
LEGENDRIAN TORUS AND CABLE LINKS

JENNIFER DALTON, JOHN B. ETNYRE, AND LISA TRAYNOR

ABSTRACT. We give a classification of Legendrian torus links. Along the way, we give the first
classification of infinite families of Legendrian links where some smooth symmetries of the link
cannot be realized by Legendrian isotopies. We also give the first family of links that are non-
destabilizable but do not have maximal Thurston-Bennequin invariant and observe a curious
distribution of Legendrian torus knots that can be realized as the components of a Legendrian
torus link. This classification of Legendrian torus links leads to a classification of transversal
torus links.

We also give a classification of Legendrian and transversal cable links of knot types that are
uniformly thick and Legendrian simple. Here we see some similarities with the classification of
Legendrian torus links but also some differences. In particular, we show that there are Legendrian
representatives of cable links of any uniformly thick knot type for which no symmetries of the
components can be realized by a Legendrian isotopy, others where only cyclic permutations of
the components can be realized, and yet others where all smooth symmetries are realizable.

1. INTRODUCTION

The study of Legendrian knots has gone hand-in-hand with the development of contact ge-
ometry in dimension three, and there have been many classification results for Legendrian
knots [2, 8, 13, 14, 15, 16, 17, 11, 21, 37, 38]. On the other hand, there have been surprisingly
few concerning Legendrian links. Some key questions one might ask about such links are the
following.

Motivating Link Questions. Let L be a smooth link type with knot components K1 ∪ . . . ∪Kn.
(1) Realization of n-tuples: Given Legendrian representatives Λi of the knots Ki, is it possible

to construct a Legendrian representative of L that realizes the given Legendrian representatives
Λ1, . . . ,Λn of the components? Some weaker sub-questions are:
(a) What can be said about “classical link geography”, i.e., which Thurston-Bennequin (tb)

invariants and rotation numbers (r) can be realized for the components of a Legendrian
representative of L?

(b) Are there Legendrian representatives of L that do not destabilize as a link even though
individual components do destabilize as knots?

(2) Unordered classification: How many ways can the smooth unordered link L be realized with
Legendrian components realizing specified classical geography?

(3) Ordered classification: Given a fixed representative Λ of L, what smooth symmetries of the
components of Λ can be realized by a Legendrian isotopy?

History: One of the first results concerning the ordered classification “symmetry” questions
was by the third author [39] who used generating function techniques to show that there was a
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two component link called the “helix link” in the 1-jet space of S1 where there two components
could be smoothly exchanged, but there was a Legendrian representative of the link where the
two components could not be exchanged. This work was extended in [35, 40]. The first results
about Legendrian symmetries for links in S3 were due to Mishachev, who in [33] used contact
homology to show that the components of the n-copy of a Legendrian unknot could only be
cyclically permuted, even though they could be smoothly permuted arbitrarily. This was fol-
lowed by work of Ng [36] who showed that it was not possible to exchange the components of
a 2-copy of the maximal tb invariant Legendrian figure-eight knot, which implies that it is not
possible to do any permutations of the n-copy of the Legendrian figure-eight knot with max tb.

The first geography realization result was by Mohnke [34], who used bounds on the Thurston-
Bennequin invariant of links coming from the HOMFLY-PT polynomial to show that there were
no realizations of the Borromean rings or the right handed Whitehead link where all the com-
ponents had maximal Thurston-Bennequin invariant for their knot types.

The first classification results for links were given by Ding and Geiges in [4]. There they
showed that the “cable link”, this is an unknot together with a (p, q)-cable of it, were Legen-
drian simple — that is determined by their classical invariants (knot type, Thurston Bennequin
invariant, and rotation number). They also showed an analogous result in the 1-jet space of S1.
With the exception of the helix link mentioned above, these knots have no smooth symmetries
so do not address Question (3). In the paper [5], Ding and Geiges addressed the helix link in
the 1-jet space of S1, thus giving the first classification result where one can see topological
symmetries of a link that cannot be realized by a Legendrian link in that link type. Recently
Geiges and Onaran gave a classification of Legendrian links realizing the positive Hopf link
[20]. This work very interestingly goes beyond the classification of Legendrian Hopf links in
the standard contact structure on S3, but also gives the classification in all contact structures
(both the tight one and all overtwisted ones) in S3.

New results: Below we give a complete classification of Legendrian torus links and prove
several results about cable links. The main new phenomena that arise from this work are as
follows. Throughout this paper, tb will refer to the Thurston-Bennequin invariant, and r will
refer to the rotation number invariant.

(1) The components of any Legendrian torus link must all have a common destabilization.
This provides a strong restriction on the geography of negative torus links with knotted
components.

(2) All max tb representatives of a negative torus link with knotted components must have
components with the same tb and r invariants, however there are max tb representatives
of two-component negative torus links with unknotted components where the compo-
nents have different tb values. When there are 3 or more components of these negative
torus links with unknotted components, there are representatives that do not have max
tb yet do not destabilize. These are the first such examples for links. Similar results hold
for cable links.

(3) For max tb representatives of negative torus links with at least 3 components, only cyclic
permutations of the components can be achieved through Legendrian isotopy. This
gives an infinite family of examples where the ordered and unordered classification of
Legendrian links differs.
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(4) Although the components of a smooth cable link can be arbitrarily permuted via a
smooth isotopy, every uniformly thick, non-cable knot type, which includes the Figure-
eight knot, admits some Legendrian cables (with Legendrian equivalent components)
where no non-trivial permutations are possible, others where only cyclic-permutations
are possible, and yet others where all permutations are possible.

Many of the unordered torus link classification arguments parallel the torus knot classifica-
tion arguments of [13], however the unordered classification of negative torus links with un-
knotted components, (n,−nq)-torus links, requires new ideas. The most challenging portion of
the torus link classification is to understand the restrictions on permutations of the components
of negative torus links with maximal tb invariant. Although this restriction was previously es-
tablished for (n,−nq)-torus links, [33], our analysis of pre-Lagrangian tori and annuli in terms
of convex surface theory gives a geometric explanation for why non-cyclic permutations are
impossible for all (np,−nq)-torus links. Moreover these convex surface arguments can also be
adapted to the setting of Legendrian cable links and allows for understanding when even cyclic
permutations are not possible.

1.1. Torus Links. Smooth torus links are links that, after a smooth isotopy, lie on an unknotted
torus in R3; they form an important family of smooth links. Every torus link has components
that are all unknots or all topologically equivalent torus knots. Moreover, it is not hard to see
that it is possible to arbitrarily permute the components of any smooth torus link with a smooth
isotopy. We will address the classification of Legendrian torus links. First, it is useful to recall
what is known about the classification of Legendrian unknots and Legendrian torus knots.

Oriented Legendrian unknots were classified by Eliashberg and Fraser in [7]; some alternate
proofs can be found in [13, 19]. They found that unknots are simple in the sense that they are
classified by their tb and r invariants. In particular, there is a unique Legendrian unknot with
tb = −1 and r = 0, and all other unknots are obtained by stabilizations of this one with max-
imal tb invariant. These results were obtained using an intricate analysis of the characteristic
foliations of Seifert disks for the knots.

Oriented Legendrian torus knots were classified by the second author and Honda in [13]
using the technique of convex surfaces. Since the (p, q)-torus link agrees with the (q, p)-torus
link and with the (−p,−q)-torus link, it suffices to look at (p,±q)-torus links where q ≥ p ≥ 1.
An unknot arises when p = 1; nontrivial torus knots correspond to p > 1 and gcd(p, q) = 1. As
is the case for unknots, Legendrian torus knots are classified by their topological knot type, and
their tb and r invariants. However, in [13] it is shown that the possible range of the classical
invariants is more intricate and has a different flavor depending on whether one is looking at
positive or negative torus knots. In particular:

(1) When considering Legendrian torus knots that are topologically (p,+q)-torus knots,
there is a unique one with max tb invariant of pq − p− q; this max tb representative will
have r = 0, and all other representatives are stabilizations of this one with max tb;

(2) When considering Legendrian torus knots that are topologically (p,−q)-torus knots, if
−m − 1 < −q/p < −m, m ∈ Z+, then there will be 2m representatives with max tb =
−pq; each of these max tb represetntatives is distinguished by their r invariant, which is
an element of the set

{±(q − p− 2pk) : k ∈ Z, 0 ≤ k ≤ m− 1},
and all other representatives are stabilizations of one with max tb.
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It is common to represent all Legendrian representatives of a fixed topological type by a
mountain range, which consists of an infinite graph with vertices labeled by pairs of integers.
Every vertex of the mountain range represents a unique Legendrian knot with vertex labels
giving the knot’s r and tb invariants. Two vertices are connected if and only if the correspond-
ing knots differ by a positive or negative stabilization: a positive stabilization will lower the
Thurston-Bennequin invariant and raise the rotation number while a negative stabilization will
lower the Thurston-Bennequin invariant and lower the rotation number. We can rephrase the
above classification results by saying that we understand the mountain range of the unknot
and all torus knots. For example, Figure 1 represents all Legendrian (2,+3)-torus knots. All
positive torus knots will have a mountain range graph of this shape, however the “peak” of
the graph will occur at tb = pq − p− q. In contrast, nontrivial negative torus knots will always
have “multiply peaked” mountain ranges. Figure 2 gives the mountain range representing all
Legendrian (3,−7)-torus knots.

r = −2 −1 0 1 2

tb = 1

0

−1

FIGURE 1. The mountain range representing all possible Legendrian (2,+3)-
torus knots.

r = −5 − 4 − 3− 2− 1 0 1 2 3 4 5

tb = −21

−22

−23

FIGURE 2. The mountain range representing all possible Legendrian (3,−7)-
torus knots.

In this paper, we classify both ordered and unordered Legendrian torus links: (np,±nq)-
torus links where q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2. Since an (np,±nq)-torus link has n
components each of which is a (p,±q)-torus knot, a useful way to visualize an (np,±nq)-torus
link is as an n-tuple of vertices on the mountain range that represents the possible (p,±q)-torus
knots. We will sometimes denote an (np,±nq)-torus link as an n(p,±q)-torus link.

The following theorem answers Motivating Link Questions (1) and (2) in the case of torus
links.

Theorem 1.1. (Realization and Unordered Legendrian Torus Link Classification) Consider two
oriented Legendrian torus links L and L′ that are topologically equivalent to the (np,±nq)-torus link,
where q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2. If labels can be given to the components L = ⨿ni=1Λ

′
i, L

′ =
⨿ni=1Λ

′
i so that tb(Λi) = tb(Λ′

i) and r(Λi) = r(Λ′
i), i = 1, . . . , n, then there exists a contact isotopy
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taking L to L′ (but not necessarily Λi to Λ′
i). Moreover, the precise range of the classical invariants is

given as follows:
(1) For any positive torus link, namely any (np,+nq)-torus link, there exists a unique Legendrian

representative with maximal tb invariant; for such a link all components will have tb = pq−p−q.
For any positive torus link with non-maximal tb invariant, the components can be destabilized
to obtain the one with maximal tb invariant.

(2) For any negative torus link with knotted components, namely any (np,−nq)-torus link with
p > 1, if −m−1 < −q

p < −m,m ∈ Z+, there are 2m Legendrian realizations of the (np,−nq)-
torus link with maximal tb invariant; all components of a maximal version will have tb = −pq
and the same rotation number. For any negative torus link with non-maximal tb invariant, the
components can be destabilized to obtain the one with maximal tb invariant.

(3) For negative torus links with unknotted components, namely (n,−nq)-torus links, there is a
set of q(q+1)

2 nondestabilizable Legendrian realizations consisting of the n-copy of an unknot
with tb = −q and, for 0 < t < q, the t Legendrian twist of the n-copy of an unknot with
tb = −q + t. The n-copy will have maximal tb invariant while the Legendrian twist versions
will have maximal tb invariant if and only if n = 2. Any other Legendrian (n,−nq)-torus link
will destabilize to one in this nondestabilizable set.

This theorem follows from Theorem 3.1 for the Case (1), from Theorem 4.1 and Lemma 4.2 for
Case (2), and Theorem 5.1 for Case (3). The n-copy of a Legendrian link will be defined in
Section 2.5, and the t Legendrian twist of the n copy will be defined in Definition 5.5.

We will represent the components of Legendrian (np,±nq)-torus link by circling n vertices
on the mountain range that represents all possible Legendrian (p,±q)-torus knots.

r = −2 −1 0 1 2

tb = 1

0

−1

FIGURE 3. The two circles represent the unique unordered Legendrian 2(2,+3)-
torus link with maximal tb invariant. In fact, any two vertices on this mountain
range for the (2,+3)-torus knot represent a Legendrian 2(2,+3)-torus link.

By Theorem 1.1, an n-tuple of vertices on the mountain range of the (p,±q)-torus knot can
represent at most one unordered (np,±nq)-torus link. Figure 3 represents the unique Legen-
drian (4,+6)-torus link with maximal tb invariant. In fact, by the above theorem, there is a
one-to-one correspondence between (4,+6) = 2(2,+3)-torus links and pairs of vertices on the
(2,+3)-mountain range. However, for negative torus links, the above theorem indicates that
there are more restrictions on the n-tuples of vertices that correspond to torus links. For exam-
ple, Figure 4 shows some pairs of vertices that do not correspond to a 2(3,−7)-torus link. When
the components are nontrivial knots (p > 1), Legendrian (np,−nq)-torus links with maximal
tb invariant correspond to a “peak” of the (p,−q)-mountain range chosen n times; if the com-
ponents are unknots, the nondestabilizable Legendrian representatives of (n,−nq)-torus links
correspond to a vertex with tb = −q chosen n times or n vertices all with the same rotation
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FIGURE 4. It is not possible to construct Legendrian 2(3,−7)-torus links with
components as indicated in these mountain ranges.

number consisting of one vertex with tb = (−q + t) and (n − 1) vertices with tb = (−q − t).
This “split level” representative will have maximal tb invariant only when n = 2. See Figures 5
and 6.

2(1,−3)-torus links

3(1,−3)-torus links

FIGURE 5. The 6 = 3(4)
2 Legendrian 2(1,−3)-torus links with max tb invariant,

and the 6 non-destabilizable 3(1,−3)-torus knots, three of which have max tb
invariant.

Now we address the symmetry question in the Motivating Link Question (3). When consid-
ering the ordered classification of torus links, notice that the components inherit a natural cyclic
ordering from the underlying torus. The next theorem tells us that for positive torus links, the
unordered and ordered classifications agree, but in the ordered classification of negative torus
links, the cyclic order of particular components must be preserved. This result extends the
findings of Mishachev [33] for (n,−nq)-torus links.

Theorem 1.2. (Ordered Legendrian Torus Link Classification) Consider two ordered, oriented Leg-
endrian torus links L = (Λ1, . . . ,Λn) and L′ = (Λ′

1, . . . ,Λ
′
n) that are topologically equivalent to the

(np,±nq)-torus link, where q ≥ p ≥ 1, gcd(p, q) = 1, and n ≥ 2. Suppose tb(Λi) = tb(Λ′
i) and

r(Λi) = r(Λ′
i), i = 1, . . . , n.
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FIGURE 6. Max tb invariant Legendrian 2(1,−3)-torus links on the left and the
non-destabilizable 3(1,−3)-torus links on the right. All components are oriented
clockwise.

(1) If L and L′ are positive torus links, then there exists a contact isotopy taking L to L′ such that
Λi is mapped to Λ′

i.
(2) If L and L′ are negative torus links, then there exists a contact isotopy taking L to L′ such

that Λi is mapped to Λ′
i if and only if the cyclic ordering of the components with tb = −pq is

preserved.

See Figures 7 and 8 for illustrations of this theorem.

(a) (b)

FIGURE 7. Two examples of unordered Legendrian 3(3,−7)-torus links. When
considered as ordered links, in (a) noncyclic permutations produce nonequiv-
alent ordered oriented Legendrian links, while in (b) all permutations produce
equivalent ordered oriented Legendrian links.

From this classification of Legendrian torus links, we can deduce the classification of transver-
sal torus links. Recall that a smooth knot type is transversely simple if any two transversal rep-
resentatives T and T ′ with the same self-linking number are transversally isotopic. A smooth
knot type is negatively stable simple if for any two Legendrian representatives Λ and Λ′ satisfying
tb(Λ)− r(Λ) = tb(Λ′)− r(Λ′), there exists n1 and n2 such that (S−)n1(Λ) is Legendrian isotopic
to (S−)

n2(Λ′), where S±(Λ) denote the ±-stabilization of Λ. In fact, it is shown in [10, 13] a
knot type is negatively stable simple if and only if it is transversally simple. Analogously, a
smooth link type is transversally simple if for any two transversal representatives (T1, . . . , Tm) and
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(a) (b)

r = −2− 1 0 1 2
tb = −1

−2

−3

FIGURE 8. Two examples of unordered Legendrian 4(1,−2)-torus links. When
considered as ordered links, in (a) noncyclic permutations produce nonequiva-
lent ordered oriented Legendrian links, while in (b) all permutations (preserving
tb and r) produce equivalent ordered oriented Legendrian links.

(T ′
1 , . . . , T ′

m) with corresponding self-linking numbers,

ℓ(Ti) = ℓ(T ′
i ), for all i,

there exists a transversal isotopy from (T1, . . . , Tm) to (T ′
1 , . . . , T ′

m). We will say that a smooth
link type is negatively stable simple if for any two Legendrian representatives (Λ1, . . . ,Λm) and
(Λ′

1, . . . ,Λ
′
m) with

tb(Λi)− r(Λi) = tb(Λ′
i)− r(Λ′

i), for all i,
there exists n1, . . . , nm and n′1, . . . , n

′
m such that ((S−)n1(Λ1), . . . , (S−)

nm(Λm)) is Legendrian
isotopic to

(
(S−)

n′
1(Λ′

1), . . . , (S−)
n′
m(Λ′

m)
)

. Observe that Theorems 1.1 and 1.2 show that all
torus links are negatively stable simple. The proof in [13] can easily be extended to show that
if a link type is negatively stable simple, then it is transversally simple.

Theorem 1.3 (Ordered Transversal Torus Link Classification). For q ≥ p ≥ 1, gcd(p, q) = 1, and
n ≥ 2, there is a unique transversal (np,±nq) torus link that cannot be destabilized; all components of
this nondestabilizable link have self-linking number ±q(p−1)−p. All other transversal representatives
of this torus link destabilize to this one. In particular, two transversal (np,±nq)-torus links are deter-
mined by the self-linking numbers of their components. For all transversal torus links, all (self-linking
number preserving) permutations of the components are realizable through transversal isotopy. □

1.2. Cable Links. Let K denote an oriented knot type. Then for n ≥ 1, and p, q ∈ Z such
that p ≥ 1 and gcd(p, q) = 1, the (np, nq)-cable of K, denoted K(np,nq), is the n-component
link type obtained by taking an (np, nq)-curve on the boundary of a tubular neighborhood of a
representative of K. Here by a (p, q)-curve we mean one that runs p times longitudinally, with
the longitude given by a Seifert surface for K, and q times meridionally. In our definition of a
cable, we allow K to be an unknot 1, so in this paper we consider torus links to be cable links
and the unknot and torus knots to be cable knots. Observe that if q/p ∈ Z, then p = 1, and thus
K(p,q) is topologically equivalent to K. We allow all values of q since, in contrast to the case of
torus links, K(np,nq) need not be topologically equivalent to K(nq,np). We restrict to p ≥ 1 since
K(−np,−nq) will be topologically equivalent to −K(np,nq).

We will be able to understand the Legendrian classification of K(np,nq) when K is a “uni-
formly thick” and a Legendrian simple knot type. A knot type K is called uniformly thick, cf.

1This convention differs from the frequent convention in the definition of the more general satellite knots
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[15], if given any solid torus S whose core is in the knot type K then there is a solid torus S′

containing S and isotopic to S, such that S′ is a standard neighborhood of a max-tb Legendrian
representative of K; see Definition 2.15 for an explanation of a standard neighborhood. There
are many uniformly thick knot types: the figure-eight knot [32], all negative torus knots [15],
and most twist knots are uniformly thick [32]. However not all knots are: for example, the
unknot, positive torus knots [15, 16], and many Lagrangian slice knots [31] are not uniformly
thick.

Towards understanding the Legendrian classification, it will be important to understand the
non-destabilizable representatives ofK(np,nq). In Definition 7.1, we define standard Legendrian
(np, nq)-cables in terms of standard neighborhoods of any knot type K; here we give their
definition in terms of front projections.

Definition 1.4. Given a knot typeK, let tb(K) denote the maximal Thurston-Bennequin invari-
ant that can be realized by any Legendrian representative of K. Then for n ≥ 1 and p, q ∈ Z
such that p ≥ 1 and gcd(p, q) = 1, the standard Legendrian (np, nq)-cable of K is defined accord-
ing to the slope q/p as follows; see Figure 10 for an illustration.

(1) For tb(K)-slope cables, qp = tb(K):
• Fix Λ such that tb(Λ) = tb(K).
• Then Λ(np,nq) = Λ(n1,nq) is the n-copy of Λ, so its front diagram can be obtained by

starting with the front of Λ and making n-copies from slight shifts in the z-direction.
(2) To construct a greater-slope cable, qp > tb(K), start by writing q

p = tb(K) + s
p , for s ∈ Z

positive.
• Fix Λ such that tb(Λ) = tb(K).
• Make the np-copy of Λ.
• Form Λ(np,nq) by replacing a trivial np-stranded tangle of the np-copy with ns

np = s
p

of a full positive twist, which corresponds to repeating the fundamental positive
crossing strand tangle, as shown at the top of Figure 9, ns times.

FIGURE 9. The upper diagram is a 1/p twist when there are p strands. On the
lower left is an S-tangle and on the lower right is a Z-tangle.

(3) For lesser-slope cables, qp < tb(K), start by writing q
p = ⌈ qp⌉ −

s
p , for 0 ≤ s < p.

• Let Λ be a Legendrian representative of K with tb(Λ) = ⌈ qp⌉ ≤ tb(K).
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• Make the p-copy of Λ.
• Form Λ±

(p,q) by replacing a trivial p-stranded tangle of the p-copy of Λ with either s
fundamental p-strandedZ-tangles or s fundamental p-stranded S-tangles as shown
in Figure 9. Observe that when p = 1, s = 0, and thus Λ+ = Λ− = Λ.

• Take the n-copy of Λ±
(p,q) to form Λ±

(np,nq).

Remark 1.5. When K is the unknot, and q > p > 1, the standard Legendrian (np, nq)-cables of
K are the Legendrian torus links with maximal Thurston-Bennequin invariant.

Figure 10 shows the front diagrams of some Legendrian cables of the figure-eight knot in all
three slope types. For a uniformly thick knot type K, all of the standard Legendrian (np, nq)-

FIGURE 10. Some cables of the figure-eight knot K with tb(K) = −3. The up-
per left is the standard (tb(K)-slope) 3(1,−3)-cable of the figure-eight knot K.
The upper right is the standard (greater-slope) 3(2,−5)-cable of the figure-eight
knot. The lower diagram is a standard (lesser-slope) 3(2,−7)-cable of the figure-
eight knot.

cables will have max tb, see Lemma 7.4. When q
p = q

1 < tb(K), observe that each standard lesser
slope (n, nq)-cable of K is the n-copy of a Legendrian representatives Λ of K with tb(Λ) = q.
There will be some additional non-destabilizable versions coming from “twisted n-copies” that
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parallel the torus links with unknotted components pictured in Figure 6. As was the situa-
tion for the torus link with unknotted components, these integral and lesser-sloped twist ver-
sions will have max tb if and only if n = 2. Since each component of a Legendrian integral,
lesser-slope cable of K is topologically equivalent to K, the components can be represented
as an n-tuple in the mountain range of K. For example, when K is the figure-eight knot, and
q
p = −5 < −3 = tb(K), in parallel to Figure 5, there will be six maximal Thurston-Bennequin
Legendrian representatives of the (2,−10) = 2(1,−5) cable of the figure-eight knot, and six
non-destabilizable Legendrian representatives of the (3,−15) = 3(1,−5) cable of the figure-
eight knot, three of which will have maximal Thurston-Bennequin invariant.

In Propositions 7.7 and 7.8, we show that if K is uniformly thick, then every Legendrian rep-
resentative of K(np,nq) will destabilize to either a standard Legendrian (np, nq)-cable or, in the
case that q

p = q
1 < tb(K), to a twisted n-copy. This allows us to classify unordered Legendrian

cables of a uniformly thick and Legendrian simple knot type K; see Theorem 7.6. In particular,
for a uniformly thick and Legendrian simple knot type K, knowing the mountain range of K
allows us to determine the mountain range of all Legendrian representatives of K(np,nq).

We also establish the ordered classification of Legendrian cable links of uniformly thick and
simple knot types. As was seen in the case of Legendrian torus links, there is interesting flexi-
bility and rigidity in terms of permutations of the components in the max tb representatives of
K(np,nq).

Theorem 1.6. Let K be a uniformly thick knot type. For n ≥ 2, p, q ∈ Z such that p ≥ 1 and
gcd(p, q) = 1, if L(np,nq) = (Λ1, . . . ,Λn) is a standard Legendrian (np, nq)-cable of K, where the Λi
are ordered as they appear on the torus or annulus used in the definition of standard cables, the following
permutations of the components are possible.
greater-slope cables: If q/p > tb(K), then any permutation of the Λi is possible by a Legendrian

isotopy.
tb(K)-slope cables: If q/p = tb(K), and K is not a cable knot or K is an (r, s)-cable knot and q/p ̸=

rs, then no permutation of the Λi can be realized by a Legendrian isotopy.
lesser-slope cables : If q/p < tb(K), and K is not a cable knot or K is an (r, s)-cable knot and

q/p ̸= rs, then only cyclic permutations of the Λi can be realized.

Remark 1.7. One may observe in the proof of Theorem 1.6 that for standard cables with q/p >
tb(K) does not need the hypothesis that K is uniformly thick, but the other cases do need this
hypothesis.

Remark 1.8. In the tb(K)-slope cables of Theorem 1.6, the hypothesis thatK is not a cable is nec-
essary in order to forbid any permutations. For example, suppose K is the (2,−3)-torus knot,
which is a (2,−3)-cable of the unknot. Since tb(K) = −6, the standard Legendrian n(1,−6)-
cable of K is the n-copy of a max-tb representative of K, and, by Theorem 1.2, we know cyclic
permutations of the components are allowed.

Example 1.9. If K is the uniformly thick, (non-cable) figure-eight knot, then, since tb(K) = −3,
Theorem 1.6 tells us that it is not possible to do any permutation of the n components in Ln(1,−3), the
standard Legendrian n(1,−3)-cable of K; this case recovers Ng’s result from [36] that it is not possible
to do any permutations of the n-copy of max-tb Legendrian figure-eight knot. However, if the slope
q/p > −3 then it is possible to arbitrarily permute the components of Ln(p,q), while if q/p < −3, then it
is only possible to cyclically permute the components of Ln(p,q).
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After establishing which permutations can be realized in the max-tb standard Legendrian
cables, we can give the ordered Legendrian classification of K(np,nq), where K is a uniformly
thick and a Legendrian simple knot type.

