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 Introduction 

his article describes CoNST, a Co de generator for N etworks of S parse T ensors. A tensor net-
ork expresses a collection of tensor contractions over a set of tensors. Tensor contractions
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re higher-order analogs of matrix–matrix multiplication. For example, the binary contraction
 i jlm 
= U i jk ×W klm 

represents the computation ∀ i, j, l , m : Y i jlm 
= 
∑

k U i jk ×W klm 
. Multi-tensor

roduct expressions, e.g., Z im = U i jk ×V jl ×W klm 
, arise commonly in many domains of scien-

ific computing and data science (e.g., high-order models in quantum chemistry [ 35 ], tensor de-
omposition schemes [ 20 ]). They involve multiple tensors and multiple summation indices, e.g.,
 i, m : Z im = 

∑
j, k, l U i jk ×V jl ×W klm 

. 
These multi-tensor products are also referred to as tensor networks , 

epresented with a node for every tensor instance and edges representing 
ariables that index the various tensors. The figure on the right illustrates 
his representation. As explained later in Section 2 , such a network is 
ypically computed efficiently using a tree of binary contractions. 
Considerable prior research has been directed at the optimization of dense 

ensor contractions [ 1 , 17 , 22 , 26 , 29 , 30 , 36 , 37 , 43 ] and the optimization of 
ensor networks where the component tensors are dense [ 10 , 15 , 32 ]. A few efforts have also ad-
ressed the optimization of tensor networks with sparse tensors under some restrictions [ 12 , 16 , 19 ,
7 , 51 ]. However, optimization and effective code generation for arbitrary sparse tensor networks
emain an unsolved challenge. 
A fundamental difficulty in developing efficient sparse versions of tensor computations in com-
arison to the corresponding dense versions is the fact that some compact representation such
s Compressed Sparse Fiber (CSF , [ 40 , 41 ], detailed in Section 2 ) must be used to represent
he non-zero elements, with the implication that arbitrary slices of a multi-dimensional tensor
annot be efficiently extracted. In contrast, with dense tensors, arbitrary elements or contiguous
lices along any combination of tensor modes can be easily and efficiently accessed. 1 Therefore,
hile code generation for the application of an arbitrary combination of loop transformations like
iling, permutation, and fusion is quite straightforward for the dense case, the same is not true for
ptimization and code generation for a collection of sparse tensor contractions. 
Loop fusion transforms a sequence of perfectly nested loops into an imperfectly nested loop,
here a set of one or more outermost loops with exactly matching loop bounds from each of the
oop nests is pulled out and made common surrounding loops for a sequence of lower-dimensional
oop nests containing the non-common loops. Consider the simplest case of loop fusion across a
equence of two perfectly nested loops, where the first loop nest produces an array that is con-
umed by the second loop nest. The cache reuse distance (defined as the number of distinct data
lements accessed between two successive accesses to a given data element) for the fused version
f the code can be significantly lower than the unfused version. This is because lower-dimensional
lices of the produced/consumed array (corresponding to fixed values of the fused loop iterators)
re produced/consumed in temporal proximity with the fused version, whereas all accesses to the
ntire array happen for the first loop-nest before any accesses from the second loop-nest for the
nfused code, resulting in much larger reuse distances. 
The above benefit of improved data locality and reuse in cache for fused producer/consumer

oops applies to both dense and sparse tensor contractions. However, for the sparse context, an
dditional benefit accrues from loop fusion. When a set of common surrounding loops between
 producer loop-nest and a consumer loop-nest is fused, it is not necessary to allocate the full
pace for the temporary array that is produced/consumed, but only as much as needed for lower-
imensional slices corresponding to fixed values for the fused loop iterators. This is because space
sed for a previous slice (corresponding to some fixed values of the fused loop iterators) can be
 We use “mode” to refer to a tensor dimension; an order- n tensor has n modes. Terminology details are presented in 

ection 2 . 
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eused for the next slice. Further, if a sufficient number of loops are fused and the size of the full
roduct data space for the lower-dimensional slice is small, a dense representation can be used
nstead of an explicit sparse representation for the slices of the intermediate temporary tensor
etween the producer and consumer statement, thereby lowering data access overheads [ 18 ]. 
Although a few efforts have been directed toward compiler optimization of sparse matrix and

ensor computations [ 7 , 12 , 18 , 19 , 24 , 25 , 44 , 45 , 50 ], the current state of the art does not adequately
ddress a number of critical inter-dependent aspects in the generation of efficient fused code for
 given tree of sparse binary contractions. 

Sparse tensor layout mode order. We focus on the widely used CSF format, which is commonly
sed for efficient sparse tensor computations. Since CSF uses a nested representation with n levels
or a tensor of order n, efficient access is only feasible for some groupings of non-zero elements
y traversing the hierarchical nesting structure. Selecting the nesting of the n modes of a tensor
s a key factor for achieving high performance. Prior efforts in compiler optimization and code
eneration for sparse computations have not explored the impact of the choice of CSF nested
ayout mode order on the performance of contraction tree evaluation. 

Loop fusion to reduce intermediate tensors. The temporary intermediate tensors that correspond
o inner nodes of the contraction tree could be much larger than the input and output tensors of
he network. By fusing common loops of the nested loops that produce and consume an interme-
iate tensor, the size of that tensor can be reduced significantly (as illustrated by an example in
ection 2 ). A reduction of the size of an intermediate tensor can enable significant reduction in the
umber of cache misses if the reduced intermediate can fit in cache but the intermediate without
oop fusion does not. Further, a dense representation of the intermediate becomes feasible, which
urther improves performance due to the reduced cost of tensor element accesses [ 18 ]. 

Inter-dependence between loop order, mode order, and contraction order. In addition to selecting the
ayout mode order for each tensor in the contraction tree, code generation needs to select a legal
oop fusion structure to implement the contractions from the tree. Such a fused structure depends
n the order of surrounding loops for each contraction, on the order in which the contractions are
xecuted, and on the choice of layout mode order. No existing work considers the space of these
nter-related choices in a systematic and general manner. 

Our solution. We propose CoNST, a novel approach that considers the above factors in an in-
egrated manner using a single formulation. This formulation encodes several inter-related goals.
irst, for each contraction, we ensure that the order of loops that surround it (in the fused loop
est) is compatible with the layout mode order of all tensors that participate in the contraction.
his allows for efficient traversal of non-zero elements of these tensors. Second, we produce a
alid topological sort of the contraction tree (i.e., each producer contraction appears before the
orresponding consumer contraction). Third, the surrounding loops for each producer–consumer
air allow for valid fusion—and not only for this pair, but also for all other contractions that ap-
ear between the pair in the topological sort. Finally, the resulting fusion allows for significant
eduction of intermediates: specifically, all intermediate tensors are guaranteed to be of order at
ost l , where l is a small constant limit (e.g., l = 1 ) given as a parameter to our tool. 
To find a solution that satisfies these goals, we formulate a constraint system in which constraint

ariables are used to encode all relevant choices: order of surrounding loops, order of tensor layout
odes, and topological order of contractions. The system is then solved by the Z3 SMT solver [ 11 ]
nd the result is used to create the desired fused loop structure and tensor mode layouts for the
ntire contraction tree. This structure is lowered to the IR of the Tensor Algebra Compiler

TACO) [ 19 ], which is then used to generate the final executable code. The main contributions of

oNST are: 

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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—We design a novel constraint-based approach for encoding the space of possible fused loop
structures and tensor CSF layouts, with the goal of reducing the order of intermediate ten-
sors. This is the first work that proposes such a general integrated view of code generation
for sparse tensor contraction trees. 

—We develop an approach to translate the constraint solution to the concrete index notation
IR [ 18 ] of the TACO compiler. 

—We perform extensive experimental comparison with the three most closely related sys-
tems: TACO [ 19 ], SparseLNR [ 12 ], and Sparta [ 25 ]. Using a variety of benchmarks from
quantum chemistry and tensor decomposition, we demonstrate significant performance
improvements over this state of the art. 

