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Abstract

We consider a version of the classical Hamiltonian Fermi-Pasta-Ulam (FPU) problem with a
trilinear force-strain relation of soft-hard-soft type that is in general non-symmetric. In addition
to the classical spatially localized solitary waves, such hardening-softening model also exhibits
supersonic kinks and finite-amplitude, spatially delocalized flat-top solitary waves that acquire
the structure of a kink-antikink bundle when their velocity approaches the kink limit. Exploiting
the fact that traveling waves are periodic modulo shift by a lattice spacing, we compute these
solutions as fixed points of the corresponding nonlinear map and investigate how their properties
depend on the parameter measuring the asymmetry of the problem. In a particularly interesting
case when one of the soft regimes has zero elastic modulus, we obtain explicit solutions for
sufficiently slow solitary waves. In contrast to conventional delocalization in the sonic limit, the
corresponding compact structures mounted on a constant background become localized at the
lattice scale as their velocity tends to zero. Numerical simulations of Riemann-type initial value
problem in this degenerate limit show the emergence of Whitham shocks that involve periodic
trains of solitary waves. We investigate stability of the obtained solutions using direct numerical
simulations and Floquet analysis. We also obtain explicit solutions for a quasicontinuum model
that captures the most important features of the discrete problem.

1 Introduction

Pulse-shaped solitary waves constitute an important class of traveling waves in nonlinear systems.
These localized dynamic coherent structures emerge in discrete and continuum mechanical systems
due to the interplay of dispersion and nonlinearity. Stable solitary waves play an important role as
building blocks in developing dynamical patterns in various nonlinear mechanical systems, ranging
from granular crystals to metamaterials. They are increasingly used in applications exploiting
structural nonlinearities at the scale of the periodicity cell [Yasuda et al., 2020, Raney et al., 2016,
Kochmann and Bertoldi, 2017, Zhang et al., 2019]. Artificially created materials of this type can
now manipulate localized mechanical signals, and the ensuing control of solitary waves is used
for mechanical energy transmission, encryption of mechanical information and even activation of
mechanical robots [Bertoldi et al., 2017, Yasuda et al., 2019].

Solitary waves in discrete mechanical systems and their continuum KdV-type approximations
were first discovered in the pioneering work by Zabusky and Kruskal [1965] that explained the seem-
ingly paradoxical results of the numerical investigations by Fermi et al. [1955] of the nonintegrable



Hamiltonian Fermi-Pasta-Ulam (FPU) lattice, a mass-spring chain with nonlinear nearest-neighbor
interactions [Berman and Izrailev, 2005, Gallavotti, 2007]. In subsequent studies solitary waves
emerged as localized, non-topological and non-dissipative coherent structures that move with su-
personic speeds and form continuous families [Remoissenet, 2013, Newell, 1985, Fokas and Zakharov,
2012, Vainchtein, 2022, Ablowitz, 2011]. The most well studied case of solitary waves in discrete
FPU system is when the springs are characterized by force-strain relation of either hardening or
softening type, as for instance in the case of a-FPU system with quadratic nonlinearity. While
weak solitary waves in such systems can be characterized as low-amplitude, completely delocalized
and almost linear waves, very strong solitary waves emerge as maximally localized, lattice-scale an-
ticontinuum mechanical signals. The most analytically transparent setting in this class of problems
is the bilinear, soft-hard model introduced already in the original FPU study [Fermi et al., 1955].
In the present paper we consider a trilinear, soft-hard-soft, generalization of this classical model.
Using exact solutions available in this case we show that, even without compromising the convexity
of the energy, the resulting hardening-softening system can exhibit non-classical physical effects.

Specifically, we consider the prototypical discrete FPU chain whose mechanical response is
represented by three linear elastic regimes which we characterize as soft, hard and again soft. This
implies that the conventional hardening soft-hard response is eventually taken over by a softening
hard-soft regime. No symmetry is assumed regarding the two soft regimes which in high-contrast
limit would be characterized by drastically different elastic moduli. Our goal is to take advantage
of the fact that the addition of the second soft regime leads to the emergence in such FPU system
of rather peculiar delocalized finite-amplitude flat-top solitary wave solutions, which are intimately
connected to the nontopological supersonic kink solutions. Due to the piecewise linear nature
of the problem, both kinks and solitary waves can be studied analytically in a quasicontinuum
approximation of the discrete system.

The choice of soft-hard-soft interactions is inspired by stress-strain laws in a range of soft bio-
logical tissues from skin to muscles [Yasenchuk et al., 2021]. For instance, in tendons and ligaments
the hardening stage of the mechanical response can be linked to the straightening of crimped col-
lagen fibers, while the softening stage may be due to the beginning of the distributed microscopic
fracturing of these fibers [Yasenchuk et al., 2021, Sensini and Cristofolini, 2018]. Hardening to
softening transition is also ubiquitous in elastomeric molecular composites [Millereau et al., 2018]
and is sometimes mimicked in NiTi mesh implants [Yasenchuk et al., 2021].

The question of existence of traveling waves in a hardening-softening FPU system has been
already addressed in the literature [looss, 2000, Herrmann and Rademacher, 2010, Herrmann, 2011,
Gorbushin and Truskinovsky, 2019]. Two recent papers discussed the relation between solitary
waves and nontopological kinks in such systems. In one of them [Gorbushin and Truskinovsky, 2021]
the force-elongation relation was taken in a bilinear, soft-soft form with a degenerate infinitely hard
response in between. In the other [Vainchtein and Truskinovsky, 2024 the mechanical response
was chosen to be cubic with symmetric softening and hardening regimes. Both models produced a
coherent description of the families of solitary waves that in a special velocity limit feature formation
of supersonic kinks, or superkinks [Vainchtein and Truskinovsky, 2024, Gorbushin et al., 2022]. As
this limit is approached, the waves increase in width and acquire a flat-top finite-amplitude structure
of a kink-antikink bundle.

However, the emerging picture remains incomplete. Thus, the fact that the bilinear model
replaced the hard section of the constitutive response by an infinitely hard one did not leave any
space for the internal degrees of freedom governing the energy transfer inside the core regions of
both solitary waves and superkinks. In particular, this resulted in an unrealistic prediction that
such solutions may propagate with arbitrarily large speeds. In addition, to enable a simple solution
procedure based on the Fourier transform, the two soft regions in the bilinear model considered



by Gorbushin and Truskinovsky [2021] were taken to be fully symmetric. For the same reason
of analytical simplicity the cubic model studied by Vainchtein and Truskinovsky [2024] was also
chosen to be overly symmetric, which made the repertoire of possible physical effects somewhat
limited while also concealing some interesting special cases such as the high-contrast case when
one of the two soft regimes has zero sound speed (a “sonic vacuum” [Vainchtein, 2022]). Of
course, the important advantage of the constitutive choices made by Gorbushin and Truskinovsky
[2021] and Vainchtein and Truskinovsky [2024] was that in the cubic case a quasicontinuum (QC)
approximation of the discrete FPU problem yielded explicit solutions, while in the bilinear case
analytical solutions could be found for both discrete and QC problems.

To complement the existing studies, we present in this paper the still missing discussion of the
non-symmetric trilinear case. First, it allows us to study the case of radically different soft regimes
including the limit when one of them becomes elastically degenerate. Such limit, which resembles
granular response, is of interest as the model becomes non-linearizable in the corresponding strain
range, and nonlinearity becomes essential. In particular, due to such degeneracy the linear waves
disappear, while the conventional dispersive shock waves are replaced by Whitham shocks involving
trains of compact solitary waves. The second advantage of the trilinear model is the possibility of
opening up the core region of both solitary waves and kinks which is then described by a separate
degree of freedom that can have its own evolution. This allows one to study interaction between the
different parts of the traveling wave and results in a realistic finite velocity limit for its propagation.

We start by considering a QC approximation [Collins, 1981, Rosenau, 1986, Kevrekidis et al.,
2002, Feng et al., 2004] of the discrete FPU model for which all of these effects can be demonstrated
using explicit traveling wave solutions in the form of kinks and solitary waves. In particular, we
show that asymmetry of the problem, measured by the non-unit ratio of the elastic moduli in the
soft regimes, has a significant effect on the velocity ranges of the existence of kink solutions, as well
as the values and asymptotic behavior of their limiting strains as functions of the velocity. This,
in turn, affects the limiting amplitudes and velocity ranges of the associated solitary waves. We
also discuss the asymptotic behavior of the obtained solutions near the boundaries of the velocity
interval. In particular, we show that in the case when one of the soft regimes has zero modulus,
the compressive solitary waves have a nontrivial sonic limit.

