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Abstract

Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been
widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate
and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between dis-
tinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the
polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to
which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-
wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range.
Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons
between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support
for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of
parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of
migration.
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Lay Summary

Migration is a complex behavior that has been switched multiple times throughout evolutionary history. However, it remains unclear
whether the modulation of migration in different groups is due to parallel evolution, where the same genetic changes result in
similar phenotypes, or convergent evolution, where different genetic changes result in the same phenotypes. Here we use genomic
data across the breeding range of the Common Yellowthroat (Geothlypis trichas) to both investigate population genetic structure and
identify candidate genes underlying the evolution of diverse migratory behaviors. We analyze genomic data from migratory and resi-
dent populations within the eastern and western groups with distinct evolutionary origins. Within three replicate migratory-resident
comparisons, we use outlier analyses and selection scans to identify migration-linked candidate genes. We find evidence of parallel
evolution at the genic level, particularly in genes linked to biological time keeping. However, we find little evidence of parallelism at
the individual SNP level, supporting the idea that there are multiple pathways to the propensity of migratory behavior.

Introduction resident behaviors, as observed across the evolutionary history of
various species (Able & Belthoff, 1998; Liedvogel & Delmore, 2018;
Pulido, 2007), similar to the repeated loss and gain of eye func-
tion in several species of cave dwelling fishes or body armor in
stickleback fish (Colosimo et al., 2005; Jones et al., 2012; Sifuentes-
Romero et al., 2023). In migratory birds, for example, captive
breeding experiments on black-capped warblers have shown
that under the right environmental conditions a population can
shift from completely migratory to completely resident in a few
short generations (Pulido & Berthold, 2010; Pulido et al., 1996).
Comparing populations at the extreme ends of the spectrum of

Seasonal migration, which involves yearly movements between
breeding and wintering grounds, is a widespread phenomenon
in the animal kingdom (Adriaensen & Dhondt, 1990; Liedvogel &
Delmore, 2018). Rather than simply being gained or lost, migra-
tory behavior is generally thought of as a highly polygenic trait
that evolves under a threshold model of evolution (Pulido, 2011).
Genetic variation controlling to the propensity to migrate is
thought to be maintained within populations and, as such, can
be rapidly acted upon by selection (Berthold & Pulido, 1994). As a
result, populations can repeatedly switch between migratory and
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migratory behavior (i.e., resident versus fully migratory) using
recent advances in genomics provides a unique opportunity to
identify the genetic polymorphism underlying this complex trait
and how genes associated with migration are modulated within
and across populations, rather than complete gains or losses of
migratory behavior.

Current migration genetics research has revealed a lack of con-
sensus regarding the genes that may play a role in bird migration
(Bazzi et al., 2017; Lugo Ramos et al., 2017). For instance, recent
research in Willow Warblers identified two genes putatively
underlying migratory direction between two of the European sub-
species (Sokolovskis et al., 2023), but these same genes did not
account for directional differences in a closely related Siberian
form (Lundberg et al.,, 2017). Another study found clock-linked
genes regulate migratory timing in American kestrels (Bossu et
al., 2022), but these genes largely differed from those identified
in migratory timing studies in several other species (Johnsen
et al., 2007; Liedvogel et al., 2009; Saino et al., 2015). Similarly,
genes related to fat deposition and aerobic capacity in migrant
and resident European blackbirds (Franchini et al., 2017) were not
the same as the genes found to be associated with lipid metab-
olism in Gray Catbirds (Corder et al., 2016). To better understand
the genetic basis underlying this dynamic phenotype, it would
be valuable to compare signatures of selection in closely related
groups that have different migratory behaviors (e.g., Fudickar et
al., 2016).

Genetic convergence occurs when different genetic changes
result in the same phenotypes (Arendt & Reznick, 2008), while
parallel evolution occurs when the same genetic changes result
in similar phenotypes (Bailey et al., 2017). At present, there is
no clear consensus as to how widespread convergent and par-
allel evolution are in nature because it is often difficult to dis-
tinguish between the two (Pickersgill, 2018; Stern, 2013). Studies
examining replicated transects of hybrid zones in various taxa,
such as European crows, Bahama mosquitofish, and three-spine
stickleback, indicate that both genetic convergence and par-
allel evolution are frequently observed mechanisms of evolu-
tion (Langerhans, 2018; Marques et al., 2022; Vijay et al., 2016).
These studies offer valuable insights into the genetic basis of key
fitness-linked traits, including bill size, body shape, feather color-
ation, aggression, armor plating, and spine length, as well as the
extent to which they have evolved through convergence or paral-
lel genetic mechanisms. This existing research demonstrates that
the prevalence of genetic convergence versus parallel evolution
can differ depending on the phenotypes, traits, and species under
investigation. Therefore, it is necessary to examine each pheno-
type on a case-by-case basis.