Theorem 1.10. (Ordered Cable Link Classification) For n ≥ 2, p, q ∈ Z such that p ≥ 1 and
gcd(p, q) = 1, the (np, nq)-cable of a uniformly thick, Legendrian simple knot type K is Legendrian
simple as an unordered link. The range of possible Thurston-Bennequin and rotation number invariants
for such a link will be given in Section 7.1. Consider two ordered, oriented Legendrian links L =
(Λ1, . . . ,Λn) and L′ = (Λ′

1, . . . ,Λ
′
n) that represent the knot type K(p,q), and suppose tb(Λi) = tb(Λ′

i)
and r(Λi) = r(Λ′

i), for i = 1, . . . , n. Then:
Greater-Slope Cables: If q/p > tb(K), then there exists a contact isotopy taking L to L′ such that Λi

is mapped to Λ′
i.

tb(K)-Slope Cables: If q/p = tb(K) and K is not a cable knot or K is an (r, s)-cable knot and
q/p ̸= rs, then there exists a contact isotopy taking L to L′ such that Λi is mapped to Λ′

i if and
only if the ordering of the components with tb = tb(K) is preserved.

Lesser-Slope Cables: If q/p < tb(K) and K is not a cable knot or K is an (r, s)-cable knot and
q/p ̸= rs, then there exists a contact isotopy taking L to L′ such that Λi is mapped to Λ′

i if and
only if the cyclic ordering of the components with tb = pq is preserved.

Immediately from the Legendrian classification, we obtain a classification of transverse rep-
resentatives of cable links.

Theorem 1.11 (Ordered Transversal Cable Link Classification). For n ≥ 2, p, q ∈ Z such that
p ≥ 1 and gcd(p, q) = 1, the cable link K(np,nq) of a uniformly thick, Legendrian simple knot type K
is transversely simple. All such transverse links destabilize to the unique maximal self-linking number
representative whose self-linking number will depend on the slope q/p as follows.
Greater-Slope Cables: If q/p > tb(K), then sl(K(p,q)) = pq − q + p sl(K),
Integral and Lesser-Slopes Cables: If q/p ≤ tb(K) and p = 1, then sl(K(p,q)) = sl(K),
Nonintegral and Lesser-Slope Cables: If q/p < tb(K) and p > 1, then

sl(K(p,q)) = pq − p(tb(K)− sl(K) + ⌈q/p⌉) + q.
Moreover, all the components of such a transverse link can be permuted if they have the same self-linking
number. □

The results in this paper give a complete picture of Legendrian torus links as well as cables
of Legendrian simple, uniformly thick knot types, but there are several interesting questions
left open and brought up by this work.

Question 1. Can one classify Legendrian representatives of uniformly thick non-simple knot types?

We expect the techniques developed in this paper could lead to a classification of such Leg-
endrian links. For such a knot type K, one has some finite number of maximal Thurston-
Bennequin invariant knots. We expect that all cable links will destabilize to a standard cable
of one of these knots or to a twisted version in the integral case when the cable slope is less
than tb(K), and that two such links will become isotopic only if all the components of each
link have been stabilized enough for the constituent knots to become isotopic. We believe the
ordered classification will follow along lines similar to the ones discussed above. In particular,
in some cases, we expect the cable links to be non-transversely simple. Good candidates for
such knots are negative twist knots, see [17, 32].
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Question 2. What is the classification of Legendrian representatives of cables of a non-uniformly thick
knot type?

A knot K can fail to be uniformly thick in two ways. It can admit tori in the knot type
with convex boundary having dividing slope less than tb(K) that do not thicken to a standard
neighborhood of a maximal Thurston-Bennequin invariant representative of the knot type, or
there can be tori in the knot type that have convex boundary with dividing slope greater than
tb(K). In the former case we expect there to be similar results to those presented here. For
example, we expect it to be a tractable problem to determine the Legendrian cable links of
positive torus knots. The latter case seems to be a more difficult problem requiring new ideas.

Question 3. In a basic slice, are two pre-Lagrangian tori with characteristic foliations of the same slope
necessarily isotopic? If the tori have some leaves in common, can the isotopy be done relative to those
leaves?

A key part in the proofs of our ordered classification results involves understanding the
ordering of the components of torus links and cable links coming from pre-Lagrangian tori.
From this we expect that the answer to the above questions to be YES, and such an answer
would simplify several of our proofs (and make their geometric content more obvious). We
discuss this more thoroughly in Remark 6.24.

1.3. Contact structures on thickened and solid tori. In our proofs we need to use many results
about contact structures on T 2 × [0, 1], some of which are new. We mention several of the ones
that might be of general interest here. Any unfamiliar terminology will be defined where the
result occurs in the text.

The first result restricts the slopes of pre-Lagrangian tori in a thickened torus.

Lemma 2.3. Let ξ be a minimally twisting contact structure on T 2 × [−1, 1] that is the union of a ∓
basic slice on T 2 × [−1, 0] and a ± basic slice on T 2 × [0, 1]. If si denotes the slope of the dividing
curves on T 2 × {i}, i = −1, 0, 1, then there is no pre-Lagrangian torus parallel to the boundary in
(T 2 × [−1, 1], ξ) whose characteristic foliation has slope s0. □

We also study the relation between pre-Lagrangian tori and convex tori in thickened tori
and enhance Lemma 3.17 from [13]. To state this result we first must develop the idea of a
complementary annulus in Section 2.3.2. This is an annulus in a thickened torus with a non-
rotative contact structures that determines the contact structure and can also give a cyclic order
to the dividing curves of convex tori.

Lemma 2.9. Consider a basic slice T 2× [0, 1], where T 2×{0} has slope s0, and T 2×{1} has slope s1.
Suppose s ∈ (s0, s1) ⊂ ∂D2, and T ′ ⊂ T 2× [0, 1] is a boundary parallel convex torus in standard form
with slope s. Then:

(1) There is a pre-Lagrangian torus T isotopic to T ′ that intersects T ′ transversely, and T ′ ∩ T is
exactly the union of the Legendrian divides of T ′.

(2) Furthermore, T ′ is contained in a non-rotative thickened torus R′ of slope s that has a comple-
mentary annulus A′ with two dividing curves that run from one boundary component of A′ to
the other; A′ defines a cyclic ordering of the Legendrian divides of T ′ that agrees with the cyclic
ordering of these curves on the pre-Lagrangian T .

□
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We prove an analogous result in Lemma 2.16 for tight contact structures on solid tori.

1.4. Outline. The remainder of the paper is organized as follows. In Section 2, after defining
our notation conventions for torus links and reviewing classification results of contact struc-
tures on thickened tori, we show that it is possible to use a “complementary annulus” to define
a cyclic ordering of the Legendrian divides of a convex torus in a basic slice or in a solid torus
with convex boundary having two dividing curves parallel to the core of the solid torus. We
also find the maximum Thurston-Bennequin invariant for Legendrian torus links, which in
the case of (n,−nq)-torus links is more restrictive than the known upper bounds for the com-
ponents. In Section 3 we establish the unordered classification of all Legendrian positive torus
links, and in Section 4 we establish the unordered classification of all Legendrian negative torus
links with knotted components. In Section 5, we give the unordered classification of all Legen-
drian negative torus links that have unknotted components; this involves defining the t-twisted
n-copies of a Legendrian unknot and establishing that these links are non-destabilizable and,
when n ≥ 3, do not have maximum Thurston-Bennequin invariant. In Section 6 we establish
the ordered classification of all Legendrian torus links. In particular, using convex surface the-
ory, we reprove Mishachev’s result that forbids non-cyclic permutations of the (n,−nq)-torus
links with max tb, and we describe which permutations can and cannot be obtained for all Leg-
endrian (np,±nq)-torus links. Non-cyclic rigidity appears in permutations of the components
of a Legendrian (np,−nq)-torus link with tb = −pq. By studying pre-Lagrangian tori, we first
show that it is impossible to do these non-cyclic permutations in a basic slice, and then we
show that we can “localize” isotopies in S3 to the basic slice situation. In Section 7, we give
the ordered and unordered classification of Legendrian cable links of Legendrian simple, uni-
formly thick knot types. In particular, we show that many of the Legendrian torus link results
generalize to Legendrian cable links, however now a study of pre-Lagrangian annuli in solid
tori shows that there are some slopes for which in the ordered classification not even cyclic
permutations are possible.

Acknowledgements: The authors thank Lenny Ng for helpful conversations and an anony-
mous referee for many valuable suggestions. The authors also thank IAS where the authors
rekindled their work on this project; the third author was supported at IAS from The Fund
for Mathematics. The second author was partially supported by the NSF CAREER Grant
DMS-0239600, NSF Focused Research Grant FRG-024466, and NSF grants DMS-1608684, DMS-
1906414, and DMS-2203312.

2. BACKGROUND AND PRELIMINARY RESULTS

We assume the reader is familiar with the basic notions concerning Legendrian knots and
convex surface theory. Sections 2 and 3 of [13] should be sufficient, but the reader might also
want to consult [12].

In Subsection 2.1, we recall the definition of a torus link. In Subsection 2.2, we will review the
construction of the Farey graph, which provides a useful labeling scheme for curves on a torus.
Subsections 2.3 and 2.4 establish what we need to know about contact structures on thickened
and solid tori. In Subsection 2.5, we give the definition of the n-copy of a Legendrian knot and
make some observations about its relation to torus links. Finally, in Subsection 2.6, we discuss
the Thurston-Bennequin invariant for links and, in particular, for torus links.



LEGENDRIAN TORUS AND CABLE LINKS 15

2.1. Torus Knots and Links. Recall that a standardly embedded torus T provides a genus one
Heegard splitting of S3, S3 = V0 ∪T V1, where V0 and V1 are solid tori. Then any curve on
T can be written as pλ + qµ, where µ is the unique curve that bounds a disk in V0, and λ is
the unique curve that bounds a disk in V1; such a curve will be called a (p, q)-torus knot. We
orient µ arbitrarily and then orient λ so that λ, µ form a positive basis for H1(T ), where T is
oriented as the boundary of V0. We will often identify the torus T with a quotient of the square
[0, 1]× [0, 1]/ ∼ with (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1) for all x, y, where the circle obtained as the
quotient of a horizontal line (slope 0) corresponds to the longitude λ, and the circle obtained as
the quotient of a vertical line (slope ∞) corresponds to the meridional curve µ. More generally,
when q ≥ p ≥ 1 and gcd(p, q) = 1, a line of slope ±q/p corresponds to a (p,±q)-torus knot.

Remark 2.1. The slope convention here is the inverse of the slope convention in [13] and in
much of the early contact topology literature, but agrees with the convention typically used by
topologists.

Remark 2.2. We always choose consistent orientations on the components of a (np,±nq)-torus
link (K1, . . . ,Kn). So we have that the linking numbers lk(Ki,Kj) = ±pq, for all i ̸= j.

2.2. Farey graph. A convenient way to keep track of curves on T 2 is through the Farey graph.
Consider the unit disk D2 with the interior given the standard hyperbolic metric. We will label
a collection of points in ∂D2; these labeled points will be in one-to-one correspondence with
embedded curves on T 2.

Label the point (0, 1) by 0 = 0/1 and the point (0,−1) by ∞ = 1/0; join these two labeled
points by a hyperbolic geodesic. Now inductively consider points (x, y) ∈ ∂D2 with x > 0
half way between two points with labelings a/b and c/d. Label this point (a + c)/(b + d) and
join it to the points with labels a/b and c/d by hyperbolic geodesics. We can label points in
∂D2 ∩ {x < 0} similarly except ∞ is considered as −1/0. See Figure 11. Once we have a
basis λ, µ fixed for H1(T

2), a point a/b in the Farey graph corresponds to the embedded curve
representing the homology class bλ + aµ. Additionally, two curves give a basis for H1(T

2) if
and only if they are joined by an edge in the Farey graph. It is also useful to know that if two
curves are represented by a/b and c/d, then their minimal geometric intersection is given by
|ad − bc|. Given two points s0 and s1 in the Farey graph, we denote by [s0, s1] the interval on
∂D2 obtained from a clockwise-oriented curve from s0 to s1.

2.3. Tight Contact Structures on T 2 × [0, 1]. In this section we will consider contact struc-
tures on thickened tori. In particular, we consider basic slices and minimally twisting contact
structures, which are stacks of basic slices. We also develop the notion of a “complementary
annulus” for a non-rotative contact structure; this will be useful in Section 6 when we analyze
symmetries of negative torus links.

Throughout this paper, we will be using established facts about convex surfaces. In partic-
ular, recall that a convex surface will have dividing curves that more-or-less encode the contact
structure near the surface. For convex tori, we will often apply “Giroux Flexibility” [22] to
assume that the characteristic foliation is in standard form, meaning that it has curves of sin-
gularities parallel to the dividing curves, called Legendrian divides, and the rest of the foliation
consists of linear curves (containing singularities) of a slope s that is not equal to the slope of
the dividing curves.
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∞
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FIGURE 11. The Farey graph: a basic slice can be represented by a signed geodesic.

2.3.1. Basic Slices and Minimally Twisting Contact Structures. A basic slice is a tight contact struc-
ture ξ on T 2 × [0, 1] such that the boundary tori Ti = T 2 × {i}, i = 0, 1, are convex with two
dividing curves of slope si that are connected by a geodesic in the Farey graph, and any convex
torus T in T 2 × [0, 1] parallel to the boundary has dividing slope in [s0, s1] ⊂ ∂D2. Honda [24]
and Giroux [23] have shown that there are exactly two basic slices ξ± for any such s0 and s1,
and ξ− = −ξ+. So as unoriented contact structures they are the same. A basic slice can be rep-
resented by a geodesic in the Farey graph equipped with a sign. One can build explicit models
for a basic slice with boundary dividing slopes s0 and s1 and see that any s ∈ (s0, s1) can be
realized as the slope of a pre-Lagrangian torus parallel to the boundary; recall a pre-Lagrangian
torus is a torus with a non-singular linear characteristic foliation.

A contact structure ξ on T 2 × [0, 1] is minimally twisting if the boundary tori Ti = T 2 ×
{i}, i = 0, 1, are convex with dividing curves of slope si and any convex torus T parallel to
the boundary has dividing slope in [s0, s1] ⊂ ∂D2. A minimally twisting contact structure is
necessarily tight and when each boundary component has just two dividing curves, it can be
broken into pieces that are basic slices, [23, 24]. More specifically, if one takes a minimal path
(of signed geodesics) in the Farey graph in the clockwise direction from s0 to s1, then each
edge in the path corresponds to a basic slice, and (T 2 × [0, 1], ξ) is the concatenation of these
basic slices. It is known that ξ is universally tight if and only if all the signs are the same, [24].
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Moreover if ξ is universally tight, then for any s ∈ (s0, s1) there is a pre-Lagrangian torus T in
T 2 × [0, 1] whose characteristic foliation has slope s, [24]. In Section 6, we will use the fact that
this is not the case if the contact structure on T 2 × [0, 1] is not universally tight:

Lemma 2.3. Let ξ be a minimally twisting contact structure on T 2 × [−1, 1] that is the union of a ∓
basic slice on T 2 × [−1, 0] and a ± basic slice on T 2 × [0, 1]. If si denotes the slope of the dividing
curves on T 2 × {i}, i = −1, 0, 1, then there is no pre-Lagrangian torus parallel to the boundary in
(T 2 × [−1, 1], ξ) whose characteristic foliation has slope s0.

Proof. For a contradiction, suppose T0 is a pre-Lagrangian torus in T 2 × [−1, 1] parallel to the
boundary with characteristic foliation having slope s0. Choose coordinates on T 2 so that s0 = 0.
Since the characteristic foliation of a surface determines the contact structure in a neighbor-
hood, there is a neighborhood N0 of T0 that agrees with the standard model T 2 × (−ϵ, ϵ) with
contact structure ker(cos t dϕ + sin t dθ). For sufficiently large n, we can find convex tori in
this model with two dividing curves of slopes −1/n and 1/n that cobound a thickened torus
N ′

0 ⊂ N0 that contains T0. Since N ′
0 is minimally twisting (being a subset of T 2 × [−1, 1]) and in

the Farey graph we know that there are geodesic paths from −1/n to 0 and from 0 to 1/n, the
contact structure on N ′

0 is the union of two basic slices. The contact structure on N0 (and hence
on N ′

0) is universally tight, and thus the signs of the basic slices making up N ′
0 have the same

sign. Let T ′
0 be the torus inN ′

0 that dividesN ′
0 into two basic slices,B− andB+ of the same sign.

Now T 2× [−1, 1]\N ′
0 is a union of two thickened tori C− and C+ with boundary slopes s−1 and

−1/n on the first and 1/n and s1 on the second. The assumption that T 2 × [−1, 1] is the union
of two basic slices implies that C− ∪B− and C+ ∪B+ are basic slices. Since they are both tight,
by Theorem 4.25 in [24], all the signs of the basic slices making up C− agree with those of B−,
and similarly all signs in the basic slices making up C+ agree with the sign of B+. But since we
already observed that B− and B+ have the same sign, we see that all the signs that determine
ξ on T 2 × [−1, 1] must be the same. This means that ξ is universally tight, contradicting our
hypothesis. □

2.3.2. Non-rotative contact structures. A contact structure ξ on T 2 × [0, 1] is called non-rotative if
the boundary tori T0 and T1 are convex with equal dividing slopes, s1 = s0, and any convex
torus T in T 2× [0, 1] that is parallel to the boundary also has dividing slope s0; these conditions
imply ξ is tight. For a non-rotative (T 2× [0, 1], ξ), we can construct a “complementary annulus”
as follows.

Definition 2.4 (Complementary Annulus). Suppose T 2× [0, 1] has a non-rotative contact struc-
ture with dividing slope s. Choose t such that s and t are connected by an edge in the Farey
graph. By isotopy, we can assume the boundary of T 2 × [0, 1] has ruling curves of slope t; let
Lt ⊂ T 2 be a curve of slope t. It is possible to construct an annulusA in T 2× [0, 1] such thatA is
isotopic to Lt× [0, 1],A is convex, and ∂A consists of ruling curves. We call this a complementary
annulus for the non-rotative T 2 × [0, 1].

Lemma 2.5. A non-rotative contact structure on T 2 × [0, 1] of slope s is uniquely determined by the
dividing curves on a complementary annulus.

Proof. If you have two non-rotative contact structures on T 2 × [0, 1] with the same boundary
(and hence we assume the characteristic foliation on their boundaries is the same) and the
dividing curves on their complementary annuli agree, then after isotopy we can assume that
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the complementary annuli and the annuli’s characteristic foliations agree. Then the contact
structures are isotopic in a neighborhood of ∂(T 2× [0, 1])∪A. The complement of this region is
a solid torus with convex boundary having two longitudinal dividing curves (since the slope of
the dividing curves and the slope of the complementary annulus form a basis for the homology
of T 2), which has a unique tight contact structure; see Theorem 2.11. □

Remark 2.6 (Non-rotative models). Given an annulus A and a set of curves Γ that can arise
as the dividing curves for a non-rotative structure (that is the dividing curves run from one
boundary component of the annulus to the other), we can build an explicit model for a non-
rotative contact structure on T 2 × [0, 1] such that A is a complementary annulus with dividing
set Γ; our construction will yield a contact structure that is S1-invariant in the direction of the
dividing curves on the boundary. For this construction, start with A and Γ ⊂ A. We first
construct a foliation on A satisfying the conditions of Γ being dividing curves for the foliation,
[22]. There is an R-invariant contact structure on R×A that induces Γ as the dividing curves on
A×{0}. Quotienting by the action of Z on R will give a contact structure on S1×A = T 2× [0, 1]
that is S1-invariant. Moreover, one can show that the contact structure is non-rotative and that
the dividing curves on the boundary of T 2 × [0, 1] are parallel to the first S1 factor. Thus we
have an explicit model for any non-rotative contact structure that is S1-invariant, where the
S1-action is in the direction of the dividing curves on the boundary.

In a pre-Lagrangian torus, there is a natural cyclic ordering of the leaves of the foliation. In
a convex torus, there is again a natural cyclic ordering of leaves made from ruling curves, but
it is less obvious how to define the ordering of leaves formed from the Legendrian divides. In
Subsection 2.3.3, we will define a cyclic ordering of the Legendrian divides of a convex torus
that lies either in a basic slice or in a universally tight T 2 × [0, 1]. Our model will be a convex
torus with a non-rotative T 2 × I neighborhood that has a complementary annulus A with a
dividing set consisting of two curves that run from one boundary component to the other. We
now explain our model T 2 × I and how the complementary annulus defines a cyclic ordering
of the Legendrian divides on convex tori in this model.

Lemma 2.7. Consider a non-rotative T 2 × [0, 1] of slope s with a complementary annulus A that has
two dividing curves that run from one boundary component of A to the other. A closed curve γ in the
interior of A isotopic to the core of A that transversally intersects the dividing curves of A gives rise to a
convex torus Tγ . From A, we can define a cyclic ordering of the Legendrian divides of Tγ . Moreover, any
complementary annulus isotopic to A will induce the same cyclic ordering on the Legendrian divides of
Tγ .

Proof. As mentioned in Lemma 2.5, the slope of the non-rotative neighborhood and the divid-
ing curves on the complementary annulus uniquely determine the contact structure. So let A
be an annulus with dividing set Γ consisting of two curves that each run from one boundary
component to the other. Using the construction from Remark 2.6, we obtain a non-rotative con-
tact structure ξ on T 2 × [0, 1] where each boundary torus will have two dividing curves. This
contact structure is S1-invariant in the direction of the dividing curves on the boundary tori
and is also [0, 1]-invariant.

From curves on A, we can construct convex tori. Let γ be any closed curve in the interior of
A that is isotopic to the core of A and has a transversal intersection with Γ. Then Tγ = S1 × γ is
a convex torus that splits T 2 × [0, 1] into two thickened tori R− and R+. The contact structure ξ
restricted to each of these is non-rotative. We also know that the number of dividing curves on
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Tγ is 2n = |γ ∩ Γ| and S1 × (γ ∩ Γ) are Legendrian divides on Tγ , since the dividing curves on
A are precisely where the contact structure is tangent to the S1 fibers.

The complementary annulus A defines a cyclic ordering of the Legendrian divides of Tγ as
follows; see Figure 12.

γ

1 2 34 5 6 7 8
e0

e1

FIGURE 12. The annulusA in the construction of T 2×[0, 1]. The dividing curves
are the horizontal red curves and γ is shown in blue. The dotted circle is used
to order the Legendrian divides on Tγ .

Recall Γ divides the convex A into positive and negative regions; for i = 0, 1, let ei be the
arc in S1 × {i} ⊂ ∂A that is contained in the negative region of A. Then the union of e0, e1,
and the two arcs in Γ form a closed loop on A; orient this loop so that the portions of it coming
from ei are oriented as the boundary of A. Now when one traverses this oriented loop, one
encounters all of the elements of γ ∩ Γ, and hence a cyclic order is induced on these points,
which correspond to the Legendrian divides on Tγ .

We claim any other convex annulus isotopic toA defines the same ordering. To see this letA′

be another annulus isotopic to A with boundary rulings curves and intersecting Tγ in a ruling
curve. The torus Tγ breaks A and A′ into two sub-annuli A± and A′

± where A+ and A′
+ have

boundary on T 2 × {1}. Notice that A± × S1 is an S1-invariant contact structure determined by
the dividing curves onA±. According to [25, Proposition 4.4] any other convex surface isotopic
to A± will have dividing set containing that of A± (after isotopy). Thus the dividing set of A′

±
contains that of A±. But since the dividing set of A± has arcs that run across the annuli, there
can be no closed dividing curves in A′

±. Moreover, since the number of times the dividing
curves intersect Tγ and T 2 × {i} is determined by the number of dividing curves on Tγ and
T 2 × {i}, we see that the dividing curves on A′

± agree with those on A±. Thus the ordering of
the Legendrian divides coming from A′ will be the same as the one coming from A. □

2.3.3. Neighborhoods of pre-Lagrangian tori and convex tori. In [13, Lemma 3.17], it is shown that
the Legendrian divides on a convex torus arise as the intersections of the convex torus with
a pre-Lagrangian torus. We will need an enhanced version of this lemma that includes a spe-
cial non-rotative neighborhood of the convex torus; the corresponding complementary annulus
will enable us to define a cyclic ordering of the Legendrian divides on the convex torus, which
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will coincide with the cyclic ordering on the pre-Lagrangian. We explain this special neigh-
borhood in the following local model where we will start with a pre-Lagrangian torus and
construct models for convex tori.

Lemma 2.8. In any neighborhood of a pre-Lagrangian torus T , one can construct a convex torus T ′

with Legendrian divides given as T ′ ∩ T . For any choice of such T ′, one can find a non-rotative T 2 × I
containing T ′ that has a complementary annulus A consisting of two dividing curves that run from one
boundary component to the other. This A induces a cyclic ordering of the Legendrian divides of T ′, and
this cyclic ordering agrees with that given by the pre-Lagrangian T .

Proof. Recall that the characteristic foliation on a surface determines the contact structure up to
isotopy in a neighborhood of the surface. Thus given a pre-Lagrangian torus T , we can choose
coordinates on T so that the foliation has slope 0, and the contact structure in a neighborhood
T × (−ϵ, ϵ) is given by ker(cos t dϕ + sin t dθ), where t ∈ (−ϵ, ϵ), and θ, ϕ ∈ S1 are angular
coordinates on T . Consider the circle C ⊂ T × {t = 0} given by C = {θ = 0, t = 0}, and then
the annulus A = C × (−ϵ, ϵ) = {θ = 0, t ∈ (−ϵ, ϵ)} ⊂ T × (−ϵ, ϵ). Observe that A is convex: the
contact vector field ∂

∂θ is transverse to A, and the dividing curve of A is the circle C. Keep in
mind that our pre-Lagrangian T is S1

θ × C.

C

γ
12

3

4

5

6
7

8

γ+

γ−

FIGURE 13. Starting with a pre-Lagrangian torus T = C × S1
θ , Tγ = γ × S1

θ is
a convex torus with Legendrian divides given by (γ ∩ C) × S1

θ = Tγ ∩ T . The
tori Tγ± = γ± × S1

θ form the boundary of a region R with a non-rotative contact
structure such that A ∩ R is a complementary annulus with dividing curves
given by A ∩ C. The dotted curve p, constructed as in the proof of Lemma 2.7
from the dividing curves and portions of the boundary of the complementary
annulus, induces a cyclic ordering on the Legendrian divides of Tγ that agrees
with the cyclic ordering from T .