We then follow the approach of Aubry and Proville [2009], Vainchtein et al. [2020], James
[2021] and Vainchtein and Truskinovsky [2024] and take advantage of the fact that traveling wave
solutions of the discrete problem are periodic modulo shift by one lattice spacing to obtain such
solutions of the discrete problem as fixed points of a nonlinear map. While this procedure generally
requires numerical iterations, in the important case when one of the soft regimes becomes degen-
erate, sufficiently slow discrete solitary waves can be also computed analytically. This allows us to
corroborate our numerical procedure and reveal the compact (modulo constant background) nature
of the solutions in this limiting case, which is not captured by the QC model. Further comparison
with traveling wave solutions of the discrete problem shows that while the QC model captures
them qualitatively, the quantitative agreement is fairly good for superkinks but exists primarily
near sonic and kink velocity limits for solitary waves. The discrepancy between the solutions away
from these limits depends on the nature of the wave (compressive or tensile) and the value of the
asymmetry parameter.

Floquet analysis of the linear stability of obtained solitary waves in the non-degenerate cases,
which is enabled by their periodicity-modulo-shift [Vainchtein et al., 2020, Cuevas-Maraver et al.,
2017, Xu et al., 2018] and takes advantage of the piecewise linear nature of problem, shows that near-
sonic solutions with velocity below a certain threshold are unstable. Numerical simulations initiated
by the unstable waves perturbed along the corresponding eigenmode show that the instability
unfolds through the system approaching an apparently stable wave above the threshold. Effective
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Figure 1: (a) Trilinear soft-hard-soft interaction force f(w) with slopes 1, 8 and « along the blue (soft), green
(hard) and red (soft) segments, respectively; (b) Rayleigh line connecting (wy, f(w4)) and (w—, f(w-)) (black) for
a superkink transition wave with limiting states w+ and supersonic velocity V satisfying max{1,a} < V2 < 8. The
two shaded areas cut by the Rayleigh line at w = wg are equal: S1 = Sa (see the text for details).

stability of such waves above the threshold is confirmed by direct numerical simulations, which also
show robust propagation of superkinks and solitary waves in the degenerate case at the prescribed
velocities. This is further corroborated by the Riemann-type simulations with piecewise-constant
initial data, which also reveal other interesting phenomena, such as formation of Whitham shocks
involving periodic trains of solitary waves in the degenerate case.

The paper is organized as follows. In Sec. 2 we formulate the problem and discuss the general
properties of the two types of traveling waves. Explicit solutions for the QC model are constructed
and discussed in Sec. 3. In Sec. 4 we describe the procedure for computing traveling wave solutions
of the discrete problem, derive explicit solutions for sufficiently slow compressive waves in the
degenerate case, and compare the obtained solutions with their QC counterparts. Stability of kinks
and solitary waves is discussed in Sec. 5 and Sec. 6, respectively. Concluding remarks can be found
in Sec. 7. Some technical results are contained in Appendix A.

2 Problem formulation

Consider a one-dimensional chain of identical masses interacting with their nearest neighbors. The
dimensionless governing equations are

un = f(un+l - un) - f(un - un—1)7 (1>

where wu, (t) is the displacement of nth particle at time ¢, i, (t) = u)

(t), and f(w) is the nonlinear
interaction force associated with the interaction potential ®(w) = fos f(s)ds. Introducing the strain

variables wy, = u, — u,_1, we can rewrite (1) in the form

Wy = f(wnt1) = 2f (wn) + f(wn-1). (2)



Our main assumption concerns the choice of the particle interactions in the trilinear soft-hard-soft
form: )
w, w < we — %
we— 3+ B(w—we+3), |w—w|<$
fw) = : (3)
a(w —b), a>0 5
F} ’ w 2 We + 2
We — 5 + B(S, a=0
where we assume

1)
0<a<p, B>1 6>0, wc—§>0 (4)
and define, for a > 0,

o 1 )
b—wc—i-a—a(wc—a—f‘ﬁ(;). (5)

As illustrated in Fig. 1(a), f(w) is a continuous piecewise linear function consisting of three linear
segments with slopes 1 (soft, blue segment), 5 (hard, green segment) and « (soft, red segment). The
width of the intermediate (hard) green segment is controlled by the parameter 6 > 0. In the limit
0 — 0 its slope 8 tends to infinity, and we obtain a bilinear function with a jump discontinuity
at w = w, that was considered by Gorbushin et al. [2022] for « > 1 and by Gorbushin and
Truskinovsky [2019, 2021] for a = 1.

Note that since > 1 and a < 3, f(w) has a hardening-softening form that changes from
convex to concave at any point along the green segment in Fig. 1(a). In the special case o = 0 the
interaction force saturates to a constant value above w. + 6/2. This inelastic state corresponds to
zero sound speed (“sonic vacuum”).

In this paper we are interested in traveling waves that connect stable equilibrium states of the
system (2), with constant strains wy such that f’(ws) > 0, and propagate with velocity V that is
supersonic with respect to both limiting states:

wn(t) = w(ﬁ)? §=n-—Vi, (6)
where
§Egcnoow(f) = wy (7)

and V2 > f'(wy). The function w(¢) must thus satisfy the advance-delay differential equation
V2" (&) = fw(€ + 1)) = 2f(w(€)) + f(w( - 1)). (8)

2.1 Superkinks

Suppose the traveling wave (TW) is a monotone front connecting two different limiting states,
w— # wy in the blue and red segments, as shown in Fig. 1. Such transition waves have been
classified by Gorbushin et al. [2022] as supersonic kinks, or superkinks.

One can show [Serre, 2007, Aubry and Proville, 2009, Herrmann and Rademacher, 2010, Her-
rmann, 2011, Gorbushin and Truskinovsky, 2019, 2021, Gorbushin et al., 2022] that in addition to
the classical Rankine-Hugoniot jump condition

flwy) = f(w-) = V(wy —w-), (9)

which states that the slope of the Rayleigh line connecting (w4, f(wy)) and (w—, f(w-)) equals
V2, as shown in Fig. 1, such solutions must satisfy the condition

1

B(wy) = B(w) = 5(wy —w )(flwy) + [(w ) =0. (10)



This additional condition constitutes a kinetic relation for a superkink. More precisely, it states
that the driving force G = ®(wy) — ®(w_) — & (wy — w_)(f(wy) + f(w-)) [Truskinovskii, 1987] on
the moving front is zero, and thus there is no dissipation associated with its motion. Geometrically
it means that the two areas cut by the Rayleigh line from f(w) must be equal, as shown in Fig. 1(b).

Due to the trilinear form (3) of f(w), it follows that the superkink velocity V' must satisfy
max{l,a} < V? < 5. (11)

The conditions (9) and (10) imply that in the case of superkinks, only one of the values w_, wy
and V can be prescribed independently. In particular, they determine |V| and w_ for a given w,..
Global existence of superkinks in the FPU problem with smooth hardening-softening interactions
was proved by Herrmann and Rademacher [2010] and Herrmann [2011] under the area condition
(10). Local analysis by Iooss [2000] has shown that for smooth f(w) small-amplitude superkinks
bifurcate from local maxima of f’(w) connecting convex and concave parts of f(w). Exact superkink
solutions in the problem with bilinear interactions (6 = 0 in (3)) were constructed by Gorbushin
and Truskinovsky [2019, 2021] and Gorbushin et al. [2022]. Note that for each superkink solution
propagating with velocity V, there exists a solution of the same form but velocity —V. In addition,
for each kink solution with w_ > wy, i.e., a front with w'(¢) < 0, there is an antikink solution
w(€) = w(—¢) with the limiting states interchanged, so that @w'({) > 0, and the same velocity.
Thus, it suffices to consider kink solutions with V' > 0.

2.2 Solitary waves

As discussed by Gorbushin and Truskinovsky [2019, 2021] and Vainchtein and Truskinovsky [2024],
superkinks are closely related to solitary waves, pulse-like solutions of (8) connecting identical
limiting states, w_ = w4, and propagating with supersonic velocities. Fxistence of solitary wave
(SW) solutions has been shown by Friesecke and Wattis [1994]; see also a recent review by Vainchtein
[2022]. Note that such solutions automatically satisfy (9) and (10). Solitary waves can be tensile,
w(§) > wq, or compressive, w(§) < wy. Similar to the superkinks, for each solitary wave moving
with velocity V, there is a wave of the same form moving with velocity —V, so it suffices to consider
positive velocities.