Here we study replicate comparisons between migratory and
resident forms of the Common Yellowthroat (Geothlypis trichas) to
quantify the degree of genetic convergence or parallelism in genes
linked to migratory behavior. This species is an ideal system in
which to address these questions because migratory and resident
populations within the eastern and western groups are known to
have distinct evolutionary origins (Ball & Avise, 1992; Escalante
et al., 2009). Phylogenetic analyses have shown that G. trichas is
a polyphyletic species where the eastern group is more closely
related to two Mexican resident species: G. nelsoni and G. flavove-
lata, and the western group is more closely related to G. beldingi,
a resident species found in Baja California Sur, Mexico (Escalante
et al.,, 2009). Overall, our study has three main goals: (a) to char-
acterize genome-wide population genetic structure across the
breeding range, (b) to identify candidate genes involved in migra-
tory behavior across three replicate comparisons of migratory

and resident populations that span multiple environments and
latitudes, and (c) to quantify the extent of parallel versus con-
vergent evolution in genes linked to migratory behavior within
the Common Yellowthroat compared to other migratory bird
species. By having three different comparisons between migrant
and resident phenotypes that span multiple distinct evolution-
ary histories, different environments and latitudes—southeast
versus migrant, southwest resident versus migrant, and northern
California coastal resident versus migrant—we are able to con-
trol for multiple confounding variables and examine how genetic
convergence and parallel evolution has contributed to the modu-
lation of migration across distinct evolutionary lineages.

Methods

Sampling and DNA extraction

We compiled a collection of 202 blood and feather samples from 22
locations across the breeding range of the Common Yellowthroat,
Geothlypis trichas (Figure 1, Supplementary Table S1). While 18
populations were migratory, we specifically included sampling
of two resident populations in the West (northern California and
Arizona) and two resident populations in the East (Florida and
Alabama) to allow replicated migratory-resident comparisons.
Not only are these phylogenetically independent resident popula-
tions, they span multiple environments and latitudes-southeast
resident versus migrant, southwest resident versus migrant, and
northern California coastal resident versus migrant, which allows
us to tease apart different selection pressures and latitudes. DNA
was extracted from all samples using the Qiagen DNeasy Blood
and Tissue extraction kits (Qiagen Inc., Valencia, CA, USA). For
blood samples, we followed the standard tissue extraction proto-
col using 20 pl of blood suspended in Queen’s lysis buffer (Seutin
et al,, 1991). For feathers, at least one calamus/sample was cut
using a sterile razor and incubated during the tissue digestion
step for 24 h with the addition of 10 pl of dithiothreitol (DTT). We
conducted the elution step twice to obtain final volumes of 120
pl of purified DNA. DNA quantification was done using a Qubit
dsDNA HS Assay kit (Thermo Fisher Scientific).

Low coverage whole genome re-sequencing

We used a modified version of Illumina’s Nextera Library
Preparation protocol to prepare whole-genome sequencing librar-
ies and pooled the libraries by equal mass prior to sequencing.
The first step in library prep was the tagmentation reaction that
fragmented DNA and we then tagged the DNA with adapter
sequences. Library amplification was completed using a limited-
cycle PCR program, followed by a reconditioning PCR step, and a
cleaning step with AMPure XP beads that size selects short library
fragments. We quantified the library with a Qubit plate reader
and normalized the quantity of libraries to be pooled together.
Final libraries with a volume of at least 20 pl and a concentration
of at least 2 ng/pl were sequenced on two Illumina HiSeq4000
(llumina) lanes and on one Illumina Novaseq 6000 lane by
Novogene Corporation (en.novogene.com).

Processing raw reads and variant detection

A pipeline adapted from the Genome Analysis Toolkit (GATK) Best
Practices Guide (Van der Auwera et al., 2013) was used to process
raw reads before genotype calling. Briefly, we trimmed adapters
using TrimGalore (Krueger, 2020), marked PCR duplicates using
samtools (Li et al.,, 2009), and paired-end raw sequence reads
were aligned to the Common Yellowthroat reference genome
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Figure 1. Population structure results obtained with AdmixPipe performed for each main group: West and East (A). Geographic distribution
of population structure (B). Evolutionary relationships inferred with Treemix (C). The letter codes represent different sampled localities (see
Supplementary Table S1), and different colors represent main clusters found. Resident populations are represented inside dotted circles.

using bwa-mem (Li & Durbin, 2009). Read groups (sample, lane,
library) were added using picard (http://broadinstitute.githut.io/
picard), and bam files were merged using samtools (Li et al., 2009)
if individuals were sequenced on multiple lanes. Genotype call-
ing was performed with GATK HaplotypeCaller (Van der Auwera
& O’Connor, 2020) and genotypes were filtered for minor allele
frequency (maf =0.05 and max-maf = 0.95), quality (q = 30), and
allelic number (min-alleles =2, max-alleles =2) using vcftools
v.0.1.16 (Danecek et al., 2011). The dataset was further filtered for
missingness, keeping only variants identified in 75% of the indi-
viduals. Finally, missing genotypes were imputed using beagle 4.1
(Browning & Browning, 2007). For downstream analyses that used
genotyped probabilities, we calculated genotype probabilities
using ANGSD v.0.921 (Korneliussen et al., 2014).

