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Abstract
1. Understanding migratory connectivity, or the linkage of populations between sea-

sons, is critical for effective conservation and management of migratory wildlife. A 
growing number of tools are available for understanding where migratory individu-
als and populations occur throughout the annual cycle. Integration of the diverse 
measures of migratory movements can help elucidate migratory connectivity pat-
terns with methodology that accounts for differences in sampling design, direc-
tionality, effort, precision and bias inherent to each data type.

2. The R package MigConnectivity was developed to estimate population- specific 
connectivity and the range- wide strength of those connections. New functions 
allow users to integrate intrinsic markers, tracking and long- distance reencoun-
ter data, collected from the same or different individuals, to estimate population- 
specific transition probabilities (estTransition) and the range- wide strength of 
those transition probabilities (estStrength). We used simulation and real- world 
case studies to explore the challenges and limitations of data integration based 
on data from three migratory bird species, Painted Bunting (Passerina ciris), Yellow 
Warbler (Setophaga petechia) and Bald Eagle (Haliaeetus leucocephalus), two of 
which had bidirectional data.

3. We found data integration is useful for quantifying migratory connectivity, 
as single data sources are less likely to be available across the species range. 
Furthermore, accurate strength estimates can be obtained from either breeding- 
to- nonbreeding or nonbreeding- to- breeding data. For bidirectional data, 
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1  |  INTRODUC TION

Migratory connectivity describes the distribution of populations 
between seasons that results from animal migration. Tracking and 
other technologies are increasing our ability to describe migratory 
movements for more species and in greater detail. Understanding 
the distribution of populations between seasons is critical to eluci-
dating the ecology and evolution of migratory species, information 
that has become more urgent with the declines of migratory animals 
(Bairlein, 2016; Rosenberg et al., 2019; Wilcove & Wikelski, 2008). 
However, the variability of migratory behaviours and differences in 
the technologies used to measure them has made it challenging to 
quantify their migratory connectivity.

Migratory connectivity is a growing field of study (Gregory 
et al., 2023; Marra et al., 2018), but recognition of the need to under-
stand it is not new. Salomonsen (1955) originally defined the terms 
synhiemy and allohiemy to describe the convergence or segregation, 
respectively, of breeding populations on the nonbreeding grounds. 
Webster et al. (2002) coined the term migratory connectivity, to de-
scribe both the distribution of population- specific connections and 
the convergence or segregation of populations that occurs along a 
continuum from strong to weak. The field has further expanded to 
clarify the importance of the distribution of breeding populations 
during migratory phases, which inherently have a temporal compo-
nent (Briedis & Bauer, 2018; Cohen et al., 2019; Knight et al., 2021). 
Thus, the term migratory connectivity is inclusive of both the pattern, 
the geographic linking of populations between seasons (i.e. transi-
tion probabilities or movement probabilities), and the strength, the 
extent or degree of population convergence between two seasons 
(e.g. MC metric; Cohen et al., 2018). For example, when migratory 
connectivity is strong (e.g. Willets [Tringa semipalmata]; Huysman 
et al., 2022), breeding populations largely remain segregated during 
the nonbreeding seasons, as is expected to be the case under chain 
or leapfrog migration (Newton, 2010). On the other hand, when mi-
gratory connectivity is weak (e.g. Prothonotary warbler [Protonotaria 

citrea]; Tonra et al., 2019), many breeding populations converge in 
the same nonbreeding areas as is expected to be the case under tele-
scopic migration (Newton, 2010).

There are many different tools and technologies for studying 
migratory connectivity, but most studies remain limited by small 
sample sizes and incomplete sampling. In particular, sampling rarely 
covers the full extent of a species' range, and decisions about where 
to sample are often dictated by logistics rather than information 
about population structure (Huysman et al., 2022). Incomplete sam-
pling can bias estimates; when migratory connectivity is measured 
from only part of the range, estimates of the strength tend to be 
lower than when they are measured from across the range of the 
species (Sharp et al., 2023). For example, Phipps et al. (2019) found 
strong migratory connectivity for Egyptian vultures (Neophron perc-
nopterus) among subspecies but weak connectivity when sampling 
only some populations. While range- wide measures are likely to be 
the most biologically meaningful, they require more complete sam-
pling of populations than has been possible from most single data 
types.

Data types for studying seasonal distributions of migratory an-
imals include individual tracking (i.e. from geolocator or global po-
sitioning tags), assignments from intrinsic markers (i.e. using stable 
isotope values from inert tissues such as feathers, or genetic mark-
ers), and mark reencounters (i.e. from banding or ringing schemes; 
Marra et al., 2018). Each of these tools has limitations in precision, 
bias and/or reencounter probability. As data to measure the con-
nections of migratory populations continue to become available, 
the integration of multiple data types is a potential solution to im-
prove estimation of migratory connectivity in the face of sampling 
constraints. Beyond differences in bias and precision, data types 
often differ in both sample sizes and distribution across the range 
(Hagelin et al., 2021; Hill & Renfrew, 2019; Huysman et al., 2022; 
Tonra et al., 2019). Furthermore, sampling efforts have often not 
accounted for differences in abundance among the sampled popu-
lations (Cohen et al., 2018). Combined analyses that account for the 

integration can lead to more accurate estimates when data are available from all 
regions in at least one season.