 Background and Overview 

.1 Tensor Networks 

e first describe the abstract specification of a tensor network. Such a specification can be lowered
o many possible code implementations. Examples of such implementations are also given below.

Sparse tensors. A tensor T of order n is defined by a sequence 〈 d 0 , . . . , d n−1 〉 of modes . Each mode
 k denotes a set of index values: d k = {x ∈ N : 0 ≤ x < N k }, where N k is the mode extent . Note
hat the numbering of modes from 0 to n − 1 is purely for notational purposes and does not imply
ny particular concrete data layout representation; deciding on such a layout is one of the goals
f our work, as described later. For a sparse tensor T , its non-zero structure is defined by some
ubset nz (T ) of the Cartesian product d 0 × d 2 × · · · × d n−1 . All and only non-zero elements of T 

ave coordinates that are in nz (T ). Each (x 0 , x 1 , . . . ) ∈ nz (T ) is associated with a non-zero value
 (x 0 , x 1 , . . . ) ∈ R . 
The tensor expressions described below use tensor references . A reference to an order- n tensor

 is defined by a sequence 〈 i 0 , . . . , i n−1 〉 of distinct iteration indices (“indices” for short). Such a
eference will be denoted by T i 0 i 1 . . . . Each index i k is mapped to the corresponding mode d k of T and
enotes the values defined by that mode: i k = {x ∈ N : 0 ≤ x < N k }. The same index may appear
n several tensor references, for the same tensor or for different ones. In all such occurrences, the
ndex denotes the same set of index values. For example, an expression discussed shortly contains
ensor references X i jqr , A ipq , and B jpr . As an illustration, index j appears in two of these references
nd is mapped to mode 1 of X and mode 0 of B (and thus both modes have the same extent). 

CSF representation. Our work focuses on sparse tensors represented in the widely used CSF
ormat [ 40 , 41 ]. CSF organizes a sparse tensor as a tree, defined by some permutation of modes
 0 , . . . , d n−1 . This order of modes defines the CSF layout and must be decided when creating a
oncrete implementation of the computation. The internal nodes of the tree store the indices of
on-zero elements in the corresponding mode. The leaves of the tree store the non-zero values. An
uxiliary root node connects the entire structure. Using the sparse format abstractions introduced
y Chou et al. [ 9 ], the outermost mode is dense (i.e., all index values are represented), while the
emaining ones are compressed (i.e., only index values with corresponding non-zero elements are
epresented). 2 

Figure 1 illustrates the CSF representation for an order-4 sparse tensor. When the abstract spec-
fication of a tensor expression (or equivalently, of a tensor network) is lowered to a concrete
mplementation, both tensors and tensor references are instantiated to specific representations.
or example, suppose we have a tensor A with modes d 0 , d 1 , and d 2 , and a reference A ipq appears
 Our approach also trivially applies to a CSF variation in which the outermost mode is compressed. 

CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Fig. 1. The CSF format for representing an order-4 sparse tensor in memory. The table on the left shows the 

indices of non-zero elements. The tree on the right shows the CSF representation (root node is not shown). 

Fig. 2. Tensor network and code for N -ary contraction for expression R i jk = A ipq × B jpr ×C kqr × D jkr . 
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n the tensor network. One (of many) possible implementation is to order the modes as d 1 , d 2 , d 0 in
uter-to-inner CSF order. The code references to the tensor would be consistent with this order;
.e., reference A ipq becomes A[p,q,i] in the code implementation. 

Tensor contractions and tensor networks. Consider tensors T , S , and R and a binary contraction
 i 0 i 1 . . . = T j 0 j 1 . . . × S k 0 k 1 . . . . Let In T , In S , and In R denote the sets of indices appearing in each tensor
eference, respectively. Any index i ∈ In R is an external index for this contraction. Any index i ∈
In T ∪ In S ) \ In R is a contraction index for the contraction. 
The non-zero structure of R is defined by the non-zero structure of T and S as follows:

z 0 , z 1 , . . . ) ∈ nz (R) if and only if there exists at least one pair of tuples (x 0 , x 1 , . . . ) ∈ nz (T )

nd (y 0 , y 1 , . . . ) ∈ nz (S) such that for each index i ∈ In T ∪ In S ∪ In R , the values correspond-
ng to i in the three tuples (if present) are the same. For any (z 0 , z 1 , . . . ) ∈ nz (R), the asso-
iated value R(z 0 , z 1 , . . . ) ∈ R is the sum of T (x 0 , x 1 , . . . ) × S(y 0 , y 1 , . . . ) for all such “match-
ng” pairs of tuples (x 0 , x 1 , . . . ) ∈ nz (T ) and (y 0 , y 1 , . . . ) ∈ nz (S). As a simple example, R i j =

 ik × S k j represents a standard matrix multiplication: for any (a, b) ∈ nz (R) we have R(a, b) =

{ c : (a , c)∈ nz (T )∧(c, b)∈ nz (S )} T (a, c) × S(c, b). 
A general (non-binary) contraction expression of the form R . . . = T1 . . . × · · · × Tn . . . is defined

imilarly. Such an expression can be equivalently represented as a tensor network , with one vertex
or each tensor reference in the expression, and a hyper-edge for every index. An example of a
ensor network representing the tensor expression R i jk = A ipq × B jpr ×C kqr × D jkr is shown in
igure 2 (a). Here dashed hyperedges are used to distinguish the contraction indices in the tensor
xpression (i.e., i , j, and k) from the external indices. 
The direct computation of any tensor network (multi-tensor product expression) can be per-

ormed via a nested loop, with one loop corresponding to each index, and a single statement that
irrors the tensor expression. Figure 2 (b) shows pseudo-code for such an N -ary contraction, where
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Fig. 3. Contraction tree for a tensor network. 
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 is the number of operand tensors. Here and for later examples that apply in both the dense and
parse context, we often do not explicitly indicate loop bounds because the form will differ for
he dense and sparse case. Note that the figure shows a specific code version with a concrete loop
rder (e.g., i in the outermost position) and tensor data layouts (e.g., j is the outermost CSF level
f D). There are many possible choices for the loop order and the tensor layout. While the loops
re straightforward in the dense case, for sparse CSF tensors the code is much more complex, and
eneral techniques for such iteration have been developed [ 19 ]. 
For the dense case, the complexity of such an implementation is O(M i M j M k M p M q M r ), where
 x are the corresponding extents. By exploiting associativity and distributivity, the multi-term
roduct can be rewritten as a sequence of binary contractions, with temporary intermediate ten-
ors X and Y as shown in Figure 3 (c). By using a sequence of binary contractions instead of an N -ary
ontraction, the complexity is reduced to O(M i M j M p M q M r +M i M j M k M q M r +M i M j M k M r ). If all
ensor modes have the same extent M , the complexity reduces from O(M 

6 ) to O(M 
5 ). 

There exist many different sequences of binary tensor contractions to compute a tensor net-
ork, with varying computational complexity. The problem of identifying an operation-optimal
equence of binary contractions for a multi-term product expression is NP-complete [ 8 ], but prac-
ically effective solutions have been developed for this problem [ 15 , 32 , 38 ]. We assume that one of
hese solutions has been applied to produce a binary contraction tree and consider the orthogonal
roblem of generating efficient code to implement that contraction tree. 

.2 Challenges and Overview of Solution 

he problem we address in this article is the following: Given a binary tensor contraction tree for a
parse tensor network, generate efficient code for its evaluation. 

