraint for these terms (illustrated by an example below). This guarantees that
the loop at position s in the loop structure surrounding the producer statement is iterating over
one of the indices that appear in the result reference. The combination of these constraints for all
pairs of s and k ensures that the outermost n — [ loops for C; are all indices of its result tensor
reference.

Example. Consider reference Xjjq, from the running example. This reference is produced by
Co : Xijgr = Aipg X Bjpr and consumed by C; : Yijk, = Xjjqr X Crqr. We have Inx = {i,j,q,r}. The
producer constraints will involve variables Ip, ;, Ip, ;, Ip, 4. and Ip, ,.. Suppose [ = 2. We would like
the outermost n — I = 4 — 2 indices in the loop order for Cy to be indices that access this reference.
Together with the remaining constraints described shortly, this would allow those two indices to
be removed from the reference after fusion. As a result, the order of X can be reduced from 4 to 2.
Two constraints are formulated. First,

Ipo; =0V lpo’j =0V lpo’q =0Vip,,=0

ensures that the outermost loop surrounding the producer is indexed by one of i, j, g, or r. Similarly,

Ipo; =1Vipy; =1Vipy o =1Vip,, =1

guarantees that the second-outermost loop is also indexed by one of the indices of Xj;q,. For the
fused code shown in Figure 5, we have Ip, , = 0 (i.e., the outermost loop for Cy is r) and Ip, ; = 1
(i.e., the second-outermost loop is j). Thus, in the fused code, the reference to X will only contain
the remaining indices i and g, as shown by X[q, i] in Figure 5.

Consumer constraints. Next, we create constraints for the consumer contraction Cj: the sequence
of its outermost n — [ loops must match the sequence of the outermost n — [ loops for the producer
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C;. This ensures that the same sequence of n — [ loops surrounds both the producer and the con-
sumer, which is required for fusion that reduces the order of the intermediate from n to n” such
that n” < n—(n—1) = 1. (In case the constraint solver produces a solution for which more than
n — [ outermost loops can be fused, we can have n” < [.) The constraints for C; include, for each s
such that 0 <'s < n— [ and for each k € Inr, a constraint of the form (lp; , =s) = (Ip; , = s).

Example. For X;jq, and its consumer C;, we include constraints connecting Ip, ; and Ip, ; for
each k € {i,j,q,r} for s = 0 (i.e., the outermost loop) and s = 1 (i.e., the second-outermost loop).

Statements between producer and consumer. Finally, we have to consider all assignments that
appear between the producer C; and the consumer C; in the topological sort order defined by con-
straint variables ap; described earlier. For any such assignment, the sequence of the outermost n — [
loops that surround it must match the ones for C; and C;. This is needed in order to have a valid
fusion structure. The corresponding constraints are of the following form, for each contraction C,
with r # iand r # j, each s with 0 < s < n—1[, and each k € Int:

(ap; < ap, < ap;) = ((Ip; . = 5) = (Ip, , =59)).

4 Code Generation

This section details the process of code generation from the constraint system solution. We de-
scribe how to use this solution to generate concrete index notation, an IR used by the TACO com-
piler. This IR is then used by TACO to generate the final C code implementation for the contraction
tree.

4.1 Concrete Index Notation

As discussed in Section 2, TACO [19] is a state-of-the-art code generator for sparse tensor com-
putations. While TACO does not address the questions that our work investigates (choice of lin-
ear ordering of tensor contractions from a binary contraction tree, selection of fusion structures,
and tensor layouts), it does provide code generation functionality for efficient implementations of
CSF tensor representations and iteration space traversals. We use concrete index notation [18], the
TACO IR that captures a computation over sparse tensors through a set of computation constructs.
The two constructs relevant to our work are forall and where. A forall construct denotes an
iteration over some index. A where(C,P) construct denotes a producer—consumer relationship.
Here C represents a computation that consumes a tensor being produced by computation P. This
construct allows the use of dense workspaces [18]; as discussed in Section 2, this is an impor-
tant optimization in TACO. As an illustration, the concrete index notation we generate from the
constraint solution for the running example has the following form:

forall(r, forall(j,

where(forall(k, forall(i, R(j, k, i) = Y(k, i) * D(r, j, k))),
where(forall(q, forall(k, forall(i, Y(k, i) = X(qg, i) * C(r, q, k)))),
forall(p, forall(q, forall(i, X(q, i) = A(p, q, i) * B(r, 3, pP))))))))