4. The ability to conduct combined analyses that account for the unique limitations 
and biases of each data type is a promising possibility for overcoming the chal-
lenge of range- wide coverage that has been hard to achieve using single data 
types. The best- case scenario for data integration is to have data from all regions, 
especially if the question is range- wide or data are bidirectional. Multiple data 
types on animal movements are becoming increasingly available and integration 
of these growing datasets will lead to a better understanding of the full annual 
cycle of migratory animals.

K E Y W O R D S
animal migration, data integration, full annual cycle, genoscape, MC, migratory connectivity, 
population distribution, transition probability
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unique limitations and biases of each data type is a promising possi-
bility for overcoming the challenge of range- wide coverage that has 
been hard to achieve using single data types (Contina et al., 2022), 
especially given the high costs and logistical challenges in collect-
ing these data across the broad ranges of many migratory species 
(Korner- Nievergelt et al., 2017; Procházka et al., 2017).

The MigConnectivity R package, which quantifies the pattern 
and strength of migratory connectivity, was developed to facilitate 
quantitative comparisons across studies, data types and taxa while 
accounting for uneven sampling and the bias inherent to different 
data types for studying migratory movement (Cohen et al., 2018; 
Hostetler & Hallworth, 2024). We developed new functionality in 
the package to overcome key challenges prohibiting integration of 
animal movement data types and improve estimates of migratory 
connectivity. One key challenge to data integration is in the diver-
sity of data types available for studying seasonal distributions of 
migratory animals. However, some prominent data types used to 
measure migratory connectivity were not included in previous ver-
sions (Cohen et al., 2014). Genoscapes are spatially explicit maps of 
genetic variation across the breeding range, to assign individuals sam-
pled during nonbreeding and migratory periods to their most likely 
breeding population; it is a relatively new method that is increasingly 
used to measure migratory connectivity (Ruegg et al., 2014). Banding, 
on the contrary, may be the oldest method for measuring migratory 
movements, and considerable data have accumulated for some bird 
species, but sampling is typically incomplete with highly variable re-
encounter probabilities (Thorup et al., 2014). We address the data 
integration challenge of the diversity of available data types by add-
ing functionality for genoscape assignment and capture–mark–reen-
counter (CMR; hereafter, banding) data.

Another key challenge to the integration of migration data is 
incorporating measures of movement in opposite directions (i.e. 
breeding to nonbreeding and vice versa) with assignment error (also 
known as location error) on different sides. For example, archival 
geolocators are often placed on animals in the breeding season and, 
if retrieved in the subsequent breeding season, provide information 
about where that animal spent the nonbreeding season with varying 
degrees of assignment error. Isotope or genetic samples are often 
obtained from tissues collected during the nonbreeding season, 
providing information about where that animal spent the previous 
breeding season, again with varying degrees of assignment error. 
We developed methods to account for assignment error when inte-
grated data are collected in two directions, the ‘to’ and ‘from’ side of 
estimated transition probabilities.

Here we introduce new analytical approaches for estimating both 
the pattern and strength of migratory connectivity through data in-
tegration. We provide methods for using any combination of GPS/
telemetry, light- level geolocator, isoscape (spatially explicit maps of en-
vironmental isotopic variation, such as hydrogen isotope ratios in pre-
cipitation, used to assign individuals sampled elsewhere to the location 
of origin of tissue growth; West et al., 2009), genoscape and band reen-
counter data collected from the same or different individual animals to 
estimate patterns and strength between any two phases of the annual 

cycle (Table 1). Using simulation, we assess when data integration can 
improve accuracy including the role of sampling relative to abundance, 
incomplete sampling and sample size. We also apply these methods to 
real- world case studies for three species: Painted Bunting (Passerina 
ciris), Yellow Warbler (Setophaga petechia) and Bald Eagle (Haliaeetus 
leucocephalus).

2  |  METHODS

2.1  |  Estimating migratory connectivity

In earlier versions of the MigConnectivity R package, transition prob-
abilities were an intermediate step in estimating the strength of mi-
gratory connectivity (MC; Cohen et al., 2018, 2019). We adapted 
these methods to place greater emphasis on population- specific pat-
terns of connectivity by separating estimation of MC into two new 
functions, estStrength and estTransition (Table 1). Here, we describe 
these new functions, two new data types added to the package, and 
data integration methods for estimating the pattern and strength of 
migratory connectivity, including bidirectional data.

Consider a migratory species where the breeding range is divided 
into B regions and its nonbreeding range is divided into NB regions. 
The pattern of migratory connectivity and abundance for this species 
can be given as transition probabilities (Ψ), a matrix with each cell 
ψb,w being the probability that an animal will migrate to nonbreed-
ing region w given that it's from breeding region b and R, a vector 
of the relative (proportional) abundances of the B breeding regions. 
We can more generally call the first set of regions origin regions and 
the second set target regions, referring to the direction of migration 
conceptualized by these transition probabilities, not necessarily to 
where the data are collected. For example, if one wishes to estimate 
transition probabilities from nonbreeding regions to breeding regions 
(γw,b), along with nonbreeding relative abundances (W), then the non-
breeding regions become the origin regions and the breeding regions 
the target regions, regardless of where tags were deployed or intrin-
sic data collected. These patterns can also be reparametrized in at 
least one other way (Figure 1; Supporting Information 1). If one is 
referring to a single migration season or animals do not disperse be-
tween breeding or between nonbreeding regions (migrating animals 
return to the region whence they came), these parameterizations are 
equivalent, and it is simple to convert between them using the new 
MigConnectivity function reverseTransition (version 0.4, Table 1; also 
see Supporting Information 1 for the straightforward conversion 
equations).