Loop fusion and dimension reduction of intermediates. Figure 4 (a) shows one possible code imple-
entation for the contraction tree from Figure 3 (b). Since identical loops over indices i and j exist

n the loop code for all three binary contractions, we can fuse those loops to create the imperfectly
ested loop structure in Figure 4 (b). We note that the unfused code version in Figure 4 (a) requires
-D intermediate arrays X [i, j, q, r ] and Y [i, j, k, r ], but the fused code in Figure 4 (b) can use 2-D
ntermediate arrays X [q, r ] and Y [k, r ]. This is because i and j are common surrounding loops,
hus producing and consuming 2-D slices of the 4-D intermediate arrays. The same space can be
eused for a later slice since all values produced for a previous slice have been fully used. 
In contrast to the dense case, with sparse tensor contractions a fundamental challenge is that of

nsertion of each additive contribution from the product of a pair of elements of the input tensors
o the appropriate element of a sparse output tensor. The TACO compiler [ 19 ] defines a workspaces
ptimization [ 18 ] to address this challenge, where a dense multidimensional temporary array is
sed to assemble multidimensional slices of the output tensor during the contraction of sparse
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Fig. 4. Reduction of dimensionality of intermediate tensors via loop fusion. 
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nput tensors. By using a dense “workspace,” very efficient O(1 ) cost access to arbitrary elements
n the slice is achieved for assembling the irregularly scattered contributions generated during
he contraction. A significant consideration with the use of the dense workspaces is the space
equired: the extents of the workspace array must equal the extents of the corresponding modes
f the sparse output tensor and thus can become excessive. By use of loop fusion between producer
nd consumer contractions to reduce the number of explicitly represented modes in intermediate
ensors, we represent all intermediates as dense workspaces and thus make efficient use of TACO’s
orkspaces optimization. 
In addition to fusion, a critical factor for high performance is the compatibility between loop
rder and layout order. For sparse CSF tensors, efficient access to the non-zero elements is only
easible if the outer-to-inner order of nested loop indices in the code implementation is consistent
ith the layout order of tensor modes, in relation to the loop indices that index them. For example,
he elements referenced by A[i,p,q] can be accessed efficiently only if i appears earlier than p
which itself appears earlier than q) in the loops surrounding this reference. 
To summarize, given a binary contraction tree to implement a general sparse tensor contraction

xpression, three critical inter-related decisions affect the performance of the generated code: 

—Linear execution order of contractions: The fusibility of loops between a producer contraction
of an intermediate tensor and a subsequent consumer contraction is affected by the linear
execution order of the contractions. 

—Loop permutation order for each contraction: All surrounding loops of a contraction are
fully permutable. The chosen permutation affects both the fusibility of loops across tensor
contractions and the efficiency of access of non-zero elements of sparse tensors. 

—Mode layout order for each tensor: The compatibility of the layout order of each tensor with
the loop order of the surrounding loops is essential for efficient access. 

These three decisions are inter-dependent. The linear execution order (i.e., the topological sort
f the contraction tree) affects which loop fusion structures are possible. The order of loops for
ach contraction determines what fusion can be achieved, while also imposing constraints on the
ata layouts of tensors that appear in the contraction tree. In this article, we propose a novel
ntegrated solution that considers these three decisions in a single formulation. Our approach
reates a constraint system that encodes the space of possible decisions and their interdependence.
his system is then solved using the Z3 SMT solver [ 11 ]. The solution is used to create a legal
used loop structure that reduces the size of intermediate tensors while ensuring the compatibility
onstraints described above. 
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Table 1. Comparison with State-of-the-art Systems for Sparse Tensor Computations 

TACO SparseLNR Sparta CoNST (ours) 
Loop fusion ✗ ✓ ✗ ✓ 

Data layout selection ✗ ✗ ✗ ✓ 

Schedule for contraction trees ✗ ✗ ✗ ✓ 
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To the best of our knowledge, this is the first work that takes such an integrated view and
rovides a general approach for code generation for arbitrary tensor contraction trees. Table 1
ontrasts our work with the three most closely related state-of-the-art systems for sparse tensor
omputations described below. Our experimental evaluation presents comparisons with all three
xisting systems. Section 6 provides further details on these and other related efforts. 
The CoNST system leverages, as its last stage, the code generator for sparse tensor compu-

ations in TACO [ 19 ]. The main focus of TACO is the generation of efficient code for N -ary
ontractions with arbitrarily complex tensor expressions. While TACO can be used to generate
ode for a sequence of binary sparse tensor contractions, it does not address optimizations like
oop fusion across tensor contractions, tensor mode layout choice, or the choice of sequence of
ensor contractions for a given contraction tree. In our experimental evaluation (Section 5 ), we
how that code generated by CoNST achieves significant speedup over code directly generated
y TACO. 
SparseLNR [ 12 ] builds on TACO to implement loop fusion optimization. It takes a multi-term

ensor product expression as input and generates fused loop code for a sequence of binary tensor
ontractions corresponding to the input tensor product expression. In our experimental evaluation,
e compare the performance of code generated by SparseLNR with code generated by CoNST and
emonstrate significant speedups. 
Sparta [ 25 ] implements a library for efficient tensor contraction of arbitrary pairs of sparse

ensors. Since a library is being created, this work does not address any optimizations like loop
usion across contractions, data layout choice for tensors, or the schedule of contractions for a
ontraction tree. We performed extensive experimentation to compare the performance of code
enerated by CoNST with the best performance among all valid tensor layout permutations for
nfused sequences of contractions executed using Sparta. These experiments demonstrate very
ignificant performance gains for CoNST. 

 Constraint-based Integrated Fusion and Data Layout Selection 

ur approach aims to generate a concrete implementation of a given contraction tree by automat-
cally determining (1) the order of modes in the data layout of each tensor and (2) a structure of
used loops that minimizes the order of intermediate tensors. We formulate a constraint system
hat answers the following question: For the given contraction tree, does there exist an imple-
entation for which all intermediate tensors are of order at most l , for some given integer l? We
rst ask this question for l = 1 . If the answer is positive, the constraint system solution is used to
onstruct a code implementation for the contraction tree. If the answer is negative, we formulate
nd solve a constraint system for l = 2 , seeking a solution in which all intermediates are at most
-D matrices. This process continues until we find a solution. Note that a trivial solution without
ny fusion is guaranteed to exist for a sufficiently large value of l . 
In each of these steps, we employ the Z3 SMT solver [ 11 ] to provide either (1) a negative answer

“the constraint system is unsatisfiable”) or (2) a positive answer with a concrete constraint solution
hat defines the desired tensor layouts and loop structure. The generated constraints are based
n quantifier-free integer difference logic. While in general the search space is exponential in
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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he number of contractions and the number of indices, our experience shows that Z3 solves the
enerated constraint systems with very practical running times (as detailed in Section 5 ). 

.1 Input and Output 

he input to our approach is a set of contractions {C 0 , C 1 , . . . , C m−1 } organized in a contraction
ree. Each leaf node corresponds to an input tensor reference, the root node corresponds to a
esult tensor reference, and every other node corresponds to an intermediate tensor reference. As
n example, the contraction tree for X i jqr = A ipq × B jpr ; Y i jkr = X i jqr ×C kqr ; R i jk = Y i jkr × D jkr 

as shown earlier in Figure 3 (b). Here A, B, and C are input tensors; X and Y are intermediate
ensors; and R is the result tensor. 
A naive implementation of a given tree would contain a sequence of perfectly nested loops

one loop nest per contraction), based on some valid topological sort order of tree nodes. For each
ontraction, the loop nest would be some permutation of the set of indices that appear in the
ensor references, and the loop body would be a single assignment. For example, the loop nest for
 i jqr = A ipq × B jpr would contain loops for r , q, i , j, and p in some order. 
As discussed earlier in Section 2 , for any (unfused or fused) implementation, a fundamental con-

traint is that the order of surrounding loops must match the data layout order of modes in the
SF tensor representation. This is needed to allow for efficient iteration over the sparse represen-
ation. For example, consider reference A ipq . Recall from the earlier discussion that each index is
apped to the corresponding mode of A: i is mapped to d 0 , p is mapped to d 1 , and q is mapped
o d 2 . A concrete implementation would select a particular order of d 0 , d 1 , and d 2 as the outer,
iddle, and inner level in the CSF representation, respectively. For example, suppose that this or-
er is, from outer to inner, 〈 d 1 , d 2 , d 0 〉. In the code implementation, the tensor reference would be
[p,q,i] . Efficient iteration over elements of A would require that the loop structure surround-
ng the reference matches this order: the p loop must appear before the q loop, which must appear
efore the i loop. The constraint-based approach described below incorporates such constraints
or the loops that surround (in a fused code structure) each tensor reference from the contraction
ree. 
Each of the fused loop structures we would like to explore can be uniquely defined by (1) a

opological sort order of the non-leaf nodes in the contraction tree and (2) for each such node,
n ordering of the indices that appear in it. The index order for a node defines the order of
oops that would surround the corresponding assignment in the fused loop nest. This order