We now show how curves on A give rise to convex tori whose Legendrian divides are given
by the intersections of these tori with the pre-Lagrangian T . Let γ ⊂ A be the image of the
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circle C under a smooth isotopy such that γ ∩ C ̸= ∅, and, for all p ∈ γ ∩ C, Tpγ is spanned by
∂
∂t ; see Figure 13. Then Tγ = S1

θ ×γ is a convex torus: singularities of the characteristic foliation
happen precisely along S1

θ × (γ ∩ C), and it follows that we can choose dividing curves for
the foliation thus guaranteeing Tγ is convex. By perturbing γ relative to γ ∩ C, it is possible to
assume the characteristic foliation is in standard form with ruling curves of slope ∞, meaning
parallel to C ; observe that there are |γ ∩ C| dividing curves and the Legendrian divides of Tγ
are exactly Tγ ∩ T .

Next we show that, from curves γ± on A, we can construct a non-rotative neighborhood R
of Tγ such that both boundary components of ∂R are convex tori with two dividing curves,
and the complementary annulus for R is given by A ∩ R. Let γ± ⊂ A be disjoint images of the
circle C under a smooth isotopy such that γ± transversally intersects C in two points, and γ is
contained in the region of A bounded by γ±; see Figure 13. Following a procedure as in the
construction of Tγ above, we let Tγ± = S1

θ ×γ±; the Tγ± are convex with two dividing curves of
slope 0, meaning parallel to the θ-axis. The contact structure on the region R between the two
tori Tγ± is non-rotative. It follows that R can be identified with an I invariant neighborhood of
a convex torus with two dividing curves. Notice that Tγ splits R into two regions R− ∪R+. As
mentioned above, we can assume all the curves are chosen so that the tori Tγ− , Tγ and Tγ+ , have
ruling curves of slope ∞. The annuli A± = A∩R± can be slightly perturbed to have boundary
being the union of ruling curves. Then the A± are convex annuli with Legendrian boundary,
and the dividing curves can be taken to be T ∩ A± = C ∩ A±. The contact structure on each
R± is non-rotative and is completely determined by the isotopy class of the dividing curves on
A±. Notice that R is exactly the type of non-rotative thickened torus considered in Lemma 2.7.
Thus the complementary annulus A+ ∪A− determines an ordering on the Legendrian divides
of Tγ that agrees with the ordering coming from T . □

The following is our needed enhancement of [13, Lemma 3.17].

Lemma 2.9. Consider a basic slice T 2 × [0, 1], where T 2 ×{0} has slope s0, and T 2 ×{1} has slope s1.
Suppose s ∈ (s0, s1) ⊂ ∂D2, and T ′ ⊂ T 2× [0, 1] is a boundary parallel convex torus in standard form
with slope s. Then:

(1) There is a pre-Lagrangian torus T isotopic to T ′ that intersects T ′ transversely, and T ′ ∩ T is
exactly the union of the Legendrian divides of T ′.

(2) Furthermore, T ′ is contained in a non-rotative thickened torus R′ of slope s that has a comple-
mentary annulus A′ with two dividing curves that run from one boundary component of A′ to
the other; A′ defines a cyclic ordering of the Legendrian divides of T ′ that agrees with the cyclic
ordering of these curves on the pre-Lagrangian T .

The statement of (1) is given in [13, Lemma 3.17], but no explicit proof is given. Here we will
give the proof of the strengthened statement.

Proof. Fix a basic slice T 2 × I with boundary slopes s0, s1, and fix s ∈ (s0, s1).
Given a convex torus T ′ of slope s in a basic slice that is parallel to the boundary, one can find

convex tori T± in T 2× [0, 1] that both have two dividing curves of slope s and cobound a region
R′ with a non-rotative contact structure that contains T ′ (this is just by attaching bypasses to
T ′ that can be found on annuli from T ′ to T 2 × {i} with boundary being curves of slope si).
Choose a complementary annulus A′ (see Definition 2.4) for the non-rotative region R′ where
the boundary curves of A′ have slope t; the convex A′ will have two dividing curves that run
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from one boundary component to the other. In this way, we break our basic slice into three
regions: R′

0 (containing T 2 × {0}), R′, and R′
1 (containing T 2 × {1}). Moreover, R′ is split into

two thickened tori R′
− ∪R′

+ by T ′ and we can set A′
± = A′ ∩R′

±.
We now move to a model situation that incorporates the pre-Lagrangian torus that has the

stated properties, and then we will prove this model is contactomorphic to our situation as
described in the previous paragraph. In our basic slice, we can find a pre-Lagrangian torus T
of slope s. By Lemma 2.8, in any neighborhood of T we can find a convex torus Tγ and convex
tori Tγ± that bound a non-rotative region R containing Tγ . Choose a complementary annulus
A of slope t for R. The torus Tγ splits R into two thickened tori R− ∪R+. Set A± = A ∩R±.

By the appropriate choice of γ we can assume that the dividing curves on A± and A′
± agree.

Now the tori Tγ± divide our basic slice into three pieces: R0, R, and R1. Since the dividing
curves on A and A′ agree, R and R′ are contactomorphic; see Lemma 2.5. Moreover, this con-
tactomorphism takes Tγ to T ′. Indeed, since the dividing curves on A± and A′

± agree, there is
a contactomorphism from R− to R′

− and from R+ to R′
+. Taken together these give the desired

contactomorphism of R to R′. The classification of contact structures on thickened tori implies
that Ri and R′

i are also contactomorphic. Thus we have a contactomorphism of our basic slice
that takes Tγ to T ′.

The image of T is the desired pre-Lagrangian torus that satisfies (1). For the first part of
statement (2) we can take T± to be the image of Tγ± under the contactomorphism. In the
model, the ordering of the Legendrian divides on Tγ given by A is the same as given by T , and
thus the same will be true for T ′. □

Remark 2.10. The lemma can be extended from basic slices to universally tight contact structures
ξ on T 2 × [0, 1]. We know that a universally tight ξ is obtained by stacking together several
basic slices with the same sign. If the slope s lies in a basic slice then one just repeats the
proof in this basic slice and ignores the others. If s is one of the slopes on the boundary of
one (and hence two) basic slices, then from our discussion above we know that there is a pre-
Lagrangian torus with the desired slope contained in the union of the two basic slices with
boundary having slope s. Then one may repeat the above proof with little modification to
reach the same conclusion.

2.4. Tight Contact Structures on S1×D2 and neighborhoods of Legendrian knots. We begin
with the simplest classification result.

Theorem 2.11 (Kanda 1997 [30]). For all q ∈ Z, there is a unique contact structure on S1 ×D2 with
convex boundary having two dividing curves of slope q.

Remark 2.12. Classification results on contact manifolds with convex boundary are usually
stated in terms of the dividing curves. It is useful to keep in mind that the characteristic fo-
liation on the boundary is an invariant. So, for example, the uniqueness statement for contact
structures on S1×D2 with a “convex boundary having two dividing curves of slope q” is short-
hand for a uniqueness statement for contact structures on S1 ×D2 with a “fixed characteristic
foliation that has two dividing curves of slope q;” uniqueness then means unique up to an
isotopy fixing the boundary.

Remark 2.13 (Model for solid torus with boundary slope 0). There is a simple model for the
unique contact structure on S1 × D2 with convex boundary having two dividing curves of
slope 0. Consider a neighborhood N0 of the x-axis in R3/ ∼, where (x, y, z) ∼ (x + 1, y, z)
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and R3 has the standard contact structure ξ = ker(dz − ydx). We can assume the boundary
of the neighborhood is convex with two dividing curves of slope 0. By Giroux Flexibility [22],
we can assume the characteristic foliation is in standard form (as described at the beginning of
Subsection 2.3). Notice that Λ0 = {y = z = 0} is a Legendrian knot in N0, and the annulus
A0 = {y = 0} ⊂ N0 is foliated by Legendrian curves isotopic to Λ0.

Remark 2.14. By considering the standard model in Remark 2.13, we see that if S1 × D2 has
convex boundary with dividing slope q ∈ Z, for any s ∈ (−∞, q) ⊂ ∂D2 (as defined in Subsec-
tion 2.2), there is a pre-Lagrangian torus T 2 parallel to the boundary that has slope s.

We use the N0 from Remark 2.13 as a “standard neighborhood” of a Legendrian knot with
tb = 0: the convex boundary of this neighborhood will have two dividing curves and a charac-
teristic foliation in standard form. Standard neighborhoods for Legendrian knots with tb ̸= 0
are obtained by applying a diffeomorphism to N0.

Definition 2.15. Given a Legendrian knot Λ, by the Legendrian Neighborhood Theorem (see,
for example, [18, Corollary 2.5.9]), we know there is a neighborhood N of Λ and a contact
diffeomorphism of N0 (as defined in Remark 2.13) onto N ; such an N is a standard neighborhood
of Λ. The diffeomorphism from N0 to N sends Λ0 to Λ, the two slope 0 dividing curves of ∂N0

to curves of slope tb(Λ) on ∂N , and the annulus A0 to an annulus A in N foliated by curves
isotopic to Λ.

The analog of Lemma 2.9 for solid tori is the following.

Lemma 2.16. Let (S1×D2, ξ) be a solid torus with convex boundary having 2 dividing curves of slope
0 (that is they are parallel to S1 × {p}). Suppose s ∈ Q satisfies s ∈ (−∞, 0) ⊂ ∂D2.

(1) Given any convex surface T ′ ⊂ S1 ×D2 in standard form with boundary slope s and isotopic
to ∂(S1 ×D2), there is a pre-Lagrangian torus T isotopic to T ′ that intersects T ′ transversely,
and T ′ ∩ T is exactly the union of the Legendrian divides of T ′.

(2) Furthermore, there are two convex tori T− and T+ that co-bound a non-rotative thickened torus
R′ containing T ′ where T± each have two Legendrian divides of slope s that arise as T± ∩ T .
The tori T± together with a complementary annulus A to the slope s define a cyclic ordering of
the Legendrian divides of T ′ that agrees with the cyclic ordering of these curves on T .

Proof. Given the convex torus T ′ in Item (1) we can use the classification of contact structures
on solid tori to find a universally tight thickened torus containing T ′ in S1 × D2. The result
now follows from Lemma 2.9 and Remark 2.10. □

2.4.1. Neighborhoods of Legendrian knots. Given a Legendrian knot Λ, inside a standard neigh-
borhood N of Λ (as described in Remark 2.13), there is a standard neighborhood N± of the ±
stabilized Λ. The dividing curves on the boundary of N± have slope tb(K) − 1, so the region
R± between N and N± is a basic slice. Moreover the sign of the basic slice is determined by the
sign of the stabilization.

2.4.2. Constructing (p,−q)-torus knots. At this point we review the construction of non-trivial,
maximal Thurston-Bennequin invariant (p,−q)-torus knots (p > 1) with varying rotation num-
bers, [13, Section 4]. Choose m ∈ Z such that −m − 1 < −q/p < −m. We can decompose
S3 as U−m−1 ∪ ([0, 1] × T 2) ∪ S−m, where S−m is the closure of the complement of a standard
neighborhood of a Legendrian unknot U−m with tb = −m, U−m−1 is a standard neighborhood
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of a Legendrian unknot U−m−1 with tb = −m− 1, and T 2 × [0, 1] is a basic slice with dividing
slopes −m − 1 and −m, see Figure 14. Thus in T 2 × [0, 1] there is a pre-Lagrangian torus with

S−m

U−m−1 m− 1 basic slices

± ± ±

FIGURE 14. The decomposition of S3 used to find maximal Thurston-
Bennequin (p,−q)-torus knots. Each vertical line represents a Heegaard torus
for S3 and the (p,−q)-torus knot is found on the red torus.

linear characteristic foliation of slope −q/p. Our Legendrian (p,−q)-torus knot Kp,−q is one
of the leaves of this pre-Lagrangian torus. In [13] it was shown that any maximal Thurston-
Bennequin invariant negative torus knot sits on such a torus for some choice of unknots U−m
and U−m−1.

For m > 1, there will be options for the Legendrian unknot U−m distinguished by r(U−m),
and two choices for U−m−1 determined by whether a positive or negative stabilization is done
to U−m; this leads to the 2m Legendrian representatives of K(p,−q). The different choices for
r(U−m) and signs of stabilization for U−m−1 will determine r(Kp,−q).

When p = 1, the (1,−q)-torus knot is an unknot, but (n,−nq)-torus links will be distinct links
as q varies. One can still build models for maximal Thurston-Bennequin invariant (n,−nq)-
torus links using pre-Lagrangian tori as shown in the proof of Lemma 5.2.

2.5. The n-copy. Many non-destabilizable Legendrian negative torus links will be n-copies of
a Legendrian torus knot.

Definition 2.17. For any Legendrian knot Λ, we see from Definition 2.15 that any standard
neighborhood of Λ contains an annular region A containing Λ that is foliated by Legendrian
curves isotopic to Λ; the image of any n curves in A is the n-copy of Λ, see the bottom row of
Figure 6 and upper left picture in Figure 10 for examples of n-copies. If tb(Λ) = m, then the
n-copy is topologically the n(1,m)-cable of Λ.

Remark 2.18. In the front projection, the components of the n-copy can be obtained as slight
shifts of Λ in the z-direction, [33].
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Lemma 2.19. Let T be a pre-Lagrangian torus and Λ a leaf of the characteristic foliation of T . Then any
n leaves in the characteristic foliation of T can be taken to be the n-copy of Λ.

Proof. Let Λ1,Λ2, . . . ,Λn be n leaves in the characteristic foliation of T . LetA ⊂ T be an annulus
that contains ∪iΛi. Since the characteristic foliation on a surface determines the contact struc-
ture in a neighborhood of the surface we see that A has a neighborhood N contactomorphic to
a neighborhood of the A0 defined in Remark 2.13. So N is a standard neighborhood of Λ, and
Λi are leaves in the foliation of A. Thus the n leaves form the n-copy of Λ. □

The n-copy exists for any Legendrian knot. When Λ is an unknot or a negative torus knot
with maximal tb, then the n-copy will be a torus link.

Lemma 2.20. (1) For q > p ≥ 2, gcd(p, q) = 1, if Λ is a nontrivial Legendrian (p,−q)-torus knot
with tb(Λ) = −pq, then the n-copy of Λ is a Legendrian (np,−nq)-torus link L = (Λ1, . . . ,Λn)
with tb(Λ1) + · · ·+ tb(Λn) = −npq.

(2) If Λ is a Legendrian unknot with tb(Λ) = −q, then the n-copy of Λ is a Legendrian (n,−nq)-
torus link L = (Λ1, . . . ,Λn) with tb(Λ1) + · · ·+ tb(Λn) = −nq.

Proof. We need to show that when Λ is an unknot or a negative torus knot, the n-copy lies on
a standardly embedded torus. This is clear when Λ is an unknot. When Λ is a (p,−q)-torus
knot with tb = −pq, as described in Section 2.4.2, it was shown in [13] that Λ is a leaf in the
characteristic foliation of a pre-Lagrangian torus T that bounds an unknotted solid torus. Thus
taking n leaves in the foliation will give the n-copy of Λ by the Lemma 2.19; but this is also the
(np,−nq)-cable of the unknot, that is the (np,−nq)-torus link. □

Remark 2.21. Notice that for any Legendrian knot Λ, the n-copy of Λ will be a (n, n tb(Λ))-cable
of Λ.

We will see in the next section, that these torus links formed as n-copies will have maximal
Thurston-Bennequin invariant.

2.6. Thurston-Bennequin invariant of Legendrian torus links. The Thurston-Bennequin in-
variant for a link L is defined in the same way as for knots. In particular, if L′ is the Legendrian
push-off of L (that is a copy of L obtained by flowing a short time by a Reeb flow), then tb(L) is
the total linking of L with L′. Using the combinatorial description of tb from a count of cross-
ings and cusps, see for example [12, 2.62], and the fact that each crossing is either from the same
or different components, it is not hard to see that for L = (Λ1, . . . ,Λn),

tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) + 2
∑
i<j

lk(Λi,Λj),

For (np,±nq)-torus links L = (Λ1, . . . ,Λn), since lk(Λi,Λj) = ±pq when i ̸= j (see Remark 2.2),
we have

(1) tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn)± (n− 1)(n)pq.

From this we see that a link has maximal Thurston-Bennequin invariant precisely when tb(Λ1)+
tb(Λ2) + · · ·+ tb(Λn) is maximized.

We now have the following observation.

Proposition 2.22. For an oriented, Legendrian (np,±nq)-torus link, with n ≥ 2, let Λ1, . . . ,Λn denote
the n components.
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(1) For the Legendrian (np,+nq)-torus link, tb(Λ1) + · · ·+ tb(Λn) ≤ n(pq − p− q);
(2) For the Legendrian (np,−nq)-torus link, tb(Λ1) + · · ·+ tb(Λn) ≤ −npq.

As discussed in the introduction we know the maximum Thurston-Bennequin invariant of
torus knots, from which the proposition easily follows for torus knots with knotted components
(p > 1) and positive torus knots with unknotted components (1 = p ≤ q). However, observe
that for (n,−nq)-links, which are negative torus links with unknotted components, the known
upper bound of −1 for a Legendrian unknot says that for a Legendrian (n,−nq) torus link,
tb(Λ1) + · · · + tb(Λn) ≤ −n, which is weaker than Proposition 2.22 when q ≥ 2. For negative
torus knots with unknotted components we need the following result to prove the proposition.

Theorem 2.23 (Epstein 1997, [9]). If L is a Legendrian (np,−nq)-torus link with np even, then
tb(L) ≤ −n2pq.

Proof of Proposition 2.22. As discussed above we only need to verify that for a Legendrian (n,−nq)-
torus link with n ≥ 2 and q ≥ 2,

tb(Λ1) + · · ·+ tb(Λn) ≤ −nq.
We first assume that n is even. Then by Theorem 2.23, we know tb(L) ≤ −n2q. Thus Equa-

tion (1) gives
tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn)− (n− 1)nq ≤ −n2q.

So tb(Λ1) + · · ·+ tb(Λn) ≤ −nq, as desired.
Lastly consider the case where n is odd, and thus n ≥ 3, and suppose for a contradiction that

it is possible to construct a Legendrian version of (n,−nq) with tb(Λ1) + · · · + tb(Λn) > −nq.
Then we know that there must be at least one term with Thurston-Bennequin invariant greater
than −q: say

tb(Λ1) ≥ tb(Λ2) ≥ · · · ≥ tb(Λi) > −q ≥ tb(Λi+1) ≥ · · · ≥ tb(Λn).

If i ≥ 2, then Λ1 and Λ2 will make a (2,−2q)-torus link with tb(Λ1)+ tb(Λ2) > −2q, a contradic-
tion to the paragraph above. If i = 1, then we can again conclude that tb(Λ1) + tb(Λ2) > −2q as
follows. Write tb(Λ1) = −q + j1, tb(Λ2) = −q − j2 for j1 > 0, j2 ≥ 0. We can argue that j1 > j2
as follows. If j1 ≤ j2 then writing tb(Λi) = −q − ji where ji ≥ 0 for i = 3, . . . , n, we have

tb(Λ1) + · · ·+ tb(Λn) = (−q + j1) + (−q − j2) + (−q − j3) + · · ·+ (−q − jn),

= −nq + (j1 − j2 − j3 − · · · − jn)

≤ −nq + (−j3 − · · · − jn)

≤ −nq,

a contradiction to our starting assumption. Thus j1 > j2 and so the components Λ1, Λ2 make
up a (2,−2q)-torus link with tb(Λ1) + tb(Λ2) = −q + j1 + −q − j2 = −2q + j1 − j2 > −2q, a
contradiction to the above paragraph. □

3. POSITIVE TORUS LINKS

In this section, we will give the unordered classification of all Legendrian positive torus links.
In other words, we will classify all Legendrian links that are topologically (np,+nq)-torus links
with n ≥ 2, q ≥ p ≥ 1, and gcd(p, q) = 1. Observe that when p = 1, these are all links of
unknots. The ordered classification will be given in Section 6.
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FIGURE 15. The front projection of a 3(2,+3)-torus link.

Theorem 3.1. Given 1 ≤ p ≤ q and gcd(p, q) = 1, an unordered, oriented Legendrian (np,+nq)-torus
link is classified by the Thurston-Bennequin invariants and rotation numbers of the components.

The strategy to prove this theorem is to understand all oriented Legendrian representatives
of the (np,+nq)-torus link with maximal tb invariant, and then show that if a link does not have
maximal Thurston-Bennequin invariant, it must destabilize to one with maximal tb.

Lemma 3.2. Given q ≥ p ≥ 1 and gcd(p, q) = 1, there exists a unique oriented Legendrian (np,+nq)-
torus link with maximal Thurston-Bennequin invariant.

Proof. This argument parallels the proof of [13, Lemma 4.7]; additional details can be found
there.

We first show the existence of a Legendrian (np,+nq)-torus linkLwith components Λ1, . . . ,Λn
such that tb(Λi) = pq − p − q, for all i. Let N be a solid torus neighborhood of a Legendrian
unknot with tb = −1 with convex boundary T in standard form. Then T has dividing curves of
slope −1; we can assume that the ruling curves have slope q/p. Let L consist of n ruling curves
on T . By analyzing the number of intersections between the ruling and dividing curves, we
find that each ruling curve has tb = pq − p− q, as desired.

Next we consider uniqueness. If L and L′ are both Legendrian (np,+nq)-torus links with
maximal Thurston-Bennequin invariant, then we can assume they lie as a subset of the ruling
curves on convex tori T and T ′, where both T and T ′ have two dividing curves of slope −1.
By Honda’s classification of contact structures on solid tori, we know there is a contact diffeo-
morphism of S3 that takes T ′ to T , and then a result of Eliashberg [6, Corollary 2.4.3] shows
that there is a contact isotopy of S3 that takes T ′ to T . So after isotopy, we can assume that L
and L′ are both collections of ruling curves on the same convex torus. It follows that there is an
isotopy from the unordered link L′ to L. □

Remark 3.3. There is a simple algorithm for constructing a front projection of the max tb Legen-
drian (np,+nq)-torus link:

• Begin with np nested copies of the max tb unknot with two cusps;
• Replace a trivial np-stranded tangle with q/p of a full positive twist; this corresponds to

repeating the fundamental positive crossing tangle, as shown on the top of Figure 9, nq
times.

See Figure 15.
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Lemma 3.4. Suppose q ≥ p ≥ 1 and gcd(p, q) = 1. Let L = ⨿ni=1Λi be an oriented Legendrian
(np,+nq)-torus link. If tb(Λ1) + · · · + tb(Λn) < n(pq − p − q), then there exists a Legendrian
(np,+nq)-torus link L′ = ⨿ni=1Λ

′
i such that tb(Λ1) + · · · + tb(Λn) < tb(Λ′

1) + · · · + tb(Λ′
n) and L is

a stabilization of L′.

Proof. This argument parallels the proof of [13, Lemma 4.8]; additional details can be found
there.

From the Relative Convex Realization Principle [30], we can assume L sits on the convex
boundary T of an unknotted solid torus. We first notice that if the dividing curves on T do
not intersect each component of L minimally, then there is a bigon in T with one side on the
dividing curves and one side on L. This gives a bypass which can be used to destabilize L.
Thus after destabilization of some of the components of L , we can assume that all components
of L intersect the dividing curves minimally, and thus can be assumed to be ruling curves of T .

If at this point, T has two dividing curves of slope −1, then all components of T have max-
imial Thurston-Bennequin invariant. Else, either the slope of the dividing curves on T is not
−1, or T has more than 2 dividing curves of slope −1. In both of these cases, it can be argued
that there is a convex torus T ′ that is disjoint from T and parallel to T with two dividing curves
of slope −1 and ruling curves of slope q/p. Applying the Imbalance Principle, [24, Proposition
3.17], to an annulus with one boundary component on a component of L in T and the other on
a ruling curve of T ′ gives the existence of a destabilization of the component of L, as desired.

In this way, we can continue the destabilization process until all components have maximal
Thurston-Bennequin invariant. □

Theorem 3.1 follows directly from Lemmas 3.2 and 3.4.

4. NEGATIVE TORUS LINKS WITH KNOTTED COMPONENTS

In this section, we will classify all Legendrian negative torus links with knotted components,
namely links that are topologically (np,−nq), with n ≥ 2, q > p ≥ 2, and gcd(p, q) = 1. In this
section, we only consider the unordered classifcation. We will discuss the ordered classification
in Section 6 below.

Theorem 4.1. Given q > p ≥ 2 and gcd(p, q) = 1, unordered, oriented Legendrian (np,−nq)-torus
links are determined by the Thurston-Bennequin and rotation number invariants of the components.

As in Section 3, this classification follows from first understanding those with max tb.

Lemma 4.2. Given q > p ≥ 2 and gcd(p, q) = 1, choose m ∈ Z such that −m − 1 < −q/p <
−m. Then there are 2m Legendrian realizations of the (np,−nq)-torus link with maximal Thurston-
Bennequin invariant. Each of these maximal tb examples arise as an n-copy of a Legendrian (p,−q)-
torus knot with maximal tb.

Proof. Compare the proof of [13, Lemma 4.11].
A Legendrian (np,−nq)-torus link L will have maximal Thurston-Bennequin invariant pre-

cisely when tb(Λi) = −pq, for all i. It is well-known that the difference between the Seifert
framing and the framing coming from T is −pq:

(2) tb(Λi)− tw(Λi, T ) = −pq.
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Thus we find that tw(Λi, T ) = 0. Applying the Relative Convex Realization Principle, we can
assume that L lies in the convex boundary T of an unknotted solid torus, and each compo-
nent Λi must be disjoint from the dividing curves. We may thus take L to be a subset of the
Legendrian divides when T is isotoped to be a convex torus in standard form with dividing
slope −p/q. This torus sits inside a basic slice, and hence by Lemma 2.9, we know that all
the Legendrian divides are contained as leaves inside of some pre-Lagrangian torus. Thus,
by Lemma 2.19, any maximal Thurston-Bennequin invariant (np,−nq)-torus link is the Leg-
endrian n-copy of a maximal Thurston-Bennequin invariant (p,−q) torus knot. Hence all the
components have the same rotation number, and the link is classified by this rotation num-
ber. □

Lemma 4.3. Given q > p ≥ 2 and gcd(p, q) = 1, let L = ⨿ni=1Λi be a Legendrian (np,−nq)-torus
link. If tb(Λ1)+· · ·+tb(Λn) < −npq, then there exists a Legendrian (np,−nq)-torus link L′ = ⨿ni=1Λ

′
i

such that tb(Λ′
1) + · · ·+ tb(Λ′

n) > tb(Λ1) + · · ·+ tb(Λn) and L is a stabilization of L′.

Proof. From the Relative Convex Realization Principle, we can assume that L is contained in
the convex boundary T of an unknotted solid torus. By applying a destabilization if necessary,
we can assume that each component of L intersects the dividing set minimally.