Genome annotation

To annotate the Common Yellowthroat genome (Bobowski et al. in
review), we used the best practices of the maker pipeline (Cantarel
et al., 2008). Repeat masking was carried out using Repeatmasker
(Smit et al., 2013), while SNAP (Korf, 2004) and AUGUSTUS (Stanke
et al., 2006) were used as ab initio gene predictors. We utilized the
gene predictions of the chicken in AUGUSTUS and proteins of the
Zebra finch (Taeniopygia guttata) from Swiss-Prot (Bateman, 2019)
and verified gene models from Zebra finch (taeGut-3.2.4) to sup-
port the gene prediction.

Population structure

Previous research suggests that a deep divergence between east-
ern and western forms of the Common Yellowthroat exists as a
result of their polyphyletic origins (e.g., Escalante et al., 2009).

To confirm the existence of a deep divergence within the spe-
cies using genome-wide data, we utilized Treemix v1.1 to recon-
struct the evolutionary relationships among the 22 populations
sampled across their breeding range (Pickrell & Pritchard, 2012).
This program uses genome-wide allele frequency data to infer
evolutionary relationships and potential migration events. We
then used the Popgen Pipeline Platform (PPP) (Webb et al., 2021)
to convert our imputed vcf file to the treemix input file using the
vcf_to_treemix.py function. When running Treemix, we generated a
bootstrap replicate by resampling blocks of 500 SNPs.

To assess population genetic structure within eastern and
western clades we conducted both a Principal Component
Analysis (PCA) and ran ADMIXTURE (Alexander et al., 2009). To
conduct the PCA we used the single read sampling method (srs) in
the R package srsStuff (erigande.github.io). Single read sampling
randomly samples one read per site, which eliminates coverage
issues that can mask PCA patterns. We exported allele depths
using bcftools (Danecek et al., 2021). To better assess relatedness
and geographic variation within and between eastern and west-
ern clades, we created PCAs for all the data, as well as for the East
and West separately. Because the presence of related individu-
als can obscure geographic patterns, we also used the srsStuff R
package to identify related individuals based on pairs or clusters
of individuals that exhibit high genetic covariance. For the six
pairs with genetic covariances 0.3, we kept one individual per
pair and filtered out the remaining six individuals.

To parse and filter imputed VCF files in preparation for
ADMIXTURE (Alexander et al., 2009), we used AdmixPipe v3
(Mussmann et al., 2020). East and West variant datasets were fil-
tered based on a minimum allele frequency of 0.05 and thinned

G20z aunr 2z uo 1senb Aq GGz L6.2/681/2/6/2191E/N8IAS/W0ddNo dlwspeoe)/:SdjjY Wwolj papeojumoq


http://broadinstitute.githut.io/picard
http://broadinstitute.githut.io/picard
http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrae064#supplementary-data

192 | Zamudio-Beltran et al.

to include one locus within 1,000 base pairs to remove linked
loci. ADMIXTURE was run on the resulting filtered Eastern and
Western datasets at K values from one to six, with five independ-
ent replicates for each K value. Admixture runs were considered
complete when log-likelihood converged and increased by less
than 10-* between iterations. Values of cross validation error were
plotted to visualize the best K values. Additionally, we measured
the nucleotide diversity (m) per window using variant + invariant
sites with no MAF filter and obtained mean values in vcftools
v.0.1.16 (Danecek et al., 2011) (--window-pi in 10 Kb window) to
evaluate genetic diversity variation within populations.

F_. outlier detection

We used ANGSD v.0.921 (Korneliussen et al., 2014) to generate
site allele frequency files for each of three resident populations-
northern California (CA_n), Arizona (AZ), and Florida and Alabama
combined (East). To create the site allele frequency files for the
East and West migratory populations, we merged data between
sampling sites that exhibited no signs of population structure. In
the West, we combined individuals from the Alberta (AB), Alaska
(AK), British Columbia (BC), southern California (CA_s), Montana
(MT), New Mexico (NM), Nevada (NV), Washington (WA), and
Wyoming (WY) migratory populations. In the East, we combined
individuals from migratory populations in Kansas (KS), Kentucky
(KY), Michigan (MI), New Brunswick (NB), New York (NY), Ontario
(ON), Pennsylvania (PA), and Quebec (QUE). North Carolina (NC)
was excluded from the Eastern group because it fell on the border
of the eastern resident and migrant populations and was geneti-
cally ambiguous (Figure 1, Supplementary Figure S1).