The strength of migratory connectivity summarizes the pattern 
of migratory connectivity as the degree of population convergence 
expressed by MC (Cohen et al., 2018). We calculate MC from the dis-
tances between each pair of breeding regions (D), distances between 
each pair of nonbreeding regions (V), Ψ and R. We assume that the 
distances between regions can be calculated without relevant error or 
uncertainty, but that is generally not true of transition probabilities or 
relative abundances (among either breeding or nonbreeding regions). 
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4  |    HOSTETLER et al.

When one or both are quantified accounting for and expressing its 
uncertainty, we call that an estimate. The new function estStrength 
replaces and extends the function estMC, providing estimates of MC 
from estimates of transition probabilities and relative abundances, 
and propagating uncertainty from both of those estimates into the 
MC estimates (Table 1; Roberts et al., 2023). We focus here on es-
timating transition probabilities with data integration, as estimating 
abundance has been covered elsewhere (e.g. Johnston et al., 2015; 
Royle, 2004; Sauer & Link, 2011).

Another function added to the MigConnectivity package is est-
Transition (Table 1). It estimates Ψ from a variety of possible data 
types: light- level geolocators (point locations in two seasons with 
assignment error in one of them), telemetry (defined for our pur-
poses as point locations in two seasons with no assignment error or 
detection heterogeneity, such as from satellite GPS), genetic or sta-
ble isotope assignments (point locations in one season with a raster 
layer with probabilities of assignment in the other or point locations 
in one season with probability tables of assignment in the other), and 
banding (point locations in two seasons with detection heterogeneity 
in one). The user can choose between estimation methods: a com-
bined nonparametric/parametric bootstrap or Markov chain Monte 
Carlo (MCMC; the latter currently only handles telemetry and band-
ing data, but generally runs much faster). Besides speed, the biggest 
practical effect of choosing MCMC over bootstrap is that when data 
are sparse, the priors included in MCMC (or any Bayesian analysis) 
will influence Ψ estimates. In some cases, the user may have a pri-
ori information that certain transition probabilities (ψb,w) are unlikely 

(Thorup et al., 2014; Thorup & Conn, 2009), and there are two options 
for using that information in the analysis: fixing them to zero (either 
estimator) or changing the default flat Dirichlet prior on ψb,* from all 
ones to something biologically meaningful and informative (MCMC 
estimator only; Kéry & Royle, 2020). The user can also indicate when 
individual animals have more than one type of marking, which may 
affect the uncertainty of estimates.

2.1.1  |  Banding data

To estimate transition probabilities from banding data, we used a 
simplified multistate model closely related to the division coefficient 
(Kania & Busse, 1987; Korner- Nievergelt et al., 2010). We developed 
methods to fit this model using both MCMC (von Rönn et al., 2020) 
and bootstrapping approaches. Both of these methods facilitate in-
tegrating banding data with other data types to estimate Ψ; we allow 
for the integration of banding and telemetry data using MCMC and 
banding and geolocator, telemetry, genetic (see Section 2.1.2) and/or 
stable isotope data using the bootstrap method. For the bootstrap-
ping approach, the estTransition function samples with replacement 
from all banded animals, including those never reencountered. It 
then calls the new calcTransition function (Table 1) for that set of 
animals, which, for banding data, finds the maximum likelihood so-
lution to equation S18 (Supporting Information 1) using the optim 
function (Bolker, 2008). For the MCMC approach, the estTransi-
tion function calls the program JAGS using the R2jags interface 

Function Description

calcTransition Calculate maximum likelihood Ψ (transition probabilities between 
regions in two phases of the annual cycle) without estimating 
uncertainty or accounting for potential assignment error (e.g. from 
geolocators). If there are no banding data, Ψ is proportional to 
the number of observed animals in each combination of regions. 
If there are banding data, the function accounts for possible 
differences in reencounter probability

estTransition Estimate Ψ (transition probabilities between regions in two phases 
of the annual cycle) with uncertainty. Data can be from any 
combination of geolocators (GL), telemetry/GPS, intrinsic markers 
such as isotopes and genetics, and banding data

estStrengtha Estimate MC (migratory connectivity strength) from estimates of 
Ψ and R (origin region relative abundance), D (distances between 
each pair of origin regions) and V (distances between each pair of 
target regions)

reverseTransition Reverse Ψ and R estimates to calculate or estimate target site 
to origin site transition probabilities (Γ), target region relative 
abundances (W) and origin/target site combination probabilities 
(Π)

simCMRData Simulate banding (capture–mark–reencounter; CMR) migratory 
movement data

simGLData Simulate geolocator (GL) migratory movement data

simProbData Simulate Dirichlet- based probability table data

simTelemetryData Simulate telemetry/GPS migratory movement data

aFunction estStrength was introduced in Roberts et al. (2023).

TA B L E  1  Names and descriptions 
of new functions added to the 
MigConnectivity R package (version 0.4; 
Hostetler & Hallworth, 2024) and used in 
these analyses.
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    |  5HOSTETLER et al.

(Plummer, 2003; Su & Yajima, 2021), with BUGS code adapted from 
von Rönn et al. (2020).

