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Abstract
Bilingual children at a young age can benefit from exposure
to dual language, impacting their language and literacy de-
velopment. Speech technology can aid in developing tools to
accurately quantify children’s exposure to multiple languages,
thereby helping parents, teachers, and early-childhood practi-
tioners to better support bilingual children. This study lays
the foundation towards this goal using the Hoff corpus con-
taining naturalistic adult-child bilingual interactions collected
at child ages 2½, 3, and 3½ years. Exploiting self-supervised
learning features from XLSR-53 and HuBERT, we jointly pre-
dict the language (English/Spanish) and speaker (adult/child) in
each utterance using a multi-task learning approach. Our ex-
periments indicate that a trainable linear combination of em-
beddings across all Transformer layers of the SSL models is a
stronger indicator for both tasks with more benefit to speaker
classification. However, language classification for children re-
mains challenging.

1. Introduction
By the year 2050, Hispanic/Latino(a) children will constitute
about 30% of the total population of children under 8 in the
United States1. There is an estimated 40 million individuals
who speak Spanish in the home [1], although the amount of
Spanish and English that children are exposed to at home varies
widely [2]. We know that children who are second language
learners can benefit from dual language exposure at young age
(e.g., increased language and literacy skills in both languages,
cognition) [3, 4] and that these benefits can continue on later in
life (e.g., job opportunities in the interdependent global econ-
omy) [4]. We also know that when young children enter the
classroom and have lower English proficiency skills they may
miss opportunities to engage in talk with peers and classroom
adults [5], and it is not uncommon for them to be misidentified
for special education services [6]. Current tools to capture chil-
dren’s exposure to multiple languages appear to be researcher-
developed parent-reported measures [7,8] that are not equipped
to fully capture children’s exposure to English and Spanish.
With the growth in the number of children who are second lan-
guage learners, there is an immediate need for a tool that ac-
curately quantifies children’s exposure to multiple languages in
the home and school. Such a tool could: 1) help teachers and
parents better gage Spanish vs. English input in the home and
classroom, and 2) cultivate/improve home-school partnerships
aimed at promoting children’s proficiency in both languages

1https://www.pewresearch.org/hispanic/

across settings. And, for researchers, this tool could further our
understanding of how the contributions of multiple languages
in different settings affect children’s development. To realize
such a tool and by probing into the speech processing pipeline,
identifying the speakers and the language spoken in bilingual
adult-child interactions are the first important steps.

There has been very recent progress in the field of language
identification/classification (LID) [9–13]. While some work
keeps focusing on LID from traditional Mel spectra [10] and
Mel-frequency cepstral coefficients (MFCCs) [9], some other
work explores the use of self-supervised learning (SSL) speech
representations/embeddings as speech features [11–13], as we
also do in this paper. Specifically, the authors of [11] and [12]
exploit popular SSL models like standard wav2vec2 [14], XLS-
R [15] or HuBERT [16]. However, [11, 12] carry out identi-
fication by linearly classifying speech representations out of
a single Transformer encoder layer of the SSL model, which
limits the potentials of the SSL framework. Wang et al. [13]
deal with this limitation by studying weighted combinations of
embeddings from the Transformer encoder layers that consti-
tute the input to an ECAPA-TDNN [17] classifier. However,
the latter paper falls into the area of singing speech process-
ing, whereas a similar study is missing in the context of regu-
lar speech. More importantly, none of the above-referred LID
works has also faced, as we do in this paper, bilingual young
children’s speech, whose specific properties make it worth an
analysis (young children —below 8 years— have very different
spoken language skills as compared to older children [18, 19]
and adults [20]). Adult/child speaker classification is another
difficult problem, which has been addressed by a recent study
[21] by using adapted wav2vec2 and WavLM [22] embeddings
for adult/child speaker classification.

Most prior work on language and speaker classification has
considered these two tasks separately. In this paper, we use
the CHILDES Spanish-English Hoff Corpus [23,24] to perform
joint language (English/Spanish) and speaker (adult/child) clas-
sification using a multi-task learning approach (see Fig. 1).
Furthermore, exploiting SSL features to jointly predict the lan-
guage and speaker is essentially uncharted. More importantly,
to the best of our knowledge, this is the first work that explores
language classification in young children’s (2½ – 3½ years)
speech on top of adults’ speech.

2. Multi-task Classification Approach
Fig. 2 depicts a block diagram of the proposed classification
system, which is discussed in the following subsections.
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Figure 1: Overall system flow structure for multi-task language and speaker classification in bilingual adult-child interactions.