Fig. 5. Fused code structure. 

lso defines the CSF layout order for the corresponding tensors. 
For example, consider the code structure in

Figure 5 , which is derived from the solution of
our constraint system for the running exam-
ple. Here there is a single valid topological sort
for the assignments. The ordering of surround-
ing loops for the assignments is 〈 r , j, p, q, i〉,
〈 r , j, q, k, i〉, and 〈 r , j, k, i〉, respectively. The fu-
sion of the common r and j loops allows X and
Y to be reduced to 2-D tensors. The order of in-
dices in all tensor references is consistent with
the order of surrounding loops. 

.2 Constraint Formulation 

he space of targeted code structures is encoded via constraints over integer-typed constraint
ariables, as described below. 
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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3.2.1 Ordering of Assignments. For each contraction C i , the position of the corresponding as-
ignment relative to the other assignments in the code is encoded by a constraint variable ap i (short
or “assignment position for C i ”) such that 0 ≤ ap i < m, ap i � ap k for all k � i , and ap i < ap j if
 i is a child of C j in the contraction tree. Here m is the number of contractions. The first two
onstraints guarantee uniqueness and appropriate range for all ap i . The last constraint ensures a
alid topological sort order. 

Example. For the running example, we have ap 0 for X i jqr = A ipq × B jpr , ap 1 for Y i jkr = X i jqr ×

 kqr , and ap 2 for R i jk = Y i jkr × D jkr . For this contraction tree (Figure 3 ) the only valid topological
ort is C 0 , C 1 , C 2 and thus the only possible solution is ap i = i . In a more general tree, there may
e multiple valid assignments of values to ap i , each corresponding to one topological sort order. 

3.2.2 Ordering of Tensor Modes. For each order- n tensor T that has references in the contraction
ree, and each mode d j of T ( 0 ≤ j < n), we use a constraint variable dp T , j to encode the position
f d j in the CSF layout of the tensor. The following constraints are used: 0 ≤ dp T , j < n and dp T , j �
p T , j ′ for all j 

′ � j. Any constraint variable values that satisfy these constraints define a particular
ermutation of the modes of tensor T and thus a concrete CSF data layout. 

Example. In the running example, A has three modes and thus three constraint variables dp A,0 ,
p A,1 , and dp A,2 . In the code structure shown in Figure 5 , abstract tensor reference A ipq is mapped
o concrete reference A[p,q,i] . This corresponds to the following assignment of values to the
onstraint variables: dp A,0 = 2 , dp A,1 = 0 , and dp A,2 = 1 . Thus, the outermost level in the CSF rep-
esentation corresponds to mode d 1 (indexed by p), the next CSF level corresponds to d 2 (indexed
y q), and the inner CSF level corresponds to d 0 (indexed by i). 

3.2.3 Ordering of Loops. Next, we consider constraints that encode the fused loop structure. For
ny contraction C i , we need to encode the loop order of the loops surrounding the corresponding
ssignment. Let In i be the set of indices that appear in C i . For each k ∈ In i , we define an integer
onstraint variable lp i,k (short for “loop position of index k for C i ”). These variables will encode a
ermutation of the elements of In i , that is, a loop order for the loops surrounding the assignment
or C i . If lp i,k has a value of 0, index k will be the outermost loop surrounding the assignment. If
he value is 1, the index will be the second-outermost loop, and so forth. To encode a permutation,
or each k ∈ In i we have constraints 0 ≤ lp i,k < | In i | and lp i,k � lp i,k ′ for all k 

′ ∈ In i \ { k} . 

Example. In the running example, for contraction C 0 : X i jqr = A ipq × B jpr we have In 0 =
i, j, p, q, r }. For this contraction we will use constraint variables lp 0 ,i , lp 0 , j , lp 0 ,p , lp 0 ,q , lp 0 ,r . In
he code structure shown in Figure 5 , the loop order for C 0 is 〈 r , j, p, q, i〉. This order corresponds
o a constraint solution in which lp 0 ,i = 4 , lp 0 , j = 1 , lp 0 ,p = 2 , lp 0 ,q = 3 , and lp 0 ,r = 0 . 

3.2.4 Consistency between Mode Order and Loop Order. Next, we need to ensure that the order
f loops defined by lp i,k is consistent with the order of modes for each tensor appearing in con-
raction C i , as encoded by dp T , j . Consider a reference to T appearing in contraction C i . For each
air of modes d j and d j ′ of T , let k and k ′ be the indices that correspond to these modes in the
eference. The following constraint enforces the consistency between mode order and loop order:

(dp T , j < dp T , j ′ ) ⇒ (lp i,k < lp i,k ′ ). 

Here dp T , j < dp T , j ′ is true if and only if mode d j appears earlier than mode d j ′ in the concrete
SF data layout of tensor T . If this is the case, we want to enforce that the index corresponding
o d j (i.e., k) appears earlier than the index corresponding to d j ′ (i.e., k 

′ ) in the loop order of loops
urrounding the assignment for C i . As discussed earlier, this constraint ensures that the order
f iteration defined by the loop order allows an efficient traversal of the CSF data structure for
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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 . Such constraints are introduced for all input tensors. For intermediates that are represented
hrough dense workspaces, such constraints are not necessary. In our implementation, we use
ense workspaces for all intermediates. 

Example. Consider reference A ipq from the running example and the pair of modes d 0 and d 2 ,
ith corresponding indices i and q. The relationship between variables dp A,0 (for d 0 ), dp A,2 (for
 2 ), lp 0 ,i (for i), and lp 0 ,q (for q) is captured by the following two constraints: 

(dp A,0 < dp A,2 ) ⇒ (lp 0 ,i < lp 0 ,q ) (dp A,2 < dp A,0 ) ⇒ (lp 0 ,q < lp 0 ,i ). 

s described earlier, in the constraint solution we have dp A,0 = 2 , dp A,2 = 1 , lp 0 ,i = 4 , and lp 0 ,q = 3 .
f course, these values satisfy both constraints. 

3.2.5 Producer–consumer Pairs. Finally, we consider every pair of contractions C i , C j such that
 i is a child of C j in the contraction tree. In this case C i produces a reference to a tensor T that is
hen consumed by C j . Let n be the order of T . Our goal is to identify a loop fusion structure that
educes the order of this intermediate tensor T to be some n 

′ ≤ l for a given parameter l . Recall
hat in our overall scheme, we first define a constraint system with l = 1 . If this system cannot be
atisfied, we define a new system with l = 2 , and so forth. 
Let In T be the set of indices that appear in the reference to T . We define constraints that include

p i,k (for the producer C i ) and lp j,k (for the consumer C j ), for all k ∈ In T . The constraints ensure
hat a valid fusion structure exists to achieve the desired reduced order n 

′ of T . 

Producer constraints. First, we consider the outermost n − l indices in the loop order associated
ith the producer C i and ensure that they are all indices of the result reference. Specifically, for
ach s such that 0 ≤ s < n − l and for each k ∈ In T , we create terms of the form lp i,k = s and
ntroduce an OR constraint for these terms (illustrated by an example below). This guarantees that
he loop at position s in the loop structure surrounding the producer statement is iterating over
ne of the indices that appear in the result reference. The combination of these constraints for all
airs of s and k ensures that the outermost n − l loops for C i are all indices of its result tensor
eference. 