Importantly, the speed of the solitary wave solutions that tend to w at plus and minus infinity is
bounded from below by the sonic limit and from above by the superkink speed: f/(wy) < V2 < Vi,
where Vg is the velocity of the superkink with the state w; ahead. As the superkink limit is
approached, solitary wave solutions increase in amplitude and become wider and more flat in the
middle, with the two boundary layers on the left and on the right that approximate monotone
superkink solutions. Thus, for velocities just below the superkink limit, solitary waves acquire a
structure where a kink and an antikink move in tandem. This will be further illustrated by explicit
solutions constructed in the next section for a QC model. Solitary waves of this type, sometimes
referred to as “flat-top solitons”, have been recently obtained for first-order nonlinear systems
including the extended Gardner-like equations [Rosenau and Oron, 2020, 2022] and oscillator chains
[Rosenau and Pikovsky, 2020, 2021]. In the context of the FPU problem, such solutions and the
limiting superkinks were obtained by Vainchtein and Truskinovsky [2024] for cubic interactions and
by Gorbushin and Truskinovsky [2019, 2021] for the special case of bilinear interactions with equal
slopes that enables analytical treatment of the discrete problem.

As shown by Gorbushin and Truskinovsky [2019, 2021] and Vainchtein and Truskinovsky [2024],
one can also construct solitary wave solutions above the superkink limit. Such solutions have
velocity-dependent background state at infinity and tend to a bound kink-antikink structure as the



superkink limit is approached from above. In this work, however, we limit our attention to solitary
waves below the superkink limit.

3 Exact solutions for a quasicontinuum model

In view of the complexity of the original discrete problem represented by an infinite system (1) of
nonlinear ordinary differential equations, we first turn first to a model representing its analytically
transparent QC approximation that yields exact TW solutions. The QC model we consider is
described by the regularized Boussinesq partial differential equation

Ut — i'LL:(;:(,‘tt = (f(ux)):ca (12)

12
which can be obtained from (1) using the (2,2) Padé approximation, 4sin?(k/2) ~ k%/(1+ k%/12),
of the discrete Laplacian in Fourier space [Rosenau, 1986]. The associated Lagrangian density

1 1

contains an additional “microkinetic” energy term (1/24)u2,.
One can show [Vainchtein and Truskinovsky, 2024] that in this model the traveling wave equa-
tion for w(§) = ug(x,t), £ = v — Vt, reduces to

V2
— "+ Vi = f(w) = Viwy = f(wy), (14)
where the boundary condition at £ — oo in (7) was used. Together with the boundary condition
at £ — —oo in (7), this yields the Rankine-Hugoniot condition (9). Integrating (14) results in the
first-order ordinary differential equation

V2
(w)? = D(w) = (ws) — flwy)(w—wy) = —(w—w)?, (15)

V2
24

where the boundary condition at £ — oo in (7) was used again. In view of the boundary condition
at £ — —oo in (7), this yields

2
D)~ Bwy) — flw)(w —ws) — (w2 =0,
which together with (9) implies that the equal-area condition (10). For a superkink solution of (14),
the limiting states wy satisfy (9) and (10) for a given V. For solitary waves, we can independently
prescribe the background state w4 and supersonic velocity V' with magnitude below the superkink
limit.

In the case of trilinear interactions (3), equation (14) can be solved analytically in each seg-
ment (blue, green and red) where the elastic modulus is constant and the corresponding ordinary
differential equation is linear. The obtained solutions can then be matched using the continuity
conditions, as described below.



3.1 Superkinks

Consider first the superkink solutions (14) with f(w) given by (3) that connect the states w, and
w_ in the blue and red segments in Fig. 1, respectively (w4 < w. — /2 and w_ > w. + 6/2) and
propagate with velocity V' > 0 that satisfies (11). Observe that in this case we have f(wy) = wy,
so (14) simplifies to ,

_%w" V20— fw) = (V2 = Dy, (16)

while (9) becomes
(V2 —1Dw, —ab

wo= s (17)

for o > 0 and

(V2 = Dwy +we + 36 —6/2
V2

for « = 0. We seek monotone kink solutions such that w({) > w. + 0/2 (red linear segment of

f(w) in Fig. 1) for £ < —z, where z > 0 is to be determined, |w(§) — w.| < 0/2 (green segment)

for —z < £ < z and w(§) < w. — §/2 (blue segment) for & > z. Solving the corresponding linear

equations in each interval yields

(18)

w_ =

wy + Ae™"E, £>z,
w(é) = S wg + Beos(g€) + Csin(¢€), £ < =z, (19)
w_ + De*S, £ < —2z,

where w_ is related to w4 via (17) for o > 0 and (18) for a = 0,

ws = (we — 5/2)(55—_11/; wi (V2 1) (20)

is the intersection of f(w) and the Rayleigh line in the hard (green) linear regime (see Fig. 1(b)),
and the roots r, ¢ and s are given by

. 12(V?2 — 1)’ = 12(8 — VQ)’ o 12(V?2 — a) (21)
Vv V \%4

Note that at & = 0 we have s = v/12.
Before providing further details about the solution (19), we discuss a physical interpretation
of its structure. One can think of the frontal part of the superkink solution (§ > a, |a| < z) as a
portion of the structured shock wave propagating with velocity V' that has the strain wy in front
and oscillations around the average strain wg with wave number ¢g. In the non-dispersive continuum
limit the transition layer and the oscillations disappear from the shock’s structure, and it becomes
a moving discontinuity that dissipates energy at the rate V.S, where Sy is the shaded pink area
in Fig. 1(b). As discussed by Gorbushin et al. [2022], this energy release rate can equivalently be
computed on the microscopic level by accounting for the energy radiated in form of the dispersive
wave propagating behind the shock. Note, however, that only a portion of this shock solution
is included in (19). Meanwhile, the back part of the superkink (£ < a) can be represented by a
portion of the structured shock wave that has oscillations around wg ahead and w_ behind. This
second wave is not an admissible shock wave because it is supersonic with respect to the state
behind and thus violates the Lax condition. It absorbs energy at the rate V'.S1, where S is the blue
shaded area in Fig. 1(b), which, as we discussed above, equals V'Sy, the rate at which the energy



is released. A superkink can thus be thought of as a bundle of admissible and inadmissible shock
waves, where the energy released in the front is transported to the back, where it is absorbed, by
the mode ¢. Indeed, observing that the dispersion relation in the hard linear regime is given by
w? = Bk?/(1 + k?/12) in the QC model, one can show that the energy is carried with the group
velocity w’(q) = V3/83, which is less than the phase velocity V since V2 < 3, and thus the energy is
transported from front to back. Inside the superkink bundle, the energy sink (inadmissible shock
wave) is stabilized by the elastic radiation from the energy source (admissible shock wave), which
is sometimes called the “feeding wave” [Slepyan, 2001, Gorbushin et al., 2020].

To find the six unknown variables in z, wy and the coefficients A, B, C and D (19), for given
V', we apply the continuity conditions for w(¢) and w'(§) at £ = +2z (four conditions) and the two
switch conditions w(£z) = w. £ /2. In the generic case 0 < « # 1 this yields

e TE~%) B-1(B-a)(V*-a)
w(f):w—}—“‘ﬁ 6—04—\/ V2 _ 1 ) 5227 (22)
w(€) = S (B—a)(B-1) cos(af —
Y L Y/ By M -
2
PR e gz
where
VB-a)(V2-1)+ /(B -2 -a)
=nl(a—1 arctan )
¢ = mila =) ar VB VI 1-Vi-a)
and
"63(5 ) — — —
w©) = w_ + 22 [ﬁ —1 - VBTG ”] o (24)
Here

z= —V {arctan \//B — VQ(\/VZ —otVVE - D
4/3\/p - V2 B-V2—/(VZ—a)(VZ—1)

(25)
+ 710/ (V2 —a)(V2—-1) -3+ Vz)},
where 8(z) = 1 for z > 0 and zero otherwise, and the limiting states are given by
w+=wc+ﬁ{1+a—25+2\/(6_0‘)(52__11)(‘/2_@)} (26)
and
w_:wc+ﬁ{1+a—2ﬂ—l—2\/(6_00‘(/?2__2(‘/2_1)}. (27)

Some examples of strain profiles are shown in Fig. 2. The particle velocity is given by v(§) =

—Vw(§).



Figure 2: Strain profiles at different velocities when a = 2, § = 0.4, b = —0.4, w. = 1. The left panel shows the
superkink traveling with velocity just above the lower limit /o &~ 1.41, and the right panel the one with velocity
slightly below the upper limit /B ~ 2.45. Dashed horizontal lines mark w = w. 4 §/2.

In the symmetric case a = 1 (equal slopes of the red and blue segments), we have s = r, and
the solution is given by

( _ /2
w, + 5(5 V )e—r(é"—z) é’ Z z

2(VI_1) !