2.1. Feature Extraction Front-end

We start with 13 MFCC features and their first- and second-
order derivatives. Apart from traditional MFCC features, we
utilize two state-of-the-art SSL models (left part of Fig. 2):
XLSR-53 [25] and HuBERT [16]. Both models consist of 1)
a CNN-based latent feature encoder, and 2) a Transformer-
based context encoder. On the one hand, similarly to wav2vec2,
XLSR-53 performs a contrastive task over masked latent speech
representations and jointly learns a quantization of the latents
shared across languages. XLSR-53 is pre-trained using 56k
hours of multilingual data from three datasets: LibriSpeech,
Common Voice, and BABEL. On the other hand, HuBERT ex-
tracts the hidden units (pseudo-targets) using K-means cluster-
ing and predicts targets from the context using cross-entropy
loss. This model is pre-trained on 60k hours of unlabeled audio
from Libri-Light.

For both SSL models used in this paper, we employ the pre-
trained ‘LARGE’ checkpoints from FAIRSEQ2. They comprise
L = 24 Transformer encoder layers each, which output D =
1, 024-dimensional embeddings xl ∈ RD , l = 1, ..., L. In
this work, we compare two different types of SSL features: 1)
xL (denoting the embedding from the last layer), and 2) the
embedding linear combination

∑L
l=1 wlxl, where the weight

set {wl > 0; l = 1, ..., L} is jointly trained along with the
classification back-end.

2.2. Classification Back-end

The classification back-end (right part of Fig. 2) is primarily
composed of 1) a linear bottleneck layer followed by layer nor-
malization, 2) four Conformer [26] blocks, 3) a statistics pool-
ing layer, and 4) two parallel branches with a stack of linear
layers (with ReLU and softmax) for language (English/Spanish)
and speaker (adult/child) classification. Each Conformer block
comprises two feedforward layers with half-step residual con-
nections —sandwiching the multi-headed self-attention and
convolution modules— followed by layer normalization. The
back-end model uses Adam as an optimizer and trains with the

2https://github.com/facebookresearch/fairseq
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Figure 2: Block diagram of the proposed joint language and
speaker classification system.

objective of reducing cross-entropy loss with equal weights to
both classification tasks.

3. Corpora
For this paper, while the CHILDES Spanish-English Hoff Cor-
pus is considered primary, we also employ a reduced ver-
sion of the Common Voice (CV) dataset [27] to pre-train En-
glish/Spanish language classifiers. Specifically, for model pre-
training purposes, we use 100 hours of English speech and 100
hours of Spanish speech. We then use these pre-trained mod-
els to initialize classification back-ends (except for the speaker
classification branch) for further experimentation using Hoff,
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Table 1: Split of the Hoff corpus into Train, Validation, and Test based on language and speaker.

Language Speaker Train (52 families) Validation (6 families) Test (6 families)
Utterances Time (hrs) Utterances Time (hrs) Utterances Time (hrs)

Spanish Adult 20,610 11.71 2,360 1.36 1,754 1.02
English Adult 22,959 12.76 3,046 1.69 3,564 1.92
Spanish Child 6,445 3.61 758 0.45 803 0.45
English Child 10,465 5.90 923 0.49 1,437 0.76

TOTAL 60,479 33.98 7,087 3.99 7,558 4.15

Adult utterances Child utterances

Utterance Length (seconds) Utterance Length (seconds)

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

Figure 3: Distribution of the length of adult and child utterances.

which is denoted as “CV pre-training”.

3.1. CHILDES Spanish-English Hoff Corpus (Hoff)

The CHILDES Spanish-English Hoff Corpus3 [23,24] contains
videos of interactions between Spanish- and English-speaking
caregivers and children collected at child ages ranging from 2½
to 3½ years as part of a language and literacy development lon-
gitudinal study of US-born children raised in Spanish-speaking
homes. These interactions were captured during toy playing
and book-reading activities, with most recordings in the partic-
ipants’ homes. A total of 64 families with bilingual children
were considered for this study. Each family had one or more
recordings collected at child ages 2½, 3, and 3½ years. While
transcripts are provided, not all utterance-level timestamps are
correct/available. Based on the transcripts, each downsampled
audio recording (initially converted from video to 16 kHz au-
dio) was then split into smaller utterances: 1) utterances more
than 3 s were split into samples of 3 s or less, and 2) utterances
less than 3 s were kept as they are. Note that all utterances less
than 1 s were discarded. Around 80% of utterances are below 3
s. The final distribution of utterance length is displayed in Fig-
ure 3 and the experimental split is shown in Table 1. Utterances
coded in the transcripts as spoken in Spanish or English were
only considered, discarding the rest. The use of this corpus was
approved in accordance with the TalkBank Code of Ethics4.

3https://childes.talkbank.org/access/Biling/
Hoff.html

4https://talkbank.org/share/ethics.html

4. Experimental Results and Discussion
When evaluating model performance, we use system-wide met-
rics such as balanced accuracy (BAcc) and equal error rate
(EER). Given an experiment, the criterion for selecting the best
model for testing purposes was maximum summed (across both
tasks) validation BAcc when employing early-stopping with a
4-epoch patience. Language and speaker classification results
are summarized in Tables 2 and 3.