Example. Consider reference X i jqr from the running example. This reference is produced by
 0 : X i jqr = A ipq × B jpr and consumed by C 1 : Y i jkr = X i jqr ×C kqr . We have In X = {i, j, q, r }. The
roducer constraints will involve variables lp 0 ,i , lp 0 , j , lp 0 ,q , and lp 0 ,r . Suppose l = 2 . We would like

he outermost n − l = 4 − 2 indices in the loop order for C 0 to be indices that access this reference.
ogether with the remaining constraints described shortly, this would allow those two indices to
e removed from the reference after fusion. As a result, the order of X can be reduced from 4 to 2.
wo constraints are formulated. First, 

lp 0 ,i = 0 ∨ lp 0 , j = 0 ∨ lp 0 ,q = 0 ∨ lp 0 ,r = 0 

nsures that the outermost loop surrounding the producer is indexed by one of i , j, q, or r . Similarly,

lp 0 ,i = 1 ∨ lp 0 , j = 1 ∨ lp 0 ,q = 1 ∨ lp 0 ,r = 1 

uarantees that the second-outermost loop is also indexed by one of the indices of X i jqr . For the
used code shown in Figure 5 , we have lp 0 ,r = 0 (i.e., the outermost loop for C 0 is r ) and lp 0 , j = 1
i.e., the second-outermost loop is j). Thus, in the fused code, the reference to X will only contain
he remaining indices i and q, as shown by X[q,i] in Figure 5 . 

Consumer constraints. Next, we create constraints for the consumer contraction C j : the sequence
f its outermost n − l loops must match the sequence of the outermost n − l loops for the producer
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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 i . This ensures that the same sequence of n − l loops surrounds both the producer and the con-
umer, which is required for fusion that reduces the order of the intermediate from n to n 

′ such
hat n 

′ ≤ n − (n − l) = l . (In case the constraint solver produces a solution for which more than
 − l outermost loops can be fused, we can have n 

′ < l .) The constraints for C j include, for each s
uch that 0 ≤ s < n − l and for each k ∈ In T , a constraint of the form (lp i,k = s) ⇒ (lp j,k = s). 

Example. For X i jqr and its consumer C 1 , we include constraints connecting lp 0 ,k and lp 1 ,k for
ach k ∈ {i, j, q, r } for s = 0 (i.e., the outermost loop) and s = 1 (i.e., the second-outermost loop). 

Statements between producer and consumer. Finally, we have to consider all assignments that
ppear between the producer C i and the consumer C j in the topological sort order defined by con-
traint variables ap i described earlier. For any such assignment, the sequence of the outermost n − l
oops that surround it must match the ones for C i and C j . This is needed in order to have a valid
usion structure. The corresponding constraints are of the following form, for each contraction C r 

ith r � i and r � j, each s with 0 ≤ s < n − l , and each k ∈ In T : 

(ap i < ap r < ap j ) ⇒ ((lp i,k = s) ⇒ (lp r,k = s)). 

 Code Generation 

his section details the process of code generation from the constraint system solution. We de-
cribe how to use this solution to generate concrete index notation , an IR used by the TACO com-
iler. This IR is then used by TACO to generate the final C code implementation for the contraction
ree. 

.1 Concrete Index Notation 

s discussed in Section 2 , TACO [ 19 ] is a state-of-the-art code generator for sparse tensor com-
utations. While TACO does not address the questions that our work investigates (choice of lin-
ar ordering of tensor contractions from a binary contraction tree, selection of fusion structures,
nd tensor layouts), it does provide code generation functionality for efficient implementations of
SF tensor representations and iteration space traversals. We use concrete index notation [ 18 ], the
ACO IR that captures a computation over sparse tensors through a set of computation constructs.
he two constructs relevant to our work are forall and where . A forall construct denotes an
teration over some index. A where(C,P) construct denotes a producer–consumer relationship.
ere C represents a computation that consumes a tensor being produced by computation P . This
onstruct allows the use of dense workspaces [ 18 ]; as discussed in Section 2 , this is an impor-
ant optimization in TACO. As an illustration, the concrete index notation we generate from the
onstraint solution for the running example has the following form: 

forall(r, forall(j, 
where(forall(k, forall(i, R(j, k, i) = Y(k, i) * D(r, j, k))), 

where(forall(q, forall(k, forall(i, Y(k, i) = X(q, i) * C(r, q, k)))), 
forall(p, forall(q, forall(i, X(q, i) = A(p, q, i) * B(r, j, p)))))))) 

.2 Generating Concrete Index Notation 

he constraint solver’s output can be abstracted as a sequence of pairs 〈 A, π 〉, where A is an assign-
ent for a binary contraction and π is a permutation of the indices appearing in the assignment.
he permutation is defined by the values of constraint variables lp i,k described earlier and denotes
he order of surrounding loops for A. The indices in a reference to a tensor T in A are ordered based
n the values of variables dp T , j ; thus, they are consistent with the order of indices in π . The order
n the sequence of pairs is defined by the values of variables ap i and represents a topological sort
rder of the contraction tree. For the example discussed in the previous section, the sequence is 
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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< X[r,j,q,i] = A[p,q,i] * B[r,j,p], [r,j,p,q,i] > 
< Y[r,j,k,i] = X[r,j,q,i] * C[r,q,k], [r,j,q,k,i] > 
< R[j,k,i] = Y[r,j,k,i] * D[r,j,k], [r,j,k,i] > 

Algorithm 1 describes the creation of the TACO IR from such an input. Function generate is
nitially invoked with the entire sequence of pairs 〈 A, π 〉 based on the constraint system’s solu-
ion. At each level of recursion, the function processes a sequence S of such pairs. There are two
tages of processing. In the first stage (lines 3–12), a sequence L of assignments and indices is con-
tructed. One can think of the elements of L as representing eventual assignments and loops that
ill be introduced in the TACO IR. For example, an index i in L will eventually lead to the creation
f forall(i,...) . Similarly, an assignment in L will produce an equivalent assignment in the
ACO IR. 

LGORITHM 1 : TACO IR Generation 

function generate( S) : 
input: sequence S of pairs 〈 A, π 〉; A is an assignment and π is a permutation of A’s indices 
output: concrete index notation for S 

1 L ← empty list // L is a sequence of indices and/or assignments 

2 M ← empty map // M is a map from an index to a sequence of 〈 A, π 〉 

3 for k ← 0 to | S | − 1 do 
4 〈 A, π 〉 ← S k 
5 if π is empty then 

6 L. append (A)

7 else 

8 i ← π . first () // i is the index of the outermost loop for A at this level 

9 if i � L. last () then 

// i does not match the last element of L and should be added to L 

0 L. append (i)

1 M . put (i, empty list )

2 M . get (i). append (〈 A, π 〉)

3 if L. length () == 1 then 

4 if L. first () is an assignment A then return A 

5 if L. first () is an index i then 

// single index i in L; create a ‘forall’ construct for i 

6 return forall( i , generate ( remove ( i , M . get (i))) ) 

7 else 

// several indices and/or assignments in L; create a ‘where’ construct 

8 return where( generate ( M . get (L. last ())) , generate ( S . truncate (M . get (L. last ()))) ) 