4.2 Generating Concrete Index Notation

The constraint solver’s output can be abstracted as a sequence of pairs (A, 7), where A is an assign-
ment for a binary contraction and x is a permutation of the indices appearing in the assignment.
The permutation is defined by the values of constraint variables Ip; ; described earlier and denotes
the order of surrounding loops for A. The indices in a reference to a tensor T in A are ordered based
on the values of variables de’ IE thus, they are consistent with the order of indices in 7. The order
in the sequence of pairs is defined by the values of variables ap; and represents a topological sort
order of the contraction tree. For the example discussed in the previous section, the sequence is
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<X[r,J,q,i] = Alp,q,i] = BLr,j,p], (r,j,p,q,i1>
<Y[r,j,k,il = X[r,j,q,i]1 = CLr,q,k1, [r,j,q,k,i1>
<R[j,k,i] = Y[r,j,k,i]1 = DLr,j, k1, [r,j,k,il>

Algorithm 1 describes the creation of the TACO IR from such an input. Function generate is
initially invoked with the entire sequence of pairs (A, 7) based on the constraint system’s solu-
tion. At each level of recursion, the function processes a sequence S of such pairs. There are two
stages of processing. In the first stage (lines 3—12), a sequence L of assignments and indices is con-
structed. One can think of the elements of L as representing eventual assignments and loops that
will be introduced in the TACO IR. For example, an index i in L will eventually lead to the creation
of forall(i,...). Similarly, an assignment in L will produce an equivalent assignment in the
TACO IR.

ALGORITHM 1: TACO IR Generation
function generate(S):

input: sequence S of pairs (A, 7); A is an assignment and 7 is a permutation of A’s indices
output: concrete index notation for S
1 L «— emptylist // L is a sequence of indices and/or assignments
2 M « empty map // M is a map from an index to a sequence of (A, )
3 fork < 0to|S|—1do
4 (A, ) «— S
5 if 7 is empty then
6 ‘ L.append(A)
7 else
8 i« m.first()// i is the index of the outermost loop for A at this level
9 if i # L.last() then
// i does not match the last element of L and should be added to L
10 L.append(i)
11 M.put(i, empty list)
12 M.get(i).append((A, r))
13 if L.length() == 1 then
14 if L.first() is an assignment A then return A
15 if L.first() is an index i then
// single index i in L; create a ‘forall’ construct for i
16 return forall( i, generate (remove (i, M.get(i))) )
17 else
// several indices and/or assignments in L; create a ‘where’ construct
18 return where( generate (M.get(L.last())) , generate (S.truncate(M.get(L.last()))) )

During this first stage, for each element (A, 7) of S, in order, we need to decide whether the loop
structure encoded by 7 can be fused with the loop structure of the previous element of S, at this
level of loop nesting. For example, the sequence shown above contains permutation [r, j,p,q,i]
in the first pair of S, followed by [r, j,q,k, 1] in the second pair. The processing of the first pair
will add index r to L. In the processing of the second pair, the outermost index r matches the
current last element of L, and thus r is a common loop for both assignments. The processing of
the third pair considers permutation [r, j,k, 1], whose outermost index again matches the last
element of L. Thus, at the end of the stage, L contains one element: the index r. In a more general
case, a combination of indices and assignments could be added to L. For example, if the input
sequence is <A@, [i]>, <A1,[]>, L contains two elements—i followed by A1—which eventually
leads to the creation of where (A1, forall(i,A@)), as described shortly.
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As part of this process, for each index in L the algorithm records the sub-sequence of relevant
pairs from S. This information is stored in map M, with keys being the indices that are recorded
in L. For the running example, r is mapped in M to the sequence of all three input pairs. This
list of pairs is then used in the second stage of processing to generate a construct of the form
forall(r,...).