_JB=D(we—6/2) = (V> - Dwy  oV/B-1 _

w(e) = 2 S L, s @)
5(5 - V2)er(§—|—z)

T ; §< -z,
with y W
B Vv 2B —=V23/V2 -1 2 4
z= —4\/3\/@{ arctan o1 + 72V - 1)} (29)
and 55— 1) )
wi:wc$m:wcim, (30)

so that the limiting strains are independent of § (note that (5) implies that b = 6(1 — ) < 0 in this
case).

The effect of a on z(V'), w4 (V') and the solution profiles is shown in Fig. 3. Recall that by (11)
the upper velocity limit is \/3 in all cases. As this limit is approached, z tends to infinity:

~_ VB

ZN8\/§\/W as V — /B, (31)
while the two limiting strains approach the boundaries of the intermediate linear segment: wy —
we F 6/2. Thus, as the upper velocity limit is approached (V — +/B), the superkink becomes
infinitely wide (z — o00), while its amplitude w_ — w4 tends to 4. This is illustrated in Fig. 2(c).
Therefore, in contrast to the case of smooth f(w) [Vainchtein and Truskinovsky, 2024], where
solutions delocalize to a constant value (a kink of zero amplitude) at the bifurcation point, here they
approach a kink of finite amplitude but infinite width. Thus, in the trilinear case the bifurcation
is degenerate.

The lower velocity limits are different for &« > 1 and 0 < o < 1. In the case @ > 1 (11) yields
Va <V < +/B. In the limit V — y/a the half-width z of the transition region approaches a finite
positive value, as illustrated by the blue curve in Fig. 3(a):

z— Larctan a
4\/3\/6—04 p—a

10

as V — v (32)
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Figure 3: (a) The functions z(V), which tend to infinity as V — /B (dashed vertical line), for different . For
a > 1 (blue curve), the lower velocity bound is v/a. (b) Plots of w4 (V). Note that w4 tends to —oo as V' — 1 for
a <1 (black, green and red curves), while for @ > 1 (blue curve) it has a finite value at V = y/a. (c) Strain profiles
at V' = 1.55. The legend in panel (a) applies to all four panels. Here 8 =6, 6 = 0.4 and w. = 1.

The limiting strain wy is finite in the limit (see the blue curve in Fig. 3(b)), while w_ tends to
infinity:

w+_>wc+5(1+oz—2ﬁ): ab w_za\/_\gﬁ_—l\c;)‘ﬁf%) as V o /@,

2(a—1) a—1’
where we used (5) in the first limit. See Fig. 2(a) for an example of a superkink near the lower
velocity limit.
In the case 0 < o < 1 we have 1 <V < /3. As the lower limit of unit velocity is approached,
we have

1 -«
z - —————arctan/—— asV — 1, 33
WavEST &
which yields a finite positive value for a # 1 (see the black and green curves in Fig. 3(a)) and zero
at a =1 (red curve in Fig. 3(a)). For 0 < a < 1 w4 tends to —oo (see the black and green curves
in Fig. 3(b)), while w_ is finite in the limit:

e WE—OE-D (L ta-25)
VT avE-1 T 2

as V — 1.
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In contrast, in the symmetric case o = 1, illustrated by the red curve in Fig. 3(b), both limiting
strains become infinite in the sonic limit (recall (30)). Note also that the magnitude of strain grows
faster in this case (inversely proportional to V2 — 1, rather than (V2 — 1)1/2).

3.2 Solitary waves

We now turn to SW solutions in the QC problem (14) with f(w) given by (3). Recall that such
solutions satisfy
w(§) - wy as & — foo (34)

and propagate with supersonic velocities V' bounded by the superkink velocity Vi (w4 ) for given
wy. The waves can be tensile or compressive, depending on whether wy is in the lower (wy <
we — 6/2) or the upper (wy > w. + 0/2) linear regime.

Tensile waves. We start with tensile solitary waves (w(§) > wy), which arise when wy <
we — 6/2. In this case 1 <V < Vg (w4 ), where

B (8 — a)(B —1)8?
Vi (wy) = \/1 T A= o) 2(we —ws) — 0) 1+ 8(5 — a)d(we — wy)

(35)

is obtained by solving (26) for V = Vgk as a function of w;. In the symmetric case o = 1 we have
b= —(8—1)9, and (35) has the much simpler form

Ve (wy) = \/1 - m

There are two velocity regimes that need to be considered. In the first regime, we have 1 <V <
Ver(wy ), where Vo, (wy) is the critical velocity value such that w(€) < w.+ 0/2 for velocities below
it, i.e., the solitary wave remains confined to the first and second (intermediate) linear regimes,
switching from one to another at £ = +z1, where z; > 0 depends on V. Continuity of w(§) and
w'(€) and the switch conditions w(+21) = w, — /2 then yield

W+ + (wc - 5/2 - w+)e—r(\§|—z1)’ |€| 2 215

w = _ _ 36
©)=1 4 4 YO 61_)%2 D (e — 6/2— wy) coslag), 1€l < a1, %

where wg is given by (20), and

21 = % <7T — arctang) . (37)

Setting w(0) = w. + 0/2, we obtain the upper velocity bound for this regime:

_ (B —1)
%r(w+) - \/1 + (wc —wy + 5/2)2 (38)

For Vgr(wy) <V < Vgk(wy ), the solution involves all three linear regions and has the form

wy + Ae~ ==, €| > 21,
w(§) = § ws + Beos(gf) + Csin(qlé]), 2z < [¢] < 21, (39)
w_ + D cosh(s¢), €] < 2,

12
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Figure 4: Tensile solitary waves in the trilinear model (3) at different velocities at w4 = 0.5 and (a) a = 0.5; (b)
a=2. Here 8 =6, w. =1, 6 =0.4.

where the coefficients A, B, C, D listed in (A.1) in Appendix A are found by imposing the continuity
of the strain and its derivative, w_ is given by (17) for a > 0 and by (18) for a = 0, and wg is
given by (20). Imposing w(+z1) = w. — 0/2 and w(+z2) = w. + 6/2 then yields

V2= D(w. —w: +6/2 - (-1

1
29 = garctanh T —a(w. —w.—52) (40)
and
=z E arccos (V2 — Dlwe +9/2—wy) — (515 _ arctan
z1 = 2+q ( \/(ﬂ—l)(VZ—l)(wc—(5/2—w+) t 7“)’ (41)

Note that zo =0 at V = V(w4 ) and that zo — 0o as V' — Vgk(w4), which means that the width
of the solitary waves tends to infinity as the upper velocity limit is approached. One can also verify
that in this limit w(0) — w_ and z; — 22 — 2z, where we recall that z, given by (25) for o # 1
and (29) for a« = 1, is the half-width of the transition interval for a superkink solution. This is
consistent with the SW solution approaching a kink-antikink bundle, as discussed by Gorbushin
and Truskinovsky [2019, 2021] and Vainchtein and Truskinovsky [2024], at velocities just below the
superkink limit. Examples of tensile solitary waves illustrating this are shown in Fig. 4. Observe
also that the near-sonic solutions, which are given by (36) and are independent of «, delocalize to
the constant strain w(§) = we. — /2 as V' — 1 because  — 0 in (21) tends to zero in this limit.

Compressive waves. Similarly, we can obtain compressive SW solutions, which arise when
wi > we+ /2 and o <V < Vg (wy), where

_ A(B — a)(B — 1)5*
Ve (wy) = \/ + (@ —1)(2(ws —we) — 0)2 +8(8 — 1)d(wy — we) 2

is obtained by setting the right hand side of (27) equal to w; and solving the resulting equation
for V.= Vgk as a function of wy. The superkink velocity simplifies to

Ve (wy) = \/1 - m

13



in the case a = 1.
In this case we also have two velocity regimes. In the first, /o < V < V(w4 ), where

26— a)
Verlws) = \/O‘ s —we 1622 (43)
and we have
Wy — (w+ — We — 6/2)6_8(‘&_21)7 ’§| 2> 21,
w(é) = —a) (V2 -« (44)
s~ D= o/ conta), el < 21,
e (8= Dlwe=8/2) — (V2= 1)
—1D(we—0/2) — (V= 1)w_
ws = 5V ; (45)
_1 q
21 = p <7T - arctan;) (46)
and
w - (V2 —a)w, + ab
= 7T 1 .
In the second regime, Vo (wy4) < V < Vgk (w4 ), the solution has the form
wy + Aes(El==1), &l = 1,
w(&) = { ws + Beos(g€) + Csin(qle]), 22 < [¢] < 21, (47)
w- 4 D cosh(r¢), §] < 22,

where wg is provided in (45), the coefficients A, B, C' and D are given by (A.2), and we have

V (V2 — a)(wy —we +6/2)% — (B — )02

1
z9 = —arctanh

r 1/‘/2_ 1(’wc—5/2—w_) (48)
and ,
21 =z 1 7T — arc ang — arccos (V _ 1)(wc _ 5/2 _ w_) .
e ( " Jw—amﬂ—&mmeQ—W%> e

Similar to the tensile SW solutions, we have zo — 00, 23 — 29 — 2z and w(0) — w_ in the limit
V — Vik (wy), with solutions just below the limit have the kink-antikink structure, as illustrated
in Fig. 5.