During this first stage, for each element 〈 A, π 〉 of S , in order, we need to decide whether the loop
tructure encoded by π can be fused with the loop structure of the previous element of S , at this
evel of loop nesting. For example, the sequence shown above contains permutation [r,j,p,q,i]
n the first pair of S , followed by [r,j,q,k,i] in the second pair. The processing of the first pair
ill add index r to L. In the processing of the second pair, the outermost index r matches the
urrent last element of L, and thus r is a common loop for both assignments. The processing of
he third pair considers permutation [r,j,k,i] , whose outermost index again matches the last
lement of L. Thus, at the end of the stage, L contains one element: the index r . In a more general
ase, a combination of indices and assignments could be added to L. For example, if the input
equence is < A0,[i] > , < A1,[] > , L contains two elements—i followed by A1 —which eventually
eads to the creation of where(A1,forall(i,A0)) , as described shortly. 
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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As part of this process, for each index in L the algorithm records the sub-sequence of relevant
airs from S . This information is stored in map M , with keys being the indices that are recorded
n L. For the running example, r is mapped in M to the sequence of all three input pairs. This
ist of pairs is then used in the second stage of processing to generate a construct of the form
orall(r,...) . 
The second stage (lines 13–18) considers three cases. If L contains a single assignment, this

ssignment simply becomes the result of IR generation (line 14). If L contains a single index i ,
his index can be used to create a forall(i,...) construct that surrounds all pairs recorded in
. get (i). This creation is shown at line 16. The pairs in M . get (i) are first processed by a helper

unction remove and then used to recursively generate the body of the forall . The helper function,
hich is not shown in the algorithm, plays two roles. Both are illustrated by the modified pairs
elow, which are obtained by calling remove(r, M . get (r )) : 

< X[j,q,i] = A[p,q,i] * B[r,j,p], [j,p,q,i] > 
< Y[j,k,i] = X[j,q,i] * C[r,q,k], [j,q,k,i] > 
< R[j,k,i] = Y[j,k,i] * D[r,j,k], [j,k,i] > 

First, remove eliminates r from the start of all permutations π . This reflects the fact that a
orall(r,...) is created at line 16. Second, the function removes r from all intermediate ten-
or references for which both the producer and the consumer are in M . get (r ). For example,
[r,j,q,i] appears in the first pair (the producer) and in the second pair (the consumer). Both
re surrounded by the common loop r , which means that X can be reduced from order-4 to order-3,
nd thus the reference is rewritten as X[j,q,i] . A similar change is applied to Y[r,j,k,i] . 
At the next level of recursion, this sequence becomes the input to generate . During that
rocessing, L contains only index j and remove(j, M . get (j )) is called to obtain the modified
equence: 

< X[q,i] = A[p,q,i] * B[r,j,p], [p,q,i] > 
< Y[k,i] = X[q,i] * C[r,q,k], [q,k,i] > 
< R[j,k,i] = Y[k,i] * D[r,j,k], [k,i] > 

Then generate is called on this sequence. At that level of recursion, L contains three indices:
 , q , and k . This illustrates the third case in the processing of L. Line 18 shows the creation of a
here construct for this case. Since k is the last element of L, the first operand of where is the IR
enerated for the sub-sequence corresponding to k , which here contains a single pair < R[j,k,i]
 Y[k,i] * D[r,j,k], [k,i] > . 
Recall that this first operand of where corresponds to a consumer of a tensor—in this case, tensor

 . The producer of Y appears in the second operand of where , which is generated from the first
wo pairs from the original sequence: 

< X[q,i] = A[p,q,i] * B[r,j,p], [p,q,i] > 
< Y[k,i] = X[q,i] * C[r,q,k], [q,k,i] > 

At line 18, S . truncate denotes an operation to produce this desired prefix of S by excluding
he sub-sequence defined by M . get (L. last ()). The IR generated from this prefix itself contains a
ested where construct, which captures a producer–consumer computation for X . At the end of
rocessing, the resulting overall structure has the form 

forall(r, forall(j, where(forall(k, forall(i, A2)), 
where(forall(q, forall(k, forall(i, A1))), 

forall(p, forall(q, forall(i, A0))))))) 
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Table 2. Z3 Constraints: Dimensionality of Intermediates, Number of Constraint 

Variables, Number of Constraints, Solver Time 

Tensor network DimBound ConsVars Constraints SolverTime (s) 
3-Index unrestricted 1 19 38 0.013 
3-Index restricted 1 27 57 0.015 
4-Index 1 22 46 0.011 
MTTKRP 1 17 40 0.01 
TTMc 1 19 38 0.01 
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 Experimental Evaluation 

enchmarks. We evaluate the performance of CoNST-generated code on several sparse tensor net-
orks. Section 5.1 presents a case study of sparse tensor computations arising from recent devel-
pments with linear-scaling methods in quantum chemistry [ 33 ]. Three tensor networks are used:
-index integral unrestricted, 3-index integral restricted, and 4-index integral; details on these net-
orks are provided in Section 5.1 . Section 5.2 evaluates performance on the Matricized Tensor

imes Khatri-Rao Product (MTTKRP) computation [ 20 ]. Section 5.3 presents performance on
he Tensor Times Matrix chain (TTMc) expression that is the performance bottleneck for the
ucker decomposition algorithm [ 20 ]. 

Constraint systems. For each of these benchmarks, Table 2 provides details on the Z3 constraint
ystem that was solved to generate the code for our performance evaluations. Column “DimBound”
hows the upper bound l on the dimensionality of intermediate tensors; recall from Section 3 that
his parameter l is used when generating the constraints. 3 Column “ConsVars” shows the number
f constraint variables, while column “Constraints” shows the number of constraints. The last
olumn “SolverTime” shows the execution time of Z3. As can be seen from these measurements,
he systems are relatively small and their solutions can be computed very quickly. The follow-up
teps of generating the TACO IR and then generating executable code with TACO are also quick,
nd together take about 0.1 second. 
Recall that fusion allows for reduction in the dimensionality (and thus memory usage) of inter-
ediate tensors. As shown in column “DimBound” in Table 2 , the solver can be used to identify
usion structures with low-dimensional intermediates. Comparing with the memory usage in an
nfused version (configuration TACO-Unfused, described shortly), we observed that without fu-
ion the memory usage for intermediates in our benchmarks is typically a few megabytes, while
he CoNST-generated fusion reduces this memory usage to a few kilobytes. 

Performance evaluation. All experiments were conducted on an AMD Ryzen Threadripper 3990X
4-core processor with 128 GB RAM. Optimization flags -O3 -fast-math were used to compile the
 code, with the GCC 9.4 compiler. Reported performance results are for single-thread execution.
ffective parallelization of the code is a topic for future work. A key challenge is that of achieving
ffective load balancing across threads because of the significant variance in the work for different
terations of outer-most parallel loops, due to highly variable index-dependent sparsity of inner
ested loops. In all experiments and for all evaluated tools, the input tensors are in COO format
n disk. The time to read the tensors from disk and to represent them in the CSF formats required
y the tools is not included in the measurements. 
We compare CoNST against three state-of-the-art sparse tensor compilers and libraries: 
 We have also tested the approach with synthetic examples where l > 1 is needed to achieve a feasible constraint solution. 
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TACO: 4 As discussed in detail earlier, CoNST uses TACO for generation of C code after co-
ptimization for tensor layout choice, schedule for the contractions, loop fusion, and mode reduc-
ion of intermediate tensors. We compare the performance of CoNST-generated code with that
chieved by direct use of TACO. This was done in two ways: (1) direct N -ary contraction code
as generated by TACO, where a single multi-term tensor product expression was provided as
nput with the same mode order for tensors produced by CoNST’s constraint solver (described in
ection 3 ), and (2) TACO was used to generate code for an unfused sequence of binary contractions,
n which case results are reported for the best-performing mode order for tensors. 
SparseLNR: 5 SparseLNR takes a multi-term tensor product expression and generates fused code

or it by transforming it internally to a sequence of binary contractions. We evaluated its perfor-
ance by providing the same multi-term tensor expression used for comparison with TACO. 
Sparta: 6 We used Sparta to compute the sequence of binary tensor contractions produced by
oNST. However, Sparta’s kernel implementation internally requires that the contraction index
e at the inner-most mode for one input tensor and at the outer-most mode for the other input
ensor. If the provided input tensors do not satisfy this condition, explicit tensor transposition
s performed by Sparta before performing the sparse tensor contraction. Since the tensor layout
enerated by CoNST might not conform to Sparta’s constraints, we instead performed an exhaus-
ive study that evaluated all combinations of distinct tensor layout orders that would not need
dditional transpositions for Sparta. We report the lowest execution time among all evaluated
onfigurations. 