The second stage (lines 13-18) considers three cases. If L contains a single assignment, this
assignment simply becomes the result of IR generation (line 14). If L contains a single index i,
this index can be used to create a forall(i,...) construct that surrounds all pairs recorded in
M.get(i). This creation is shown at line 16. The pairs in M.get(i) are first processed by a helper
function remove and then used to recursively generate the body of the forall. The helper function,
which is not shown in the algorithm, plays two roles. Both are illustrated by the modified pairs
below, which are obtained by calling remove (r, M.get(r)):

<X[j,q,i]l = Alp,q,i] = BLr,j,p], [j,p,q,i1>
<Y[j,k,il = X[j,q,il * CLr,q,k]1, [j,qa,k,il>
<R[j,k,i] = Y[j,k,il * DCr,j,k1, [j,k,il>

First, remove eliminates r from the start of all permutations x. This reflects the fact that a
forall(r,...) is created at line 16. Second, the function removes r from all intermediate ten-
sor references for which both the producer and the consumer are in M.get(r). For example,
XCr,j,q,i] appears in the first pair (the producer) and in the second pair (the consumer). Both
are surrounded by the common loop r, which means that X can be reduced from order-4 to order-3,
and thus the reference is rewritten as X[ j,q,i]. A similar change is applied to Y[r, j,k,1i].

At the next level of recursion, this sequence becomes the input to generate. During that
processing, L contains only index j and remove(j,M.get(j)) is called to obtain the modified
sequence:

<X[qg,i] = Alp,q,i] * BLr,j,pl, [p,q,il>
<Y[k,i]l = X[q,i] * C[r,q,k], [q,k,il>
<R[j,k,i] = Y[k,i]l * D[r,j,k1, [k,il>

Then generate is called on this sequence. At that level of recursion, L contains three indices:
p, q, and k. This illustrates the third case in the processing of L. Line 18 shows the creation of a
where construct for this case. Since k is the last element of L, the first operand of where is the IR
generated for the sub-sequence corresponding to k, which here contains a single pair <R[j,k,i]
= YCk,i] = D[r,j,k], [k,i]>.

Recall that this first operand of where corresponds to a consumer of a tensor—in this case, tensor
Y. The producer of Y appears in the second operand of where, which is generated from the first
two pairs from the original sequence:

<X[qg,i]l = Alp,q,i] = BLr,j,pl, [p,q,il>
<Y[k,i] X[q,i] * C[r,q, k], La,k,i1>

At line 18, S.truncate denotes an operation to produce this desired prefix of S by excluding
the sub-sequence defined by M.get(L.last()). The IR generated from this prefix itself contains a
nested where construct, which captures a producer—consumer computation for X. At the end of
processing, the resulting overall structure has the form

forall(r, forall(j, where(forall(k, forall(i, A2)),
where(forall(q, forall(k, forall(i, A1))),
forall(p, forall(q, forall(i, A0)))))))
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Table 2. Z3 Constraints: Dimensionality of Intermediates, Number of Constraint
Variables, Number of Constraints, Solver Time

Tensor network DimBound ConsVars Constraints SolverTime (s)
3-Index unrestricted 1 19 38 0.013
3-Index restricted 1 27 57 0.015
4-Index 1 22 46 0.011
MTTKRP 1 17 40 0.01
TTMc 1 19 38 0.01

5 Experimental Evaluation

Benchmarks. We evaluate the performance of CONST-generated code on several sparse tensor net-
works. Section 5.1 presents a case study of sparse tensor computations arising from recent devel-
opments with linear-scaling methods in quantum chemistry [33]. Three tensor networks are used:
3-index integral unrestricted, 3-index integral restricted, and 4-index integral; details on these net-
works are provided in Section 5.1. Section 5.2 evaluates performance on the Matricized Tensor
Times Khatri-Rao Product (MTTKRP) computation [20]. Section 5.3 presents performance on
the Tensor Times Matrix chain (TTMc) expression that is the performance bottleneck for the
Tucker decomposition algorithm [20].