If at this point if T has dividing curves of slope − q
p , then all components of L have maximial

Thurston-Bennequin invariant. Else, the slope of the dividing curves on T is not − q
p . It can be

argued that there is a convex torus T ′ that is disjoint form T and parallel to T with dividing
curves of slope − q

p . Applying the Imbalance Principle, [24, Proposition 3.17], to an annulus
with one boundary component being a Legendrian divide of T ′ and the other a component of L
in T (and is otherwise disjoint from L) gives the existence of a destabilization of the component
of L, as desired. □

We now know that every negative torus link will destabilize to one with maximal Thurston-
Bennequin invariant. To finish the classification, we need to show that a given an n-tuple of
vertices on the mountain range can represent at most one (unordered) Legendrian link. Any n-
tuple of vertices that can be destabilized to at least one n-tuple peak with max tb invariant can
be represented by exactly one Legendrian link. Some n-tuples can be destabilized to a unique
n-tuple peak. However, there are many n-tuples of vertices that can be destabilized to n-copies
of different Legendrian knots with max tb. For example, if L is the n-copy of the Legendrian
(3,−7)-torus knot with max tb and r = 2, and L′ is the n-copy of the Legendrian (3,−7)-torus
knot with max tb and r = 4, then we need to see that applying one + and stabilization to all
components of L produces a link that is Legendrian isotopic to the link obtained from L′ by
applying − stabilizations to all components. That is we need to show that S+,allL is Legen-
drian isotopic to S−,allL′; here S+,allL (resp S−,allL

′) means that we have applied a + (resp −)
stabilization of all components of L (resp. L′). More generally, the strategy for uniqueness is to
show that the n-tuple arising from using the valley point between adjacent peaks n times has
a unique representative. From this, it will follow that all n-tuples of vertices on the mountain
range that can represent a Legendrian link will represent a Legendrian link that is unique up
to isotopy.

As shown in [13], in the Legendrian mountain range of a (p,−q)-torus knot, if q = mp + e,
all “adjacent” maximal tb representatives with have rotation numbers that differ by 2e or by
2(p − e). In the following, if L is an n-component link, Sm±,allL means that we have applied m

± stabilizations to each component of L.
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Lemma 4.4. Let L and L′ be two topologically isotopic, oriented, Legendrian negative torus links with
each component having maximal Thurston-Bennequin invariant. If the rotation numbers of each compo-
nent of L and L′ are r and r− 2e, respectively, then Se−,all(L) and Se+,all(L

′
) are Legendrian isotopic. If

the rotation numbers of each component of L and L′ are r and r− 2(p− e), respectively, then Sp−e−,all(L)

and Sp−e+,all(L
′
) are Legendrian isotopic.

Proof. This argument parallels the proof of [13, Lemma 4.12]; additional details can be found
there.

We consider the case where the rotation number of L′ is r−2e; the other case is similar. Let T
be a convex torus containing L as in the proof of Lemma 4.2. From the classification of contact
structures on solid tori [24], we know that parallel to T is a convex torus T ′ with dividing curves
of slope −m (where q = mp+e) that bounds a solid torus containing T . Make the ruling curves
on T ′ have slope − q

p . Let Ls be any collection of n ruling curves on T ′. By connecting L to Ls
with n annuli and applying the Imbalance Principle, [13, Proposition 3.11], one sees that Ls is
Se−,all(L). Thus Se−,all(L) sits as n ruling curves on the boundary of a standard neighborhood
of a Legendrian unknot with tb = −m and rotation number r; the calculation of the rotation
number is discussed on pages 88 and 89 of [13]. One can similarly realize Se+,all(L

′
) as n ruling

curves on the boundary of a standard neighborhood of a Legendrian unknot with tb = −m and
rotation number r. After applying an isotopy, we can assume that both Se−,all(L) and Se+,all(L

′
)

lie among the ruling curves on the same convex torus, and thus are Legendrian isotopic. □

5. NEGATIVE TORUS LINKS WITH UNKNOTTED COMPONENTS

In this section, we will classify all Legendrian negative torus links that have unknotted com-
ponents. In other words, we will classify all Legendrian links that are topologically (n,−nq)
for q ≥ 1. In this section, we only classify the links as unordered Legendrian links; the ordered
classification can be found in Section 6. The following theorem summarizes the classification;
the non-destabilizable t-twisted n-copy of Legendrian unknot referenced here will be defined
in Definition 5.5.

Theorem 5.1. For q ≥ 1, two (unordered) oriented Legendrian (n,−nq)-torus links L = ⨿ni=1Λi and
L′ = ⨿ni=1Λ

′
i are Legendrian isotopic if and only if there exists σ ∈ Sn such that tb(Λi) = tb(Λ′

σ(i)) and
r(Λi) = r(Λ′

σ(i)), for all i. In addition, every Legendrian (n,−nq)-torus link is a stabilization of either:

• the n-copy of the Legendrian unknot with rotation number r and tb = −q, denoted nU r−q, or
• if q ≥ 2, the t-twisted n-copy of the Legendrian unknot with rotation number r and tb = −q+ t,

for 1 ≤ t ≤ q − 1, denoted T t(nU r−q+t).
When q ≥ 2 and n ≥ 3, the t-twisted n-copies T t(nU r−q+t) do not have maximal Thurston-Bennequin
invariant even though they do not destabilize.

We saw in Lemma 2.20 that the n-copy of an unknot with tb = −q gives us one way to
construct a Legendrian (n,−nq)-torus link. In fact, when n ≥ 3, all Legendrian (n,−nq)-torus
links with maximal Thurston-Bennequin invariant can be obtained as the Legendrian n-copy
of a Legendrian unknot with tb = −q.

Proposition 5.2. For n ≥ 3 and q ≥ 1, the unordered oriented n-component (n,−nq)-torus link has
precisely q Legendrian realizations with maximal Thurston-Bennequin invariant. Such a version can be
constructed as the n-copy of one of the q Legendrian unknots with tb = −q.
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Before giving the proof we make two observations.

Lemma 5.3. For n ≥ 2, if one component of a Legendrian (n,−nq)-torus link has tb = −q + t, for
t ≥ 1, then all the other components have tb ≤ −q − t.

Proof. SupposeL is a Legendrian (n,−nq)-torus link. Let Λ+ be a component ofLwith tb(Λ+) =
−q + t. If Λ is any other component of L then Λ+ ∪Λ is a (2,−2q)-torus link, and thus Proposi-
tion 2.22 says tb(Λ+) + tb(Λ) ≤ −2q. The result follows. □

In Section 2.4.2 we explained that the max-tb non-trivial negative torus knots lie as leaves of a
pre-Lagrangian torus in a basic slice, or, equivalently by Lemma 2.9, as the Legendrian divides
on a convex torus in a basic slice. Legendrian unknots can be seen as Legendrian divides of a
convex torus in a “nice” union of basic slices.

Lemma 5.4. Suppose T is a standardly embedded, convex torus in standard form with Legendrian
divides of slope −q, for q ≥ 1. Then T is contained in the universally tight union of two basic slices.

Proof. Notice that T splits S3 into two solid tori V−∞ and V0, each with convex boundary having
dividing slope −q, where V−∞ contains convex tori with dividing slope in the range (−∞,−q]
and a torus T−∞ with two dividing curves of slope −q; similarly, V0 contains convex tori with
slopes in the range [−q, 0) and a torus T0 with two dividing curves of slope −q. The region RI
between T0 and T−∞ is an I-invariant contact structure containing T . Choose any s in [−q, 0)
that has an edge to −q in the Farey graph. Let B0 ⊂ V0 be the region between the convex torus
with slope s and T0; this is a basic slice with some sign. We know that V−∞ is a solid torus
neighborhood of a Legendrian knot. Inside V−∞ we have two solid tori that are neighborhoods
N± of the ± stabilization of the Legendrian knot; B±

−∞ = V−∞ \N± is a basic slice with sign ±.
By choosing the appropriate B±

−∞ so that the sign agrees with the sign of B0, we find that T is
contained in B = B0 ∪

(
RI ∪B±

−∞
)
, a universally tight union of basic slices. □

Proof of Proposition 5.2. We first argue that, when n ≥ 3, each component of a max-tb, Leg-
endrian (n,−nq)-torus link has tb = −q. From Lemma 5.3, we know that if one component
of a Legendrian (n,−nq)-torus link has tb = −q + t, for t ≥ 1, then all other components have
tb ≤ −q−t. Thus the sum of the tb invariants of the components is at most −nq−(n−2)t < −nq,
since n ≥ 3. So, by Proposition 2.22, in order for a Legendrian (n,−nq)-torus link to have the
max tb, all the components must have tb = −q.

There are q Legendrian unknots with tb = −q. By taking the n-copy of each of these, we
get q distinct Legendrian (n,−nq)-torus links with max tb. We must now show that if L is
any Legendrian (n,−nq)-torus link with max tb, then L is isotopic to one of these n-copies. As
argued in the above paragraph, each component of Lmust have tb = −q. So if T is a standardly
embedded torus on which L sits then the twisting of each component of L with respect to T is
0. Thus we may make T convex and standard relative to L; vanishing twist tells us that L will
be a subset of the Legendrian divides on T . By Lemma 5.4, T is contained in the interior of a
universally tight union of two basic slices. This concludes the proof since by Remark 2.10 and
Lemma 2.9 , L can be taken to be leaves in a pre-Lagrangian torus, and thus, by Lemma 2.19, L
is the n-copy of one of the leaves, which is a Legendrian unknot with tb = −q. □

In contrast, when n = 2, not all max-tb Legendrian 2(1,−q)-torus links are obtained as 2-
copies. For example, Figure 6 shows numerous examples of Legendrian 2(1,−3)-torus links
with maximal tb. All elements of the bottom row are obtained as doubles of an unknot with
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tb = −3. However elements of the second and first rows have components with different tb
invariants, and thus cannot be doubles. These are obtained by introducing “Legendrian twists”
into 2-copies of unknots with tb = −2, and tb = −1, respectively. In general, when q ≥ 2, one
can construct Legendrian n(1,−q)-torus links by introducing “Legendrian twists” into n-copies
of an unknot with −q + 1 ≤ tb ≤ −1. Although in this section, we are only interested in twists
of Legendrian unknots, in Section 7 we will consider twists of more general Legendrian knots,
and so we give the general definition here.

Definition 5.5. Given a Legendrian knot Λ and t ∈ Z+, the t-twisted n-copy of Λ, denoted T t(nΛ)
is constructed as follows. Consider a standard neighborhood of Λ; there will be two dividing
curves of slope tb(Λ), and we can assume that the ruling curves have slope tb(Λ) − t. Then
T t(nΛ) is the union of Λ and (n− 1) ruling curves.

Remark 5.6. The 0-twisted 2-copy is merely the 2-copy; however, in the spirit of Definition 5.5,
we could also define the 0-twisted 2-copy to be the union of Λ and a Legendrian divide on a
standard neighborhood of Λ.

Lemma 5.7. If tb(Λ) = β + t and r(Λ) = ρ, then all components of T t(nΛ) will have r = ρ; one
component will have tb = β + t and the remaining n− 1 components will have tb = β − t.

Proof. It suffices to verify these calculations of tb and r in the t-twisted 2-copy, for t ≥ 1. Let
Λ1 be one of the ruling curves of slope tb(Λ) − t on a standard neighborhood of Λ. Then
tw(Λ1, ∂N) = −1

2#(Λ1 ∩ Γ∂N ) = −t, so, using Equation (2),

tb(Λ1) = −t+ (tb(Λ)− t) = tb(Λ)− 2t = β − t.

It remains to show that r(Λ1) = r(Λ). Observe that topologically Λ1 = 1λ + (tb(Λ) − t)µ,
where λ is a Legendrian divide and µ is the Legendrian boundary of a convex meridonal disk
D for N ; r(λ) and r(µ) will determine r(Λ1). First observe that λ is isotopic to Λ, and thus
r(λ) = r(Λ). Next observe that µ is an unknot. Since ∂N has two dividing curves, we see
that D will have a single dividing curve; it follows that tb(µ) = −1, and thus r(µ) = 0. Then
arguing as in Section 4.2 of [13], we see that r(Λ1) = 1r(λ)− (tb(Λ)− t)(r(µ)) = r(λ) = r(Λ), as
claimed. □

Remark 5.8. From the proofs of Lemmas 5.9 and 5.12 below, we see that the front projection of
T t(nΛ) can be obtained as follows. Start with the n-copy of Λ. Then replace a trivial n-stranded
tangle with t copies of the twist tangle as shown on the right side of Figure 16. For a general
Λ with tb(Λ) = β, the n-copy of Λ will be the slope β cable of Λ, and T t(nΛ) will be the slope
β − t cable of Λ.

...

...

...

......

...

FIGURE 16. The Legendrian twist operation for n strands.
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In fact, all Legendrian (2,−2q)-torus links with max tb can be obtained as the 2-copy of
an unknot with tb = −q or as Legendrian twists of the 2-copy of a Legendrian unknot with
Thurston-Bennequin invariant in {−q + 1, . . . ,−1}.

Lemma 5.9. For the oriented topological (2,−2q)-torus link, there are precisely q(q + 1)/2 unordered
Legendrian realizations with maximal Thurston-Bennequin invariant. For every Legendrian unknot Λ1

with Thurston-Bennequin invariant in {−1, . . . ,−q}, there will be a unique Legendrian (2,−2q)-torus
link with maximal Thurston-Bennequin invariant whose other component is a Legendrian unknot Λ2

with tb(Λ2) = −2q − tb(Λ1) and r(Λ2) = r(Λ1).

Proof. We have already seen that the 2-copy of a Legendrian unknot with tb = −q and the t-
twisted 2-copy of a Legendrian unknot with tb = −q + t, t ≥ 1, are max-tb representatives of
(2,−2q)-torus links; in these representatives, all components have equal rotation numbers.

To prove the uniqueness statement, suppose L′ = Λ′
1 ∪ Λ′

2 is any max-tb Legendrian repre-
sentative of the (2,−2q)-torus link. Since we know that tb(Λ′

1) + tb(Λ′
2) = −2q, we know that

tb(Λ′
1) = −q + t, for some t ≥ 0. Thus there is a unique L = Λ1 ∪ Λ2, a 2-copy or a twisted

2-copy of a Legendrian unknot with max tb as constructed above, such that tb(Λ′
1) = tb(Λ1)

and r(Λ′
1) = r(Λ). Since the unknot is a Legendrian simple knot, we can Legendrian isotop

Λ′
1 to Λ1, and hence we can assume that L′ = Λ1 ∪ Λ′

2. It remains to show that L and L′ are
Legendrian isotopic. We give separate uniqueness proofs in the cases of t = 0 and t > 0.

When t > 0, as in Definition 5.5, we let N1 be a standard neighborhood of Λ1: ∂N1 is convex
with two dividing curves of slope −q + t and ruling curves of slope −q. Let T ′ be a torus,
parallel to ∂N1, on which Λ′

2 sits. Since tw(Λ′
2, T

′) = −t < 0, we can make T ′ convex. Since
we can assume T ′ lies in the complement of N1, we know the dividing slope of T ′ is greater
than or equal to −q + t. If the dividing slope s is greater than −q + t, then we can argue2,
#(Λ′

2 ∩ ΓT ′) > 2t, and thus tw(Λ′
2, T

′) < −t, a contradiction. Thus the dividing slope of
T ′ is −q + t, and #(Λ′

2 ∩ ΓT ′) = 2ℓt where 2ℓ is the number of dividing curves. Then since
tb(Λ′

2) = −q − ℓt must equal −q − t, we know that T ′ has exactly two dividing curves of slope
−q + t. Moreover Λ′

2 minimally intersects the dividing set and hence can be made one of the
ruling curves on T ′. Now T ′ and ∂N1 cobound a T 2 × [0, 1]. Since the contact structure on here
is minimally twisting and the dividing slope on T 2 × {0} and T 2 × {1} are the same there is
a product structure on T 2 × [0, 1] such that the contact structure is [0, 1]-invariant. Thus there
is a contact isotopy that takes T ′ to ∂N1, and so we can assume that Λ′

2 is a ruling curve on
∂N1. Since any two ruling curves on ∂N1 are Legendrian isotopic, we see that L is Legendrian
isotopic to L′.

A similar proof will work to show uniqueness when tb(Λ1) = −q except now Λ′
2 is a Leg-

endrian divide on T ′. If there are only two Legendrian divides on T ′ then we can proceed as
above: there will be a [0, 1]-invariant neighborhood T 2 × [0, 1] between T ′ and ∂N1, and thus
we can assume Λ′

2 is also a Legendrian divide of ∂N1. Then as follows from Lemma 2.9, there
exists a pre-Lagrangian torus containing all the Legendrian divides, and so in particular Λ2, Λ′

2,
are among its leaves. If there are more than two Legendrian divides on T ′, then observe that

2To see that #(Λ′
2∩ΓT ′) > 2t, choose an integer k such that 0 ≥ −k ≥ s ≥ −k−1 ≥ −q+t. If γk, γk+1 are simple

closed curves in T 2 representing the homology class (1,−k) and (1,−(k+1)) respectively, then Λ′
2 ·γk = −k+q > t

and Λ′
2 · γk+1 = −(k + 1) + q ≥ t with equality only when −k − 1 = −q + t. Let γ be a simple closed curve

on T 2 representing the homology class given by the slope s. We may find non-negative integers a, b such that
γ = aγk + bγk+1. Notice that if a = 0, then b = 1 and k+1 < q− t since, by assumption, s > −q + t. One may now
easily see that Λ′

2 · γ > t, proving #(Λ′
2 ∩ ΓT ′) > 2t.
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we can find another standard neighborhood N ′
1 of Λ1 such that T ′ is inside N ′

1. Thus working
in a standard model of a Legendrian knot it is easy to see that we can reduce the number of
dividing curves on T ′ without moving Λ′

2. This completes the uniqueness statements for the
unordered Legendrian (2,−2q)-torus links with maximal Thurston-Bennequin invariant. □

Now that we understand the Legendrian (n,−nq)-torus links with max tb, it is natural to ask
if all Legendrian (n,−nq) will destabilize to one with max tb. We will see that this is true if
n = 2, however, this is not true if n ≥ 3; see Figure 17.

Lemma 5.10. For n ≥ 3 and t ≥ 1, the t-twisted n-copies of a Legendrian unknot with tb = −q+ t are
Legendrian representatives of the (n,−nq)-torus link that do not have maximal Thurston-Bennequin
invariant yet do not destabilize.

Proof. Let L be a t-twisted n-copy of a Legendrian unknot with tb = −q + t, where t ≥ 1. Then,
since n ≥ 3, tb(Λ1)+· · ·+tb(Λn) = (−q+t)+(n−1)(−q−t) < −nq, showing the non-maximality
of tb. If L had a destabilization, then using the component that can be destabilized together
with another appropriately chosen component of L, we could construct a (2,−2q)-torus link
with tb(Λ1) + tb(Λ2) > −2q, a contradiction to Proposition 2.22. □

FIGURE 17. A Legendrian (3,−6)-torus link with non-maximal Thurston-
Bennequin invariant that cannot be destabilized.

Our next lemma basically says that as long as the Thurston-Bennequin invariants of a Legen-
drian (n,−nq)-torus link do not agree with those of a t-twisted n-copy of a Legendrian unknot
with tb = −q + t, then we can destabilize.

Lemma 5.11. For n ≥ 2, consider a Legendrian (n,−nq)-torus link Λ with components

Λ1,Λ2, . . . ,Λn

satisfying tb(Λ1) ≥ tb(Λ2) ≥ · · · ≥ tb(Λn).
(1) If tb(Λ1) ≤ −q and tb(Λ1) + · · ·+ tb(Λn) < −qn, then Λ has a destabilization.
(2) If tb(Λ1) = −q + t, for 1 ≤ t ≤ q − 1, and tb(Λ2), . . . , tb(Λn) do not all equal −q − t, then Λ

has a destabilization.

Proof. We will proceed by considering the cases where tb(Λ1) = −q, tb(Λ1) < −q, and tb(Λ1) >
−q. Below, tw(Λi) will always refer to tw(Λi, T ), where T is a standardly embedded Heegaard
torus for S3 on which Λi sits as a (1,−q)-curve.

In the case where tb(Λ1) = −q, we have that tw(Λ1) = 0 and tw(Λn) = −k < 0. Thus the link
(Λ1, . . . ,Λn) lies as curves of slope −q on a standardly embedded torus T that can be perturbed
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to be convex. Since tw(Λ1) = 0, we have #(Λ1 ∩ΓT ) = 0, and thus Λ1 is parallel to and disjoint
from the dividing set ΓT . The curve Λn also has slope −q and so could be topologically isotoped
to be disjoint from ΓT . However #(Λn ∩ ΓT ) = 2k > 0, so there must be Whitney disks that
cancels a pair of extraneous intersection points. An innermost Whitney disk can be used to
construct a bypass for Λn on T that is disjoint from Λ1, . . . ,Λn−1. Thus we may destabilize Λn.

In the case where tb(Λ1) < −q, tw(Λ1), . . . , tw(Λn) are all negative so we can assume all the
components Λ1,Λ2, . . . ,Λn lie on a convex torus T as slope −q curves. If the dividing slope of
T is −q then we can argue as above to destabilize Λn (and Λ1, . . . ,Λn−1), thus we assume that
the dividing slope is s ̸= −q. If Λi does not intersect ΓT minimally, then there will be Whitney
disks as above and we can find a bypass to destabilize Λi. So we can assume that Λ1, . . . ,Λn
intersect ΓT minimally, and hence we can isotop T , relative to Λ1 ∪ · · · ∪ Λn, so that Λ1, . . . ,Λn
are ruling curves. The torus T splits S3 into two solid tori, one of which has convex tori parallel
to T with any dividing slope in (−∞, s] and the other containing convex tori parallel to T with
any dividing slope in [s, 0). Thus we can find a standard convex torus T ′ disjoint from T with
dividing slope −q. We can now take an annulus A whose interior is disjoint from T ∪ T ′ and
has one boundary component a dividing curve on T ′ and the other boundary component being
Λn. This annulus can be made convex. The dividing curves on A will be disjoint from A ∩ T ′

but non-trivially intersect Λn. Thus, by the Imbalance Principle, [13, Proposition 3.11], there
will be boundary parallel dividing curves on A that can be used to construct bypasses for Λn
on A. Hence we can destabilize Λn (without moving Λ1 ∪ · · · ∪ Λn−1).

Lastly consider the case where tb(Λ1) > −q; say tb(Λ1) = −q + t, 1 ≤ t ≤ q − 1. So, in
particular, tw(Λ1) > 0. Recall that by Lemma 5.3, we then know that tw(Λi) < 0, for i ≥ 2.
Now Λ1 does not lie on a convex torus as a −q curve. Consider a standard neighborhood of Λ1.
This will be a solid torus N1 with boundary a convex torus with two dividing curves of slope
−q + t; by Giroux’s Flexibility Theorem we can assume that the ruling curves are of slope −q.
Since N1 can be made arbitrarily small, we can assume the curves Λ2, . . . ,Λn lie on a convex
torus T in the complement of N1, and thus the slope of ΓT is greater than or equal to −q + t.
As in the previous paragraph, we can assume that Λi, i ≥ 2, and ΓT intersect minimally (or
we would already have a destabilization of Λi), thus we can assume that Λ2, . . . ,Λn are ruling
curves on T . If the dividing slope is −q + t then #(Λn ∩ ΓT ) = 2lt, where 2l is the number of
dividing curves on T . Thus tb(Λn) = −q − lt. Since we know tb(Λn) < −q − t we must have
l > 1. If we take an annulus A from ∂N1 to T with boundary on the ruling curves (and not
Λ2 ∪ · · · ∪ Λn), then the Imbalance Principle says there is a bypass for T on A. Attaching this
bypass to T will reduce the number of dividing curves of T so that Λn (also Λ2, . . .Λn−1) no
longer intersects the dividing set minimally and we can hence find a destabilization of Λn. We
are left to consider the case when the dividing slope s of T satisfies s > −q + t. An argument
as in the proof of Lemma 5.9 shows that #(Λn ∩ ΓT ) > 2t. Given this we can take an annulus
A between T and ∂N1 as above, except this time A will have one boundary component on Λn.
The Imbalance Principle once again gives a bypass for Λn on A, and hence Λn destabilizes. □

Lemma 5.12. For n ≥ 3, there exist Legendrian (n,−nq)-torus links with non-maximal Thurston-
Bennequin invariant that do not destabilize to one with maximal Thurston-Bennequin invariant. All
such links have precisely one component Λ1 with Thurston-Bennequin invariant greater than −q and are
T t(nU r−q+t) where nU r−q+t is the Legendrian n-copy of a Legendrian unknot with Thurston-Bennequin
invariant −q + t and rotation number r.
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Proof. Let Λ be a Legendrian (n,−nq)-torus link with components tb(Λ1) ≥ · · · ≥ tb(Λn).
If Λ does not have maximal tb and it does not destabilize to one with maximal tb, then by
Lemma 5.11, we know n ≥ 3, tb(Λ1) = −q + t, 0 < t < q, and tb(Λi) = −q − t, for i = 2, . . . , n.

We can put Λ′ = Λ2 ∪ · · · ∪ Λn on a torus T that bounds a solid torus N containing Λ1. Since
the twisting of the Λi with respect to T is less than 0, we can make T convex. Arguing as in
the proof of Lemma 5.9, we can assume that the slope of the dividing curves on T is −q + t
and that there are just two dividing curves. Thus Λ′ sits as ruling curves on the boundary of a
standard neighborhood of Λ1, and the isotopy class of Λ is determined by that of Λ1. □

We now understand the set of links to which all Legendrian (n,−nq)-torus link destabilize.
As a last step, we need to understand how these non-destabilizable Legendrian (n,−nq)-torus
links are related under stabilization. Recall we denote the n-copy of the unknot with tb = −q
and rotation number r by nU r−q. When listing the non-destabilizable Legendrian (n,−nq)-
torus links we write Lr−q for nU r−q. The other non-destabilizable links are Legendrian twists
of n-copies of unknots with tb > −q: T t(nU r−q+t), where 0 < t < q. For shorter notation, we
denote this by Lr−q+t. So the non-destabilizable Legendrian (n,−nq)-torus links are:

L0
−1

L−1
−2, L1

−2

...

L−q+1
−q , L−q+3

−q , . . . , Lq−3
−q , L

q−1
−q

We always label a component with largest Thurston-Bennequin invariant as Λ1. We then arbi-
trarily label the other components Λ2, . . . ,Λn. A ±-stabilization on the ith component of a link
L is denoted by S±,i(L), and simultaneously stabilizing all components is denoted by S±,all(L).

Lemma 5.13. Consider the non-destabilizable realizations of the (n,−nq)-torus link. We have the
following relations.

S+,all(L
j
−q) = S−,all(L

j+2
−q ).

If −q < k ≤ −1, then
S±,1(L

j
k) = S∓,2 ◦ · · · ◦ S∓,n(Lj±1

k−1).

Thus as soon as the invariants of the components of two non-destabilizable Legendrian (n,−nq)-torus
links become the same under stabilization the links will become isotopic.