2.1.2  |  Genetic data

A genoscape is a spatially explicit map of genetic variation across the 
geographic extent of the breeding range (Ruegg et al., 2014). The 
genoscape is constructed from genomic sequencing of hundreds 
of individuals across a species breeding range followed by popula-
tion structure analyses using admixture (Alexander et al., 2009) 
or NgsAdmix (Skotte et al., 2013) to provide the baseline genetic 
structure of a species. We used two approaches to assign individu-
als sampled on the nonbreeding range to their breeding origin. For 
population- level questions, we assign individuals to genetically dis-
tinct breeding populations characterized by the genoscape using 
the R package rubias (Anderson & Moran, 2022). The output is a 
probability table of assignment to each defined breeding popula-
tion. For questions that require a finer resolution estimate of breed-
ing location, we estimate the geographic origin of individuals based 
on their genetic backgrounds using the R package OriGen (Rañola 
et al., 2014). The output of OriGen is a raster surface for each indi-
vidual corresponding to the probability of assignment to each pixel 
within the breeding range of the species.

We can use these individual genoscape assignments to estimate 
species- level Ψ including propagation of assignment uncertainty, 

using a combined nonparametric and parametric bootstrap, in which 
we sample animals with replacement and then sample from the uncer-
tainty associated with each sampled individual animal's location in the 
breeding season (Cohen et al., 2018). The estimation of Ψ (and MC) 
from isotope raster surfaces is well established (Cohen et al., 2019), 
and sampling from genoscape raster surfaces can be done in a similar 
way. To integrate intrinsic markers (genetic and stable isotope raster 
data), one can use an application of Bayes' Rule to create a combined 
raster (Ruegg et al., 2017) before calling estTransition. Sampling from 
probability of assignment tables is even simpler (and much faster com-
putationally). After sampling with replacement from individual animals 
with probability table data, estTransition samples a breeding region 
for each animal, with probabilities of selecting regions taken from that 
animal's row of the probability table.

2.1.3  |  Data integration

In previous efforts, Ψ was estimated using only animals first 
captured on the breeding range, where any assignment error or 
detection heterogeneity is on the nonbreeding range (Cohen 
et al., 2018). The reverse transition probabilities (Γ) were only 
estimated where any assignment or detection error was on the 
breeding range. If one has estimates of relative abundance from 
the same range as animals were captured, that range can be desig-
nated the origin range, and Ψ can be converted to Γ or vice versa 

F I G U R E  1  Examples of the three equivalent parameterizations of abundance and migratory connectivity patterns for a species with 
B = three breeding origin regions (depicted here as A, B and C) and NB = two target nonbreeding regions (depicted here as 1 and 2). In 
parameterization I (first column), which could correspond to geolocator data sampled on the breeding ground, Ψ is transition probabilities, 
a B by NB matrix where each row sums to 1 and R is relative abundances among the breeding regions, a B length vector that sums to 1. In 
parameterization II (second column), which could be an example of intrinsic markers like genetics or stable isotopes, Γ is reverse transition 
probabilities, a NB by B matrix where each row sums to 1, and W is a NB length vector of nonbreeding relative abundances that sums to 1. 
The values for Γ provided in the figure are rounded. In parameterization III (third column), Π is the migratory combination probabilities, a B 
by NB matrix where all entries together sum to 1. The directions of the arrows implicit in each parameterization differ: Ψ are breeding- to- 
nonbreeding transition probabilities, Γ are the nonbreeding- to- breeding transition probabilities, and Π are the joint probabilities of making 
each migratory transition. Note that R is identical to the row sums of Π and W is identical to its column sums.
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6  |    HOSTETLER et al.

(Figure 1). However, interest in integrating disparate data sources 
to estimate migratory connectivity has motivated a new question: 
under what circumstances can Ψ be estimated by integrating bidi-
rectional data?

In Supporting Information 1, we demonstrate that for bidirec-
tional or nonbreeding- alone data the combined nonparametric and 
parametric bootstrap with equal weighting of all data points intro-
duced in Cohen et al. (2018) provides an unbiased estimate of Ψ 
only when sampling occurs at all nonbreeding regions in propor-
tion to abundance (regardless of how the breeding regions were 
sampled). However, an unbiased estimate of Ψ is possible with 
a weighted bootstrap, sampling data points with replacement in 
proportion to W

n(NB)
, where n(NB) is the sample size collected in each 

nonbreeding region (see Supporting Information 1 for the weights 
with data going both directions; Hesterberg, 2011). However, 
when not all nonbreeding regions are sampled, this approach won't 
work, as there are no data points from those regions to weight. 
Therefore, for Ψ to be estimated with bidirectional data, sampling 
should occur across all regions on the nonbreeding side; and since 
sampling in proportion to abundance is unlikely, bootstrap samples 
of nonbreeding data should be weighted by estimates of relative 
abundance.

2.2  |  Testing migratory connectivity estimates

We used simulation scenarios and three real data case studies to 
show the conditions under which it is possible to estimate migra-
tory connectivity from data integration, including bidirectional data. 
The fundamental purpose of our simulations and case studies was 
to address a few important questions about the feasibility and help-
fulness of (bidirectional) data integration given real- world sampling 
limitations. The full set is in Supporting Information 2, but key ques-
tions include: Does data integration improve estimate accuracy under 
realistic sample sizes? Does it matter whether sampling was not in pro-
portion to abundance? Does it matter whether sample sizes differ for the 
data types? Can we obtain accurate estimates by integrating data when 
some regions are not sampled?