Constraint systems. For each of these benchmarks, Table 2 provides details on the Z3 constraint
system that was solved to generate the code for our performance evaluations. Column “DimBound”
shows the upper bound ! on the dimensionality of intermediate tensors; recall from Section 3 that
this parameter [ is used when generating the constraints.> Column “ConsVars” shows the number
of constraint variables, while column “Constraints” shows the number of constraints. The last
column “SolverTime” shows the execution time of Z3. As can be seen from these measurements,
the systems are relatively small and their solutions can be computed very quickly. The follow-up
steps of generating the TACO IR and then generating executable code with TACO are also quick,
and together take about 0.1 second.

Recall that fusion allows for reduction in the dimensionality (and thus memory usage) of inter-
mediate tensors. As shown in column “DimBound” in Table 2, the solver can be used to identify
fusion structures with low-dimensional intermediates. Comparing with the memory usage in an
unfused version (configuration TACO-Unfused, described shortly), we observed that without fu-
sion the memory usage for intermediates in our benchmarks is typically a few megabytes, while
the CoNST-generated fusion reduces this memory usage to a few kilobytes.

Performance evaluation. All experiments were conducted on an AMD Ryzen Threadripper 3990X
64-core processor with 128 GB RAM. Optimization flags -03 -fast-math were used to compile the
C code, with the GCC 9.4 compiler. Reported performance results are for single-thread execution.
Effective parallelization of the code is a topic for future work. A key challenge is that of achieving
effective load balancing across threads because of the significant variance in the work for different
iterations of outer-most parallel loops, due to highly variable index-dependent sparsity of inner
nested loops. In all experiments and for all evaluated tools, the input tensors are in COO format
on disk. The time to read the tensors from disk and to represent them in the CSF formats required
by the tools is not included in the measurements.

We compare CoNST against three state-of-the-art sparse tensor compilers and libraries:

3We have also tested the approach with synthetic examples where I > 1 is needed to achieve a feasible constraint solution.
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TACO:* As discussed in detail earlier, CONST uses TACO for generation of C code after co-
optimization for tensor layout choice, schedule for the contractions, loop fusion, and mode reduc-
tion of intermediate tensors. We compare the performance of CoNST-generated code with that
achieved by direct use of TACO. This was done in two ways: (1) direct N-ary contraction code
was generated by TACO, where a single multi-term tensor product expression was provided as
input with the same mode order for tensors produced by CoNST’s constraint solver (described in
Section 3), and (2) TACO was used to generate code for an unfused sequence of binary contractions,
in which case results are reported for the best-performing mode order for tensors.

SparseLNR:* SparseLNR takes a multi-term tensor product expression and generates fused code
for it by transforming it internally to a sequence of binary contractions. We evaluated its perfor-
mance by providing the same multi-term tensor expression used for comparison with TACO.

Sparta:® We used Sparta to compute the sequence of binary tensor contractions produced by
CoNST. However, Sparta’s kernel implementation internally requires that the contraction index
be at the inner-most mode for one input tensor and at the outer-most mode for the other input
tensor. If the provided input tensors do not satisfy this condition, explicit tensor transposition
is performed by Sparta before performing the sparse tensor contraction. Since the tensor layout
generated by CoNST might not conform to Sparta’s constraints, we instead performed an exhaus-
tive study that evaluated all combinations of distinct tensor layout orders that would not need
additional transpositions for Sparta. We report the lowest execution time among all evaluated
configurations.