Proof. The proof that S+,all(L
j
−q) = S−,all(L

j+2
−q ) parallels the proof of Lemma 4.4: the strategy

is to show that both these links can be isotoped so that they lie as ruling curves on a standard
neighborhood of a Legendrian unknot with tb = −(q+1) and r = j+1. We will first argue that
S+,all(L

ℓ
−q) sits as ruling curves on the boundary of a standard neighborhood of a Legendrian

unknot with tb = −(q+ 1) and r = ℓ+ 1 as follows. The link Lℓ−q lies as a subset of Legendrian
divides of slope −q on a convex torus T . Consider the Heegard splitting of S3 with respect
to T : S3 = V0 ∪T V1. Inside V0 there is a solid torus V +

q+1 with two dividing curves of slope
−(q + 1) which is a standard neighborhood of a Legendrian unknot with tb = −(q + 1) and
rotation number ℓ + 1. Let T+

q+1 be the boundary of this solid torus. By Giroux’s Flexibility
Theorem, we can assume the ruling slope of T+

q+1 is −q. Consider n disjoing convex annuli
Ai of slope −q between T and T+

q+1 each having one boundary on a component of Lℓ−q, which
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recall is a Legendrian divide of T , and the other on a ruling curve of T+
q+1. Let Ki ⊂ Lℓ−q ⊂ T

and K+
i ⊂ T+

q+1 denote the boundary components of Ai. The dividing curves of Ai do not
intersect ∂Ai ∩ T = Ki but will intersect ∂Ai ∩ T+

q+1 = K+
i twice. So on each Ai, there is one

boundary parallel dividing curve separating a disk that must be positive since r(K+
i )−r(Ki) =

1. Unfortunately we cannot get a bypass from this disk as we cannot Legendrian realize a
bypass on Ai since the dividing set is connected. However, we can isotop the Ai so that its
boundary component in T intersects the dividing curve twice. Now the Ai will have either
two dividing curves running from one boundary component to the other, or two boundary
parallel dividing curves, one on each boundary. In the former case we can foliate Ai by “ruling
curves” and use those to isotop K+

i to a curve on T and on T we can use a Whitney disk for
K+
i and the dividing set to destabilize K+

i . In the latter case we can find a bypass on Ai to
destabilize K+

i . In particular we get a link L̃ that lies between Tq+1 and T . Notice that each
component of L̃ has tb = −q and r = ℓ. Put L̃ on a convex torus T̃ parallel to but disjoint from
T . We know the dividing set of T̃ will have slope −q. Thus L̃ is a subset of the Legendrian
divides of T̃ and thus as argued in the proof of Lemma 5.2 we see that L̃ can be taken to be
leaves in the characteristic foliation of a pre-Lagrangian torus. Hence, by Lemma 2.19, we see
L̃ is the n-copy of a tb = −q unknot. Moreover, since the rotation numbers of the components
of L̃ agree with those of L we know that L̃ and L are both n-copies of the same Legendrian
unknot and hence are isotopic. A similar argument shows S−,all(Lℓ−q) sits as ruling curves on
the boundary of a standard neighborhood of a Legendrian unknot with tb = −(q + 1) and
r = ℓ − 1. Here instead of V +

q+1, we consider V −
q+1 which is a standard neighborhood of a

Legendrian unknot with tb = −(q + 1) and r = ℓ− 1. The corresponding annuli will now have
one boundary parallel arc separating off a negative disk. Combining these, we see that both
S+,all(L

j
−q) and S−,all(L

j+2
−q ) sit as ruling curves on the boundary of standard neighborhoods of

an unknot with tb = −(q + 1) and r = j − 1. Since all such neighborhoods are isotopic, we can
assume S+,all(L

j
−q) and S−,all(L

j+2
−q ) sit as ruling curves on the same torus, and thus they must

be isotopic.
To see that if −q < k ≤ −1, then S±,1(L

j
k) = S∓,2 ◦ · · · ◦ S∓,n(Lj±1

k−1) notice that the proof of
Lemma 5.11 shows that if Λ1 in Ljk is stabilized, then one may destabilize the components with
the most negative Thurston-Bennequin invariant which, in this case, will be Λ2, . . . ,Λn. □

6. ORDERED CLASSIFICATION

Now that we have established the unordered classification of all Legendrian torus links,
we move on to the ordered classification. The positive torus links and stabilized negative torus
links will have a great deal of flexibility in the permutations that are allowed, while the negative
torus links with maximum Thurston-Bennequin invariant will have a great deal of rigidity.

The unordered classification of positive torus links is given in Theorem 3.1. For positive
torus links, any tb and r invariant-preserving permutation of the components is possible:

Theorem 6.1. For q ≥ p ≥ 1 and gcd(p, q) = 1, consider an ordered, oriented Legendrian (np,+nq)-
torus link L = (Λ1, . . . ,Λn). Any permutation of the components of L preserving the Thurston-
Bennequin and rotation number invariants can be achieved by a Legendrian isotopy.



38 JENNIFER DALTON, JOHN B. ETNYRE, AND LISA TRAYNOR

Proof. We prove the statement when L is a (np,+nq)-torus link with max tb; the general case
follows from Lemma 3.4. As in the proof of Lemma 3.2, we know L sits on a convex torus T as
ruling curves of slope q/p. There is a neighborhoodN = T 2×[−1, 1] of T such that T 2×{0} = T
and the contact structure is invariant in the [−1, 1] direction, [13, 24]. So each T 2×{pt} is foliated
by ruling curves of slope q/p. We can isotop each component of L to a different torus in N , and
then further isotop the components on the different levels so that their order is permuted by
any preassigned permutation. Finally we isotop the permuted components back to T . □

Remark 6.2. It is possible to do the permutations in the front diagram as was shown by the first
author [3].

Next we move on to study the ordered classification of Legendrian negative torus links.
Theorem 5.1 gives the unordered classification of Legendrian (n,−nq)-torus links with q ≥ 1,
while Theorem 4.1 gives the unordered classification of Legendrian (np,−nq) torus links with
q > p ≥ 2. We now consider the ordered classification.

We will see that there is rigidity to the allowable permutations among the set of compo-
nents having the maximal of tb = −pq; recall that all these components with tb = −pq must
have the same rotation number. For the components with maximal tb, a pre-Lagrangian torus
determines a cyclic ordering of the components.

Definition 6.3. Let L = (Λ1, . . . ,Λn) be a Legendrian (np,−nq)-torus link such that tb(Λi) =
−pq, for all i. Then L is the union of leaves of a pre-Lagragian torus T0, and L can also be seen
as the Legendrian divides of a convex torus T ; if p > 1, T, T0 are contained in a basic slice, and
if p = 1, T, T0 are contained in a universally tight union of two basic slices (see Lemma 5.4).
Then T0 (and equivalently, by Lemma 2.9 and Remark 2.10, a complementary annulus for T , as
defined in Definition 2.4) gives a cyclic ordering of the components of L. We will always assume
that the Λi are numbered according to this ordering. This ordering is well-defined up to cyclic
permutation.

Lemma 6.4. Let L = (Λ1, . . . ,Λn) be a Legendrian (np,−nq)-torus link such that tb(Λi) = −pq, for
all i. Then it is possible to do a cyclic permutation of the components of L via a Legendrian isotopy.

Proof. As described in Definition 6.3, L lies among the leaves of a pre-Lagrangian torus T0. One
may cyclically permute the components of L through the leaves of the pre-Lagrangian T0. □

As seen in Lemma 4.2 and Proposition 5.2, when p > 1, these max tb representatives of
the (np,−nq)-torus links are the n-copies of a Legendrian (p,−q)-torus knot Λ with max tb,
and when p = 1, these max tb representatives of the (n,−nq)-torus links are the n-copies of a
Legendrian unknot Λ with tb = −q. In the front projections, these n-copies can be seen as slight
shifts of Λ in the z-direction, and the cyclic ordering corresponds to increasing z-coordinate,
with the uppermost component circling back to become the lowest.

Theorem 6.5. For q ≥ p ≥ 1 and gcd(p, q) = 1, let L = (Λ1, . . . ,Λn) be an oriented, ordered
Legendrian (np,−nq)-torus link. Let I1 be the subset of {1, . . . , n} containing the indices such that
tb(Λi) = −pq, and let I2 be its complement. Then there is a Legendrian isotopy from (Λ1, . . . ,Λn) to
(Λσ(1), . . . ,Λσ(n)) where σ is an element of the symmetric group Sn if and only if

(1) σ preserves the partition I1 ∪ I2,
(2) σ restricted to I1 is a cyclic permutation, and
(3) for all i ∈ I2, Λi and Λσ(i) have the same Thurston-Bennequin and rotation number invariants.
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FIGURE 18. A noncylic permutation of the Legendrian 3(1,−2)-torus link when
all components have tb = −pq is not possible, however once components are
stabilized, non-cyclic permutations are possible.

Before proving Theorem 6.5, we note that it is the last step needed to complete the proof of
the ordered classification of torus links, Theorem 1.2.

Proof of Theorem 1.2. The result immediately follows from the unordered classification, 3.1, 4.1,
and 5.1, and Theorem 6.1 and 6.5. □

We begin the proof of Theorem 6.5 by observing that permutations mentioned are possible.

Lemma 6.6. With the notation from Theorem 6.5, the permutations of the components of L listed there
can be achieved through a Legendrian isotopy.

Proof. Let I1 be the subset of {1, . . . , n} containing the indices such that tb(Λi) = −pq, I2 the
subset with tb(Λi) = −pq − 1 that have been positively stabilized once, and I3 the subset with
tb(Λi) = −pq − 1 that have been negatively stabilized once. We will show the result holds in
the case where I1∪ I2∪ I3 = {1, . . . , n}; all the other cases will be stabilizations of this case, and
hence the result will also follow in these other cases.

We begin by assuming that −q/p is not an integer, i.e., p ̸= 1. Suppose that −q/p arises in the
Farey graph from the sum of s and s′; observe that s, s′ ∈ Q ∩ [−∞,−1]. Since there is also an
edge in the graph between s and s′, there will be a basic sliceB with dividing slopes s and s′ that
is embedded in S3 as a neighborhood of a Heegaard torus. We take the ruling slopes on ∂B to
be −q/p. InsideB is a pre-Lagrangian torus T whose characteristic foliation has slope −q/p. Let
Λ1 be a leaf of the foliation of T . We claim that the ruling curves on one boundary component
of B are positive stabilizations of Λ1, and the ruling curves on the other boundary component
are negative stabilizations of Λ1. To see this, consider a convex annulus having one boundary
component on Λ1 and the other on a ruling curve of ∂B. Since there is an edge in the Farey
graph between −q/p and s (and between −q/p and s′), we know that the ruling curves intersect
each dividing curve on ∂B exactly once. Thus the Thurston-Bennequin invariant of the ruling
curve is one less that that of Λ1. Moreover, an annulus between a ruling curve and Λ1 has a
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singe boundary parallel dividing curve, thus the rotation number of the ruling curve differs by
one from Λ1 (the difference in rotation numbers can be computed in terms of the positive and
negative regions of the convex annulus between them, see the proof of [13, Section 3.2]). From
the classification of Legendrian torus knots (or Lemma 4.3) we see that the ruling curves are
stabilizations of Λ1. To see that the curves on different boundary components of B are different
stabilizations, we note that ifA is an annulus inB connecting the ruling curves then the relative
Euler class of B evaluated on A is ±2; (this follows from the formula for the relative Euler class
in [24], but to see it easily one may change coordinates so that s = −∞,−q/p = −1, and s′ = 0.
Then the relative Euler class is Poincare dual to the ±[1, 1] curve on T 2 and hence evaluates
on the [1,−1] annulus as ±2). The difference in the rotation numbers of the boundary of this
annulus agrees with this relative Euler class, [13, Section 3.2], and so we see that the rotation
numbers of the ruling curves on the different boundary components of B differ by 2, and thus
they are different stabilizations. Now L can be realized with the components indexed by I1 as
leaves in the foliation of T and the components indexed by I2 and I3 as ruling curves on the
boundary components of B. The components on T can be cyclically permuted and, arguing as
in the proof of Lemma 6.1, we can arbitrarily permute the components on a common boundary
component of B.

If p = 1, which implies −q/p is an integer, then for the (n,−nq)-torus links with non-maximal
Thurston-Bennequin invariant that do not destabilize, the result is clear from the model con-
structed in the proof of Lemma 5.11. For the (n,−nq)-torus links with max tb, the proof follows
the ideas in the p ̸= 1 case except we cannot take s, s′ as above since one of s or s′ is −∞, and so
the desired basic slice does not exist in S3. However, by Lemma 5.4, we know that our link lies
on a torus in the universally tight union of two basic slices. Hence the pre-Lagrangian torus T
with foliation of slope −q still exists [24], and the argument now proceeds exactly as above. □

We must now see that only cyclic permutations will produce equivalent Legendrian links
negative torus links with maximal Thurston-Bennequin invariant. The first work along these
lines was done for n-copies of any Legendrian unknot by Mishachev using the Chekanov-
Eliashberg DGA.

Theorem 6.7 (Mishachev 2002, [33]). For any q ≥ 1, let (Λ1, . . . ,Λn) be the ordered max tb Leg-
endrian representative of the (n,−nq)-torus link obtained as the n-copy of a Legendrian unknot with
tb = −q. Then there is a Legendrian isotopy from (Λ1, . . . ,Λn) to (Λσ(1), . . . ,Λσ(n)) where σ ∈ Sn
only if σ is a cyclic permutation.

Remark 6.8. In Mishachev’s DGA approach, he worked with the unique augmentation ϵ of Λ,
where Λ is either the Legendrian unknot with tb = −1 or the 2-copy of a Legendrian un-
knot with tb = −q, for q ≥ 2. To different orderings, one can define “characteristic algebras”
CH123(ϵ) and CH132(ϵ) associated with non-cyclic permutations of 3-copies of Λ. In fact, one of
these characteristic algebras has zero divisors while the other does not, which shows that non-
cyclic permutations are never possible. Extending Mishachev’s DGA approach to Legendrian
(np,−nq)-torus links for p ≥ 2 has difficulties. There is again a unique augmentation of the
(2,−q)-torus knot, for all q > 2, but the characteristic algebras of interest both have 0-divisors.
L. Ng observed that we can handle this (2,−q) case by analyzing product structures. When
p ≥ 3, one needs to double the knot to get an augmentation, and one gets many augmentations.
For example, when trying to apply this approach to study non-cyclic permutations of (3,−4),
one needs to find augmentations of Λ = 2(3,−4) = (6,−8). There are now 3 augmentations
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of Λ, which translates into 27 “minimal” augmentations of the 3-copy of Λ arising from lifts
of augmentations of Λ. The authors made a number of attempts to extend the DGA approach,
including looking at matrix-valued augmentations, but with little success. We give a convex
surface argument that works in all cases.

Theorem 6.9. For q ≥ p ≥ 1 and gcd(p, q) = 1, let L be a Legendrian (np,−nq)-torus link such that
all the components have tb = −pq. Then no non-cyclic permutation can be achieved via a Legendrian
isotopy.

With this theorem we can now complete the proof of Theorem 6.5.

Proof of Theorem 6.5. The existence of the claimed permutations of the Legendrian link follows
from Lemmas 6.4, 6.6, and the restrictions on the permutations follows from Theorem 6.9. □

We begin the proof of Theorem 6.9 by observing limitations on Legendrian isotopies in a
basic slice, and then reduce the above theorem to this observation.

6.1. Forbidding Non-cyclic Permutations in Basic Slices.

Theorem 6.10. Let (T 2×[0, 1], ξ) be a basic slice, and suppose T is a boundary-parallel, pre-Lagrangian
torus in this basic slice. Let L = (Λ1, . . . ,Λn) be a Legendrian link consisting of leaves in the charac-
teristic foliation of T ordered as they appear on T . Then a non-cyclic permutation of the components of
L cannot be achieved by a Legendrian isotopy.

Proof. Let (T 2 × [0, 1], ξ) be a basic slice with dividing curves on T 2 × {i} having slope si, for
i = 0, 1, and T ⊂ T 2 × [0, 1] be a boundary-parallel pre-Lagrangian torus. Since we are in a
basic slice, we know the characteristic foliation of T will have slope s ∈ (s0, s1).

For the reader’s convenience, we will first outline the steps of the proof.

Step 1. If there is a contact isotopy ϕt of L in T 2 × [0, 1] such that ϕ1(L) = L and ϕ1 realizes a non-
cyclic permutation of its components, then there is a 3-component link (Λ1,Λ2,Λ3) consisting of leaves
of the characteristic foliation of T , a neighborhood N of Λ1, and a contact isotopy ψt of (T 2 × [0, 1], ξ)
such that ψt = id on N and in a neighborhood of the boundary, ψ1(Λ2) = Λ3, and ψ1(Λ3) = Λ2.

Step 2. There is a contact embedding of (T 2 × [0, 1], ξ), which is a basic slice with boundary slopes s0
and s1 that contains the pre-Lagrangian torus T of slope s, into (T 2 × [−1, 2], ξ′), where ξ′ is tight and
each component of the boundary of T 2×[−1, 2] is convex with two dividing curves of slope s. The contact
structure ξ′ can be chosen such that the S1-action given by rotating in the s-direction preserves ξ′. We
extend the contact isotopy ψt defined on (T 2 × [0, 1], ξ) in Step 1 by the identity to obtain an isotopy ψt
defined on (T 2 × [−1, 2], ξ′). We can write (T 2 × [−1, 2], ξ′) = (Σ× S1, ξ′), where Σ = S1 × [−1, 2]
and Σ× {θ} is a convex annulus.

The S1-invariance allows us to represent important objects in our 3-manifold on the annular
surface Σ.

Step 3. There are tubular neighborhoods Ni of Λi, with N1 ⊂ N , that are invariant under the S1-
action from Step 2. Letting X1 = (T 2 × [−1, 2])−N1, X1 is diffeomorphic to Σ1 × S1, where Σ1 is an
annulus with a disk removed, and the contact isotopy ψt from Step 2 restricts to define a contact isotopy
ψ1
t of X1. Letting X123 = (T 2 × [−1, 2])− (N1 ∪N2 ∪N3), X123 is diffeomorphic to Σ123 × S1,

where Σ123 is Σ1 with two disks removed, and the contact diffeomorphism ψt|t=1 from Step 2 gives rise
to a contact diffeomorphism of ψ123 of X123. The neighborhoods Ni can be chosen such that X123 has



42 JENNIFER DALTON, JOHN B. ETNYRE, AND LISA TRAYNOR

boundary consisting of convex tori with dividing curves of slope ∞, meaning parallel to the S1-action,
and horizontal Legendrian rulings, meaning that the boundary of Σ123 × {θ} is a union of Legendrian
ruling curves.

Step 4. For all θ, Σ123×{θ} is convex with Legendrian boundary. From the convex surface ψ123(Σ123×
{θ}), we can construct a convex surface Σ′ whose boundary agrees with the boundary of Σ123 ×{θ} yet
the dividing curves of Σ123 × {θ} and the the dividing curves of Σ′ connect the 3 boundary components
coming from the neighborhoods of the Λi in topologically different ways. Since there is an isotopy rel
boundary taking Σ′ to Σ123×{θ}, we get a contradiction to the following “minimality” proposition due
to Honda.

Proposition 6.11. [25, Proposition 4.4] Suppose Σ is compact with boundary. Consider an S1-
invariant tight contact structure on Σ × S1 where the boundary of Σ × S1 consists of convex tori
with dividing curves of slope ∞ (meaning parallel to the S1-action) and horizontal Legendrian rulings
(meaning for all θ, ∂Σ × {θ} is a Legendrian ruling curve). Then Σ × {θ} minimizes dividing curves
in the following sense: if Σ′ ⊂ Σ× S1 is a convex surface that is isotopic rel boundary to Σ× {θ}, then
there exists an isotopy ϕt of Σ′ with ϕ1(Σ′) = Σ×{θ} and ϕt|∂Σ′ = id such that ΓΣ×{θ} ⊂ ϕ1(ΓΣ′). In
particular, if ∂1 and ∂2 are two components of ∂(Σ×{θ}) and there there is a dividing curve on Σ×{θ}
that connects p1 ∈ ∂1 and p2 ∈ ∂2, then there will be a dividing curve on Σ′ that connects p1 and p2.

Now we begin to verify the claims in Step 1. Suppose there is a contact isotopy ϕt of L =
(Λ1, . . . ,Λn) such that ϕ1(L) = L and ϕ1 realizes a non-cyclic permutation of its components.
We can do further cyclic isotopies by sliding L along the leaves of the pre-Lagrangian torus T .
By such an isotopy we can assume that ϕ1(Λ1) = Λ1. If we now label two components of L
that have their order interchanged (but the components are not necessarily sent to each other)
by Λ2 and Λ3. By a further isotopy along T we can assume that Λ2 and Λ3 are interchanged.
Disregarding the other components we see that if there is an isotopy of L realizing a non-
cyclic permutation of its components, then there is a Legendrian link, (Λ1,Λ2,Λ3) on T , and
an isotopy ϕt such that ϕ1(Λ1) = Λ1, ϕ1(Λ2) = Λ3, and ϕ1(Λ3) = Λ2. In our labeling, we
are assuming that with respect to the pre-Lagrangian T , one encounters Λ1 = ϕ1(Λ1), then
Λ2 = ϕ1(Λ3), and then Λ3 = ϕ1(Λ2).

Consider the pre-Lagrangian torus T ′ = ϕ1(T ). Notice that T ∩ T ′ contains L. The following
lemma about pre-Lagrangian annuli will allow us to modify ϕt to a contact isotopy that is the
identity on a neighborhood of Λ1.

Lemma 6.12. Let A and A′ be two pre-Lagrangian annuli whose characteristic foliations consist of
circles. Assume that Λ ⊂ A ∩ A′ is a Legendrian circle on both A and A′. Then A′ may be isotoped
through pre-Lagrangian annuli so that a neighborhood U of Λ in A′ is a subset of A. Moreover, Λ and
∂A′ can be fixed throughout the isotopy.

Proof. We construct a model for a neighborhood of A. Let A be the xz-plane in R3/ ∼, where
(x, y, z) ∼ (x + 1, y, z), with contact structure ξ = ker(dz − y dx); Λ is modeled by the x-axis
S1 × {0}. We know that the annulus A′ is transverse to the y-direction along the x-axis, since
a tangency would give a singularity in the characteristic foliation of A′. Thus we can write A′

near S1 × {0} as a graph over A: there is some function f(x, z) so that a neighborhood U ′ of
S1 × {0} in A′ is {(x, f(x, z), z)}. The front projection of the foliation of U ′ onto A will give a
foliation of a neighborhood of the x-axis by curves. As will be explained in the next paragraph,
these curves can be straightened out near the x-axis, and this straightening gives the isotopy
from U ′ to a subset of A.
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To make this precise, notice that the projection of the foliation of U ′ to the xz-plane can be
parameterized by F : S1 × [−ϵ, ϵ] → S1 × R, where F (θ, t) = (θ, t + ft(θ)) and the constant t
curves are the front projections of leaves of the characteristic foliation ofA′. Notice that f0(θ) =
0, and near t = 0 we have ∂ft(θ)

∂t is small since here the front projection of the corresponding
leaves are almost horizontal: we can assume there exists ε and B such that∣∣∣∣∂ft(θ)∂t

∣∣∣∣ ≤ B < 1, ∀t ∈ [−ϵ, ϵ], ∀θ ∈ S1.

To construct an isotopy of pre-Lagrangian annuli, consider an increasing function g : [−ϵ, ϵ] →
[−ϵ, ϵ] such that g = 0 on a neighborhood of 0 and g(t) = t near ±ϵ. Then set Fg(θ, t) =
(θ, t + fg(t)(θ)). If Fg is an embedding, then by considering each constant t curve as the front
projection of a Legendrian knot, we can lift the image of Fg to a pre-Lagrangian annulus U ′

that will coincide with A along the center circle of this annulus and with A′ near its boundary.
Towards seeing that Fg is an embedding, we first claim that it is possible to choose ϵ and g so

that Fg is an immersion. Observe that detDFg = (1 +
∂fg(t)(θ)

∂t ), and thus we want to guarantee

that with an appropriate choice of g, ∂fg(t)(θ)

∂t > −1. Choose C > 1 such that |BC| < 1; it is
possible to choose g such that |g′(t)| < C, for all t ∈ [−ϵ, ϵ]. By the chain rule, we then see that
|∂fg(t)(θ)∂t | < 1, which will guarantee that Fg is an immersion. Moreover, we see that Fg is an em-
bedding by arguing Fg is injective as follows. First observe that if Fg(θ1, t1) = Fg(θ2, t2), then
θ1 = θ2. Now by our choice of g, for a fixed θ, the map t 7→ t + fg(t)(θ) has positive derivative
and thus is injective. In addition, there is a family of such g starting with the identity map and
ending with a pre-chosen g, thus we get an isotopy through pre-Lagrangian annuli. □

We can use Lemma 6.12 to complete Step 1.

Corollary 6.13. If there is a contact isotopy ϕt of L in the basic slice (T 2×[0, 1], ξ) such that ϕ1(L) = L
and ϕ1 realizes a non-cyclic permutation of its components, then there is a 3-component link (Λ1,Λ2,Λ3),
a neighborhood N of Λ1, and a contact isotopy ψt of (T 2 × [0, 1], ξ) such that ψt = id on N and in a
neighborhood of the boundary, ψ1(Λ2) = Λ3, and ψ1(Λ3) = Λ2.

Proof. Let A be an annular neighborhood of Λ1 on the pre-Lagrangian torus T and let A′ be
an annular neighborhood of Λ1 on T ′ = ψ1(T ). By Lemma 6.12, we can isotop T ′ to a pre-
Lagrangian torus T ′′ that agrees with T in a neighborhood U of Λ1. We can then use the leaves
of the characteristic foliation on T to isotop Λ2 ∪ Λ3 into the neighborhood U (without moving
a neighborhood of Λ1), and then using T ′′ we can further isotop them back to Λ3 ∪ Λ2 (inter-
changing order). We can now extend this Legendrian isotopy to a global contact isotopy ψt as
desired. □

Now we move onto Step 2, the first part of which is accomplished through the following
lemma.

Lemma 6.14. There exists an embedding of our basic slice (T 2 × [0, 1], ξ), which has boundary slopes
s0 and s1 and contains the pre-Lagrangian torus T of slope s, into (T 2 × [−1, 2], ξ′) where ξ′ is tight
and each of the boundary components of T 2 × [−1, 2] is convex with two dividing curves of slope s.
The contact structure ξ′ can be chosen such that the S1-action given by rotating in the slope s-direction
preserves ξ′.
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Proof. Our strategy will be to build a model for (T 2 × [−1, 2], ξ′) that contains a basic slice; our
result will then follow from the fact that basic slices are unique up to orientation.