Sonic limit and the singular « = 0 case. In the case of compressive solitary waves the
near-sonic behavior depends on «. When « > 0, solutions (44) delocalize to the constant strain
w(€) = we~+9/2 in the sonic limit, Indeed, observe that s — 0 as V' — /a, so that w(§) — w.+0/2
for €] > 21, while (V2 — 1)w_ — ab, which together with (5) yields the limit w(¢) — w, + §/2 for
|€] < z1. Note that in this case z; in (46) is nonzero in the sonic limit.

However, when a = 0, the exponent s = v/12 in (44) is independent of V. Note also that in
this case z; — 0 in (46) as V' — 0 because ¢ in (21) tends to infinity in this limit. Thus, in this
case we have a nontrivial sonic limit: as V — 0, and thus £ = x — Vit — x, the solution approaches

w(w) = wy — (wy — we — §/2) exp(—V12]a]). (50)

14
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Figure 5: Compressive solitary waves in the trilinear model (3) at different velocities at w4 = 1.66 and (a) a = 0;
(b) @ =0.5; (¢) a=2. Here B =6, we =1, =0.4.

This is a manifestation of the fact that in the case o = 0 the sound speed is zero, and slowly
moving solitary waves are effectively replacing the conventional linear elastic waves as a elementary
“quanta” of mechanical information. Similar effects were first discovered in Hertzian granular chains
without precompression [Nesterenko, 2001, Sen et al., 2008, Chong et al., 2017].

4 Traveling wave solutions of the discrete problem

We now turn our attention to traveling wave solutions of the discrete problem (2). As in the QC
case, it suffices to consider V' > 0. To compute these solutions, we follow the approach of Aubry
and Proville [2009], Vainchtein et al. [2020], James [2021] and Vainchtein and Truskinovsky [2024]
that exploits the fact that traveling waves satisfy (6) and hence are periodic modulo shift:

W1 (t+T) =wy(t), T =1/V. (51)

This implies that such solutions are fixed points of the nonlinear map

iy = ((aeor ) @

15



where N is defined by integrating (2) over one period for given initial data over the period T and
then shifting the obtained solution by one lattice space. This nonlinear map approach dates back
to computation of discrete breathers [Marin and Aubry, 1996].

4.1 Superkinks

To compute the superkink solutions of the discrete problem (2) propagating with given velocity V,
we use Newton-Raphson iteration procedure with finite-difference Jacobian to solve

Wn41(T) = wp(0), n=-N/2,...,N/2 -1,
W1 (T) = 1n(0), n=—-N/2,....N/2—2, w(T)=w,
where "= 1/V and N > 400 is an even number, for {w,(0),w,(0)}, n = —-N/2,...,N/2 — 1. At

each iteration, wy, (T) and wy, (1) are obtained for given wy(0) and 1, (0) by using Dormand-Prince
algorithm (Matlab’s ode45 routine) to integrate (2) on the finite chain with the boundary conditions

(53)

w_np-1(t) =w-, wyyp(t) =wy,

where wy are given by (26), (27) for 0 < o # 1 and (30) for @« = 1. The last equation in (53) is a
pinning condition, which is necessary to eliminate the non-uniqueness due to the time-translational
invariance. To enable the comparison with superkink solutions wgc(§) of the QC model, which are
also used to obtain an initial guess for the Newton-Raphson procedure, we set w, = wqc(0), so
that wo(0) = wi(T") = wgc(0) and thus the traveling wave w(§) for the discrete problem satisfies
w(0) = woc(0). To obtain a system of 2N nonlinear equations for 2N unknowns while prescribing
the pinning condition, we drop the equation for wy/,(7) in (53). Due to the large size of the
computational domain, the equation is automatically satisfied for the computed solutions within
the numerical tolerance of 10~ 13.

The computed strain profiles w,(0) = w(n) for are shown in Fig. 6 together with the corre-
sponding profiles w(z) obtained from the exact solutions of the QC model. One can see that in
the cases shown superkink solutions there is a very good agreement between the discrete and QC
models, particularly near the sonic limits (panels (a) and (b)), where the solutions largely involve
the long-wave contributions that are well captured by the QC model. Closer inspection of panel
(c), however, reveals some discrepancies between solutions of the two models inside the transition
layer (x = +£1).

4.2 Solitary waves

To compute SW solutions with prescribed far-field strain wy and velocity V', we use the approach
we employed in the case of superkinks, except that in this case the boundary conditions are
w_pn/2—1(t) = wy/2(t) = wy, and the pinning condition is w1 (7) = 0. The latter ensures that
the maximum of a tensile solitary wave (or the minimum of a compressive one) is at n = 0 when
t = 0. We use parameter continuation in V' to compute solutions in the entire velocity range.

The results for tensile waves at @ = 0.5 and o = 2 are shown in Fig. 7-9, while the corresponding
results for the compressive waves can be seen in Fig. 10-12. In addition to direct comparison of the
discrete and QC solitary waves in Fig. 7 and Fig. 10, we show amplitude-velocity plots in Fig. 8
and Fig. 11, as well as energy-velocity plots in Fig. 9 and Fig. 12. Since the energy of the waves
with nonzero background is infinite, we renormalize it by subtracting the energy of the background,
as in Vainchtein and Truskinovsky [2024]. For the discrete model this yields

BRV) = {52+ 5 (0w) + 0w)) - B - 3702 ) 654)

n
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Figure 6: Superkink solutions w,(0) = w(n) of the discrete problem (8) (circles) with trilinear f(w) and the
corresponding solutions w(z) for the QC model (14) (solid curves) evaluated at t = 0 for (a) V = 142, a = 2; (b)
V =24, a =2; (c) V = 1.55 at different values of «, as indicated in the legend. Here 8 =6, 6 = 0.4, w, = 1.
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in the discrete case, where v,, are the particle velocities, and all values are evaluated at t = 0 due
to the energy conservation. For the QC model we have

W) = [ {500 + VO + 8w(©) - #wn) - vt fae, (59)

where we used the fact that for a traveling wave solution w(§) = w(x—V't) we have v(§) = —Vw(§).

One can see that the discrepancy between discrete and QC solutions is much more pronounced
in the case of solitary waves. For tensile waves, the disagreement between the two models is greater
for @« = 0.5, while for compressive waves there is more discrepancy at a = 2. In addition to
overestimating the amplitude of solitary waves away from the superkink limit, the QC model does
not correctly predict their width. Nevertheless, the QC model captures the evolution of the SW
solutions of the discrete problem qualitatively, and one can see quantitative agreement near the
sonic and superkink limits.

To gain some insight into the origin of the parameter-dependent quantitative differences between
SW solutions of the discrete problem and their QC counterparts, we observe that the QC solutions
depend in a rather nontrivial way on the approximations of the characteristic roots of the discrete
problem in the three linear regimes. More precisely, the V-dependent roots r, ¢ and s defined in (21)
approximate nonzero roots rp, ¢p and sp of the characteristic equations 4 sinh? (rp/2)— r% VZ=0,
4Bsin?(qp/2) — ¢4 V? = 0 and 4asinh?(sp/2) — s4 V2 = 0 for the discrete problem in the first,
second and third linear regime, respectively, that are closest to zero. These characteristic equations
can be obtained by taking the Fourier transform of (8) in each linear regime and setting the wave
number k to k = irp, k = gqp and k = isp, respectively. The approximations of their near-zero
roots by (21) become progressively worse away from the corresponding sonic limits 1, /3 and /a.
Fig. 13(a-b) shows the roots r, ¢ and s contributing to the QC tensile SW solutions (35)-(41)
presented in Fig. 7-9 along with their discrete counterparts rp, gp and sp. For 1 <V < V., only
the roots 7 and ¢ contribute to these solutions, while for V.. < V < Vgk all three roots r, ¢ and s
are involved. In particular, we note that in the second velocity regime the width of the solutions is
controlled by z9 in (40), which depends in an essential way on 1/s. As shown in Fig. 13(a-b), the
roots s and sp are significantly further apart at & = 0.5 in panel (a) compared to the case a = 2 in
panel (b). Thus, we expect larger differences between the widths of discrete and QC solutions at
a = 0.5, as observed above. The roots for the compressive waves (42)-(49) presented in Fig. 10-12
are shown in Fig. 13(c-d). In this case it is 1/r that contributes in an essential way to zo in (48),
and one can see that the roots r and rp are further apart at a = 2 in panel (d), which is consistent
with the larger width discrepancy at this parameter value reported above. In all four cases shown
in Fig. 13 ¢ significantly deviates from gp in the first velocity regime, contributing to the observed
amplitude and width discrepancies between discrete and QC profiles.