5.1 Computing Sparse Integral Tensors for DLPNO Methods in Quantum Chemistry

Recent developments in predictive-quality quantum chemistry have sought to reduce their com-
putational complexity from a high-order polynomial in the number of electrons N (e.g., O(N’) and
higher for predictive-quality methods like coupled-cluster [4]) to linear in N, by exploiting various
types of sparsity of electronic wave functions and the relevant quantum mechanical operators [35].

The few efficient practical realizations of Domain-based Local Pair Natural Orbital
(DLPNO) and other similar methods, e.g., the Orca package [28], have developed custom imple-
mentations of sparse tensor algebra, without any utilization of generic infrastructure for sparse
tensor computations. Below we present a case study that demonstrates the potential for using
CoNST to automatically generate code that can address the kinds of sparsity constraints that arise
in the implementation of DLPNO and similar sparse formulations in quantum chemistry.

A key step in the DLPNO methods is the evaluation of matrix elements (integrals) of the elec-
tron repulsion operator that was first formulated in a linear-scaling fashion by Pinski et al. [33].
The first stage of the DLPNO integral evaluation involves a multi-term tensor product of three
sparse tensors; Figure 6(b) shows a sparse tensor network corresponding to the expression:
Exip = Ixuy X Cpi X f’vﬁ. The indices of the tensors correspond to four pertinent spaces, ordered
from least to most numerous: (1) localized molecular orbitals (indexed in the code by i), (2) atomic
orbitals (indexed by pr and v), (3) projected atomic orbitals [34] (indexed by fi), and (4) density fitting
atomic orbitals (indexed by K).

The sparse structure of tensors as well as the ranges of loops in the code are governed by various
sparsity relationships or sparse maps between pairs of index spaces, as illustrated in Figure 6(a)
(reproduced from Pinski et al. [33]). This enables a reduction of the number of executed operations,
and only a subset of all elements of this tensor network are evaluated. Figure 6(c) shows a four-term

4TACO code: https://github.com/tensor-compiler/taco
5SparseLNR code: https://github.com/adhithadias/SparseLNR
®Sparta code: https://github.com/pnnl/HiParTI/tree/sparta
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(a) Sparse maps involved
in the computation of
DLPNO integrals (repro-
duced from [33]).

(b) Sparse tensor network
for unrestricted evaluation
of DLPNO integrals
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(c) Sparse tensor network
for 3-centered integral, with
sparse tensor Lg; to impose
additional sparsity in result
tensor

Fig. 6. Sparse integral tensor case study.
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Fig. 7. Execution time (ms) for evaluation of 3-index integrals (lower is better; Y-axis is in logarithmic scale)
using (a) unrestricted and (b) restricted tensor networks, respectively. Numbers above the bars represent
slowdown of other schemes relative to CoNST.

sparse tensor network where an additional 0/1 sparse matrix Lg; has been added to the base tensor
network in Figure 6(b), corresponding to the known sparse map L(K — i). This can equivalently be
expressed as a multi-term tensor product expression: Ex;; = Iy X Cpi X p, i X Lk;. The inclusion
of such sparse maps as additional nodes in the base tensor network has the same beneficial effect of
reducing computations as the manually implemented restriction in Orca [28]. In our experimental
evaluation, we evaluate both forms of the sparse tensor networks in Figure 6, representing the
unrestricted form (Figure 6(b)) and the restricted form (Figure 6(c)).

We computed the DLPNO integrals for 2-D solid helium lattices with the geometry described in
[23]. The “small” input used a 5 x 5 lattice (25 atoms) and “medium”/“large” inputs used a 10 X 10
lattice (100 atoms). The following orbital and density-fitting basis sets were used: 6-311G [13]
and the spherical subset of def2-QZVPPD-RIFIT [14], respectively, for the “small” and “medium”
inputs, and cc-pVDZ [47] and cc-pVDZ-RIFIT [46] for the “large” input. All quantum chemistry
data was prepared using the Massively Parallel Quantum Chemistry package [31].