From Table 2, it can be seen that, generally, the use of
SSL-based features clearly outperforms the utilization of tra-
ditional speech features like MFCCs. Irrespective of the fea-
tures, language classification performance is lower for children
than for adults. Many factors might contribute to this: young
children are still developing their speech/language skills, their
speech might not have precise speech representations as ex-
pected in adults’ speech, and children’s spoken responses are
usually shorter. That being said, note that this performance gap
between children and adults tends to be larger for SSL features
than for MFCCs. We reasonably hypothesize that this might be
explained by the SSL models being pre-trained by means of just
adults’ speech.

Moreover, it is shown that learning a linear combination
of embeddings out of all the Transformer encoder layers pro-
vides better language and speaker classification performance
in comparison with using speech representations from the last
layer of the SSL models. This outcome is significantly true for
XLSR-53, but also for HuBERT. Specifically, and considering
“Hoff training from scratch”, XLSR-53W (HuBERTW ) shows
a BAcc relative improvement of around 8.8% and 2.7% (3.1%
and 2.2%) with respect to XLSR-53L (HuBERTL) in terms of
overall language and speaker classification, respectively. Sim-
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Table 2: Language and speaker classification BAcc and EER results (%) on Hoff. Best results are marked in boldface.

Training Front-end Language Classification Speaker Classification
Child Adult Overall Overall

BAcc EER BAcc EER BAcc EER BAcc EER

Hoff training
from scratch

MFCC 61.36 36.17 64.81 33.11 63.74 34.08 81.27 14.12
XLSR-53L 56.09 43.37 72.28 30.34 67.27 34.36 82.46 11.38
XLSR-53W 61.43 43.78 78.06 26.23 73.17 31.54 84.71 9.35
HuBERTL 66.25 28.13 79.23 19.96 75.10 22.43 91.46 7.26
HuBERTW 67.55 33.28 81.65 18.61 77.44 23.01 93.47 6.11

CV pre-training
+

Hoff fine-tuning

MFCC 60.23 39.13 72.64 26.12 68.93 30.00 84.62 13.94
XLSR-53L 55.14 39.43 68.10 28.86 64.08 32.10 87.00 17.06
XLSR-53W 67.64 29.59 83.90 15.28 78.92 19.57 92.86 5.06
HuBERTL 63.26 30.05 79.68 16.76 74.57 20.73 90.93 7.93
HuBERTW 67.68 28.40 81.82 16.61 77.43 20.23 92.07 5.89

(·)L −→ last layer, xL; (·)W −→ trainable linear combination of embeddings,
∑L

l=1 wlxl

ilarly, such BAcc relative improvements are, approximately,
23.2% and 6.7% (3.8% and 1.3%) when considering “CV pre-
training + Hoff fine-tuning”. Note that pre-training using CV is
helpful for MFCC and XLSR-53W , the latter showing the best
overall performance.

Table 3: Language and speaker classification BAcc and EER
results (%) from comparing the use of trainable, (·)W , and fixed
uniform, (·)A, embedding combination weights. Best results
are marked in boldface.

Training Front-end Language C. Speaker C.
BAcc EER BAcc EER

Hoff training
from scratch

XLSR-53W 73.17 31.54 84.71 9.35
XLSR-53A 75.09 29.76 93.06 7.90
HuBERTW 77.44 23.01 93.47 6.11
HuBERTA 77.68 20.91 92.42 6.02

CV pre-training
+

Hoff fine-tuning

XLSR-53W 78.92 19.57 92.86 5.06
XLSR-53A 77.35 20.24 92.66 5.53
HuBERTW 77.43 20.23 92.07 5.89
HuBERTA 78.67 22.08 92.67 6.17

4.1. Analysis of Embedding Combination Weights

We observed that the learnt embedding combination weights
did not significantly deviate from their random initialization
w

(0)
l ∼ U(0, 1), l = 1, ..., L, where U stands for uniform

distribution. To shed some light on this behavior, we decided
to test the case of simply averaging embeddings out of all the
Transformer encoder layers of the SSL models (i.e., using fixed
uniform weights, wl = 1/L ∀l). From Table 3, we can see that,
particularly for “CV pre-training + Hoff fine-tuning”, learning
or fixing {wl; l = 1, ..., L} does not make a significant dif-
ference. Given this outcome, we hypothesize that, as long as
a powerful classification back-end is used (as in our case), wl

values are not so critical provided that multiple Transformer en-
coder layers contribute to shape the final speech representations.

5. Conclusion
With a slowly-increasing focus on analyzing children’s speech,
it is important to consider a broader cohort of subjects with re-

spect to language diversity, as well as disability and socioeco-
nomic status. Such steps would enable innovative solutions for
parents, teachers, as well as practitioners in the US to moni-
tor and better understand the language environments of a large
young Hispanic children population in the home and classroom.
We hope that this work will be the first step in this direction, and
make speech systems more inclusive. Overall, our language and
speaker classification solution using naturalistic bilingual adult-
child interactions shows the best results using a trainable linear
combination of embeddings extracted from XLSR-53. Future
work will explore analyzing other corpora as well as fine-tuning
SSL models using adult-child interactions.
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