Compressive solitary waves at o = 0. Of particular interest are compressive solitary waves
at @ = 0. The results for this singular limit are shown in Fig. 14 and Fig. 15.

In this case we can obtain exact solutions for small enough velocities. By periodicity modulo
shift it suffices to consider the time interval [0,7], where we recall that T = 1/V. Suppose at
t = 0 the strain w, has even symmetry about n = 0, and |wy — w.| < /2, while all other strains
satisfy wy, > w.+0/2. Let t = T} be the time when wq(t) switches to the (degenerate) upper linear
regime, wo(11) = we + 6/2. Then by symmetry w;(t) switches to the intermediate linear regime at
t =T, =T —T). In what follows, we assume that 77 < T%, i.e., T} < T'/2. Under these assumptions
we find that for 0 <t < T (2) with (3) at o = 0 reduce to

wo + 2Bwo = BRwe +0), W1 = Blwe(t) —we) — B/2, W, =0, |n|>2.
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Figure 7: Tensile SW solutions w,(0) = w(n) of the discrete problem (8) (circles) with trilinear f(w) and the
corresponding solutions w(z) for the QC model (14) (solid curves) evaluated at ¢ = 0 for (a) a = 0.5; (b) a = 2.
Here f = 6, 6 = 0.4, w. = 1. The background strain is w4+ = 0.5, and the corresponding superkink velocity is
Vek = 1.72044 in (a) and Vi = 1.76613 in (b).
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Figure 8: Amplitude wamp = |w(0) —w-| as a function of velocity V for tensile SW solutions of the discrete problem
(8) (circles) with trilinear f(w) and the corresponding solutions for the QC model (14) (solid curves) evaluated for
(a) « = 0.5; (b) @« = 2. Here 8 =6, 6 =04, we = 1. The background strain is w4 = 0.5, and the corresponding
superkink velocity is Vgx = 1.72044 in (a) and Vsk = 1.76613 in (b).
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Figure 9: Renormalized energy E,en given by (54) as a function of velocity V for tensile SW solutions of the
discrete problem (8) (circles) with trilinear f(w) and the corresponding energy (55) for the QC model (14) (solid
curves) evaluated for (a) « = 0.5; (b) @ = 2. Here 8 =6, 6 = 0.4, w. = 1. The background strain is w4 = 0.5, and
the corresponding superkink velocity is Vak = 1.72044 in (a) and Vsk = 1.76613 in (b).
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Figure 10: Compressive SW solutions w, (0) = w(n) of the discrete problem (8) (circles) with trilinear f(w) and
the corresponding solutions w(x) for the QC model (14) (solid curves) evaluated at ¢ = 0 for (a) a = 0.5; (b) a = 2.
Here § = 6, § = 0.4, w. = 1. The background strain is w4 = 1.66, and the corresponding superkink velocity is
Vik = 1.49541 in (a) and Vik = 1.76697 in (b).
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Figure 11: Amplitude as a function of velocity V for compressive SW solutions of the discrete problem (8) (circles)
with trilinear f(w) and the corresponding solutions for the QC model (14) (solid curves) for (a) a = 0.5; (b) a = 2.
Here f = 6, § = 0.4, w. = 1. The background strain is w4 = 1.66, and the corresponding superkink velocity is
Vsk = 1.49541 in (a) and Vsk = 1.76697 in (b).
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Figure 12: Renormalized energy as a function of velocity V' for compressive SW solutions of the discrete problem
(8) (circles) with trilinear f(w) and the corresponding solutions of the QC model (14) (solid curves) for (a) a = 0.5;
(b) a = 2. The inset in (b) zooms in on the upper energy range. Here 8 = 6, 6 = 0.4, w. = 1. The background strain
is wy = 1.66, and the corresponding superkink velocity is Vek = 1.49541 in (a) and Vsk = 1.76697 in (b).
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Figure 13: Roots r, ¢, s (dashed curves) contributing to the QC SW solutions and the corresponding characteristic
roots rp, gp, sp (solid curves) for the discrete problem (see the main text for details), in the respective velocity
ranges at (a) a = 0.5, wy = 0.5; (b) a = 2, w4+ = 0.5; (¢) a = 0.5, wy = 1.66; (d) @ = 2, w+ = 1.66. The vertical
lines mark the corresponding V., and Vsk. Here 8 =6, § = 0.4, w. = 1. Tensile SW solutions corresponding to panels
(a) and (b) are shown in Fig. 7-9, and compressive SW solutions corresponding to panels (c) and (d) are shown in
Fig. 10-12.
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Figure 14: (a) Compressive SW solutions wy,(0) = w(n) of the discrete problem (8) (circles) with trilinear f(w) and
the corresponding solutions w(z) for the QC model (14) (solid curves) evaluated at ¢t = 0 for « =0, 8 =6, § = 0.4,
we = 1. (b) The solutions at V' = 0.01. The background strain is wy = 1.66, and the corresponding superkink
velocity is Vex = 1.40592.
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Figure 15: (a) Amplitude and (b) renormalized energy as functions of velocity V for compressive SW solutions of
the discrete problem (8) (circles) with trilinear f(w) and the corresponding solutions for the QC model (14) (solid
curves) for a = 0. The dashed green curves correspond to the exact small-velocity solution (56)-(58). Insets zoom
in around smaller velocity values. Here 8 = 6, 6 = 0.4, w. = 1. The background strain is wy = 1.66, and the
corresponding superkink velocity is Vex = 1.40592.
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Solving these and imposing the symmetry conditions y(0) = 0, w1 (0) = w_1(0), w;(0) = —w_;(0)
and the boundary condition w,, — w4 as |n| — oo, we obtain

wo = Acos(\/26t) + we + /2, wi; = —(A/2) cos(\/26t) + Bt + C,

(56)
Wy =w4, N =2, n>2

for t < Ty. The condition wy(71) = we + §/2 then yields A cos(v/2811) = 0, and since A must be
nonzero, we deduce that /2871 = 7/2, which yields

T
11 = .
YT 9.8
Since T} < T'/2, we have
V2
0<V< Tﬁ

For T1 < t < T5, all strains are in the upper linear regime and satisfy w, = 0. Together with
continuity of w,, and w, at t = T3 this yields

wo = we + 6/2 — \/2BA(t = T1), wyy = C + Bt +/B/2A(t — Th),

Wy =Wy, N =2, n>2 (57)
for Ty <t<T—Ty. For Ty, <t <T, we have
W1 + 2wy = BRwe+6), wWo2 = B(wi(t) —we) —B6/2, W, =0, n<-1, n>3.
Solving these and recalling that w,,(0) = wy11(T) and w,(0) = ,4+1(T), we obtain
wy = Acos(v/26(t = T)) + we +6/2, woz = —(A/2) cos(\/26(t — T)) F B(t = T) + C, (58)

Wy =w4, N =1, n>3
for T'—T1 <t <T. Continuity of w, and w, at t = T5 then leads to three independent conditions
C+B(T—-T1)+B/2A(T — 2T1) = w. + 0/2,
C—B(T —Ty)+/B/2A(T — 2T1) = wy,

VB/2A - B =0,

__w+—wc—5/2_\/§ o wy —we—6/2
B=-=mg—ry ~V3t vy v

In particular, at t = 0 we obtain

which yield

wozwc—Fé Wy — We — 6/2 _w+—wc—5/2<g_

2 o \/ﬁ(T _ Tl) y  Wxl = Wy 2\/%(T — Tl) 1) ,  Wp = W4, |n| > 2 (59)

and
Wy — We — /2

2(T —-Ty)
Together with v, = —Vw, 4+ > ___ wy the latter yield

W41 = F wo =0, w,=0, |n>2.

Wy — We — /2

1=v9=-V
V-1 (%] w++ 2(T—T1) )

vy =—Vwy, n<-2, n>1L1 (60)
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Using (59) and (60), we obtain the renormalized energy (54) given by

2

EﬁJV)z(gi:ﬁi:ﬂg—ﬂhm) — V202 + (wo) + 28(wy) — 3B (w,).
2(T—-T)

The amplitude and renormalized energy of the obtained solution are shown by the dashed green

curves in Fig. 15. One can see that this solution differs from the one for the QC model even at

very small velocities, as illustrated in Fig. 14(b). Indeed, in the limit V' — 0 (T — o0), we have

wy = We + /2, wy, — wy, n#0, v, — 0 for all n, and thus

ED,(0) = @(wo) — (wy) = —(we — 5/2+ B6)(wy — we — 5/2).