Figure 7(a) presents measurements for the transformed 3-index integral Eg;; in unrestricted
form (Figure 6(b)). CONST-generated code is about two orders of magnitude faster than the N-ary
code generated by TACO as well as SparseLNR (for this case SparseLNR was unable to perform loop
fusion and simply lowered the input to TACO). TACO-Unfused is much faster than N-ary but is still
about five to six times slower than the code generated by CoNST. The best of the comprehensively
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evaluated versions for Sparta is about an order of magnitude slower than CoNST’s code. We note
that a direct comparison with the domain-specific implementation in Orca [28] is very challenging
because its implementation of DLPNO-CC fuses tensor contraction with other computation.
For example, the 3-index MO integral evaluation fuses contraction with the evaluation of AO
integrals, and the 4-index integral evaluation in ORCA uses pre-computed 3-index integrals stored
on disk.

The performance data for evaluation of
Ekij using the restricted form (Figure 6(c)) is
presented in Figure 7(b). Significant speedups
can be seen between the execution times in
Figure 7(a) and 7(b) (the Y-axis scales are dif-
ferent) by use of the additional tensor Lg; for
CoNST, SparseLNR, and TACO N-ary, with
the speedup with use of CoNST being roughly
the same. However, TACO-Unfused does not
improve as much, causing its slowdown with
respect to CoNST to get worse. No data for
Sparta is presented in Figure 7(b) because of a
constraint of Sparta that a tensor product must
have a contraction index, which is not the case
for the tensor product with Lg;.

A subsequent step after formation of the 3-centered integrals is to use them to construct 4-index
integrals (Equation (16) in Reference 33): Vi;z5 = Exij X Ekjs, using the 3-index input tensor E
obtained via the unrestricted form.

Performance results are reported in Figure 8. CoNST again achieves significant speedup over
the alternatives. For this experiment, we could not use the large dataset because of insufficient
physical memory on our platform.

W CoNST  #z## SparseLNR =28 TACO Unfused . TACO N-ary ### Sparta

1000000

100000

10000

1000

small

Fig. 8. Execution time (ms) for 4-index integral.
Numbers above the bars represent slowdown rela-
tive to CoNST.

5.2 Sparse Tensor Network for CP Decomposition

Canonical Polyadic (CP) decomposition factorizes a sparse tensor T with n modes into a product
of n 2-D matrices. For example, a 3-D tensor Tjji is decomposed into three dense rank-r matrices
Ajr, Bjr, and C,. The CP decomposition of a sparse tensor is generally performed using an it-
erative algorithm that requires n Matricized Tensor Times Khatri-Rao Product (MTTKRP)
operations [20]. For a 3-D tensor, the three MTTKRP operations are as follows:

A}, = Tijx X Bjy X Cgr Bj, = Tijk X Air X Cir Cy, = Tijk X Air X Bj,.

Figure 9 shows the performance for MTTKRP operations for each of the three modes for sparse
tensors from the FROSTT benchmark suite [39]. We used the same four sparse tensors (Flickr3d,
Nell1, Nell2, and Vast3d) used in the experimental evaluation of SparseLNR [12]. The rank of fac-
tor matrices was set to 50. The time to perform the MTTKRP operation for the three modes varies
quite significantly; this is in part due to the the highly non-uniform extents of the three modes for
the tensors (as seen in Table 3). For the MTTKRP expression, SparseLNR was not able to perform
its loopFusionOverFission transformation, so the code and performance are essentially identical
to TACO N-ary. Considering CoNST, unlike with the DLPNO benchmark (Section 5.1), CoNST-
generated code is not always fastest. For the first two operations, CONST achieves a speedup
between 2.0x and 4.8X over other schemes, but relative performance is lower for the third one,
ranging between 0.9x and 1.0X over the best alternative. For this case, the size of the intermediate
tensor is small and the binary tensor contractions are efficient without fusion, whereas the mode
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Fig. 9. Execution time (ms) for MTTKRP operations on the FROSTT tensors. Relative slowdown compared
to CoNST is indicated above each bar. Missing bars mean out-of-memory failure (for TACO-Unfused).