Begin by writing T 2 = S1 × S1 so that {p} × S1 is the curve of slope s. That is, we change
coordinates on T 2 so that the pre-Lagrangian is foliated by lines of slope s = ∞; let vi denote
the boundary slopes si of the basic slice in these new coordinates. We denote the angular
coordinates on the S1 factors by θ1 and θ2. In these coordinates, consider T 2 × R with the
contact structure ker(− cos t dθ1+sin t dθ2). The torus T 2×{0} is pre-Lagrangian with slope ∞,
as are the tori T 2 × {±π}. This contact structure is well-known to be tight3, and the S1-action
given by rotating in the θ2-direction preserves the contact structure. As argued in the proof of
Lemma 2.9, one may perturb the tori T 2 × {±π} such that each are convex, have two dividing
curves of slope ∞, and have horizontal ruling curves. The region R between these convex
tori is invariant under the S1-action, and R is further divided into two regions R− and R+ by
T 2 × {0}, where R− contains t coordinates with negative values. From our local model, we see
that by choosing a sufficiently small perturbation of the T 2 × {±π}, we can be guaranteed to
find a pre-Lagrangian torus of slope v0 in R− and a pre-Lagrangian of slope v1 in R+. Perturb
each of these tori to be convex with two dividing curves, and letB be the region between them.
Then T 2×{0} is contained inB, andB is a basic slice. So we have built a model for our original
basic slice T 2 × [0, 1]. Moreover the complementary regions R \ B are the claimed thickened
tori that can be added to T 2 × [0, 1] to create (T 2 × [−1, 2], ξ′), as desired. □

Remark 6.15. For future arguments, it will be convenient to think of (T 2 × [−1, 2], ξ′) as (Σ ×
S1, ξ′), where Σ = S1 × [−1, 2] is an annulus, and ξ′ is invariant in the S1-direction.

Remark 6.16. The surfaces Σ = {θ2 = c}× [−1, 2] will be denoted by Σ×{c}. For later purposes,
it will be important to notice that the dividing curves of Σ × {c} will contain (Σ × {c}) ∩ T ,
where T is the boundary-parallel, pre-Lagrangian torus containing our link L = (Λ1,Λ2,Λ3):
the pre-Lagrangian T is foliated by lines that are tangent to the direction of the S1-action.

As the contact isotopy ψt defined on (T 2 × [0, 1], ξ) in Corollary 6.13 is the identity near
∂(T 2 × [0, 1]), ψt extends by the identity to an isotopy ψt of (T 2 × [−1, 2], ξ′). This completes
Step 2.

Turning to Step 3, we will first find special neighborhoods Ni of Λi.

Lemma 6.17. There are S1-invariant neighborhoods Ni of Λi such that each Ni has a convex torus
boundary with dividing slope parallel to the S1-action and ruling slope 0. Furthermore, we can assume
that N1 ⊂ N , and ψt|N1 = id.

Proof. By changing coordinates the model for the S1-invariant contact structure on a neigh-
borhood of our pre-Lagrangian T is S1 × S1 × (−1, 1) with contact form −dθ1 + t dθ2, the
S1-action being rotation in the θ2-direction and T = S1 × S1 × {0}. We can moreover assume
that Λ1 = {θ1 = 0} × S1 × {0}, and note that a neighborhood of this curve can by given by
(−2ϵ, 2ϵ)× S1 × (−1, 1) with contact from −dx+ t dϕ.

Now consider the embedding

ν : D2 × S1 → (−2ϵ, 2ϵ)× S1 × (−1, 1)

(r, θ, ϕ) 7→ (ϵr cos θ, ϕ, ϵr sin θ).

3For example, this is the contact structure on a Z-fold cover of the standard tight contact structure on T 3, which
is universally tight.
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By construction, the image of this map is an S1-invariant neighborhood N1 of Λ1, and in
these coordinates the characteristic foliation on the boundary is given by ν∗(−dx − tdϕ)|r=1 =
ϵ sin θ (dθ + dϕ). So ∂N1 has two circles worth of singularities (Legendrian divides) at θ = 0, π,
and is non-singular elsewhere. Thus ∂N1 is a standard convex torus, and in (θ, ϕ) coordinates
the dividing slope is ∞ and the ruling slope is −1.

By construction we have vertical dividing curves, but the ruling curves have slope −1 rather
than the desired slope of 0. To fix this, we claim that we can add an S1-invariant collar neigh-
borhood ∂N1 so that the new boundary has ruling slope 0 and dividing curves of slope ∞.
That such an invariant neighborhood exists is implicit in [24], but as a proof does not seem to
exist in the literature, we will prove it in the following lemma. In fact, the following lemma
shows that we could make the slope of the ruling curves be any finite number while keeping
the infinite slope of the dividing curves. To set up convenient coordinates, observe that there
is a diffeomorphism of ∂N1 that takes the ruling curves of slope −1 and the dividing curves of
slope ∞ to a torus T0 with ruling curves of slope 0 and dividing curves of slope ∞. As both ∂N1

and T0 will have [−1, 1]-invariant neighborhoods that are related by a contact diffeomorphism,
the desired collar of ∂N1 will follow from the following statement.

Lemma 6.18. If ξ is a [−1, 1]-invariant contact structure on T 2 × [−1, 1] with dividing curves of slope
∞ and rulings of slope 0 that is invariant under rotations in the ∞ direction, then in any neighborhood
of T 2 × {0} there is a torus T ′ isotopic to T 2 × {0} that is also invariant under rotation in the ∞
direction and has dividing curves of slope ∞ and rulings of any slope other than ∞.

Proof. We will use coordinates (θ, ϕ, t) on T 2× [−1, 1], and take our contact structure to be given
by cos θ dt + sin θ dϕ. This contact structure is invariant in the ϕ and t directions. Observe that
any torus given by t = constant has two Legendrian divides at θ = 0, π and has ruling curves of
slope 0, meaning in the θ-direction in the θϕ-plane. We will first build a piecewise smooth torus
with the desired properties, and then show that we can find a smooth torus with the desired
properties.

Suppose we want to realize a torus Ts with ruling curves of slope s < 0; we later explain
how the argument needs to be modified to handle s > 0. Given any neighborhood of T 2 ×{0},
there is some ϵ > 0 such that T 2× [−2ϵ, 2ϵ] is contained in the neighborhood. For any fixed θ0 ∈
(0, π/2) consider the torus Tθ0 obtained from T 2 × {0} by removing A0

[θ0,π/2]
= {(θ, ϕ, 0) : θ0 ≤

θ ≤ π/2} and replacing it with the union of three annuli A[0,ϵ]
θ0

= {(θ, ϕ, t) : θ = θ0, 0 ≤ t ≤ ϵ},

Aϵ[θ0,π/2] = {(θ, ϕ, ϵ) : θ0 < θ < π/2}, and A
[0,ϵ]
π/2 = {(θ, ϕ, t) : θ = π/2, 0 ≤ t ≤ ϵ}. Denote by A0

the complement of A0
[θ0,π/2]

in T 2 × {0}. Then

Tθ0 = A0 ∪A[0,ϵ]
θ0

∪Aϵ[θ0,π/2] ∪A
[0,ϵ]
π/2

is a piecewise smooth torus. The characteristic foliation on A0 has ruling curves of slope 0
(parallel to the θ direction in the θϕ-plane) and two dividing curves of slope ∞. In addition,
foliations on the annuli A[0,ϵ]

θ0
, Aϵ[θ0,π/2], and A

[0,ϵ]
π/2 are non-singular and of slope − cot θ0 (in the

tϕ-plane), 0 (parallel to the θ-direction in the θϕ-plane), and 0 (parallel to the t-direction in the
tϕ-plane), respectively. By choosing θ0 appropriately the slope on A

[0,ϵ]
θ0

can be any negative

number. In particular, if we choose θ0 so that the slope on A
[0,ϵ]
θ0

is s/ϵ then the slope of the
ruling curves on the piecewise smooth Tθ0 is s.
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Now to get a smooth torus, first notice that Tθ0 = Γ × S1
ϕ, where Γ is a closed curve with

four corners in the θt-plane. By replacing each corner of Γ with curves approximating quarter
circles of radius δ where 0 < δ ≪ ϵ, we can obtain a smooth curve γδ in the θt-plane and a
smooth torus Tθ0,δ = γδ × S1. As δ goes to 0, the ruling curves on Tθ0,δ approach those on Tθ0 .
Choose 0 < θ−0 < θ0 < θ+0 < π/2. The construction of the previous paragraph shows that on
the piecewise smooth tori Tθ±0 , the ruling curves will have slopes s± satisfying s− < s < s+.
By choosing δ sufficiently small, the smooth tori Tθ±0 ,δ will have ruling curves of slopes s±δ
satisfying s−δ < s < s+δ . By continuity, the Intermediate Value Theorem tells us that there exists
a θs, with θ−0 < θs < θ+0 such that the smooth torus Tθs,δ has ruling curves of slope s < 0 and
dividing curves of infinite slope, as desired.

To realize a torus with ruling curves of slope s > 0, we start by choosing θ0 ∈ (π/2, π) and
removing the annulus A0

[π/2,θ0]
= {(θ, ϕ, 0) : π/2 ≤ θ ≤ θ0}. Following a parallel procedure

produces a smooth torus with ruling curves of slope s > 0 and dividing curves of infinite
slope, as desired. □

To complete the proof of Lemma 6.17, first observe that the desired neighborhoods N2 and
N3 can be constructed similarly. Lastly, we need to verify that we can assume that ψt = id on
N1. Recall that above we showed that our isotopy ψt can be assumed to be the identity on a
neighborhood N of Λ1. Since the neighborhood N1 constructed above can be assumed to be
arbitrarily small we can assume that N1 ⊂ N , and thus our isotopy ψt is the identity on N1. □

Step 3 will be concluded once we prove the following corollary.

Corollary 6.19. The manifold X1 := (T 2 × [−1, 2])−N1 is diffeomorphic to Σ1 × S1, where Σ1 is an
annulus with a disk removed, and the contact isotopy ψt from Step 2 restricts to define a contact isotopy
ψ1
t of (X1, ξ

′|X1). The space X123 := (T 2 × [−1, 2])− (N1 ∪N2 ∪N3) is diffeomorphic to Σ123 × S1,
where Σ123 is Σ1 with two disks removed, and the contact diffeomorphism ψ1 from Step 2 gives rise to a
contact diffeomorphism of ψ123 of (X123, ξ

′|X123).

Although we know that ψ1 interchanges Λ2 and Λ3, we will need to argue that ψ1 induces
a contactomorphism that interchanges the neighborhoods N2 and N3. To prove this, we will
employ the following lemma that is well known, but does not seem to be in the literature.

Lemma 6.20. Suppose that T1 and T2 are disjoint convex tori in standard form with the same ruling and
dividing slopes in a contact manifold (M, ξ) such that the region R between T1 and T2 is non-rotative.
Then there is a contact isotopy of (M, ξ) that is supported in a neighborhood of R and takes T1 to T2.

Proof. We begin by building a model for R. Given a surface Σ with a singular foliation F
that admits dividing curves, there is an R-invariant contact structure ξ′ on Σ × R that induces
F on each Σ × {t}, see [22, Proposition 3.4]. We will show that given any a < b there is a
contact isotopy of Σ × R taking Σ × {a} to Σ × {b} that is supported in an arbitrarily small
neighborhood of Σ × [a, b]. The lemma will then follow this since the hypotheses on R imply
that R has a neighborhood contactomorphic to a region T 2 × [a, b] with such an R-invariant
contact structure.

Let α be an R-invariant contact form for the R-invariant contact structure ξ′ on Σ × R. The
function H = α(∂t) is the contact Hamiltonian generating the contact vector field ∂t. Now let
g(t) be a function that is 1 on some interval [a, b] and 0 outside a slightly larger interval. Then
gH generates a new contact vector field v that agrees with ∂t on [a, b] and is zero where g is
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zero. The flow of v gives a contact isotopy of Σ × R that will take Σ × {a} to Σ × {b} and has
support near Σ× (a, b). □

Now we can complete the proof of Corollary 6.19, and thus complete Step 3.

Proof of Corollary 6.19. Since N1 is not moved by ψt, we have an induced isotopy ψ1
t on X1. The

only thing left to see is that we may assume that ψ1
1 interchanges N2 and N3. We will use an

“intermediate” torus and Lemma 6.20 to extend ψ1
1 by an isotopy to guarantee this happens.

Notice that Λ2 is contained in N2 ∩ ψ1
1(N3), and thus there is an S1-invariant neighborhood

N ′
2 of Λ2 that is contained in this intersection such that the dividing and ruling slopes on ∂N ′

2

agree with those on ∂N2 and ∂ψ1
1(N3). Tightness implies that the regions between ∂N ′

2 and
∂(ψ1

1(N3)) and between ∂N ′
2 and ∂N2 are non-rotative. Thus, from Lemma 6.20, we can find

a contact isotopy extending ψ1
t that takes ∂(ψ1

1(N3)) to ∂N ′
2, and then another isotopy taking

∂N ′
2 to ∂N2. Renaming the new isotopy ψ1

t again, we have ψ1
1(N3) = N2. A similar argument

arranges that ψ1
1(N2) = N3. □

We are now ready for Step 4, where we derive our contradiction. The contradiction will arise
by studying dividing curves on convex surfaces. In (T 2 × [−1, 2], ξ′) = (Σ × S1, ξ′), observe
that for all θ, Σ × {θ} is a convex annulus with dividing set containing (Σ × {θ}) ∩ T ; see
Remark 6.16. Now consider the two convex surfaces Σ123×{θ}, ψ123(Σ123×{θ}) ⊂ X123. We see
that the dividing curves of Σ123 × {θ} and ψ123(Σ123 × {θ}) connect the boundary components
corresponding to Λ1,Λ2, and Λ3 in topologically different ways:

Lemma 6.21. On Σ123 × {θ} there is a component γ of the dividing set that connects ∂N1 and ∂N2;
letting p = γ ∩ ∂N1, the dividing curve γ′ of ψ123(Σ123 × {θ}) containing p connects ∂N1 and ∂N3.

Proof. As the dividing set of Σ123 × {θ} contains (Σ123 × {θ}) ∩ T , it is clear that there is a
connected component of the dividing set, γ, connecting ∂N1 and ∂N2. The end of γ intersecting
∂N1 never moves throughout the isotopy ψ1

t since the isotopy is supported away from N1. Let
p = γ ∩ ∂N1, and let γ′ be the connected component of the dividing set of ψ123(Σ123 × {θ})
that contains p. Since ψt(Σ123 × {θ}) is convex with dividing curves given as the image under
ψt of the dividing curves of Σ123 × {θ}, we know that for all t, there will be a component of
the dividing curve on ψ1

t (Σ1 × {θ}) that connects p to ψ1
t (∂N2). Thus γ′ connects ∂N1 and

∂N3 = ψ1
1(∂N2). □

If we knew there was a topological isotopy relative to the boundary of ψ123(Σ123 × {θ})
to (Σ123 × {θ}), we would immediately have a contradiction to Honda’s result mentioned in
Propositon 6.11. Although ψ123(Σ123 × {θ}) may not satisfy this isotopy condition, we can
guarantee the existence of a surface Σ′ that does.

Lemma 6.22. There exists a convex surface Σ′
ψ so that ∂Σ′ = ∂(Σ123 × {θ}), Σ′

ψ is isotopic to
Σ123 × {θ}, and the dividing curves on Σ′

ψ and ψ123(Σ123 × {θ}) topologically connect the bound-
ary components in the same way.

Proof. To abbreviate notation, let Σ123 denote Σ123 × {θ}. From ψ123(Σ123), we can construct a
new surface Σ′

ψ with the desired properties by an isotopy we call “sliding the boundary along
the boundary”. To define this sliding, let A be an annulus in a (torus) boundary component
B of X123 with one boundary component of A on ∂(ψ123(Σ123)) ∩ B, the other boundary com-
ponent a ruling curve on B, and the rest of A disjoint from ψ123(Σ123). Then we can glue A



48 JENNIFER DALTON, JOHN B. ETNYRE, AND LISA TRAYNOR

and ψ123(Σ123) together, round the corner between the two pieces, and push the interior of the
new surface slightly into the interior of X123. We can think of this new surface as obtained by
isotoping one of the boundary components of ψ123(Σ123) along a boundary component of X123

guided by A; we say this is the result of sliding the boundary. This isotopy can also be done
where A is actually an entire (torus) boundary component of X123 rather than an annulus. If
one always wants to work with annuli, then this would be a two step process: write a boundary
of componentB as the union of two annuliA1 andA2 and perform two slides usingA1 thenA2.
We call a slide of ψ123(Σ123) along an entire boundary component of X123 a complete boundary
slide. The dividing curves on the annulus A added to ψ123(Σ123) during a slide just run from
one boundary component of A to the other, so when we slide the surface the combinatorics of
how the dividing curves intersect the boundary is unchanged.

We can clearly slide the boundary components of ψ123(Σ123) along the boundary of X123 to
get a surface Σψ such that Σψ and Σ123 have the same boundary, and the dividing curves on Σψ
and ψ123(Σ123) connect the boundary components the same way. Also notice that, since ψ123 is
the identity near ∂1, we do not need to slide ψ123(Σ123) along ∂N1.

We now complete our argument by showing that we may isotop Σψ via complete boundary
slides to get a convex surface Σ′

ψ that is isotopic to Σ123 relative to the boundary. Let a1, a2, a3,
and a4 be arcs on Σ123 that cut Σ123 into a disk. If we label the boundary components of Σ123

by C0, C1, C2, C3, and C4, where C0 ∪ C4 is the boundary of the original annulus then we can
choose the ai such that ai connects Ci−1 to Ci. Let Ai = ai × S1. We can isotop the Ai so
that they are transverse to Σψ. The intersection of Ai with Σψ will consist of a single arc going
from one boundary component of Ai to the other and possibly some simple closed curves. All
such simple closed curves must bound disks on Ai, since the arc prevents them from being
essential, and each must bound a disk on Σψ, since Σψ is incompressible. One may use a
standard innermost disk argument to isotop Ai to remove the circles of intersection. Thus each
Ai intersects Σψ in exactly one arc ηi. The arcs ai and ηi have the same boundary, but ηi might
not be isotopic to ai onAi; after complete boundary slides of Σψ along boundary components of
X123, we can assume ηi is isotopic to ai on Ai. Since some of the ai have end points on the same
boundary component, doing slides to “fix” one of the ηi can may mess up another. But we can
fix all the ηi if we do so in the correct order. For example, we can first fix η1 and η2 by boundary
slides along C0 and C2, respectively. Then fix η3 by boundary slides along C3, and fix η4 by
slides along C4. Observe that we never needed to move Σψ along the boundary component on
∂N1. Thus we may assume, after compete boundary slides, that all the ηi are isotopic to ai on
Ai. We can extend the isotopies of the ηi to an ambient isotopy that will take Σψ to a surface Σ′

ψ

whose boundary agrees with the boundary of Σψ (which agrees with the boundary of Σ123),
and Σ′

ψ also agrees with Σ123 along the curves ai. By cutting X123 open along the Ai, X123 is
cut open to D2 × S1, and Σ123 and Σ′

ψ are cut open into meridional disks that have the same
boundary; two such disks are isotopic relative to their boundary. This isotopy can be done
back in X123 so we see that Σ′

ψ is isotopic relative to the boundary to Σ123. Moreover, since
Σ′
ψ is obtained by boundary sliding ψ123(Σ123), but never moving the boundary component on

∂N1, the combinatorics of the dividing curves on Σ′
ψ agree with those of Σψ, which agreed with

those of ψ123(Σ123). □

This completes Step 4 and hence the proof of Theorem 6.10. □
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As a corollary to Theorem 6.10, we can say something about the intersections of pre-Lagrangian
tori in a basic slice.

Corollary 6.23. Let (T 2 × [0, 1], ξ) be a basic slice containing two boundary-parallel pre-Lagrangian
tori T, T ′ of the same slope. Suppose a link L can be realized as a collection of leaves in the foliations of
both T and T ′. Then with respect to both tori, L has the same cyclic ordering.

Proof. For a contradiction, suppose there exists such a link L whose components are ordered
differently by the pre-Lagrangian tori T and T ′. By considering a sublink and using arguments
as in Step 1 of the proof of Theorem 6.10, we can assume L has 3 components that are ordered
differently with respect to T and T ′. Suppose on T , these components are cyclically ordered
as (Λ1,Λ2,Λ3), and on T ′ they are cyclically ordered as (Λ1,Λ3,Λ2). As in Step 1 of the proof
of Theorem 6.10, we can isotop T ′ so that it agrees with T near Λ1 and then isotop Λ2 and Λ3

along T into the region where T and T ′ agree near Λ1 and then out along T ′ to exchange them,
which is a contradiction to Theorem 6.10. □

Remark 6.24. It would be interesting to know if in a basic slice, two pre-Lagrangian tori that
contain common leaves in their intersection must in fact be isotopic. We note that each leaf in
the characteristic foliation of one of the tori must intersect the other torus. To see this, suppose
we had two such tori T and T ′ in a basic slice T 2 × [0, 1] and a leaf L of T was disjoint from
T ′. Then let T ′′ be a convex torus disjoint from T ′ that contains L. It will have to have dividing
slope that agrees with the slope of the characteristic foliation on T ′ (since the twisting of the
contact structure alongLwill be zero with respect to the torus framing and thus cannot intersect
the dividing set). But since T ′ is pre-Lagrangian we can use a local model for it to see that
between T ′ and T ′′ we have tori with dividing slopes different from that of T ′′. This implies
that the region between T ′ and T ′′ is not minimally twisting, contradicting the fact that this
is all taking place in a basic slice. This observation together with the above corollary strongly
indicate that two such pre-Lagrangian tori must indeed be isotopic.

6.2. Forbidding Non-cyclic Permutations in S3. Having establishing the fact that it is not pos-
sible to do a non-cyclic permutation of the leaves of a pre-Lagrangian in a basic slice, we now
move to the setting of S3. The proof of Theorem 6.9 will follow from the following proposition.

Proposition 6.25. For q ≥ p ≥ 1, let L be an ordered Legendrian (np,−nq)-torus link in S3 with each
component having tb = −pq. Let T be a pre-Lagrangian torus containing L; assume the components of
L are given the cyclic ordering from T . If there exists a contact isotopy ψt of S3 such that ψ1(L) realizes
a permutation of L, then there exists a basic slice containing pre-Lagrangian tori T and T ′ such that
both T and T ′ contain L as leaves of their foliations, T induces the cyclic ordering given by L, and T ′

induces the cyclic ordering given by ψ1(L).

Before proving Proposition 6.25, we observe that Propositon 6.25 leads to a short proof of
Theorem 6.9.

Proof of Theorem 6.9. By Proposition 6.25, a non-cyclic permutation of the leaves of a Legendrian
(np,−nq)-torus link L in S3 where all the components have tb = −pq implies the existence of
two pre-Lagrangian tori in a basic slice that induce different cyclic orderings on the leaves of
L, a contradiction to Corollary 6.23. □
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To prove Proposition 6.25, we will first establish three lemmas about the image of a pre-
Lagrangian torus containing L under a contact isotopy ψt such that ψ1(L) is a permutation of
L.

First we develop a dimension reduction set up. In the proof of Theorem 6.10, Step 2 allowed
a dimension reduction so that we could represent important objects in our 3-dimensional basic
slice in a 2-dimensional annulus. Similarly, the following lemma will allow us to represent
relevant tori, solid tori, and annuli in S2 rather than S3. The annuli constructed in this lemma
will later be used to find a basic slice containing two pre-Lagrangian tori containing L.

Lemma 6.26. Suppose L ⊂ S3 is a Legendrian (p,−q)-torus link that arises as the leaves of a pre-
Lagrangian torus T0 of slope −q/p, and ψt is a contact isotopy of S3 such that ψ1(L) is a permutation of
L; let T1 = ψ1(T0). There is a Seifert fiber structure on S3 with regular fibers being (p,−q)-torus knots.
The base of the fibration is S2; if p ̸= 1, there are two singular fibers K0,K1, while if p = 1 only K1 is
singular. The fibers K0,K1, given as the pre-image of the poles of S2, form a Hopf link. With respect to
this Seifert fiber structure, we can arrange the following.

(1) We can assume our link L is contained in the pre-Lagrangian torus T0, which is the pre-image
of the equator. The torus T0 separates S3 into two solid tori S0 and S1.

(2) The pre-Lagrangian torus T1 = ψ1(T0) can be isotoped relative to L to be a convex torus T ′
1 such

that T ′
1 is the pre-image of a curve c ⊂ S2 that separates the poles; the torus T ′

1 separates S3 into
two solid tori S′

0 and S′
1. Thus the pre-image of the poles of S2 give Ki, which are core-curves of

both the solid tori Si and S′
i, i = 0, 1.

(3) The pre-image of curves in S2 joining the poles to points on the equator in the complement of
the curve c define annuli Ai with embedded interiors such that ∂Ai is the union of a Legendrian
(p,−q)-curve on T0 and, when i = 0, a curve that wraps p times around K0 and, when i = 1, a
curve that wraps −q times around K1. Moreover, Ai is disjoint from T ′

1 and intersects T0 only
along its boundary, which is a leaf of the characteristic foliation of T0.

Proof of Lemma 6.26. We will view S3 as the unit sphere in C2; the standard contact structure on
S3 is then given by the kernel of α|TS3 = (r1dθ1 + r2dθ2)|TS3 , where zj = rje

iθj . The Seifert
fiber structure is well known. We first view S3 as the join of two circles: consider the map

Ψ : S1 × S1 × [0, 1] → S3 : (θ1, θ2, t) 7→
(
cos

(π
2
t
)
eiθ1 , sin

(π
2
t
)
eiθ2

)
.

Then Ψ restricted to S1×S1× (0, 1) parametrizes S3−H , where H = (S1×{0})∪ ({0}×S1) is
the Hopf link, and S1 × S1 × {0, 1} is “collapsed” onto H . In these coordinates the vector field
p∂θ1 − q∂θ2 generates the orbits of the Seifert fiber structure on S3. All the claimed properties
about the Seifert fiber structure of S3 are seen in this model.

To verify (1), first observe that in the coordinates given by Ψ the contact planes are always
tangent to the [0, 1]-factor, have slope −∞ as t limits to 0 and then rotation through negative
numbers and limit to slope 0 as t approaches 1. In our identification of the orbit quotient of S3 to
S2, we can assume that the preimage of the equator is the pre-Lagrangian T0 with characteristic
foliation having slope −q/p. From our unordered classification of negative torus links, we can
assume that L is a subset of the leaves of the foliation on T0. We can now define S0 and S1 as
the pre-image of the upper and lower hemispheres of S2. The Ki, defined as the preimages of
the poles, are the cores of Si. This completes Item (1).

For Item (2), we first isotop T1 = ψ1(T0) relative to L to a convex torus T ′
1 such that T0 and

T ′
1 intersect transversally, and T0 ∩ T ′

1 consists of L and potentially other curves on both tori.
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Claim: We can choose the isotopy so that T ′
1 is the pre-image of a curve c ⊂ S2, where the curve

c separates the poles of S2.

Proof of Claim. The intersection T0 ∩ T ′
1 consists of simple closed curves containing L: 2n of

them are (p,−q) curves on both tori, and m of them are null-homotopic curves on both tori.
Using a standard innermost disk argument, T ′

1 can be isotoped, relative to L, to remove the
null-homotopic curves.