To determine global F . and identify regions potentially sig-
nificant to migration strategy, we utilized realSFS in ANGSD
v.0.921 (Korneliussen et al., 2014). We calculated F, within 50 kb
sliding windows with 25 kb steps, set the max number of sites
to 15 million bases (-nSites) and considered outlier regions that
fell within the 99th percentile. We estimated F . between the
following three resident-migrant comparisons: (a) Arizona resi-
dents vs. West migrants, (b) northern California residents vs. West
migrants, and (c) East residents (Florida and Alabama) vs. East
migrants. To narrow our F. . scan to variants that were related
specifically to migration rather than demographic history and
population differentiation, we excluded any variants that were
outliers in comparisons between migratory populations in differ-
ent regions (but within the East or West), as these would repre-
sent population differentiation unrelated to migration strategy.
For example, in the East this included comparisons of migrants in
the Midwest (Michigan) versus migrants along the Atlantic Coast
(New Brunswick). In the west, this included migrants in the Pacific
Northwest (Washington) versus migrants in the West Central
region (Wyoming). We additionally excluded variants identified
as outliers between resident population comparisons in the West
and East regions (e.g., northern CA vs AZ and FL vs AL, respec-
tively). We used bedtools v.2.30.0 (Quinlan & Hall, 2010) to remove
overlapping regions in the East and West separately due to their
distinct evolutionary histories. To identify parallel and convergent
outlier windows among the three resident-migrant comparisons,
we utilized bedtools v.2.30.0-intersect (Quinlan & Hall, 2010) and
visualized results in Manhattan plots (Figure 2).

To identify outlier genes specific to migration, we calculated
site-wise F_ estimates following the same steps as the outlier
window identification methods described above. Loci were con-
sidered outliers if they fell within the 99th percentile of resident-
migrant comparisons and were also not identified as outliers in

migrant-migrant and resident-resident comparisons. We inter-
sected the site-wise F_ outliers with the annotated genome using
bedtools --closest (Quinlan & Hall, 2010) and focused on variants
that were found in or within 25 kb of genes linked to migration
based upon an exhaustive literature search (Table 1).

Genome-wide selection scan

To identify genome-wide selection signatures between popu-
lations with differing migratory phenotypes, we utilized prin-
cipal component analysis-based selection statistics that have
been expanded to consider genotype uncertainty (Meisner et
al., 2021). We first used ANGSD (Korneliussen et al., 2014) to
generate genotype likelihood beagle files for the East and West
separately. Subsequently, we employed the PCAngsd frame-
work (Meisner & Albrechtsen, 2018) to perform a genome-wide
selection scan, which uses an extended model of FastPCA
(Galinsky et al., 2016). This scan incorporates population struc-
ture by estimating individual allele frequencies iteratively. We
converted the PCAngsd output statistics into p-values using a
x? distribution and identified genes that had strong selection
signals within 25 kb of the gene (i.e., p-values < 0.05). We then
determined whether any of the genes with a signal of selec-
tion overlapped with migration-linked genes identified in the
F,, outlier scan.

Because the above selection scan does not indicate on which
population selection is acting, we additionally calculated cross
population extended haplotype homozygosity (XP-EHH; Sabeti et
al., 2007) to identify recent positive selection in all three com-
parisons. This test detects selective sweeps in which the selected
allele has approached or achieved fixation (above 80%; Sabeti et
al., 2007; Voight et al., 2006) in one population (i.e., the resident
population), but not all populations (i.e., the migratory popula-
tions), or vice versa. As this scan focuses on more recent signals
of selection, it will not be influenced by historical demographic
processes. The imputed vcf file was first phased with beagle 5.1
(Browning et al., 2018) and then realigned to the zebra finch ref-
erence genome assembly (taeGut-3.2.4) in satsuma? (Grabherr et
al.,, 2010) to create a phased chromosomal and imputed dataset.
The phased chromosomal vcf was then subset into each chromo-
some and for each of the five populations used in the replicate
comparisons: AZ resident, northern CA resident, West migrants,
East residents, and East migrants. We used selscan v2.0.1 (Szpiech
& Hernandez, 2014) to run the XP-EHH test. Given the XP-EHH
value can be positive or negative depending on which population
selection is acting in, the p-value was based on the rank of the
absolute value of the XP-EHH statistic. We considered variants
to be significantly selected in one population if -log(p-value) was
greater than two (p-value =0.01). We then annotated the pre-
dicted function of these selected variants using SNPEff (Cingolani
etal, 2012).

Results

Variant detection

We sequenced 202 individuals over three lanes of sequencing.
Five of the 202 samples were only sequenced on one lane because
their coverage was within our goal (2x), while the remainder
were re-sequenced on additional lanes due to low yield of early
sequencing runs. Quality of reads was very high across libraries,
as indicated by an average Phred quality score of 36. The final
dataset included 202 Common Yellowthroat (Supplementary
Table S1) with an average coverage of 2.88X.
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Figure 2. Genetic differentiation, F

ST

estimated in 50 kb sliding windows across the genome between a set of three resident-migrant comparisons.