Table 3. FROSTT Tensors and Their Shapes

Tensor Dimensions NNZs
flickr-3d 320K 2.82M 1.6M 112.89M
nell-2 12K 9K 288K 76.88M
nell-1 29M 2.14M 255M 143.6M
vast-2015-mc1-3d 165K 11K 2 26.02M

order that enables fusion results in code with slightly lower performance than the unfused code.
However, when considering the total time for all three operations, as needed in each iteration in
CP decomposition, CoNST achieves a minimum speedup of 2Xx over the alternatives, across the
four benchmarks. Sparta times are not reported because it could not be used: it does not handle
contractions with “batch” indices that occur in both input tensors and output tensors, as occurs
with the second tensor contraction in the binarized sequence for each MTTKRP.

5.3 Sparse Tensor Network for Tucker Decomposition

Tucker decomposition factorizes a sparse tensor T with n modes into a product of n 2-D matrices
and a dense core n-mode tensor. For example, a 3-D tensor Tjji is decomposed into three rank-r
matrices A;x, Bjy, Ckz, and core tensor Gy, .. The computation is generally performed using the
High Order Orthogonal Iteration (HOOI) iterative algorithm that requires n Tensor Times

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024.



82:20 S. Raje et al.

mes CONST  w# SparselNR W TACO Unfused EEN TACO N-ary & Sparta

512

w
8
-

w

&

o

@

&

in
@
£
3

128

32

1.0

%
]
/
.

1.0

Nell2-1 Nell2-2

Flickr3d-1

2048 1024
1024

512

107

2561

1281

641

32

167

Vast3d-1 Vast3d-2

Fig. 10. Execution time (ms) for TTMc operations on the FROSTT tensors. Relative slowdown compared to
CoNST is shown above the bar. Missing bars indicate out-of-memory failure.

Matrix chain (TTMc) operations [20]. For a 3-D tensor, the TTMc operations are as follows:

Al = Tijk X Bjy X Ci, B, = Tijk X Aix X Cg, C

y jxz Tijk X Ajrxr X Bjryr-

/ —
kxy —

Figure 10 presents execution times for the alternative schemes on the four FROSTT tensors.
The mode-2 contraction for Flickr3d and mode-3 contraction for Nell-1 tensor ran out of memory
for all methods on 128GB RAM. TACO-Unfused and Sparta ran out of memory for a larger set of
runs because they form high-dimensional sparse intermediates in memory. The rank of decompo-
sition was 16 for Nell-1 and Flickr-3d tensors, and 50 for Vast-3d and Nell-2 tensors. For the TTMc
operation, SparseLNR is not able to perform its loopFusionOverFission transformation, so that per-
formance is identical to TACO N-ary. Sparta runs a flattened matrix-times-matrix operation for a
general tensor contraction and uses a hashmap to accumulate rows of the result. Since the matrix
being multiplied is dense, the hashmap simply adds an overhead. Overall, CoNST generates code
that achieves significant speedups over the compared alternatives.