Now each component of T ′
1 \ (T0 ∩ T ′

1) is an annulus in S0 or S1 with boundary consisting of
(p,−q) curves in T0. Thus the annuli are incompressible in S0 or in S1, since inclusion induces
an injection on their fundamental groups. We will have our desired existence of the curve c if
we can show that we can isotop T ′

1 relative to T0 ∩ T ′
1 so that each of these annuli become a

union of fibers. An incompressible annulus in a Seifert fiber space is either boundary parallel
or boundary incompressible, see [28, Section 7] and [29, Section 5]. Moreover a boundary
incompressible surface is isotopic to either a vertical (union of regular fibers) or horizontal
(transverse to each fiber) surface. Since the boundary condition on the annuli imply that the
annuli cannot be horizontal, the annuli must be either boundary parallel annuli or vertical
surfaces, which in this case are also boundary parallel. Notice that a boundary parallel annulus
with boundary a union of fibers can be isotoped to be a vertical surface, since there is a vertical
surface with the same boundary, and any two annuli with the same boundary will be isotopic.
Thus after isotopy relative to T0 ∩ T ′

1, we can assume T ′
1 is also a vertical surface. In particular,

there is a simple closed curve c in S2 such that T ′
1 is the pre-image of c under the fibration.

Furthermore, we can argue that c separates the poles of S2 as follows. If not and p ̸= 1 then
there is a disk D bounded by c that contains both singular points; the pre-image of D is not
a solid torus (in fact it is the complement of a (p,−q)-torus knot), which contradicts T ′

1 being
isotopic to T0. When p = 1, if c does not separate the poles, then since K0 is a regular fiber, and
we can further isotop T ′

1 past K0. □

Now that we have established Item (2), we move on to the last item. If one takes arcs a0 from
the north pole to the equator and a1 from the south pole to the equator, both avoiding c, then
their pre-images will be the annuli A0 and A1 satisfying the properties claimed in Item (3). □

Moving on, it will be helpful to keep in mind that the convex T ′
1, which has the nice descrip-

tion as the pre-image of the curve c ⊂ S2, was obtained from a potentially large isotopy of the
pre-Lagrangian T1 = ψ1(T0). We now show that the cyclic ordering of the components of L on
T ′
1 agrees with the cyclic ordering on T1. To do this, we will find a non-rotative neighborhood

for the convex torus T ′
1; recall that in Definition 2.4, we defined a complementary annulus for

a non-rotative contact structure, and in Lemma 2.9 we discussed how such a complementary
annulus can be used to define a cyclic ordering of the Legendrian divides of a convex torus.

Lemma 6.27. Suppose L, T0, T1, and T ′
1 are as in the statement of Lemma 6.26. The convex torus T ′

1

has a neighborhood R1 = T ′
1 × [−ϵ, ϵ] such that ξ restricted to R1 is [−ϵ, ϵ]-invariant, each boundary

component of R1 has two dividing curves, and the cyclic ordering of L induced by a complementary
annulus in R1 agrees with the one induced by the pre-Lagrangian torus T1. Moreover, the annuli Ai
constructed in Lemma 6.26 can be constructed to be disjoint from R1.

Proof. We will start by constructing a convex torus T ′′
1 that has a neighborhood with the desired

properties, and then use a Discretization of Isotopy technique to show that T ′′
1 can be moved to

our T ′
1 in such a way that the desired neighborhood properties persist.
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By Lemma 2.8, we know that from the pre-Lagrangian T1, we can find a convex torus T ′′
1

that has a neighborhood R′′ with the desired properties. Since both T ′
1 and T ′′

1 are isotopic to
T1 fixing L, there is a smooth isotopy of T ′′

1 to T ′
1 fixing L . By the Discretization of Isotopy

technique, [27, Section 2.2.3], we can find a sequence of convex surfaces F0,. . . , Fl, such that
F0 = T ′′

1 , Fl = T ′
1, and each pair Fi ∪ Fi+1 cobound a thickened torus. As the Fi are disjoint,

they cannot all contain L; however each convex surface Fi will contain an ordered link among
its Legendrian divides that can be canonically identified with L since we can assume that all
the Fi intersect T1 near L in leaves isotopic to L. We will abuse terminology and say L is on all
the Fi using this identification.

We will inductively prove that each torus Fi contains L as a link with the same ordering as
that given by T1. Namely we will argue that each Fi contains L as a subset of its Legendrian
divides and is contained in an I-invariant thickened torus Ri whose boundary components
have two dividing curves each of slope −q/p, and the cyclic order of L on Fi induced from a
complementary annulus in Ri agrees with the order coming from T1.

The base case is immediate from construction with R0 = R′′. Now we inductively assume
the result is true for Fk. Notice that Fk splits Rk into two pieces R±

k . Now Fk+1 is either
on the positive or negative side of Fk. We assume the positive side; the argument for the
negative side is analogous. We will find a thickened torus neighborhood Rk+1 of Fk+1 where
R−
k+1 contains R−

k . Consider S3 \ Fk+1: there will be two copies of F+
k+1 and F−

k+1 of Fk+1 in
the cut open manifold, and F±

k+1 will bound a solid torus S±
k+1, with S−

k+1 containing R−
k . As

the slope of convex tori in S+
k+1 parallel to the boundary is not fixed, we know that there is

a thickened torus R+
k+1 in S+

k+1 with one boundary component F+
k+1 and the other boundary

component being a convex torus with two dividing curves of slope −q/p. Let Rmk+1 be the
region between Fk and Fk+1, and set R−

k+1 = R−
k ∪ Rmk+1. Then Rk+1 = R+

k+1 ∪ R−
k+1 is an

I-invariant thickened torus containing Fk+1. We now need to check the statement about the
ordering on L induced by a complementary annulus in Rk+1. To this end, notice that R+

k and
Rmk+1 ∪R

+
k+1 are both non-rotative outermost layers for F+

k in S3 \ Fk as described in [26]. So if
A+
k is any complementary annulus in R+

k , and A′
k is a complementary annulus in Rmk+1 ∪R

+
k+1,

then the dividing curves on these annuli are disk equivalent [26, Theorem 1.3]. This means
that if we add a disk to the outermost boundary of these annuli and extend the dividing set
by an arc in the new disk then the resulting multi-curves in the disk are isotopic. This implies
that the ordering on the components of L induced by A−

k ∪ A+
k and A−

k ∪ A′
k are the same. But

we can write the annulus A′
k as A+

k+1 ∪ Amk+1 by splitting it along a ruling curve in Fk+1 and
then A−

k ∪ A′
k = A−

k ∪ Amk+1 ∪ A
+
k+1 = A−

k+1 ∪ A
+
k+1. And thus the orders on L induced by the

complementary annuli in Rk and Rk+1 are the same, and the induction argument is complete.
The desired neighborhood R1 of T ′

1 is the Rl constructed in the induction argument.
We must now see that the Ai can be chosen to be disjoint from R1. We first construct a

thickened torus R2 that contains T ′
1 is non-rotative with two dividing curves on each side and

is disjoint from the Ai. If we achieve this then notice that T ′
1 breaks R1 into two pieces R1

1 ∪R
+
1

and breaks R2 into two pieces R−
2 ∪ R+

2 . Both R−
1 and R−

2 are non-rotative outermost layers
for a component of S3 \ T ′

1 and so are disk equivalent, and similarly for R+
1 and R+

2 . Thus as
discussed above, the ordering of the Legendrian divides on T ′

1 coming from R1 and R2 is the
same. Thus we may replace R1 with R2 to complete the proof.
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To construct R2 we will use the notation of Lemma 6.26. Notice that we can draw two circles
γ± on S2 that enclose the curve c from Lemma 6.26 that defines T ′

1. These curves can be chosen
to each intersect the equator transversely in two points and separate the poles. Moreover, let
T± be the pre-image tori of γ± under the projection S3 → S2 given in Lemma 6.26. Notice T±
has two Legendrian −q/p curves coming from its intersection with the equator. We claim that
T± has just two dividing curves. If it had more than two dividing curves, then one region in
the complement of the curves would have to be disjoint from T0 (the pre-image of c). Thus
we could Legendrian realize a (p,−q)-torus knot on it. This knot would have tb = −pq and
be disjoint from T0. However, arguing as in Remark 6.24 this would imply that the contact
structure was overtwisted. Thus the region R2 is simply the thickened torus bounded by T−
and T+. □

Next we show that T0 and the neighborhood R1 of T ′
1 are contained in a basic slice.

Lemma 6.28. Suppose L, T0, T1, and T ′
1 are as in the statement of Lemma 6.26, and R1 is the non-

rotative neighborhood of T ′
1 as in the statement of Lemma 6.27. Then there is a thickened torus V in S3

that contains T0 and R1 such that ξ|V is a basic slice.
Proof. We first consider the case where p ̸= 1, and thus −q/p is not an integer. The strategy
here will be to start with standard neighborhoods of Legendrian realizations of the Hopf Link
K0 ∪K1 that are disjoint from T0 and R1, and use the annuli Ai from Lemma 6.26 to show that
these neighborhoods can be thickened so that their complement is a basic slice V that contains
T0 and R1.

Let Ui be a small neighborhood of Ki that is disjoint from R1 ∪ T0. To describe slopes on
the torus boundary neighborhoods of Ki, we will always use longitude-meridian coordinates
coming from T0, whose orientation coincides with the orientation as the boundary of the solid
torus S0 with core K0. We can assume that ∂Ui is convex and that the dividing slope for ∂U0

is −l for some large integer l, and the slope for ∂U1 is −1/k for some large integer k4. We can
use the annuli Ai to create embedded annuli A′

i with boundary consisting of a ruling curve of
slope −q/p on ∂Ui and a leaf γi of the characteristic foliation on T0. Moreover the interiors of
the A′

i are disjoint from R1 ∪ T0. Then Ai intersects the dividing curves on ∂Ui exactly 2|lp− q|,
respectively 2|p − kq| times. Thus, since the dividing curves of A′

i do not intersect γi, the
Imbalance Principle [24] says there is a bypass for ∂Ui alongA′

i. Assume −m−1 < −q/p < −m,
for m ∈ Z; we can find such bypasses to raise the slope of U0 to −m− 1 and U1 to −m. Notice
that these solid tori are still disjoint from R1 ∪ T0. Now let V = S3 \ (U0 ∪ U1). By construction
V is a basic slice and contains T0 and R1.

In the case where p = 1, arguing as in the case when p ̸= 1, we can find a thickened torus
T 2 × [0, 1] in S3 that contains T0 and the non-rotative neighborhood R1 of T ′

1 and has dividing
curves of slope s0 = −q− 1 and s1 = −q+1 on T 2 ×{0} and T 2 ×{1}, respectively, if −q ̸= −1
and s0 = −1/2 and s1 = −2 if −q = −1. Notice that ξ restricted to T 2 × [0, 1] is the union of
two basic slices one with boundary slopes s0 and −q and the other with slopes −q and s1. Since
there is a pre-Lagrangian torus of slope −q in this contact manifold, Lemma 2.3 says the signs
of the basic slices must agree; say they are both positive. We can now glue the positive basic
slice with boundary slopes 0 and s0 to the back of T 2 × [0, 1] and the positive basic slice with
slopes s1 and −∞ to the front of T 2 × [0, 1]. The resulting thickened torus T2 × [−1, 2] is a basic
slice by [24, Theorem 4.25], and it contains T0 and the non-rotative neighborhood R1 of T ′

1. □

4The meridian and longitude of U1 is reversed from those of U0, which explains the fraction
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We now complete the proof of Proposition 6.25.

Proof of Proposition 6.25. Suppose that L is a Legendrian (np,−nq)-torus link where each com-
ponent has tb = −pq. Assume there exists a Legendrian isotopy ψt of S3 such that ψ1(L) is a
permutation of L. Let T0, T1 = ψ1(T0) be the pre-Lagrangian tori containing L and ψ1(L), let
T ′
1 be the convex torus that is isotopic to T1 relative to L guaranteed by Lemma 6.26, let R1 be

the non-rotative neighborhood of T ′
1 guaranteed by Lemma 6.27, and let V be the basic slice

containing T0 and R1 guaranteed by Lemma 6.28. If we knew that the pre-Lagrangian T1 was
also in this basic slice V , we would be done by Corollary 6.23. As we cannot guarantee this
inclusion of T1, we will show that there is a contactomorphism κ from the basic slice V to a
basic slice (T 2 × [0, 1], ξ) such that κ(T ′

1) is a convex torus whose Legendrian divides are given
by κ(T ′

1) ∩ P1, where P1 is a pre-Lagrangian torus, and the ordering of κ(L) on κ(T ′
1) coming

from P1 and from κ(R1) are the same. Observe that κ(T0) will be a pre-Lagrangian torus con-
taining κ(L). By Corollary 6.23, we know that the cyclic ordering of κ(L) from κ(T0) and P1

(and thus T1) must agree. This means that the cyclic orderings of L through T0 and T1 agree,
thus establishing Proposition 6.25.

To see that the claimed contactomorphism exists notice that we can start with our non-
rotative R1 and attach a thickened torus to the front and back faces of R1 to obtain a basic
slice (T 2 × [0, 1], ξ) and thus a contactomorphism κ : V → T 2 × [0, 1]. Now Lemma 2.9 says
there is a pre-Lagrangian torus P1 inside of T 2× [0, 1] such that the Legendrian divides of κ(T ′

1)
are given by κ(T ′

1)∩P1, and there is a non-rotative thickened torusRP1 containing κ(T ′
1) and P1

that orders the divides of κ(T ′
1) in the same way as P1. We claim that RP1 and κ(R1) order the

divides of κ(T ′
1) in the same way, which will complete the proof. To see this notice that κ(T ′

1)
splits κ(R1) and RP1 into two pieces κ(R1)

± and R±
P1

, respectively. Now κ(R1)
+ and R+

P1
are

non-rotative outer layers for (T 2 × [0, 1]) \ κ(T ′
1) and thus are disk equivalent (as discussed in

the proof of Lemma 6.27), and thus their complementary annuli are disk equivalent. Similarly
for κ(R1)

− and R−
P1

. Thus, as in the proof of Lemma 6.27, we see that RP1 and κ(R1) define the
same cylic ordering of the divides of κ(T ′

1), as desired. □

7. CABLE LINKS

In this section, we will always assume that K is an oriented smooth knot type. As described
in Section 1.2, for n ≥ 1 and p, q ∈ Z with p ≥ 1 and gcd(p, q) = 1, K(np,nq) will denote the
n-component, slope q/p-cable link for the knot type K.

We begin the section by describing the non-destabilizable Legendrian representatives of
K(np,nq): these will be “standard Legendrian cables” and, for some integral slope values, “twisted
n-copies”. The standard Legendrian cables will always have max tb, and the twisted n-copies
will have max tb if and only if n = 2. This leads to the unordered classification of Legendrian
cables in Section 7.2; see Theorem 7.6. We then move on to understand the ordered classi-
fication. All components of the standard Legendrian cables are Legendrian isotopic, and in
Section 7.3 we examine which permutations can be realized. This leads to the proof of the
ordered classification of Legendrian cables stated in Theorem 1.10.

7.1. Non-destabilizable Legendrian Cables. We begin by defining “standard Legendrian ca-
bles,” which are Legendrian representatives of the cable links K(np,nq); their construction will
depend on the slope q/p and will use a standard neighborhood of a Legendrian representative
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Λ of K with specified tb value, as defined in Definition 2.15. We will use the notation ⌈q/p⌉ to
denote the least integer greater than or equal to q/p.

Definition 7.1. Given a knot type K and p, q ∈ Z such that p ≥ 1 and gcd(p, q) = 1, fix a
Legendrian representative Λ of K such that

tb(Λ) =

{
tb(K), q/p ≥ tb(K)

⌈q/p⌉, q/p < tb(K).

Fix n ≥ 1. Then from Λ, when q/p ≥ tb(K) (or when p = 1 and q/p < tb(K)), we define
the standard Legendrian (np, nq)-cable of K, denoted Λ(np,nq) (respectively, Λ(n,nq)), and when
q/p < tb(K) and p > 1, we define two standard Legendrian (np, nq)-cables of K, denoted Λ±

(np,nq),
as follows.
greater-slope cables: Suppose q/p > tb(K). Let N be a standard neighborhood of Λ with

ruling curves of slope q/p. Then Λ(np,nq) is defined by taking n ruling curves on ∂N .
tb(K)-slope cables: When p = 1 and q/p = tb(K), Λ(n,nq) is defined to be the n-copy of Λ.

Recall this involves taking leaves of a pre-Lagrangian annular neighborhood inside a
standard neighborhood of Λ; see Definition 2.17.

integral and lesser-slope cables: When p = 1 and q/p < tb(K), Λ(n,nq) is defined to be the
n-copy of Λ.

nonintegral and lesser-slope cables: Suppose p > 1 and q/p < tb(K). Let N be a standard
neighborhood of Λ; insideN are standard neighborhoodsN± of Λ±, the ±-stabilizations
of Λ. There exists a pre-Lagrangian torus T± of slope q/p in the basic slice N \N±, see
Remark 2.4.1, and Λ±

(np,nq) is defined by taking n leaves in the foliation of T±.

Remark 7.2. These definitions of the standard (np, nq)-cables generalize the construction of our
max-tb Legendrian torus links. For suppose that K is the unknot and take, as usual, |q| ≥ p ≥ 1
with gcd(p, q) = 1. Then observe:

• q/p > tb(K) = −1 implies q ∈ Z+, and the construction of the standard Legendrian
greater-slope cables of the unknot agrees with the construction of the max-tb positive
torus links;

• q/p = tb(K) = −1 implies q = −1, and the construction of the standard Legendrian
tb(K)-slope cables of the unknot agrees with the construction of the max-tb representa-
tives of the (n,−n)-torus link.

• q/p < tb(K) = −1 and p = 1 implies q ∈ Z−, and the construction of the standard Leg-
endrian lesser-slope cables of the unknot agrees with the construction of the symmetric
max-tb representatives of the (n,−nq)-torus links, which are obtained as n-copies.

• q/p < tb(K) = −1 and p > 1 implies q ∈ Z−, and the construction of the standard
Legendrian lesser-slope cables of the unknot agrees with the construction of the max-tb
representatives of the negative torus links with non-trivial components.

Remark 7.3. All components of any of the standard Legendrian cables are Legendrian isotopic.
Moreover, in Lemma 2.1 of [15] it is shown how to compute the Thurston-Bennequin invariant
of cables, while in Lemmas 2.2 and 3.8 of [15] it is shown how to compute the rotation number
of cables (but note that the slope conventions in [15] are reversed to the conventions in this
paper). This leads to:
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(1) In the standard Legendrian greater-slope cables, each component Λi of Λ(np,nq) has

tb(Λi) = pq − |p · tb(K)− q| = pq − q + p · tb(K), and r(Λi) = pr(Λ).

(2) In the standard Legendrian tb(K)-slope cables, each component Λi of Λ(n,nq) has

tb(Λi) = tb(K), and r(Λi) = r(Λ).

(3) In the standard Legendrian integral and lesser-slope cables, if q = tb(K) − s, for s > 0,
each component Λi of Λ(n,nq)has

tb(Λi) = tb(K)− s = q, and r(Λi) = r(Λ).

(4) In the standard Legendrian nonintegral and lesser-slope cables, if q
p = ⌈ qp⌉ − s

p , for
0 < s < p, each component Λ±

i of Λ±
(np,nq)has

tb(Λ±
i ) = pq, and r(Λ±

i ) = p r(Λ)± s = p r(Λ)± (p⌈q/p⌉ − q).

When n ≥ 2, the standard Legendrian cables of uniformly thick knot types will always have
maximal Thurston-Bennequin invariant.

Lemma 7.4. IfK is a uniformly thick knot type, then, for n ≥ 2, the standard Legendrian (np, nq)-cable
of K realizes tb(K(np,nq)), for all p, q ∈ Z, p ≥ 1, and gcd(p, q) = 1.

Proof. As described in Section 2.6, for a link L = (Λ1, . . . ,Λn),

tb(L) = tb(Λ1) + tb(Λ2) + · · ·+ tb(Λn) + 2
∑
i<j

lk(Λi,Λj).

As the linking number contribution is a topological invariant, we see that tb(L) is maximized
when tb(Λ1) + tb(Λ2) + · · · + tb(Λn) is maximized. Since each component of a K(np,nq) cable
link is a K(p,q) cable knot, it is important to understand the max tb values that can be obtained
for cable knots and how those values compare to the Remark 7.3 calculations of the tb values
in the components of our standard Legendrian cable.

In fact, the maximum value of tb is known for cable knots of uniformly thick knot types, [15].
When p = 1, the q/p cable is topologically K. It follows that when q/p ∈ Z we have

tb(Kp,q) = tb(K).

The max tb of a cable knot when q/p /∈ Z and K is uniformly thick was established in [15,
Theorem 3.2 and 3.6]:

(1) If q/p /∈ Z and q/p > tb(K), tb(Kp,q) = pq − |p · tb(K)− q|;
(2) If q/p /∈ Z and q/p < tb(K), tb(Kp,q) = pq.

Observe that when q/p > tb(K(p,q)), the integral and nonintegral formulas for tb(K(p,q)) agree:
when p = 1,

pq − |p · tb(K)− q| = q − |tb(K)− q| = q − (q − tb(K)) = tb(K).

Thus the formula given in (1) applies for all slopes q/p > tb(K). However, if q/p < tb(K), then
the formula for tb(Kp,q) is more restrictive in the nonintegral case: when p = 1,

pq = q < tb(K).

In the construction of the standard Legendrian cables, we see that if either q/p ≥ tb(K)

or q/p < tb(K) and q/p is not an integer, then each component of the standard Legendrian
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(np, nq)-cable has tb equal to the maximum possible tb for a (p, q)-cable of K; see Remark 7.3. It
remains to show that when q/p < tb(K) and q/p is an integer, then

∑
tb(Λi) is bounded above

by nq rather than by the larger quantity n tb(K).
By Equation (2), the inequality

(3) tb(Λ1) + . . .+ tb(Λn) ≤ nq.

is the same as saying that the sum of the contact twisting along the Λi, relative to a convex torus
T they sit on as (1, q)-curves, is less than or equal to 0. For a contradiction, suppose L violates
Inequality (3), and so the sum of the twistings is positive. By the uniform thickness ofK we can
assume that L is contained in a solid torus S that is a standard neighborhood of a Legendrian
representative of K. So the dividing curves on ∂S have slope tb(K) and L will be a collection
of (1, q)-curves inside of S. The torus is contactomorphic to a solid torus with dividing slope
−1 (given by cutting along a meridional disk and re-glueing after −tb(K) − 1 full twists) and
under this contactomorphism L will be sent to a collection of Legendrian (1, q − tb(K) − 1)-
curves. Now this solid torus can be identified with a neighborhood of the maximal Thurston-
Bennequin invariant unknot U in S3. When this is done L will be a (1, k)-torus link for some
k < −1 with total twisting relative to the torus it sits on greater than 0, a contradiction to
Proposition 2.22. Inequality (3) follows. □

In parallel to what was seen for negative torus links with unknotted components, for the in-
tegral and lesser-slope cables, there will be additional non-standard Legendrian representatives
of K(np,nq) formed by twisted n-copies, as defined in Definition 5.5. When n = 2, these twisted
versions will have max tb; for larger n, these will not have max tb yet will not destabilize to one
with max tb.

Lemma 7.5. Suppose p = 1 , q ∈ Z, and q/p ≤ tb(K). Let k be the number of lattice points in
the Legendrian mountain range of K on or above the line tb = q. Then consider the following set
of Legendrian representatives of K(n,nq) consisting of n-copies and t-twisted n-copies of Legendrian
representatives Λ and Λt of K:

A = {nΛ : tb(Λ) = q} ∪
{
T t(nΛt) : tb(Λt) = q + t, t > 0

}
.

Then all k elements of A are non-destabilizable, and the Legendrian twist versions will have max tb if
and only if n = 2.

Proof. The argument parallels the proofs of Lemma 5.12 and 5.11. Here we will use the uniform
thickness property of K: the standard neighborhood with two dividing curves of slope tb(K)
replaces the role played by the Heegaard torus for the torus knots. □

7.2. Unordered Classification of Legendrian Cables. Now that we understand all of the non-
destabilizable Legendrian (np, nq)-cables, we can state the main unordered classification result
for cable links of knot types K that are uniformly thick and Legendrian simple. In this state-
ment, the standard Legendrian cables ofK(np,nq) are defined in Definition 7.1, and the t-twisted
n-copy of Λ is defined in Definition 5.5.

Theorem 7.6. (Unordered Cable Link Classification) Let K be a uniformly thick and Legendrian
simple knot type. Consider two oriented Legendrian links L and L′ that are topologically equivalent to
K(np,nq), where n ≥ 2, p ≥ 1, and gcd(p, q) = 1. If we can write L = ⨿ni=1Λi, L

′ = ⨿ni=1Λ
′
i such that
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tb(Λi) = tb(Λ′
i) and r(Λi) = r(Λ′

i), i = 1, . . . , n, then there exists a contact isotopy taking L to L′ (but
not necessarily Λi to Λ′

i). Moreover, the precise range of the classical invariants is given as follows:
greater-slope cables: Suppose q/p > tb(K). For each max tb Legendrian representative Λ of K, there

exists a unique max-tb Legendrian representative of K(np,nq) given by Λ(np,nq), the standard
Legendrian (np, nq)-cable of K(np,nq). Each component of this representative associated to Λ
will satisfy

tb = pq − |p · tb(K)− q| = pq − q + p · tb(K), and r = p r(Λ).

Any non-maximal Thurston-Bennequin invariant representative of K(np,±nq) can be destabi-
lized to one in this set of max tb representatives, {Λ(np,nq) : tb(Λ) = tb(K)}.

nonintegral and lesser-slope cables: Suppose q/p < tb(K) and q/p /∈ Z. For every Legendrian
representative Λ ofK with tb(Λ) = ⌈q/p⌉, there exist two Legendrian representatives ofK(np,nq)

with max tb given by Λ±
(np,nq), the standard Legendrian (np, nq)-cables of K(np,nq). Each com-

ponent of Λ±
(np,±nq) will have equal tb and r values given by

tb = pq, r = pr(Λ)± (p⌈q/p⌉ − q).

Any non-maximal tb Legendrian representative of K(np,±nq) can be destabilized to one in the set
{Λ±

(np,nq) : tb(Λ) = ⌈q/p⌉}.
tb(K)- or integral and lesser-slope cables: Suppose p = 1 and q/p ≤ tb(K). Let k be the number

of lattice points in the Legendrian mountain range of K on or above above the line tb = q. Then
there is a set of k non-destabilizable Legendrian realizations of K(n,nq) consisting of:

• nΛ, the n-copy of a Legendrian representative Λ of K with tb(Λ) = q, and
• for every Legendrian representative Λt ofK with tb(Λt) = q+twith t > 0, the Legendrian
t-twisted n-copy of Λt, T t(nΛt).

The n-copy will have max tb while the Legendrian twist version will have max tb if and only
if n = 2. Any other Legendrian representative of K(np,nq) will destabilize to one in this non-
destabilizable set, {nΛ : tb(Λ) = q} ∪ {T t(nΛt) : tb(Λt) = q + t, t > 0}.