.1 Computing Sparse Integral Tensors for DLPNO Methods in Quantum Chemistry 

ecent developments in predictive-quality quantum chemistry have sought to reduce their com-
utational complexity from a high-order polynomial in the number of electrons N (e.g., O(N 

7 ) and
igher for predictive-quality methods like coupled-cluster [ 4 ]) to linear in N , by exploiting various
ypes of sparsity of electronic wave functions and the relevant quantum mechanical operators [ 35 ].
The few efficient practical realizations of Domain-based Local Pair Natural Orbital

DLPNO) and other similar methods, e.g., the Orca package [ 28 ], have developed custom imple-
entations of sparse tensor algebra, without any utilization of generic infrastructure for sparse
ensor computations. Below we present a case study that demonstrates the potential for using
oNST to automatically generate code that can address the kinds of sparsity constraints that arise
n the implementation of DLPNO and similar sparse formulations in quantum chemistry. 
A key step in the DLPNO methods is the evaluation of matrix elements (integrals) of the elec-

ron repulsion operator that was first formulated in a linear-scaling fashion by Pinski et al. [ 33 ].
he first stage of the DLPNO integral evaluation involves a multi-term tensor product of three
parse tensors; Figure 6 (b) shows a sparse tensor network corresponding to the expression:

 Ki ̃ μ = I Kμν ×C μi × ˜ P ν ˜ μ . The indices of the tensors correspond to four pertinent spaces, ordered
rom least to most numerous: (1) localized molecular orbitals (indexed in the code by i), (2) atomic

rbitals (indexed by μ and ν ), (3) projected atomic orbitals [ 34 ] (indexed by ˜ μ), and (4) density fitting
tomic orbitals (indexed by K ). 
The sparse structure of tensors as well as the ranges of loops in the code are governed by various

parsity relationships or sparse maps between pairs of index spaces, as illustrated in Figure 6 (a)
reproduced from Pinski et al. [ 33 ]). This enables a reduction of the number of executed operations,
nd only a subset of all elements of this tensor network are evaluated. Figure 6 (c) shows a four-term
 TACO code: https://github.com/tensor-compiler/taco 
 SparseLNR code: https://github.com/adhithadias/SparseLNR
 Sparta code: https://github.com/pnnl/HiParTI/tree/sparta 
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Fig. 6. Sparse integral tensor case study. 

Fig. 7. Execution time (ms) for evaluation of 3-index integrals (lower is better; Y-axis is in logarithmic scale) 

using (a) unrestricted and (b) restricted tensor networks, respectively. Numbers above the bars represent 

slowdown of other schemes relative to CoNST. 
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parse tensor network where an additional 0/1 sparse matrix L Ki has been added to the base tensor
etwork in Figure 6 (b), corresponding to the known sparse map L(K → i). This can equivalently be
xpressed as a multi-term tensor product expression: E Ki ̃ μ = I Kμν ×C μi × ˜ P ν ˜ μ × L Ki . The inclusion
f such sparse maps as additional nodes in the base tensor network has the same beneficial effect of
educing computations as the manually implemented restriction in Orca [ 28 ]. In our experimental
valuation, we evaluate both forms of the sparse tensor networks in Figure 6 , representing the
nrestricted form (Figure 6 (b)) and the restricted form (Figure 6 (c)). 
We computed the DLPNO integrals for 2-D solid helium lattices with the geometry described in

 23 ]. The “small” input used a 5 × 5 lattice (25 atoms) and “medium”/“large” inputs used a 10 × 10
attice (100 atoms). The following orbital and density-fitting basis sets were used: 6-311G [ 13 ]
nd the spherical subset of def2-QZVPPD-RIFIT [ 14 ], respectively, for the “small” and “medium”
nputs, and cc-pVDZ [ 47 ] and cc-pVDZ-RIFIT [ 46 ] for the “large” input. All quantum chemistry
ata was prepared using the Massively Parallel Quantum Chemistry package [ 31 ]. 
Figure 7 (a) presents measurements for the transformed 3-index integral E Ki ̃ μ in unrestricted

orm (Figure 6 (b)). CoNST-generated code is about two orders of magnitude faster than the N -ary
ode generated by TACO as well as SparseLNR (for this case SparseLNR was unable to perform loop
usion and simply lowered the input to TACO). TACO-Unfused is much faster than N -ary but is still
bout five to six times slower than the code generated by CoNST. The best of the comprehensively
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valuated versions for Sparta is about an order of magnitude slower than CoNST’s code. We note
hat a direct comparison with the domain-specific implementation in Orca [ 28 ] is very challenging
ecause its implementation of DLPNO-CC fuses tensor contraction with other computation.
or example, the 3-index MO integral evaluation fuses contraction with the evaluation of AO
ntegrals, and the 4-index integral evaluation in ORCA uses pre-computed 3-index integrals stored

ig. 8. Execution time (ms) for 4-index integral. 

umbers above the bars represent slowdown rela- 

ive to CoNST. 

n disk. 
The performance data for evaluation of

E Ki ̃ μ using the restricted form (Figure 6 (c)) is
presented in Figure 7 (b). Significant speedups
can be seen between the execution times in
Figure 7 (a) and 7 (b) (the Y-axis scales are dif-
ferent) by use of the additional tensor L Ki for
CoNST, SparseLNR, and TACO N -ary, with
the speedup with use of CoNST being roughly
the same. However, TACO-Unfused does not
improve as much, causing its slowdown with
respect to CoNST to get worse. No data for
Sparta is presented in Figure 7 (b) because of a
constraint of Sparta that a tensor product must
have a contraction index, which is not the case
for the tensor product with L Ki . 

A subsequent step after formation of the 3-centered integrals is to use them to construct 4-index
ntegrals (Equation (16) in Reference 33 ): V i j ̃  μ ˜ ν = E Ki ̃ μ × E K j ̃ ν , using the 3-index input tensor E
btained via the unrestricted form. 
Performance results are reported in Figure 8 . CoNST again achieves significant speedup over

he alternatives. For this experiment, we could not use the large dataset because of insufficient
hysical memory on our platform. 

.2 Sparse Tensor Network for CP Decomposition 

anonical Polyadic (CP) decomposition factorizes a sparse tensor T with nmodes into a product
f n 2-D matrices. For example, a 3-D tensor T i jk is decomposed into three dense rank- r matrices
 ir , B jr , and C kr . The CP decomposition of a sparse tensor is generally performed using an it-
rative algorithm that requires n Matricized Tensor Times Khatri-Rao Product (MTTKRP)

perations [ 20 ]. For a 3-D tensor, the three MTTKRP operations are as follows: 

A 

′ 
ir = T i jk × B jr ×C kr B 

′ 
jr = T i jk ×A ir ×C kr C 

′ 
kr = T i jk ×A ir × B jr . 

Figure 9 shows the performance for MTTKRP operations for each of the three modes for sparse
ensors from the FROSTT benchmark suite [ 39 ]. We used the same four sparse tensors (Flickr3d,
ell1, Nell2, and Vast3d) used in the experimental evaluation of SparseLNR [ 12 ]. The rank of fac-
or matrices was set to 50. The time to perform the MTTKRP operation for the three modes varies
uite significantly; this is in part due to the the highly non-uniform extents of the three modes for
he tensors (as seen in Table 3 ). For the MTTKRP expression, SparseLNR was not able to perform
ts loopFusionOverFission transformation, so the code and performance are essentially identical
o TACO N -ary. Considering CoNST, unlike with the DLPNO benchmark (Section 5.1 ), CoNST-
enerated code is not always fastest. For the first two operations, CoNST achieves a speedup
etween 2.0 × and 4.8 × over other schemes, but relative performance is lower for the third one,
anging between 0.9 × and 1.0 × over the best alternative. For this case, the size of the intermediate
ensor is small and the binary tensor contractions are efficient without fusion, whereas the mode
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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Fig. 9. Execution time (ms) for MTTKRP operations on the FROSTT tensors. Relative slowdown compared 

to CoNST is indicated above each bar. Missing bars mean out-of-memory failure (for TACO-Unfused). 