(A) AZ resident vs. Western migrants, (B) CA resident vs. Western migrants, and (C) East residents vs. Eastern migrants. Genomic regions of extreme
differentiation (>99th percentile) identified in a single comparison are highlighted in each panel. Additionally, shared windows between two
comparisons (A and B, A and C, and B and C) are highlighted as are windows shared across all three comparisons (A, B, C). The nine outlier migration-
linked genes between all three comparisons are highlighted with asterisks. Colors correspond to Figure 4 and Table 1.

Processed reads aligned to the reference genome with an aver-
age overall rate of 99%. An average of 97% of mapped reads were
retained after filtering for multiple hits and were used for down-
stream analyses. We built a catalog of 74,750,284 loci. After filter-
ing for minor allele frequency (maf=0.05 and max-maf =0.95),
quality (q =30), allelic number (min-alleles = 2, max-alleles = 2)
and missingness (max-missing = 0.75) in vcftools v.0.1.16 (Danecek
etal., 2011), we obtained a final dataset of 18,130,407 SNPs distrib-
uted across the genome. We further removed six individuals due
to relatedness identified in srsStuff R package (covariance S 0.3).

Population structure

At a broad scale, the analysis of population relationships using
Treemix revealed general patterns that confirms that the main
separation within Common Yellowthroats is between populations

in the East and West (Figure 1C). Additionally, within the East, the
resident populations are clustered in one monophyletic group,
whereas in the West the two resident populations do not clus-
ter together (Figure 1A). This supports the polyphyletic relation-
ship between eastern and western groups. Overall, the PCA and
ADMIXTURE analysis confirmed the Treemix results showing that
the primary division is between populations in the East and West
(Supplementary Figure S2A). When PCAs were constructed for
populations within the East and West separately, resident, and
migrant populations grouped separately (Supplementary Figures
S2B and S2C). Because the admixture results were inconclusive
regarding the best K value, we selected the K values that repre-
sented consistent, meaningful geographic structure identified in
the admixture plots (see Supplementary Figure S1). In the West we
identified a total of four genetic clusters (Figure 1), including two
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Figure 3. Manhattan plots of the cross population extended haplotype, XP-EHH, candidate loci identified in resident (positive XP-EHH statistic)
and migrant (negative XP-EHH statistic) populations for three resident-migrant comparisons: (A) AZ resident vs. Western migrants, (B) northern
CA resident vs. Western migrants, and (C) Eastern residents vs. Eastern migrants. Illustrations by Erica Robertson (Geothlypis trichas) and used with

permission.

the directionality of the selection footprints differed across com-
parisons, the distribution of predicted functions of the selected
loci was similar. The majority of loci identified in selective sweeps
were found in noncoding regions (e.g., intronic, intergenic regions,
and regulatory regions; Supplementary Table S2). We identified
very few synonymous mutations, one missense mutation, and no
nonsynonymous mutations (Supplementary Table S2). This sug-
gests that cis-regulatory elements that regulate the expression of
migration-linked genes underlie the differentiation of migratory
behavior rather than causal mutations in coding regions.

In Arizona, we identified 114 outlier loci associated with
migration-linked genes, 70 outlier loci identified in the California
comparison and finally we identified 608 outlier loci in the East
resident-migrant comparison. On the SNP-level, there was only
one locus shared between the California and East resident-
migrant comparison and none were shared among all three
comparisons. On the genic level, 29 migration-linked genes were
identified in the Arizona comparison, 21 genes were identified
in the California comparison, and 28 were identified in the East
migrant-resident comparison. Altogether, six genes were shared
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between the Arizona and California resident-migrant compar-
isons, eight genes were shared between the AZ and the East
resident-migrant comparisons, four genes were shared between
CA and East resident-migrant comparisons, and nine genes were
shared between all three resident-migrant comparisons (Table 1;
Figure 4).

Genes associated with migration

Using the genes identified in both the F_ outlier and both selec-
tion scan approaches, we categorized genes associated with
migration into the following three groups (Table 1): (a) migration
timing, including circadian rhythms, and metabolic sensors and
photoperiodic pathways which regulate clock function, (b) the
energetics of flight, including metabolism and energy expendi-
ture, and (c) morphology potentially related to the aerodynamics
of flight. Overall, we identified 30 genes linked to migration tim-
ing (Table 1), 17 of which are identified as outliers in at least two
comparisons and 13 of which were only found in one comparison.
Five of the 30 genes were core clock genes underlying circadian
rhythms, while 12 genes were known to modulate or entrain cir-
cadian rhythms via light input or metabolic sensor pathways, five
were clock-controlled genes, six were known to regulate clock,
and two were involved in the sleep-wake cycle. Alternatively, we
identified six genes associated with the energetics of flight, all
except one, ggt7, of which were found in multiple comparisons
as well as multiple other bird species (e.g., Franchini et al., 2017;
Lundberg et al., 2017). In general, these genes were involved in
lipid and glucose metabolism, and migration molt. Finally, we
identified six genes associated with morphology, all except one,
tnfrsflla, of which were identified in multiple comparisons and
all except one of which was found in other bird species. Many of
these were known to be involved in cytoskeleton regulation, bone
metabolism, and bone mass.