For comparison, we recall in the QC model the zero-velocity limit is given by (50). Thus the limiting
renormalized energy (55) is given by

aciy= [ w(z)) — P(w :E:—iw— Wi — We — ZLD
EQC(0) = / (@) ~ D10 dr =~ (e~ 8/2 4+ ) e = 6/2) = —=ER,(0).

In addition to the quantitative difference between discrete and QC solutions that persists to the
sonic limit, it is important to note that for the discrete solution w(§) — w4 is compact, while its
QC counterpart features exponential decay to the background strain.

5 Stability of superkink solutions

We tested stability of the superkinks by conducting numerical simulations of (2) on a finite chain.
In the first set of simulations, we extracted initial conditions from the computed superkink solu-
tions and used the corresponding fixed boundary conditions. These simulations resulted in steady
propagation of the traveling wave with velocity that remained within O(1078) or less from the
prescribed value for the entire range of velocities, suggesting that the traveling waves are at least
long-lived and likely stable.

The second set of simulations was conducted on a chain with L particles using free-end boundary
conditions and Riemann initial data

wp(0) =

l 1<n<L/2
{w, <n<L/ W, (0) =0, n=1,...,L. (61)

w', L/241<n<L’

The size L of the chain was chosen sufficiently large to avoid any boundary effects.

Some results of simulations with Riemann data (61) are shown in Fig. 16 and Fig. 17, where
we fix S =6, 6 = 0.4, w, = 1 and vary «, w' and w". Typical scenario, where a superkink
propagating to the right is trailed by linear dispersive shock waves moving in opposite directions
with velocities ++/c, is shown in Fig. 16(a) (a = 2, w! = 4, w" = 0.7) and Fig. 16(b) (a = 0.5,
w! = 6, w” = 0.3). The velocity of the superkink is Vsg = 2.0901 in Fig. 16(a) and Vg = 1.5404
in Fig. 16(b), in agreement with (35) when wy = w", V = Vgk for each case. A more complex
dynamics is observed in Fig. 16(c) (o = 0.5, w' = 6, w" = 0). In this case two solitary waves form
behind the left dispersive shock wave and eventually move to the left with velocities V; = —0.8092
and V5 = —0.792, while a superkink moves to the right (ahead of another dispersive shock wave)
with velocity V' = 1.39, again consistent with (35). At a = 0.5, w! = 8, w" = —1, the dynamics,
shown in Fig. 16(d), is similar but there are four solitary waves moving to the left, with velocities
Vi =-0.7913, V5, = —0.7891, V3 = —0.792, V4, = —0.7514 near the end of the simulation, while a
superkink propagates to the right with Vgx = 1.1926.
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Figure 16: Snapshots of strain profiles in simulations with Riemann initial data (61): (a) a = 2, w' =4, w" = 0.7,
L = 2000, t = 450; (b) o = 0.5, w' = 6, w” = 0.3, L = 2600, t = 600; (c) a = 0.5, w' =6, w” = 0, L = 2600, ¢t = 800;
(d) a=0.5, w' =8, w" = —1, L = 2600, t = 800. Here 8 =6, 5 = 0.4, w. = 1.
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The most interesting dynamics takes place in the case o = 0, as illustrated in Fig. 17(a,b), where
w! = 6 and w” = 0.3. In this case of inelastic red linear regime, we see a superkink propagating
with Vgk = 1.5263, in agreement with (35). Behind the superkink there is another transition front
that moves to the left and connects the constant strain w! to a periodic train of solitary waves. The
solitary wave train in this dispersive structure, known as a Whitham shock [Sprenger and Hoefer,
2020], is spreading, with the left edge (the transition front) moving with velocity V;, = —0.3415,
while its right edge propagates with Vi = 1.5022, trailing the superkink. Similar dynamics is
observed when we set w' = —0.75, while keeping all other parameters the same; see Fig. 17(c,d).
In this case we have V; = —0.5003, Vg = 1.1797, Vgx = 1.2018. The corresponding space-time
evolution is shown in Fig. 18. While supporting stability of superkinks, these results also reveal
the interesting phenomenon of Whitham shocks that, to our knowledge, have not been previously
observed for the FPU system.

6 Stability of solitary wave solutions

To investigate the linear stability of the obtained SW solutions in the case o > 0, we follow
the approach of Cuevas-Maraver et al. [2017], Xu et al. [2018] and Vainchtein et al. [2020] and
use Floquet analysis that exploits periodicity-modulo-shift (51) of the traveling wave solutions.
Substituting wy,(t) = Wy (t) + ey, (t) into (2), where w,(t) = w(n — Vit) is the traveling wave
solution, and considering O(€) terms, we obtain the governing equations for the linearized problem:

Un = f/(wn+1)yn+1 - 2f,(wn)yn + f/(wn—1>yn—1- (62)

The Floquet multipliers u for this problem are the eigenvalues of the monodromy matrix M defined

’ oy = s | (63)

To obtain M, we compute the fundamental solution matrix ¥(7'), which maps [{%,(0)}, {#,(0)}]*
onto [{yn(T)}, {9 (T)}*, n = —N/2,...,N/2 — 1, for the first-order linear system equivalent to
(62). We use periodic boundary conditions yn/2(t) = y_n/2(t), y—n/2-1(t) = yny2—1(t), which is
justified by the fact that for solitary waves the values f’(w,,) at the two ends of the chain have the
same constant value (note, however, that this is not the case for superkinks unless @ = 1). Due
to the piecewise linear nature of (3), the computation of the fundamental solution matrix W(T")
involves determining the times instances T;, i = 1,..., k, at which one of the nodes switches from
one linear regime to another over the time interval [0, 7]. This yields

U(T)=e pit(T=Te) o w(Te=Ti1) o 2(Ta=Ti)e 1Th

where C; has the block form

C; = [ lgz (I)], i=1,...,k+1
involving the N x N identity matrix I, the N x N zero matrix O and N x N matrices A; that contain
the coefficients for the corresponding linear system and have a tridiagonal structure extended to
the upper right and lower left corner entries according to the periodic boundary conditions. We
then shift the rows of (7T') up by one row in the two parts of the matrix corresponding to ¥y, and
Un, respectively, with the last row in each part replaced by the first, obtaining M in (63). We
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Figure 17: (a) Snapshot of strain profiles in simulations with Riemann initial data (61) and o = 0, w' = 6, w™ = 0.3,
L = 1000, t = 250; (b) time evolution of wsoo(t) for the simulation in (a); (c¢) snapshot of strain profiles in simulations
with Riemann initial data (61) and o = 0, w' = 6, w™ = —0.75, L = 1000, t = 350; (d) time evolution of wsso(t) for
the simulation in (¢). Here 8 =6, 0 = 0.4, w. = 1.
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Figure 18: Space-time evolution of strain in simulations with Riemann initial data (61): (a) formation of the
superkink front and SW train early in the simulation; (b) evolution near the end of the simulation, zoomed in around
the superkink front. Here « =0, =6, 6 = 0.4, we =1, w' = 6, w" = —0.75, L = 1000.

note that this procedure relies on the periodic boundary conditions, which, as mentioned above,
are justified for solitary waves but in general not for superkinks.

The Floquet multipliers are related to the eigenvalues A\ of the linearization operator via u =
eV and thus || > 1 (Re(\) > 0) corresponds to instability. The Hamiltonian nature of the
problem means that there are quadruples of non-real Floquet multipliers, i.e., if u is a multiplier,
than so are [, 1/ and 1/f, while the real multipliers come in pairs g and 1/p. Linear stability
thus requires that all Floquet multipliers lie on the unit circle: |u| = 1.

The resulting maximum modulus of Floquet multipliers as a function of V is shown in Fig. 19.

In each case, for sufficiently small velocities the maximum-modulus multiplier is real © > 1 (red
segments in Fig. 19) and corresponds to exponential instability mode. As velocity increases, the
real multiplier p outside the unit circle and the companion real multiplier 1/u inside the unit circle
move toward the unit circle and join it at the threshold velocity V = V,. This is illustrated in
Fig. 20 for the case & = 2, w4 = 0.5, where we see the two real multipliers approach the unit circle
as velocity is increased from 1.01 (panel (a)) to 1.05 (panel (b)), slightly below V, ~ 1.064. Starting
with velocities slightly below V., the maximum-modulus multipliers are complex and correspond to
mild instability modes similar to those observed by Marin and Aubry [1998], Xu et al. [2018] and
Vainchtein and Truskinovsky [2024]. Since their magnitude decreases as the chain size is increased,
these mild instabilities appear to be a spurious artifact due to the finite chain size. An example
is shown in Fig. 20(c,d). Direct numerical simulations initiated by solitary waves with velocities
V > V, show steady propagation of the waves and suggest their effective stability, as illustrated in
Fig. 21.