2.2.1  |  Analyses with simulated data

We simulated a range of data sampling scenarios to evaluate 
whether estimates of Ψ and MC improve with data integration 
methods and the role of sampling design in the value of data in-
tegration (Supporting Information 2; Table S1). All sampling sce-
narios were tested on a biological example loosely based on the 
real- world case study for Yellow Warbler (see Case studies with 
real data), including plausible Ψ and R values and the number of 
breeding populations and nonbreeding regions, as well as the 
distances between them. For comparison with the biologically in-
formed example, a subset of sampling scenarios was tested on a 
simpler, more hypothetical example with more uniform values of Ψ 

and W and more variable R values (Supporting Information 2). We 
simulated 1000 datasets for each scenario using functions simGL-
Data and simProbData, and from each dataset estimated Ψ using 
the function estTransition (Table 1). For simplicity, we assumed 
relative abundances among breeding populations and among non-
breeding regions were known (without uncertainty). We estimated 
MC from Ψ and R using the function estStrength (Table 1). We 
evaluated the performance of Ψ and MC estimates for different 
scenarios using metrics for bias (mean of estimates minus the true 
known value), precision (spread of estimates) and accuracy (mean 
absolute error). A fourth metric, coverage, measures the accuracy 
of the error estimates (proportion of 95% CI that overlap the true 
value). The results for each metric were categorized as good, fair 
or poor (Table S2; see Supporting Information 2 for more details 
about the simulations).

2.2.2  |  Case studies with real data

We demonstrate the methods and explore the usefulness of data 
integration for three bird species with multiple available datasets 
that differ in type, sample size and distribution within the range 
(Figure 2). For two species, the Painted Bunting and Yellow Warbler, 
we implement these methods using published genetic and stable 
isotope data on migratory movements from birds captured and 
sampled in the nonbreeding season and geolocator data from birds 
tagged and re- captured in the breeding season. For a third species, 
the Bald Eagle, we integrate published satellite tracking (Robinson 
et al., 2010) and long- distance band reencounter data between sea-
sons. Estimation of range- wide migratory connectivity requires the 
measurement of movement between seasonally defined regions. For 
the first two species, we used genetically defined breeding popu-
lation extents (Bay et al., 2021; Rueda- Hernández et al., 2023) and 
pre- defined nonbreeding ecoregions (Commission for Environmental 
Cooperation, 1997; Griffith et al., 1998) and for Bald Eagle, we used 
the three North American flyways boundaries (Pacific, Midcontinent 
and Atlantic). We estimated MC using the function estStrength from 
estimated Ψ and R.

The three case studies differed in the data types used to esti-
mate Ψ, but all three used community science database eBird av-
erage relative abundance estimates during the breeding season 
at 9 km resolution (Fink et al., 2022), summed over the defined 
breeding regions and divided by the total to calculate R. Although 
the eBird relative abundance estimates provide measures of un-
certainty (standard deviation and 95% confidence interval [CI]), 
they do not yet include covariance between cells, making it im-
possible to properly estimate uncertainty in R. Therefore, we as-
sumed no uncertainty in relative abundances for the purpose of 
this demonstration. Depending on the needs of the study, one can 
use posterior samples of R estimates from one's own abundance 
analysis in estStrength (e.g. from Breeding Bird Survey data; sim-
plified version of analysis available in modelCountDataJAGS func-
tion; Hostetler & Hallworth, 2024). For the Yellow Warbler, we 
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    |  7HOSTETLER et al.

F I G U R E  2 Sampling locations for data types integrated to measure transition probabilities and strength of migratory connectivity between 
breeding and nonbreeding regions for the Painted Bunting, Yellow Warbler and Bald Eagle. For the Painted Bunting and Yellow Warbler, the 
breeding regions are defined by genoscape- defined populations and the nonbreeding regions were identified by ecoregions across the ranges. For 
the Bald Eagle, the breeding and nonbreeding regions are the three North American administrative flyways. See text for data source citations.
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8  |    HOSTETLER et al.

had data from all nonbreeding regions that we weighted by non-
breeding relative abundance W, and we used eBird data and the 
methods described above for breeding regions to calculate this. 
See Supporting Information 3 for more details about the data and 
methods used in the case studies.

3  |  RESULTS

3.1  |  Analyses with simulated data

We used simulation to explore the influence of sampling on esti-
mates of Ψ and MC with data integration and found two general 
results that were consistent across scenarios. One broad find-
ing was that where the true ψ value was on or near a boundary 
(0 or 1, meaning no movement or complete movement between 
regions), the coverage was never good, and particularly, it was al-
ways poor when the true value was exactly 0 (Table S6). However, 
the point estimate bias, precision, accuracy for boundary ψ were 
still good (or fair), even where most other ψ in the scenario were 
not (Tables S3–S5). For the hypothetical example, where there 
were no ψ values at boundaries (values were all at least 0.1 and 
less than 0.9), the coverages were still mostly fair or poor, suggest-
ing poor coverage may also be influenced by small sample sizes 
(Table S11). Another general result was that all MC estimates from 
the biologically informed example had minimal bias and good ac-
curacy and precision across sampling scenarios (Table S7). Most 
of the biologically informed example's sampling scenarios also had 
good MC coverage; only one related to incomplete sampling (see 
below) had poor coverage. This was not true for the hypothetical 
example scenarios, demonstrating that MC is robust to inaccuracy 
in Ψ estimates in some cases but not in all. Below, we summarize 
the results related to our key questions about the role of sampling 
for data integration (Table S1), and additional results can be found 
in Supporting Information 2.