Discussion

Although there have been numerous studies focused on under-
standing the genetic basis of migratory behavior, none of them

Migration-linked candidate SNP overlap
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have used genome-wide analyses with replicate population
comparisons in which different migratory phenotypes exist in
closely related groups. Replicated comparisons of migratory and
resident populations offer a unique opportunity to observe the
degree of genetic convergence or parallelism underlying this
notoriously complex phenotype. Here we analyze the population
genomic structure of the Common Yellowthroat across the breed-
ing range and find strong population structure between eastern
and western groups as well as between resident and migratory
forms within each group. When comparing signatures of puta-
tive selection between migrants and residents in the west and
east, we observed limited evidence of genetic parallelism at the
individual SNP level, but strong support for parallel evolution at
the genic level. Parallel evolution was strongest in genes linked
to morphology and metabolic processes necessary for meeting
the physiological demands of migratory flight, as well as genes
related to biological clock mechanisms likely involved in migra-
tory timing. Alternatively, genetic convergence was also wide-
spread, with many different migration-linked genes coming out
as important in one or two comparisons, but not all three. These
findings underscore the existence of multiple evolutionary path-
ways leading to similar adaptations and help clarify why previous
studies have failed to find parallelism in genes associated with
migration (Lugo Ramos et al., 2017).

Geographic structure and evolutionary
relationships

The Common Yellowthroat represents a unique system that
exhibits strong geographic variation across its entire range.
Previous work has identified numerous mechanisms leading
to this population structure, including historical demography
(Ball & Avise, 1992), adaptation (Bolus, 2014), dispersal capabil-
ity (Escalante et al., 2009), and sexual selection (Sly et al., 2022).
However, much of the previous work was restricted by small sam-
ple sizes (~30 individuals) and/or the use of a single molecular
marker (e.g., mitochondrial DNA; Escalante et al., 2009). In this
study, we used genome-wide sequencing and comprehensive
range-wide sampling to clarify the evolutionary relationships

Migration-linked candidate gene overlap
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A AZ resident vs. western migrants

B CA resident vs. western migrants

C East resident vs. eastern migrants

Figure 4. Venn diagrams that express parallelism between three replicate resident-migrant comparisons in migration-linked outlier variants (A) and
outlier genes (B) for both the F. outlier scan and the XP-EHH candidate loci identified in the resident populations.
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within this species. Similar to previous studies, our findings indi-
cate that the primary genetic division exists between the eastern
and western clades. Additionally, within the west, we identified
genetic breaks between CA residents, AZ residents, and the west-
ern migratory populations, with weaker and more clinal variation
across the western migratory populations (AK, NV, AB, BC, MT,
WY, NM; Figure 1). Moreover, sampled populations within the East
clustered in three distinct genetic groups: Northeastern (NB, PA),
Midwest (KS,KY, MI, QUE, ON, and NY) and a Southeastern resident
cluster (FL and AL), with a transition zone in North Carolina (NC)
(see Figure 1A, Supplementary Figure S1). Previous multi-species
phylogenetic analysis suggests that the main split between the
East and West groups resulted from the Eastern form being sis-
ter species to two resident species in northwestern and central
Mexico, Geothlypis nelsoni and G. flavovelata, while the Western
form evolved from a common ancestor shared with G. beldingi,
a resident species in Baja California Sur, Mexico (Escalante et al.,
2009). Our results, which identified a strong split between east-
ern and western groups with weaker structure within each group,
lend further support to the hypothesized polyphyletic origins of
Common Yellowthroats. Here we take advantage of the polyphy-
letic origin of the two main clades to assess the extent to which
there has been parallel or convergent evolution in the genes asso-
ciated with migration or residency in the east and the west.

Selection signals in replicate comparisons

Genomic evidence of selection has been widely viewed as an
effective approach for exploring the potential genetic mechanism
of phenotype differentiation (Amaral et al.,, 2011; Andersson &
Georges, 2004; Oleksyk et al., 2010). To identify loci underlying
differences between resident and migratory phenotypes of the
common yellowthroat, we combined F_ outlier scans, which are
effective for detecting high allele frequency differences between
populations that have evolved over longer timescales, and
haplotype-based selection scans that are designed to assess the
direction of selection on more recent timescales (XP-EHH; Sabeti
et al.,, 2007; Teshima et al., 2006). We found a higher proportion
of selected loci in California residents when compared to the
migrants, suggesting an adaptive suppression of migration in
California. This same pattern was repeated in the east in com-
parisons between eastern residents and eastern migrants. This
pattern is consistent with the hypothesis that residents represent
derived forms that split off from ancestral migratory populations.
In this context, the stronger selection signals in residents could
reflect genetic changes associated with the suppression of migra-
tory behavior, potentially allowing for the rapid shift from migra-
tory to resident phenotypes while retaining the genetic basis of
migration. Alternatively, we saw no difference in the proportion
of selected loci between Arizona residents and migrants, support-
ing the idea that Arizona residents evolved independently from
California residents. However, while our results are suggestive of
a drop-off model, it is important to note that additional demo-
graphic analyses would be necessary to confirm this evolutionary
scenario. Thus, while the observed directional selection in resi-
dents provides evidence about the adaptive suppression of migra-
tion, further work is needed to elucidate the demographic context
of these findings.