6 Related Work

A comparison between CoNST and the three most related prior efforts was presented in
Section 2 and summarized in Table 1. As shown in the previous section, significant performance
improvements can be achieved by the code generated through CoNST’s integrated treatment of
contraction/loop/mode order for fused execution of general contraction trees, compared to (1)
code directly generated by TACO [19], (2) fused loop code generated by SparseLNR [12], and
(3) calls to the Sparta library [25] for sparse tensor contractions. A variety of sparse formats
are possible in TACO through format abstractions [9]; our work focuses on the popular CSF
representation. We note that very recent developments [49] have advanced the TACO compiler to
allow some forms of sparse workspaces for intermediate tensors; our work was completed before
this feature was available and only uses dense workspaces [18] previously supported by TACO.
A number of efforts have addressed loop-level optimization of dense tensor contractions for
CPUs and GPUs [1, 17, 22, 26, 29, 36, 37, 43]. However, none of them can be directly adapted for
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optimizing sparse tensor contractions because of the need to use a compact data representation
for sparse tensors. Cociorva et al. [10] addressed loop fusion in the context of optimizing dense
tensor networks. Similar to CoNST, the reduction of the order of intermediate tensors is addressed.
However, the main focus of that work was to identify more aggressively fused configurations that
further reduced the space for intermediate tensors at the price of redundant computation. CONST
does not introduce redundant operations in its optimization and does not incorporate any such
space—time tradeoff considerations.

Sparse fusion [7] is an inspector—executor strategy for iteration composition for fused execu-
tion of two sparse kernels. This approach optimizes kernels with loop-carried dependencies using
runtime techniques. Tensor mode layout and its interactions with iteration order and mode reduc-
tion of intermediate sparse tensors are not considered by this existing work. In contrast, our work
considers these factors in compile-time code generation for a general contraction tree.

The sparse polyhedral framework [44] defines inspector—-executor techniques for optimization
of sparse computations, e.g., through runtime iteration/data reordering. It has been applied to
individual tensor contractions [50] where iteration code is derived using polyhedral scanning. This
approach does not consider fusion or reordering of loops/modes. In contrast to inspector—executor
approaches, which often involve non-trivial “inspector” overhead in analyzing the sparsity pattern
for each execution instance, CoONST uses a purely static compile-time approach. It thus avoids such
overhead and the generated code can be used for different input tensors without any instance-
specific runtime analysis.

SparseTIR [48] is an approach to represent sparse tensors in composable formats and to enable
program transformations in a composable manner. The sparse compilation support in the MLIR
infrastructure [5] enables integration of sparse tensors and computations with other elements of
MLIR, as well as TACO-like code generation. SpT TN-Cyclops [16] is an extension of the Cyclops
Tensor Framework (CTF) [42] to optimize a sub-class of sparse tensor networks. In contrast to
CoNST, which can handle arbitrary sparse tensor networks, SpTTN-Cyclops only targets a product
of a single sparse tensor with a network of several dense tensors. Indexed Streams [21] develops a
formal operational model and intermediate representation for fused execution of tensor contrac-
tions, using both sparse tensor algebra and relational algebra, along with a compiler to generate
code. Tian et al. [45] introduce a DSL to support dense and sparse tensor algebra algorithms and
sparse tensor storage formats in the COMET compiler [27], which generates code for a given tensor
expression. Zhou et al. [51] propose a set of techniques to optimize tensor networks including use
of loop fusion. Using manual implementation of the proposed techniques, performance improve-
ment is demonstrated over code generated by TACO [19] on a set of benchmarks. Finch [2, 3] is a
recently developed framework that supports efficient code generation for computations on sparse
matrices/tensors that exhibit structured sparsity. None of these efforts address the coupled auto-
mated optimization of tensor layout, contraction schedule, and mode reduction for intermediates
in fused code being performed by CoNST.

7 Conclusions

Effective fused code generation for sparse tensor networks depends on inter-related factors: sched-
ule of binary contractions, permutation of nested loops, and layout order of tensor modes. We
demonstrate that an integrated constraint-based formulation can capture these factors and can
produce fused loop structures for efficient execution. Our experimental evaluation confirms that
this approach advances the state of the art in achieving high performance for sparse tensor net-
works. An important next step is to apply these techniques for sparse tensor algebras needed by
computational scientists (e.g., in quantum chemistry [6]).
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