Table 3. FROSTT Tensors and Their Shapes 

Tensor Dimensions NNZs 
flickr-3d 320K 2.82M 1.6M 112.89M 

nell-2 12K 9K 288K 76.88M 

nell-1 2.9M 2.14M 25.5M 143.6M 

vast-2015-mc1-3d 165K 11K 2 26.02M 
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rder that enables fusion results in code with slightly lower performance than the unfused code.
owever, when considering the total time for all three operations, as needed in each iteration in
P decomposition, CoNST achieves a minimum speedup of 2 × over the alternatives, across the
our benchmarks. Sparta times are not reported because it could not be used: it does not handle
ontractions with “batch” indices that occur in both input tensors and output tensors, as occurs
ith the second tensor contraction in the binarized sequence for each MTTKRP. 

.3 Sparse Tensor Network for Tucker Decomposition 

ucker decomposition factorizes a sparse tensor T with n modes into a product of n 2-D matrices
nd a dense core n-mode tensor. For example, a 3-D tensor T i jk is decomposed into three rank- r
atrices A ix , B jy , C kz , and core tensor G xyz . The computation is generally performed using the
igh Order Orthogonal Iteration (HOOI) iterative algorithm that requires n Tensor Times
ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 



82:20 S. Raje et al. 

Fig. 10. Execution time (ms) for TTMc operations on the FROSTT tensors. Relative slowdown compared to 

CoNST is shown above the bar. Missing bars indicate out-of-memory failure. 
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atrix chain (TTMc) operations [ 20 ]. For a 3-D tensor, the TTMc operations are as follows: 

A 

′ 
iyz = T i jk × B jy ×C kz B 

′ 
jxz = T i jk ×A ix ×C kz C 

′ 
kxy = T i jk ×A ir xr × B jryr . 

Figure 10 presents execution times for the alternative schemes on the four FROSTT tensors.
he mode-2 contraction for Flickr3d and mode-3 contraction for Nell-1 tensor ran out of memory
or all methods on 128GB RAM. TACO-Unfused and Sparta ran out of memory for a larger set of
uns because they form high-dimensional sparse intermediates in memory. The rank of decompo-
ition was 16 for Nell-1 and Flickr-3d tensors, and 50 for Vast-3d and Nell-2 tensors. For the TTMc
peration, SparseLNR is not able to perform its loopFusionOverFission transformation, so that per-
ormance is identical to TACO N -ary. Sparta runs a flattened matrix-times-matrix operation for a
eneral tensor contraction and uses a hashmap to accumulate rows of the result. Since the matrix
eing multiplied is dense, the hashmap simply adds an overhead. Overall, CoNST generates code
hat achieves significant speedups over the compared alternatives. 

 Related Work 

 comparison between CoNST and the three most related prior efforts was presented in
ection 2 and summarized in Table 1 . As shown in the previous section, significant performance
mprovements can be achieved by the code generated through CoNST’s integrated treatment of
ontraction/loop/mode order for fused execution of general contraction trees, compared to (1)
ode directly generated by TACO [ 19 ], (2) fused loop code generated by SparseLNR [ 12 ], and
3) calls to the Sparta library [ 25 ] for sparse tensor contractions. A variety of sparse formats
re possible in TACO through format abstractions [ 9 ]; our work focuses on the popular CSF
epresentation. We note that very recent developments [ 49 ] have advanced the TACO compiler to
llow some forms of sparse workspaces for intermediate tensors; our work was completed before
his feature was available and only uses dense workspaces [ 18 ] previously supported by TACO. 
A number of efforts have addressed loop-level optimization of dense tensor contractions for
P Us and GP Us [ 1 , 17 , 22 , 26 , 29 , 36 , 37 , 43 ]. However, none of them can be directly adapted for
CM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 82. Publication date: November 2024. 
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ptimizing sparse tensor contractions because of the need to use a compact data representation
or sparse tensors. Cociorva et al. [ 10 ] addressed loop fusion in the context of optimizing dense
ensor networks. Similar to CoNST, the reduction of the order of intermediate tensors is addressed.
owever, the main focus of that work was to identify more aggressively fused configurations that
urther reduced the space for intermediate tensors at the price of redundant computation. CoNST
oes not introduce redundant operations in its optimization and does not incorporate any such
pace–time tradeoff considerations. 
Sparse fusion [ 7 ] is an inspector–executor strategy for iteration composition for fused execu-

ion of two sparse kernels. This approach optimizes kernels with loop-carried dependencies using
untime techniques. Tensor mode layout and its interactions with iteration order and mode reduc-
ion of intermediate sparse tensors are not considered by this existing work. In contrast, our work
onsiders these factors in compile-time code generation for a general contraction tree. 
The sparse polyhedral framework [ 44 ] defines inspector–executor techniques for optimization
f sparse computations, e.g., through runtime iteration/data reordering. It has been applied to
ndividual tensor contractions [ 50 ] where iteration code is derived using polyhedral scanning. This
pproach does not consider fusion or reordering of loops/modes. In contrast to inspector–executor
pproaches, which often involve non-trivial “inspector” overhead in analyzing the sparsity pattern
or each execution instance, CoNST uses a purely static compile-time approach. It thus avoids such
verhead and the generated code can be used for different input tensors without any instance-
pecific runtime analysis. 
SparseTIR [ 48 ] is an approach to represent sparse tensors in composable formats and to enable
rogram transformations in a composable manner. The sparse compilation support in the MLIR
nfrastructure [ 5 ] enables integration of sparse tensors and computations with other elements of
LIR, as well as TACO-like code generation. SpTTN-Cyclops [ 16 ] is an extension of the Cyclops
ensor Framework (CTF) [ 42 ] to optimize a sub-class of sparse tensor networks. In contrast to
oNST, which can handle arbitrary sparse tensor networks, SpTTN-Cyclops only targets a product
f a single sparse tensor with a network of several dense tensors. Indexed Streams [ 21 ] develops a
ormal operational model and intermediate representation for fused execution of tensor contrac-
ions, using both sparse tensor algebra and relational algebra, along with a compiler to generate
ode. Tian et al. [ 45 ] introduce a DSL to support dense and sparse tensor algebra algorithms and
parse tensor storage formats in the COMET compiler [ 27 ], which generates code for a given tensor
xpression. Zhou et al. [ 51 ] propose a set of techniques to optimize tensor networks including use
f loop fusion. Using manual implementation of the proposed techniques, performance improve-
ent is demonstrated over code generated by TACO [ 19 ] on a set of benchmarks. Finch [ 2 , 3 ] is a
ecently developed framework that supports efficient code generation for computations on sparse
atrices/tensors that exhibit structured sparsity. None of these efforts address the coupled auto-
ated optimization of tensor layout, contraction schedule, and mode reduction for intermediates

n fused code being performed by CoNST. 

 Conclusions 

ffective fused code generation for sparse tensor networks depends on inter-related factors: sched-
le of binary contractions, permutation of nested loops, and layout order of tensor modes. We
emonstrate that an integrated constraint-based formulation can capture these factors and can
roduce fused loop structures for efficient execution. Our experimental evaluation confirms that
his approach advances the state of the art in achieving high performance for sparse tensor net-
orks. An important next step is to apply these techniques for sparse tensor algebras needed by
omputational scientists (e.g., in quantum chemistry [ 6 ]). 
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