Our analysis of the putative function of the candidate loci
supported the idea that most of the selected loci were found
in noncoding areas of the genome, suggesting that selection on
putative regulatory regions, rather than coding genes, may under-
lie differences in migratory phenotypes. The importance of these
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cis-regulatory regions underlying phenotypic change has been
more recently linked to the phenotypic differentiation within a
radiation of capuchino seedeaters (Campagna et al., 2017). This
result is in keeping with the idea that genetic variation at reg-
ulatory genes, rather than major changes to core mechanisms,
may underlie the rapid modulation of migratory behavior within
species.

Parallel and convergent evolution

The frequency of parallel evolution is of interest to evolution-
ary biologists because it provides insight into the predictability
and repeatability of the evolutionary process (Arendt & Reznick,
2008; Langerhans, 2018; Marques et al., 2022). In our study, we
find strong signals of differentiation at 29,945 SNPs near or within
25 kb of 6,390 named genes across the genome, after adjusting for
F,, outliers linked to background population structure using com-
parisons within migrants and residents, but recognize that simi-
lar patterns can arise from neutral processes (Jensen et al., 2019).
Of the total outlier loci, we identified 790 outlier SNPs across 42
genes with confirmed links to either migratory timing, the meta-
bolic processes necessary for meeting the physiological demands
of migratory flight, or morphology potentially important to the
aerodynamics of flight. Of these, only one outlier SNP was shared
among two comparisons, while 27 out of the 42 genes were shared
among two or more comparisons (Figure 4). A similar pattern was
seen in directional selection scans, where we identified putative
directional selection signals at 64,794 SNPs near or within 25 kb
of 4,005 named genes across the genome. Of the total selected
loci, 972 SNPs were associated with 25 migration-linked genes. We
found only 12 selected migration-linked loci were shared between
resident populations, while 8 of 25 migration-linked genes were
shared (Figure 4). Where the outlier loci are shared between dif-
ferent comparisons, we found that the majority of loci (9 of 11)
have evolved in the same direction in resident populations com-
pared to migratory populations. These results support the idea
that parallel evolution is rare at the individual SNP level but may
be more common at the genic level. The category with the larg-
est number of genes containing outlier SNPs was migratory tim-
ing, followed by morphology, and then physiology. This may be
because there are stronger signals of parallel evolution related
to migratory timing than to the physiological or morphological
aspects of flight or may be related to the fact that more is known
about the genetic basis of migratory timing than the two other
categories. Overall, our multi-pronged approach supports the
existence of multiple possible evolutionary trajectories leading
to the differentiation of migratory behavior, particularly at the
individual SNP level. However, we also find support for parallel
evolution at the genic level, particularly in genes linked to biolog-
ical timekeeping.

The genetics of migratory timing

Biological clocks are essential for coordinating and synchroniz-
ing physiological, behavioral, and metabolic processes related to
migratory behavior in response to external environmental cues
such as stress, temperature, and light (Cassone & Westneat,
2012; Kumar, 2017; Sharma et al., 2022). The core components
of the clock gene network consist of positive elements (such as
CLOCK, BMAL1, and NPAS) and negative elements (such as PER
and CRY). The positive elements activate the expression of nega-
tive elements, which in turn inhibit their own expression. These
core clock genes are further regulated by and, in turn, regulate
genes within light input and metabolic sensor pathways located
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up and downstream of the clock gene network. Here we find that
genes within light input and metabolic sensor pathways exhib-
ited greater signals of parallel genetic changes when compared
to the core clock genes. Specifically, we identified signals of paral-
lel selection at two of the five core clock genes (npas3 and bmal),
with different sets being highlighted in different comparisons.
In contrast, five light input or metabolic sensor pathway genes
were specific to a single comparison (phlppl, peakl, crebl, rgs7, and
top1), while seven exhibited parallel changes in two or three com-
parisons (gria2, camk4, ntrk2, hivep2, lgr4, ncor2, and rorb). Further,
all core clock genes, except npas3, were identified as important
in other migratory bird comparisons (e.g., Delmore et al., 2015;
Franchini et al., 2017), whereas only 11 out of the 18 circadian
regulator genes were found in other migratory bird species (e.g.,
Jones et al., 2008; Singh et al., 2018). The observed lower frequency
of parallel genetic changes in core clock genes versus clock reg-
ulator genes may be attributed to the higher conservation of
these genes across species (Bazzi et al., 2016; Bossu et al., 2022;
Le Clercq et al., 2023). As a result, there may be fewer options for
genetic changes in core clock genes than in clock regulator genes,
which might vary more by species.