The claimed max tb representatives ofK(np,nq) was established in Lemmas 7.4 and 7.5. So the
unordered classification of Legendrian cables of a simple and uniformly thick knot type given
by Theorem 7.6 will follow easily from the next two propositions.

Proposition 7.7. Suppose K is a uniformly thick knot type, q/p /∈ Z, and n ≥ 2. ThenK(np,nq) is Leg-
endrian simple and every Legendrian representative ofK(np,nq) will destabilize to a standard Legendrian
(np, nq)-cable of K.

Proof. This proof closely follows the proof of the unordered classification of torus links and so
we only sketch the proof.

Let K be a uniformly thick, Legendrian simple knot type. Assume that q/p is not an integer.
We begin by noticing that, according to [15, Section 3], if L is any Legendrian link in the link
type of K(np,nq) then it can be put on a convex torus T bounding a solid torus realizing the knot
type K. This is because each of the components of L has non-positive contact twisting with
respect to T .

If q/p > tb(K), then as in the proof of Lemma 3.4 we can destabilize the components of
L until they become ruling curves on a convex torus isotopic to T with two dividing curves
of slope tb(K). The result in this case follows as in the proof of Lemma 3.2 coupled with the
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argument in [15, Section 3] that maximal tb invariant (p, q)-cables are distinguished by their
rotation numbers and become Legendrian isotopic after stabilization as soon as their invariants
become the same.

If q/p < tb(K) is not an integer, then as in the proof of Lemma 4.3 the components of L can
be destabilized to become Legendrian divides on a convex torus isotopic to T . Then as in the
proof of Lemma 4.2 such a destabilized L has maximal Thurston-Bennequin invariant and is an
n-copy of a maximal Thurston-Bennequin (p, q)-cable of K. Finally, the rest of the classification
follows as in the proof of Lemma 4.4. □

Proposition 7.8. Suppose K is a uniformly thick knot type, p = 1, and q/p ≤ tb(K). Let A be
the set of k non-destabilizable Legendrian representatives of K(n,nq) as described in Lemma 7.5. Any
other Legendrian representative ofK(n,nq) will destabilize to one in this non-destabilizable set; moreover,
K(n,nq) is Legendrian simple.

Proof. The proof is completely analogous to the proofs of Lemma 5.11 and 5.13. So we only
sketch the ideas.

First number the components of the link L so that tb(K1) ≥ tb(K2) ≥ · · · ≥ tb(Kn). If
tb(K1) = q then we can put the link on a convex torus T as n curves of slope q. Since the
twisting of K1 is 0 we see that it will be parallel and disjoint from the dividing curves. We can
destabilize the other Ki until they are also dividing curves. Now using uniform thickness we
can assume T is contained in a standard neighborhood N of a maximal Thurston-Bennequin
representative of K. Lemma 2.16 says that there is a pre-Lagrangian torus in N that contains
the destabilized L as a union of its leaves.

Now if tb(K1) < q then we can again put L on a convex torus T . If the slope of the dividing
curves on T is equal to −q then we can proceed as above. If not, we can destabilize the compo-
nents of L until they become ruling curves on T . Now since K is uniformly thick we can find a
solid torus S in the knot typeK that contains T and has dividing slope q and at least n dividing
curves. We can then use convex annuli with one boundary component on a component of L
and the other a dividing curves on ∂S to destabilize L further to be dividing curves on ∂S. So
we are again finished as above.

Finally if tb(K1) = q + t for some 0 < t < tb(K) + 1− q, then by the bound on the Thurston-
Bennequin invariant in Lemma 7.4 we must have all the other components of L have tb ≤ q− t
(since taking any component together with K1 we will have to have the sum of the Thurston-
Bennequin bounded above by 2q). Thus we can putK2∪ . . .∪Kn on a convex torus aroundK1.
Now as in the proof of Lemma 5.11 we can destabilize all the Ki for i > 1 until they are ruling
curves on a standard neighborhood of K1.

The proof is complete by showing K(n,nq) is Legendrian simple. This follows exactly as in
the proof of Lemma 5.13. □

Proof of Theorem 7.6. Suppose K is a uniformly thick and Legendrian simple knot type. Lem-
mas 7.4 and 7.5 established the non-destabilizable representatives of K(np,nq), and Proposi-
tions 7.7 and 7.8 show that every Legendrian representative of K(np,nq) will destabilize to one
of these and are determined by their classical invariants. The values of tb and r that can be
obtained for those in the non-destabilizable sets was established in Remark 7.3. □

7.3. Symmetries of Legendrian Cables. We now move on to study the ordered classification
of Legendrian representatives of the cable link K(np,nq). All the rigidity will appear in the max
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tb representatives formed as standard Legendrian cables. We now recall our main result from
the Introduction.
Theorem 1.6. Let K be a uniformly thick knot type. If L = (Λ1, . . . ,Λn) is a standard Legendrian
(np, nq)-cable ofK, where the Λi are ordered as they appear on the torus or annulus used in the definition
of the standard Legendrian cables, then the following permutations of the components are possible via a
Legendrian isotopy.
greater-slope cables: If q/p > tb(K), then any permutation of the Λi is possible.
tb(K)-slope cables: If q/p = tb(K) and K is not a cable knot or K is an (r, s)-cable and q/p ̸= rs,

then no permutation of the Λi can be realized by a Legendrian isotopy.
integral and nonintegral lesser-slope cables : If q/p < tb(K) and K is not a cable knot or K is

an (r, s)-cable and q/p ̸= rs, then only cyclic permutations of the Λi can be realized.
This theorem will be proven in Section 7.3.2. The proof that arbitrary permutations are pos-

sible for the greater-slope standard Legendrian cables will parallel the proof that one can ar-
bitrarily permute the components in a max-tb Legendrian positive torus link. The strategy to
forbid arbitrary permutations of tb(K)- and lesser-slope standard Legendrian cables will paral-
lel the strategy used to forbid arbitrary permutations of the components in a max tb Legendrian
negative torus link. This time, instead of initially restricting to a basic slice, we will first work in
a solid torus with convex boundary having two dividing curves and show that it is not possible
to perform any permutation of the leaves of a pre-Lagrangian annulus, and it is only possible
to do cyclic permutations of the leaves of a pre-Lagrangian torus. We then show that the exis-
tence of permutations of the components of a tb(K)-slope (or lesser-slope) standard Legendrian
cable implies the existence of permutations of components of the pre-Lagrangian annulus (or
pre-Lagrangian torus) of the solid torus. After establishing Theorem 1.6, we will easily be able
to give the ordered classification of Legendrian cables.

7.3.1. Links in solid tori. In Theorem 6.10, we showed that it is not possible to do a non-cyclic
permutation of the leaves of a boundary-parallel, pre-Lagrangian torus in a basic slice. Now
we will show that when a solid torus has a convex boundary with two longitudinal curves, it
is not possible to do any permutations of the components of a link L that is formed from leaves
in a pre-Lagrangian annular slice of the solid torus. This will later be important for studying
forbidden permutations in the tb(K)-slope cables.

Theorem 7.9. Let (S1 × D2, ξ) be a solid torus with convex boundary having two dividing curves of
slope 0, meaning they are parallel to S1×{p}, and ruling curves of slope ∞. Inside the solid torus, there
is a pre-Lagrangian annulus A = S1 × γ for some properly embedded γ ⊂ D2; let L = (Λ1, . . . ,Λn) be
the link consisting of distinct leaves of A. Then no non-trivial permutation of the components of L can
be realized by a Legendrian isotopy.

The proof of Theorem 7.9 is very similar to the proof of Theorem 6.10.

Proof. By Kanda’s classification result, see Theorem 2.11, it suffices to show the desired state-
ment in a standard model: we will build an S1-invariant model for (D2 × S1, ξ) such that the
meridional disks {θ} ×D2 are convex and have Legendrian boundary.

To build the model, let D2 be the unit disk in R2. We may find a map of D2 into (R3, ξstd) so
that ∂D is sent to a Legendrian unknot with Thurston-Bennequin invariant −1. This will induce
a characteristic foliation on D2 that can be divided by a single arc γ. Since the foliation on D2

is divided by γ, there is an R-invariant contact structure on R×D2 such that each {p}×D2 has
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the given foliation. Let S1 × D2 be the S1-invariant contact manifold formed by the quotient
of this manifold by the Z-action generated by (t, p) 7→ (t + 1, p). Since the boundaries of the
meridional disks are Legendrian and the contact planes are tangent to ∂(S1 × D2) at exactly
two points on each meridional disk, we see that there are two lines of singularities with slope
0 in the characteristic foliation of ∂(S1 ×D2). Thus ∂(S1 ×D2) has two Legendrian divides of
slope 0, and the rest of the foliation consists of non-singular leaves of slope ∞, as desired.

In this model, S1 × γ is a pre-Lagrangian annulus, A. Choose n distinct points on γ, and
let L = (Λ1, . . . ,Λn) be the corresponding distinct leaves on A. Suppose ϕt is a Legendrian
isotopy that realizes a non-trivial permutation of the components of L. We can extend this to
an ambient contact isotopy ψt of S1 ×D2 that is the identity near the boundary.

Now as in the proof of Theorem 6.10, Step 3, we can choose S1-invariant neighborhoods Ni

of the Legendrian knots Λi such that ∂Ni is convex and the contact isotopy ϕt induces a contact
diffeomorphism from (S1 ×D2) \ ∪Ni. Moreover, (S1 ×D2) \ ∪Ni is diffeomorphic to S1 × Σ
where Σ is D2 with n sub-disks removed from the interior. The boundary of S1 × Σ is convex
with dividing curves of slope 0 and ruling curves of slope ∞, and the contact structure on S1×Σ
is S1-invariant. For a fixed θ, {θ} × Σ and ψ1({θ} × Σ) are convex surfaces, and, after doing
“boundary slides” as in the proof of Theorem 6.10, Step 4, we can assume that their boundaries
are the same and that these surfaces are isotopic relative their boundaries. The dividing curves
on {θ} × Σ are simply the intersection of γ with Σ and the dividing curves on ψ1({θ} × Σ)
are the image of these curves under the map ψ1. Thus any non-trivial permutation gives a
contradiction to Proposition 6.11, since the dividing curves connect the boundary components
differently. □

Next we study allowed permutations of the leaves of a pre-Lagrangian torus inside a solid
torus. This will be used later to study permutations of the lesser-slope cables.

Theorem 7.10. Let (S1 ×D2, ξ) be a solid torus with a convex boundary having two dividing curves
of slope 0, meaning they are parallel to S1 × {p}. For any slope q/p < 0, there is a boundary-parallel,
pre-Lagrangian torus T with characteristic foliation having slope q/p. Let L = (Λ1, . . . ,Λn) be n
distinct leaves on T labeled cyclically as they appear along T . Then via a Legendrian isotopy, cyclic
permutations of the components of L are possible but non-cyclic permutations of the components of L
cannot be attained.

Proof. By moving along the leaves of T , it is clear that one can do cyclic permutations of L.
Now assume, for a contradiction, that it is possible to do a non-cyclic permutation of the

leaves of L. As argued in Corollary 6.13, we can assume there is a 3-component link L =
(Λ1,Λ2,Λ3) consisting of leaves of the characteristic foliation of T and a contact isotopy ψt of
(S1 × D2, ξ) such that ψt = id in a neighborhood of the boundary, ψ1(Λ1) = Λ1, ψ(Λ2) = Λ3,
and ψ1(Λ3) = Λ2. We will now argue that this non-cyclic isotopy implies the existence of a non-
cyclic isotopy among the leaves of a pre-Lagrangian torus in a basic slice, thus contradicting
Theorem 6.10. The argument is very similar to that in the proof of Proposition 6.25, so we only
sketch it here.

First assume that q/p /∈ Z. As in the proof of Lemma 6.26, we know S1×D2 has the structure
of a Seifert fiber space over a disk D ⊂ S2 with one singular fiber and the regular fibers being
q/p curves. We can assume that the pre-Lagrangian torus T0 = T containing L is the pre-
image of a curve c0 ⊂ D that bounds a disk containing the singular point. Let T1 = ψ1(T0);
we can isotop T1 relative to L to be a convex torus T ′

1 that is the pre-image of a curve c1 that
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bounds a disk containing the singular point and intersects c0 transversely. We can choose arcs
a0 and a1 that are disjoint from c1, the first of which connects the singular point to a point on
c0 and the second connecting a point on the boundary of D to a point on c0, and are otherwise
disjoint from c0. The pre-image of these arcs are annuliA0 andA1. Then, as argued in the proof
of Lemma 6.27, the torus T ′

1 has a neighborhood R1 = T ′
1 × [−ϵ, ϵ], disjoint from the annuli

A0, A1, such that ξ restricted to R1 is [−ϵ, ϵ]-invariant, each boundary component of R1 has two
dividing curves, and the cyclic ordering ofL induced by a complementary annulus inR1 agrees
with the one induced by the pre-Lagrangian torus T1. Lastly, as in the proof of Lemma 6.28,
we can further thicken R1 to a basic slice V that contains T0 and R1. Thus, the existence of our
non-cyclic permutation of our link L implies the existence of two pre-Lagrangian tori in a basic
slice that induce different cyclic orderings on the leaves of L, a contradiction to Corollary 6.23.

Now consider the case where p = 1 so q/p = q ∈ Z: now S1 × D2 will fiber over a disk
D ⊂ S2 where all fibers are q-curves, and the center core curve of the solid torus corresponds
to the center O ∈ D is not a singular fiber. We can now again arrange T0 to be the pre-image
of a curve about O. When trying to do the same for T1, the initial curves whose pre-image is
T1 might not contain O (when q/p ̸∈ Z this is prevented for topological reasons, but since the
center curve is a regular fiber now it is not), but we can further isotop T1, relative to L, so that
it does contain O. Now we cannot argue as above to find a basic slice in the solid torus that
contains T0 ∪R1, but we can argue as in Lemma 6.28 to show that it is in the union of two basic
slices that have the same sign that can be embedded into a basic slice. □

7.3.2. Isotopies of the Standard Legendrian Cables. In this section, we will establish Theorem 1.6.
We begin with the greater-slope cables of K, that is q/p > tb(K).

Lemma 7.11. Let K be a uniformly thick knot type. Suppose q/p > tb(K) and L = (Λ1, . . . ,Λn)
is a standard Legendrian (np, nq)-cable of K. Then any permutation of the Λi can be achieved via a
Legendrian isotopy.

The proof of this lemma parallels the proof of Theorem 6.1, which states that components of
a max-tb Legendrian (np,+nq)-torus link can be arbitrarily permuted.

Proof. By definition, L can be realized as the ruling curves on the boundary torus T of a stan-
dard neighborhood of max-tb Legendrian representative of K. Since T is convex, there is a
neighborhood T × I on which the contact structure is I-invariant. Thus, for all a ∈ I , T × {a}
is foliated by ruling curves of slope q/p. By a Legendrian isotopy, we may move the compo-
nents of L to sit on different tori, then by another Legendrian isotopy we can independently
move the components through ruling curves on these different tori, and lastly move the com-
ponents back through a Legendrian isotopy to the original torus. In this way, we can achieve
any permutation of the components of L by a Legendrian isotopy. □

To forbid non-cyclic permutations in the lesser-slope cables and any permutations in tb(K)-
slope cables of non-cable knots K, we will use the following two lemmas that allow us to
“localize” isotopies into solid tori.

Lemma 7.12. Let K be a uniformly thick knot type, and suppose q/p < tb(K). We assume that K is
not a cable or if K is a cable, K = K ′

(r,s), we additionally suppose that q/p ̸= rs. Let L = (Λ1, . . . ,Λn)

be a standard Legendrian (np, nq)-cable of K, with the components ordered cyclically as they appear
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in the pre-Lagrangian torus used in the definition of the standard Legendrian cable. If there is a non-
cyclic permutation of the components of L, then there is also a non-cyclic permutation of the leaves of a
boundary-parallel, pre-Lagrangian torus in a solid torus with convex boundary having two Legendrian
divides.

Lemma 7.13. Let K be a uniformly thick knot type, and suppose q/p = tb(K). We assume that K is
not a cable or if K is a cable, K = K ′

(r,s), we additionally suppose that q/p ̸= rs. Let L = (Λ1, . . . ,Λn)

be a standard Legendrian(np, nq)-cable of K. If there is a non-trivial permutation of the components
of L, then there is also a non-trivial permutation of the leaves of a properly embedded, pre-Lagrangian
annulus in a solid torus with a tight contact structure and a convex boundary having two Legendrian
divides.

Our main results about isotopies of the standard Legendrian cable links, Theorem 1.6, now
easily follows.

Proof of Theorem 1.6. The fact that all permutations of the components of the greater-slope stan-
dard Legendrian (np, nq)-cable link of K are possible is the content of Lemma 7.11. The state-
ments about the tb(K)-slope and lesser-slope standard Legendrian cables now follow from
Lemma 7.12 coupled with Theorem 7.10, and Lemma 7.13 coupled with Theorem 7.9. □

Now we move on to proving our localization results for cables of uniformly thick, non-cable
knot types. We will first highlight a useful property we have for knots with essential annuli in
their complements. This result seems to be well-known, see [1, Lemma 15.26].

Theorem 7.14. If K ⊂ S3 and A is an annulus in XK := S3 \N(K) with boundary on ∂XK that is
not boundary-parallel, then either

(1) K = K1#K2 and ∂A has slope ∞ on ∂XK , or
(2) K = K ′

(r,s) and ∂A has slope rs on ∂XK .

In the following proof, we will apply Theorem 7.14 to deduce that an annulus is boundary
parallel.

Proof of Lemma 7.12. Assume, for a contradiction, that it is possible to do a non-cyclic permuta-
tion of the leaves of L. As argued in Corollary 6.13, we can assume there is a 3-component link
L = (Λ1,Λ2,Λ3) consisting of leaves of the characteristic foliation of T and a contact isotopy ψt
of S3 such that ψ1(Λ1) = Λ1, ψ(Λ2) = Λ3, and ψ1(Λ3) = Λ2.

By construction, there is a pre-Lagrangian torus T0 that contains L as a subset of the leaves
in its characteristic foliation. Let T1 = ψ1(T0). Let S0 be the solid torus with core in the knot
type K that T0 bounds.

Claim: We can perturb T1, relative to L, to a convex torus T ′
1 satisfying

(1) T ′
1 is transverse to T0,

(2) the union T0 ∪ T ′
1 is contained in a solid torus S with core in the knot type K and

standard convex boundary with dividing slope tb(K), and
(3) T ′

1 is contained in a non-rotative thickened torus R1 with convex bound each having
two dividing curves of slope q/p and the ordering on the components of L induced
from a complementary annulus agrees with the ordering from T1.
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Proof of Claim. There is a C∞-perturbation of T1 relative to L to a convex torus and a further
C∞-perturbation, relative to L, that makes it transverse to T0. Denote the resulting torus by T ′

1.
Claim (1) has now been established.

To verify Claim (2), since K is a uniformly thick knot type, it suffices to show that both T0
and T ′

1 are contained in a solid torus that has a core curve in the knot type ofK; this is where we
will use the fact that K is a non-cable knot type or that K is a cable knot type, K = K ′

(r,s), and
q/p ̸= rs. The intersection of T ′

1 and T0 consists of simple closed curves. The null-homologous
curves can be eliminated by an isotopy of T ′

1 using a standard innermost disk argument. So
we are left with T ′

1 ∩ T0 consisting of curves that are parallel to L, and thus have slope q/p.
The curves in T0 ∩ T ′

1 cut T ′
1 into several annuli. The annuli that lie on the interior of T0 do

not obstruct the existence of the solid torus S that engulfs T0 and T ′
1. If A is an annulus on the

outside of the solid torus S0, then ∂A are not meridians (of slope ∞), and by hypothesis K is
not a cable or K is a cable, K = K ′

(r,s), such that q/p ̸= rs. So by Theorem 7.14 we see that
the A must be boundary-parallel. In particular, each such exterior annulus A together with an
annulus on T0 cobound a solid torus. Thus the union of S0 and the A is contained in a solid
torus whose core is in the knot type K. By the uniform thickness of K this torus can be further
enlarged to a torus S that is a standard neighborhood of a maximum Thurston-Bennequin
invariant representative of K, as stated in Claim (2).

For Claim (3), we can find R1 using a state transition argument as we did in the proof of
Lemma 6.27. □

To complete the proof of the lemma we now notice that Lemma 2.16 says that inside S there
is a pre-Lagrangian torus P1 that intersects T ′

1 in its Legendrian divides (in particular the in-
tersection contains L) and the ordering on L coming from R1 and P1 is the same. Of course
the ordering of the components of L coming from T0 is different by hypothesis. Thus as in
Step 1 of the proof of Theorem 6.10 we see that there is an isotopy of L in S that permutes the
components non-cyclically, as desired. □

Proof of Lemma 7.13. By definition, the (np, nq)-cable ofK is formed by taking a standard neigh-
borhood of N of a maximal Thurston-Bennequin invariant representative of K and then taking
n leaves of the foliation of the pre-Lagrangian annulus A in N . If there were a non-trivial per-
mutation of the components of the (np, nq)-cable of K, then two of the components of the cable
on A interchange their order; by sliding through the leaves of A we see that we have inter-
changed two leaves of characteristic foliation of A. So if we show that this cannot happen, then
there are no permutations of the cable of K. So assume, for a contradiction, that there is a non-
trivial permutation of the (2p, 2q)-cable of K. More specifically, there is a Legendrian knot Λ in
the knot type K such that L is a union of two leaves Λ1 and Λ2 of the characteristic foliation
on a pre-Lagrangian annulus A in a standard neighborhood N of Λ and there is a Legendrian
isotopy exchanging Λ1 and Λ2. This Legendrian isotopy can be extended it to an ambient con-
tact isotopy and then further extended, using Lemma 6.12, so that A and the image of A under
the isotopy, denoted by A′, agree in a neighborhood of Ai of Λi. Because an orientation of the
contact structure puts a co-orientation on the foliation of A and A′, that must agree where the
annuli agree, we see the intersection of A and A′, near L, must be as shown in Figure 19. Let
N ′ be the image of N under this isotopy, and denote ∂N and ∂N ′ by T and T ′, respectively. By
shrinking N and N ′ we may assume Ai contains the dividing curves of T and T ′.
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A

A′

Λ1

Λ2 N
N ′

FIGURE 19. This is a cross section of N ∪N ′. We see that annulus A in red and
the annulus A′ in blue. They agree near Λ1 ∪ Λ2; in the figure they have been
slightly offset so that they can both be seen. The grey regions are N and N ′. The
sets A′ and N ′ could be more complicated, but A, N and A ∩A′ are as shown in
the figure.

Claim: There is a contact isotopy, fixing the annuli Ai, that takes A′ to an annulus contained in
a solid torus B such that either ∂B ⊂ N (but B ̸⊂ N ), or N ∪ B ⊂ S, where S is a solid torus
in the knot type of K.

To finish the proof of Lemma 7.13, suppose ∂B ⊂ N . Then N ∪ B = S3 (since B is not
contained in N ) so T is a Heegaard torus for S3, and thus K is the unknot. Since we are
assuming K is uniformly thick and hence not an unknot, this cannot be the case. So we are left
to deal with the case when N ∪ B is contained inside a solid torus S in the knot type of K. By
the uniform thickness of K, we can assume that S is a standard neighborhood of a maximal
Thurston-Bennequin invariant representative of K. But now S contains A ∪A′ and we can use
these to guide an isotopy exchanging Λ1 and Λ2 inside of S, giving us the desired conclusion
of the lemma. □

Proof of Claim. We can C∞ perturb T ′, fixing the Ai, so that T ′ is transverse to T . We will first
show that there is a topological isotopy of T ′, fixing the annuli Ai, such that T ′ is contained in
N or T ′ intersects T in a union of simple closed curves parallel to the dividing curves on T ; we
will then apply a Discretization of Isotopy argument and, if needed, an “engulfing” argument
to construct the desired S.

Observe that T ∩ T ′ consists of a disjoint union of simple closed curves where each closed
curve is either null-homologous or parallel to the dividing curves on T . A standard innermost
disk argument can be made to isotop T ′ so as to remove null-homologous closed curves. In the
case that are no additional curves of intersection, then we have shown that there is a topological
isotopy of N ′ such that ∂N ′ ⊂ N . Otherwise, all the remaining circles of intersections between
T and T ′ are homologically essential, and since they must be disjoint from ∂Ai they must be
parallel to ∂Ai. Since Ai ∩ T are the dividing curves of T , we see that the curves of intersection
are parallel to the dividing curves of T , which have slope q/p = q.

Now using the Discretization of Isotopy technique, [27, Section 2.2.3], we can find a sequence
of convex tori T0,. . . , Tl, such that T0 is the original T ′, Tl is the result of T ′ under the above
isotopy, each Ti intersects Ai in a leaf of Ai, and each pair Ti ∪ Ti+1 cobound a thickened torus
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that is the result of a bypass attachment. We inductively claim that for each i there exists a solid
torus Bi such that ∂Bi = Ti and there exists a boundary parallel torus T ′

i ⊂ Bi that is contact
isotopic to T ′. For the base case of i = 0 , we can take B0 = N ′. Now inductively assume this is
true for Ti, and we will verify that it is true for Ti+1.

To see this if Ti+1 is not contained in Bi, then let Bi+1 be the torus that Ti+1 bounds, and
T ′
i+1 = T ′

i (clearly T ′
i+1 = T ′

i ⊂ Bi ⊂ Bi+1) is the desired torus. If Ti+1 is contained inBi then let
Bi+1 be the torus that it bounds. SinceBi+1 is a solid torus with longitudinal dividing curves on
it, we know that it is contactomorphic to a standard model, and thus we know insideBi+1 there
is a torus T ′

i+1 having two dividing curves of slope q/p = q. Now since K is uniformly thick Bi
(and henceBi+1) is contained in a standard neighborhood S′ of a maximal Thurston-Bennequin
invariant representative of K. We know that since T ′

i and T ′
i+1 both have two dividing curves

of slope the same as ∂S′ that Ti and Ti+1 are both contact isotopic to ∂S′ and hence to each
other. That is T ′

i+1 is isotopic to T ′ as claimed.
So after contact isotopy we can assume that N ′ (and A′) is contained in a solid torus B such

that ∂B is contained in N or intersects T transversely and in curves parallel to the dividing set
of T which have slope q/p = tb(K). In the former case we are done and in the latter we have
that ∂B is divided into annuli by ∂B ∩ T . If one of these annuli is outside of N then since K is
not cable, or if K is a (r, s)-cable then q/p ̸= rs, we know by Theorem 7.14 it must be parallel to
∂N . Thus there is a solid torus that contains N and this annulus. Arguing similarly for all the
annuli there is a solid torus S that contains N and B, and hence N ∪N ′. □

Now that the hard work has been done to prove Theorem 1.6, which determines the possible
permutations in the max tb representatives, we can easily establish the ordered classification of
cable links.

Proof of Theorem 1.10. With Theorem 1.6 in hand, the proof is almost identical to that of the
proof of the ordered classification of Legendrian torus knots, Theorem 1.2. □
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