For solitary waves that tend to zero at infinity, the onset of exponential instability associated
with p > 1 typically corresponds to threshold velocities at which their energy changes monotonicity
[Friesecke and Pego, 2004, Cuevas-Maraver et al., 2017, Xu et al., 2018]. In this case, the onset of
instability occurs prior to the change in monotonicity of the renormalized energy (54), which takes
place at V > V,, as can be seen in Fig. 9 and Fig. 12. It is possible that another relevant quantity
changes monotonicity at V = V.
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Figure 19: Maximum modulus of Floquet multipliers for (a) tensile waves with w4 = 0.5, a = 0.5; (b) tensile waves
with wy = 0.5, @ = 2; (c) compressive waves with wy = 1.66, « = 0.5; (d) compressive waves with wy = 1.66, o = 2.
The red segments correspond to real multiplier ¢ > 1. Here 8 = 6, 6 = 0.4, w. = 1, and the corresponding values of
the superkink velocity are Vsx = 1.72044 in (a), Vsk = 1.76613 in (b), Vsx = 1.49541 in (c) and Vsk = 1.76697 in
(d). Mild oscillatory instabilities (max|u| > 1) along the black portion of the curves appear to be an artifact due to
the finite chain size.
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Figure 21: Strain evolution in numerical simulations initiated by computed solitary waves with (a) V = 1.14; (b)
V =1.7661272. Here « =2, w4 = 0.5, =6, , 0 =04, w. = 1.

To explore the consequences of the instability at V' < Vi, we ran numerical simulations initiated
by an unstable solitary waves perturbed along the corresponding eigenmode. A typical scenario for
ensuing dynamic evolution is shown in Fig. 22, where the simulation was initiated by the perturbed
unstable compressive wave with velocity V' = 0.72 below the threshold value V, ~ 0.7685 at a = 0.5,
w4 = 1.66 (see Fig. 19(c) for the corresponding maximum-modulus Floquet multipliers). One can
see formation of an apparently stable solitary wave with V = 0.8288 above the threshold followed
by dispersive wave that propagates with lower (sonic) speed.

Stability of compressive waves in the degenerate case o = 0, shown in Fig. 14, was investigated
numerically. Simulation results suggest stable propagation of solitary waves in the entire velocity
range 0 < V < Vgk.

7 Concluding remarks

In this paper, we considered the FPU system with trilinear force-elongation relation. It was chosen
to be of generally asymmetric soft-hard-soft type, and the resulting mechanical behavior can be clas-
sified as hardening-softening. We showed that in addition to the classical finite-amplitude, spatially
localized solitary waves, this model exhibits supersonic kinks (superkinks) and finite-amplitude,
spatially delocalized flat-top solitary waves which acquire the structure of a kink-antikink bundle
when their velocity tends to the kink limit. Exploiting the periodic-modulo-shift property of trav-
eling waves, we computed these solutions as fixed points of the corresponding nonlinear map. In a
particularly interesting degenerate case when the elastic modulus of one of the soft regimes is zero,
we obtained exact solutions for sufficiently slow solitary waves.

Floquet analysis of solitary waves in the non-degenerate case shows that near-sonic waves are
unstable when their velocity is below a certain threshold. Perturbation along the corresponding
eigenmode led to the formation of a stable wave with velocity above the threshold. Stability of these
and other solutions was also confirmed by direct numerical simulations initiated by the computed
traveling waves and piecewise constant Riemann data. In the degenerate case, Riemann simulations
revealed emergence of Whitham shocks involving periodic train of solitary waves.
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Figure 22: (a) Snapshots of strain profiles and (b) w, (t) at different fixed n for the dynamic evolution initiated
by an unstable compressive wave propagating with velocity V = 0.72 < Vi at a = 0.5 and w = 1.66, perturbed
along the eigenmode corresponding to the real Floquet multiplier 4 = 1.20795. The dynamic evolution leads to the
formation of compressive solitary wave with V' = 0.8288 > V followed by a sonic dispersive wave. Here Vi = 0.7685,
6=04,3=06, w.=1.

To complement this picture, we analyzed in detail a QC approximation of the FPU problem,
which introduces into the continuum model mixed space-time higher-order derivative term de-
scribing microinertia. Using this model, we derived explicit solutions for both solitary waves and
superkinks. The analytical transparency of the QC model allowed us to examine in full detail
the properties of the waves and the effect of asymmetry of the interaction force. Comparison of
the obtained solutions with their discrete counterparts showed that the QC model captures the
main effects qualitatively, and quantitative agreement exists near the superkink and, for the non-
degenerate case, sonic limit. In the degenerate case the discrepancy between the discrete and QC
model persists to the sonic limit of zero velocity.

Finally, we mention a potential application of the obtained results. It is known that persistent
“particle-like” wave packets can be generated in mechanical metamaterials to transfer mechanical
energy and communicate mechanical information [Bertoldi et al., 2017]. An important class of
applications of such metamaterials involves autonomous locomotion. In particular, wave-driven
robots, utilizing geometric phase transitions as internal mechanisms, are becoming a subject of
intense research due to their adaptability to complex environments [Deng et al., 2020]. Moreover,
a new paradigm in robotics is emerging in the form of a transition from movable machines to
movable materials with self-propulsion interpreted as dynamics of uniform regions (or domains)
bounded by coherently moving interfaces (domain walls) [Yasuda et al., 2020]. The idea is that
constructive interplay between material nonlinearity and dispersion can lead to the emergence of
such robust disturbances which would propagate with constant velocity and fixed profile. The
corresponding nonlinear wave would be then associated with some functionality, as, for instance, in
the case of peristaltic motion [Gorbushin and Truskinovsky, 2021]. The advantage of soft mechanical
alternatives to rigid controlling actuators in otherwise soft crawling robots is obvious, and the main
challenge is to learn to generate such programmable dynamic regimes. The delocalized flat-top
solitary waves discussed in this work offer an example of stable nonlinear pulses which can be used
to make the corresponding metamaterial crawl. In this respect our conclusion that the resulting

33



delocalized active pulses are necessarily supersonic is still realistic because in biologically relevant
soft solids the acoustic speeds may be arbitrarily small. Note also that in this perspective our
trilinear model can be interpreted as describing a material capable of generating active stresses
[Gorbushin and Truskinovsky, 2019]. In the same sense, the flat-top solitary waves would imply
dynamic passive-to-active transformations taking place in the front of a steadily moving pulse with
the corresponding reverse transformation taking place in its rear.
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A Some technical results

The coefficients in (39) are found by imposing continuity of w(§) and w’(§). This yields

A = (q(q(ws — w4 ) cosh(sza) sin(g(z1 — 22)) + s(wg — w—
(wy — ws) cos(q(z1 — 22))) sinh(sz2)))/D,
B = (qr(ws — w4 ) cos(qzz2) cosh(sza) + s((ws — w_)(qcos(qz1) + rsin(qz1))
— r(wg — w4 ) sin(gze)) sinh(sz2))/D, (A.1)

_|_

where
D = sin(q(z1 — 22))(q? cosh(szy) — rssinh(s22)) — gcos(q(z1 — 22))(r cosh(szy) + ssinh(sz2)).
Similarly, we find the coefficients in (47):

A = q(q(wg — w4 ) cosh(rz2) sin(q(z1 — 22)) + r(ws — w—
+ (wy — wg) cos(q(z1 — 22))) sinh(rz2)))/D
B = (gs(ws — wy) cos(qza) cosh(rzg) + r(wg — w_)(qcos(qz1) + ssin(gz1))
+ s(wy — wg) sin(gza)) sinh(rz2))/D (A.2)
C = (¢s(ws — wy) cosh(rze) sin(qz2) + r(s(ws — w4 ) cos(gz2)
+ (w— — wg)(scos(qz1) — gsin(gz1))) sinh(rzq))/D
D = (q(s(ws —wy) + (w- —ws)(s cos(q(z1 — 22)) — gsin(q(z1 — 22)))))/D,

where

D = sin(q(z1 — 22))(¢? cosh(rzy) — rssinh(rzy)) — gcos(q(z1 — 22))(s cosh(rzy) + rsinh(rz)).
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