We also identified signals of selection at five genes known to
be controlled by the core clock network and two genes involved
in the sleep-wake cycle. Notably, three of these genes were shared
between all three comparisons and all were also identified as
important in other migratory bird studies. While knockout stud-
ies have shown that clock-controlled genes are activated by the
core CLOCK/BMAL1 complex (Hannou et al., 2018; Schroder et al.,
2013; Takeuchi et al., 2023), the precise functions of these genes
within the clock network are not known. However, the fact that
three of them showed signals of parallel selection across all three
of our comparisons suggests that they play an important role
in differentiating migratory and resident forms of the Common
Yellowthroat. Overall, the genes identified here as being impor-
tant to two or more comparisons provide strong candidates for
future research focused on testing the precise function of each
gene in regulating migratory timing.

Metabolism and energy expenditure

Metabolism plays a critical role in bird migration, enabling
birds to undertake long-distance journeys and meet the energy
demands associated with migration (Bossu et al., 2022; Kumar,
2017). Here we identified three genes with linkage to metabolism
that showed signals of selection across all three of our compar-
isons. One of these genes, st6galnac3, is closely related to lipid
metabolism (Altheide et al., 2006), which is the primary source
of energy for long distance migrants. As part of their preparation
in energy storage, most migrants increase their body mass signif-
icantly before migration and return to their normal condition at
the end of it (Sharma et al., 2022). Even in species without season
migration, cycles of gain and fat loss related to food availabil-
ity throughout the annual cycle have been studied and linked to
specific genes. The other gene, fshr, is known to be involved in fat
deposition in Emu (Dromaius novaehollandiae: Wright et al., 2022)
and was previously found as a regulator of abdominal adipose
tissue of chickens (Cui et al., 2012). The third gene tcf712 was dif-
ferentially expressed in fast-growing and slow-growing chickens
with differences in fat deposition (Claire D’Andre et al., 2013).
Energy storage as fat has also related to hormones that control
lipid metabolism (Wensveen et al., 2015). We also identified two
genes (pdxk, and sorbs1) with links to metabolic processes, which
were shared across at least two of our comparisons. Of these

genes, pdxk is known to be involved in the formation of adipo-
cytes, which are specialized cells whose primary function is to
store energy in the form of fat. Parallel signals of evolutionary
change at the level of genes linked to fat storage and synthesis
highlight the important role of these traits in meeting the energy
demands of long-distance flight.

Morphology potentially related to the
aerodynamics of flight

Birds have evolved several morphological adaptations that aid in
their migration, enabling them to undertake long-distance jour-
neys. These adaptations are generally geared towards enhancing
flight efficiency, endurance, and navigation abilities (Phillips et
al., 2018; Vagési et al., 2016). Here we identify six genes (acur2b,
tnfrsflla, abliml, palld, pkdcc, and ppp3ca) with links to muscle
mass, bone mass, and muscle development, of which five are
shared across at least two comparisons and two of which are
shared across all three comparisons. Further, all but one of these
(tnfrsf11a) was found in other avian studies. While direct linkages
with migration behavior are less obvious for the morphology
linked genes identified here than for those linked to migration
timing and physiology, bone and muscle mass are critical for
maintaining the proper weight to lift ratio necessary for long-
distance flight (Louis et al., 2022; Vagasi et al., 2016). Further fac-
tors, such as wing morphology, muscle strength, and respiratory
capacity, also contribute significantly to flight performance and
are known to vary between populations with differing levels of
migratory behavior. This work serves as a start towards docu-
menting genes with potential links to the aerodynamics of flight,
which are coming out as important across multiple avian species.

Conclusions

In this study, we employed a comparative genomic approach to
gain valuable insights into the predictability and repeatability of
the genes underlying migratory behavior. By analyzing genome-
wide genetic data collected using the outlier and selection scans
across replicated populations differing in migratory phenotypes,
we identify suites of genes with parallel signals of genetic change
as well as multiple examples of genetic convergence. While fur-
ther work is necessary, we found the strong signals of genetic
parallelism in genes linked to light input and metabolic sensor
pathways, the core clock network, the flight energetics and mor-
phology potentially related to flight aerodynamics. Alternatively,
genes upstream or downstream of the core clock network were
less similar across population and species level comparisons. Our
study provides compelling evidence that the evolution of com-
plex phenotypes, such as migratory behavior, is not constrained
to a single pathway. Instead, our findings demonstrate the exist-
ence of multiple possible evolutionary trajectories leading to the
shifts of this behavior. This work highlights the potential flexibil-
ity and adaptability of organisms in responding to environmental
challenges in a changing world.
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Supplementary material is available online at Evolution Letters.
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