3.1.1  |  Does data integration improve estimate 
accuracy with realistic sample sizes?

When breeding and nonbreeding- collected data were both propor-
tional to regional abundances, integrating the data sources greatly 
improved Ψ precision over breeding data alone but had little benefit 
over nonbreeding data alone, likely due to the differences in sample 
sizes (60 geolocators vs. 300 genetic samples; Table S4; Figure S4). 
None of the scenarios showed much bias (Table S3). Accuracy re-
sults showed some improvement over breeding data alone but lit-
tle over nonbreeding data alone (Table S5). The coverage from the 
data integration estimates was most similar to the coverage from the 
estimates using only nonbreeding data (mostly fair; Table S6), even 
though coverage of estimates based only on breeding data was bet-
ter, again suggesting the strong influence of sample sizes. The MC 
estimates from data integration had slightly higher precision than the 

estimates from nonbreeding data alone and much higher precision 
than estimates from breeding data alone (Table S7). When breed-
ing and nonbreeding data were not proportional to abundance, but 
nonbreeding data were weighted, the same patterns held (both 
examples; Figures S5 and S11; Tables S3–S12). In summary, data 
integration with real- world sample sizes improves precision of Ψ es-
timates, and it can improve accuracy and coverage; however, esti-
mates are strongly influenced by the data type with the larger sample 
size, and all Ψ estimates are generally unbiased, with or without data 
integration.

3.1.2  |  Does it matter whether sampling was not in 
proportion to abundance?

In the biologically informed example, integration of data that were 
either sampled proportional to abundance or nonproportional but 
weighted by abundance generally both resulted in transition proba-
bility estimates that were unbiased, precise and accurate, although 
coverage was generally only fair (Figure S6; Tables S3–S6). When 
sampling was nonproportional and not weighted by abundance, 
estimates were generally biased (Figure S6; Table S3). The largest 
negative biases were away from the nonbreeding region with the 
highest abundance, and the largest positive biases were toward 
the nonbreeding regions with the lowest abundance. This also 
impacted the accuracy and coverage of this scenario (Tables S4 
and S6). In the hypothetical example, the unweighted ψ estimates 
were also biased, but less so than in the biologically informed ex-
ample, likely due to the nonbreeding abundances being closer to 
equal (Table S8; Figure S12). However, in this example the biased 
transition probabilities also resulted in a biased estimate of MC 
(Figure S12; Table S12). These results demonstrate it is important 
to either sample in proportion to abundance or weight nonpropor-
tional data by abundance, the latter of which is generally possible 
to do after samples are collected.

3.1.3  |  Does it matter whether sample sizes differ 
for the data types?

Genetic and stable isotope sampling from nonbreeding to 
breeding typically results in far greater sample sizes than does 
tracking from breeding to nonbreeding. However, if nonbreed-
ing sample sizes decrease to approximate typical breeding sam-
ple sizes, the benefits of bidirectional data integration became 
clearer (Figures S5 and S7; Figure 3): precision and accuracy of 
Ψ estimates improve with more data, including integrated data 
(Tables S4 and S5). Coverage showed a different pattern; breed-
ing estimates had the best coverage, so less nonbreeding data 
improved the coverage of integrated estimates (Table S6). None 
of these scenarios had much bias in Ψ estimates (Table S3). MC 
estimates were also more precise with data integration and 
larger total sample sizes (Table S7; Figure 3).
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    |  9HOSTETLER et al.

F I G U R E  3  Does sampling at breeding sites need to be in proportion to abundance? How well does integration perform if the sample 
sizes are the same for the data types? Density plots of transition probability (Ψ) and migratory connectivity strength (MC) estimates from 
simulated data. The row indicates the breeding region (A–E), and the column indicates the nonbreeding region (1–4). The bottom panel is for 
MC. The black vertical line indicates the simulating values, from example I (biologically informed). The curves indicate the smoothed density 
plots of 1000 simulations of three sampling scenarios: 60 breeding animals (light- level geolocators); 60 nonbreeding animals (genoscape); 
and the combination of 60 breeding animals and 60 nonbreeding animals.
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10  |    HOSTETLER et al.

3.1.4  |  Can we obtain accurate estimates by 
integrating data types when not all regions are 
sampled?

When geolocator data were not collected from all breeding regions 
but genetic data were collected from all nonbreeding regions, esti-
mates were very similar to when both types of data were collected 
from all regions (Figure S8; Tables S3–S7). However, when data were 
also only collected from some nonbreeding sites, most ψ estimates 
were biased (Table S3). The direction of this bias was toward the non-
breeding regions with data and away from those without. Although 
precision remained good for this scenario (Table S4), Ψ accuracy was 
also poor (Tables S5–S6). All scenarios had good bias, precision and 
accuracy levels for their MC estimates, but MC had poor coverage 
when nonbreeding sampling was incomplete (Figure S8; Table S7). In 
summary, bidirectional data integration that includes incomplete tar-
get sampling (i.e. missing data from some nonbreeding regions) often 
leads to estimates that are biased and have poor accuracy.

3.2  |  Case studies with real data

3.2.1  |  Painted bunting

We estimated Ψ for Painted Buntings with geolocator sampling from 
parts of the breeding range and isoscape and genoscape sampling 
from across the western nonbreeding range (Figure 4). The estimate 
of MC was 0.293 (95% CI: 0.228–0.373). However, sampling by each 
data type was incomplete across the range, and these estimates may 
have been biased by the lack of data from eastern nonbreeding re-
gions (Southeastern United States and the Caribbean).

3.2.2  |  Yellow Warbler

We estimated Ψ for Yellow Warblers with geolocator data from two 
breeding populations, stable isotope data from one nonbreeding region 
and genetic data from across their full nonbreeding range (Figure 4). 

F I G U R E  4  Transition probabilities (Ψ) 
and migratory connectivity strength (MC) 
results of data integration case studies for 
three species. Symbols indicate means and 
lines 95% confidence intervals. On each 
panel, the x- axis indicates the breeding 
population and the symbols and colours 
indicate the nonbreeding region of the 
migratory transition.
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The estimate of MC was 0.458 (0.420–0.499). Comparing estimates 
from the full integrated dataset with estimates missing one or more 
data types, we found the estimates of Ψ without the geolocator data 
were virtually identical to those from the full dataset (Figure S13). 
However, excluding the stable isotope data or both stable isotope and 
geolocator data reduced the precision and strongly influenced some 
ψ estimates (lower from the Arctic and higher from the Southwest to 
Pacific and Central Mexico) (Figure S13). Estimates of Ψ where the non-
breeding data were not weighted by nonbreeding region abundances 
were quite different, with much higher ψ to Pacific and Central Mexico, 
among other effects (Figure S13). MC estimates, however, were gener-
ally similar for data subsets and without weighting (Figure S13).

3.2.3  |  Bald Eagle

We estimated Ψ for Bald Eagles with satellite tracking and banding 
data. The estimate of MC was 0.79 (0.73–0.84), with most remain-
ing in the same flyway between seasons (Figure 4). The Ψ estimates 
from banding data alone were similar to those from the integrated 
data but with even stronger MC (Figure S14). Precision was poor for 
estimates from the telemetry data alone, with substantial differ-
ences between estimators. This difference is likely due to the default 
flat Dirichlet (1,1,1) prior on ψb, in the MCMC analysis. Otherwise, 
the estimates from the MCMC estimator were similar to those from 
the bootstrap estimator (Figure S14).

4  |  DISCUSSION

We developed methods to integrate migratory movement data types 
to estimate the pattern and strength of migratory connectivity. 
Available data types to measure individual movement now include ge-
netic (Ruegg et al., 2014) and banding (Korner- Nievergelt et al., 2010; 
Roberts et al., 2023) data, which can be integrated with previously de-
veloped methods for geolocation, telemetry and stable isotope data 
(Cohen et al., 2018, 2019). We apply these methods in simulations and 
real- world case studies to explore key questions about the usefulness 
of data integration. We show that one can obtain reasonably accurate 
estimates with either breeding- to- nonbreeding data (e.g. telemetry 
or geolocation) or nonbreeding- to- breeding data (e.g. intrinsic mark-
ers), and that integration of these data can in some cases lead to more 
accurate estimates. Notably, the range- wide estimate of MC was in 
some cases more robust to sampling variation than the transition 
probabilities themselves.

We found data integration for migratory connectivity requires 
some key considerations. Perhaps not surprisingly, we found adding a 
small quantity of data to a larger one is likely to have little benefit, al-
though this will also depend on the relative precisions of the two data 
types. We also found it is possible to use nonbreeding- to- breeding 
data to estimate breeding- to- nonbreeding transition probabilities, 
but this requires data from all nonbreeding regions and robust esti-
mates of nonbreeding relative abundance. In terms of sampling across 

regions, this requirement may become easier to meet as data accumu-
late for many species and with increased tissue sampling that can be 
used for isotopic and genetic analyses. The relative abundance data 
(e.g. from eBird) can be applied to weighting the resampling so that it 
is not necessary to sample a priori in proportion to abundance. In the 
absence of reliable relative abundance estimates, there are a couple 
of options: (1) use only data going in one direction and estimate tran-
sition probabilities going that same direction and (2) estimate transi-
tion probabilities using bidirectional data without relative abundance 
weighting and live with potentially biased estimates. Given the large 
biases from following the latter and the often- limited benefits of data 
integration seen in simulation, we suspect that the former will gen-
erally lead to more accurate estimates. This highlights the value of 
not only collecting nonbreeding data for migratory species but also 
following that through with a nonbreeding focus to modelling efforts 
(in this case, estimating nonbreeding- to- breeding transition probabil-
ities; Marra et al., 2015).

Another key consideration is the spatial extent of the data in 
each season. For example, considerable data were available for the 
Painted Bunting, but because the sampling was incomplete across 
the nonbreeding range (the west was well covered, but the east was 
not sampled) and sparse across the breeding range we were not able 
to obtain unbiased estimates. A solution to this would be to add 
genoscape samples from the Southeastern United States and the 
Caribbean. For example, the Yellow Warbler case study met these 
conditions with genetic data from across the full nonbreeding range 
along with geolocator data from two breeding populations and sta-
ble isotope data from one nonbreeding region. In this case, the addi-
tion of even the limited stable isotope and geolocator data improved 
the precision of estimates.

Range- wide analyses of migratory connectivity avoid the issue of 
the scale dependence (Cresswell & Patchett, 2024; Sharp et al., 2023; 
Vickers et al., 2021) and, as we demonstrate here, integration of bi-
directional data can improve range- wide measures. In terms of 
sampling, assignment from tissues collected in all regions of the non-
breeding range is likely to be possible at a much lower cost (they can 
include historical collections) than tagging and tracking (often requir-
ing recapture to recover archival tags) a comparable number of ani-
mals from all breeding regions, although it is important to remember 
the need for breeding range reference samples when calculating cost 
(Vincent et al., 2022). Individual tracking data are generally higher- 
resolution and inarguably key to understanding many aspects of 
migratory behaviour (Scarpignato et al., 2023), but given the strong 
influence of sample sizes, it may often be worthwhile to complement 
tracking data with intrinsic markers from across the nonbreeding 
range for robust range- wide estimates of migratory connectivity. As 
we demonstrated for the Bald Eagle, some species may have consid-
erable banding reencounter data and integrating these with tracking 
data can improve estimates from tracking alone which are rarely com-
prehensive in coverage across the range.

Our analysis does have some limitations and considerations. We 
did not attempt to fully explore the sampling or species biology space, 
so all conclusions are limited to what we did test. Our simulations did 
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12  |    HOSTETLER et al.

not include mark–reencounter data, which differs from the simulated 
geolocator and genetic data in having detection heterogeneity error 
instead of location or assignment error. Preliminary simulations and 
our Bald Eagle case study suggest that transition probabilities esti-
mated from breeding- to- nonbreeding banding data are accurate, but 
our conclusions about how nonbreeding- to- breeding data can be 
used may not apply to mark reencounter data. None of our examples 
included relative abundance uncertainty, which should be included 
when possible. For example, if one estimates relative abundances 
of regions oneself using MCMC, one can feed in the full posterior 
samples to our functions rather than just the point estimates. Cohen 
et al. (2018) found that abundance variation can be less important for 
MC than transition probability variation, but there is value to includ-
ing all relevant sources of uncertainty. In some simulation sampling 
scenarios, MC estimates were accurate even when some transition 
probabilities were not. However, this was not always the case, and 
we caution against assuming that migratory connectivity strength 
estimates are always accurate. We suggest that those interested in 
estimating migratory connectivity simulate data using our simulation 
functions (Table 1) to determine whether the data that the user has 
available may provide accurate estimates. Finally, the coverage of our 
estimates was often poor, especially for transition probabilities near 
the boundary (close to 0 or 1). We suggest being cautious in the inter-
pretation of confidence intervals and standard errors of estimates less 
than 0.1 or greater than 0.9. Improving coverages of estimates on the 
boundaries would be a helpful advance for these estimates.

There are ways that the estimation of migratory connectiv-
ity and the MigConnectivity R package could be extended further. 
Several of the assumptions of our analyses, such as constant survival 
across nonbreeding regions and constant tag recapture probabili-
ties across breeding regions, could be relaxed (Rushing et al., 2021). 
The MCMC estimators have some advantages over bootstrap ones 
(such as speed), and we could further extend the data types that 
the former can handle. In addition, recent studies have shown that 
relative abundances in the two seasons, along with some untested 
assumptions, could be sufficient for estimating transition proba-
bilities (at least for species that meet those assumptions; Fuentes 
et al., 2023; Somveille et al., 2021; Vincent et al., 2022). It is proba-
ble that whether these relative abundance data were carefully inte-
grated with individual- based migration data that some or all of these 
assumptions could be relaxed. Future developments for the package 
could include expanding user- friendly data importation options from 
sources such as Movebank and the Motus Wildlife Tracking System, 
a network of automated radio- telemetry stations (Kays et al., 2022; 
Taylor et al., 2017), and the addition of tracking with barometric geo-
locators tags (Nussbaumer et al., 2023).

Information about the full annual cycle distributions of popula-
tions is necessary to understand and conserve migratory animals 
(Marra et al., 2015). Our ability to address range- wide questions 
about the seasonal distributions of migratory species across stud-
ies, data types and taxonomic groups has often been limited by 
sparse and incomplete sampling (Cresswell & Patchett, 2024), 

but this may be changing as datasets from many diverse data 
types are increasingly available. Furthermore, the estimation of 
migratory connectivity requires the identification of meaningful 
regions and accounting for sampling effort relative to abundance 
among those regions. The designation of populations or regions 
is project- specific and can be based on management (Roberts 
et al., 2023), population trends (Rushing et al., 2016) and genetics 
(i.e. genoscape, Ruegg et al., 2014), depending on the question. 
Datasets to account for relative abundance among regions are 
now available for most avian species (e.g. eBird, Breeding Bird 
Survey, waterfowl population counts; Fink et al., 2022; Sauer & 
Link, 2011; U.S. Fish and Wildlife Service, 2022). Given all this, the 
future of migratory connectivity research clearly includes data 
integration (Gregory et al., 2023; Korner- Nievergelt et al., 2017; 
Meehan et al., 2022)—these methods and the MigConnectivity R 
package will facilitate this work.
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