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Abstract

In a very recent breakthrough, Behnezhad and Ghafari [FOCS’24] developed a novel fully dynamic
randomized algorithm for maintaining a (1→ ω)-approximation of maximum matching with amortized update
time potentially much better than the trivial O(n) update time. The runtime of the BG algorithm is
parameterized via the following graph theoretical concept:

• For any n, define ORS(n)—standing for Ordered Ruzsa-Szemerédi Graph—to be the largest number of
edge-disjoint matchings M1, . . . ,Mt of size !(n) in an n-vertex graph such that for every i ↑ [t], Mi is
an induced matching in the subgraph Mi ↓Mi+1 ↓ . . . ↓Mt.

Then, for any fixed ω > 0, the BG algorithm runs in

O

(√
n1+O(ω) · ORS(n)

)

amortized update time with high probability, even against an adaptive adversary. ORS(n) is a close variant of
a more well-known quantity regarding Ruzsa-Szemerédi graphs (which require every matching to be induced
regardless of the ordering). It is currently only known that n

o(1) ↭ ORS(n) ↭ n
1→o(1), and closing this gap

appears to be a notoriously challenging problem.

If it turns out that ORS(n) = n
o(1), namely, the current lower bounds are close to being optimal, then, this

algorithm achieves an update time of n1/2+o(1) for (1→ ω)-approximation of fully dynamic matching, making
progress on a major open question in the area.

Our Result: In this work, we further strengthen the result of Behnezhad and Ghafari and push it to
limit to obtain a randomized algorithm with amortized update time of

n
o(1) · ORS(n)

with high probability, even against an adaptive adversary. In the limit, i.e., if current lower bounds for
ORS(n) = n

o(1) are almost optimal, our algorithm achieves an n
o(1) update time for (1 → ω)-approximation

of maximum matching, almost fully resolving this fundamental question. In its current stage also, this fully
reduces the algorithmic problem of designing dynamic matching algorithms to a purely combinatorial problem
of upper bounding ORS(n) with no algorithmic considerations.

1 Introduction

We study the problem of maintaining an approximate maximum matching in a fully dynamic graph. In this
problem, we have a graph G = (V,E) that undergoes insertion and deletion of edges by an adversary and our goal
is to maintain (edges of) an approximate maximum matching of G after each update. This is one of the most
central problems in the dynamic graph literature; see [OR10, GP13, BS15, BS16, Sol16, BGS18, BK22, Beh23,
BKSW23, ABKL23, BKS23, Liu24, BG24] and references therein.
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In a very recent breakthrough, [BG24] developed an algorithm that for any fixed ω > 0, maintains (edges of) a
(1→ω)-approximate maximum matching in a fully dynamic graph with potentially much better than Oω(n) update
time. Specifically, the runtime of the algorithm of [BG24] is parameterized based on the density of a certain family
of extremal graphs which are (quite) closely related to Ruzsa-Szemerédi (RS) graphs [RS78] (see [AMS12, FHS17]
for more context on RS graphs, and [GKK12, ABKL23, AS23] and references therein for their applications to
dynamic graph and other sublinear algorithms). [BG24] defined the following family of closely related graphs.

Definition 1.1. (Ordered Ruzsa-Szemerédi (ORS) Graphs [BG24]) A graph G = (V,E) is called an

(r, t)-ORS graph if its edges can be partitioned into an ordered set of t matchings M1, . . . ,Mt each of size r,
such that for every i ↑ [t], the matching Mi is an induced matching in the subgraph of G on Mi↓Mi+1↓ . . .↓Mt.

We define ORS(n, r) as the largest choice of t such that an n-vertex (r, t)-ORS graph exist.

Unfortunately, exactly as in RS graphs, density of ORS graphs is quite poorly understood at this point.
Currently, for any constant ε ↑ (0, 1/4), it is only known that

n!ω(1/ log logn) ↭
[FLN+02, GKK12]

ORS(n, εn) ↭
[BG24]

n

log(poly(1/ε)) (n)
,(1.1)

where log(k)(n) is the k-iterated logarithm function, i.e.,

log(k) (n) := log log · · · log︸ ︷︷ ︸
k

(n).

This is quite similar to the situation for RS graphs (modulo a slightly better dependence in RS graphs on
the parameter ε in the upper bound due to [Fox11] (see also [FHS17]), namely, logO(log (1/ε))(n) instead in the
denominator).

The result of [BG24] is a randomized algorithm that given any fixed ω > 0 with high probability maintains a
(1→ ω)-approximation of maximum matching in a fully dynamic graph with an amortized update time of

O
(√

n1+ω · ORS(n,!ω(n))
)
.

Thus, if it happens to be the case that ORS graphs cannot be dense, i.e., ORS(n,!ω(n)) = n1→!(1), this algorithm
achieves an update time of n1→!(1) for this problem, making progress on a major open question in the dynamic
matching literature [GP13, BS16, BK22, BKS23, BG24]. Moreover, in the limit, namely, if the current lower
bounds of Equation (1.1) on ORS are almost optimal, then, this algorithm achieves an update time of n1/2+o(1);
currently, the best algorithm known with such an update time due to [BS16] can only achieve a 2/3-approximation.

1.1 Our Contribution We build on the approach of [BG24] and push it to its limit to obtain the following
result.

Result 1. There is an algorithm that for any fixed ω > 0 maintains a (1→ω)-approximate maximum matching

of any fully dynamic graph with amortized update time of

O
(
no(1) · ORS(n,!ω(n))

)
.a

The algorithm is randomized and its guarantees hold with high probability against an adaptive adversary. The

algorithm does not assume a prior knowledge of the value of ORS(n,!ω(n)) to achieve its guarantee.

a
More specifically, for any ω0 → (0, 1), there is a ω1 → (0, 1) such that this runtime is O(n

ε0 · ORS(n,ω1 · f(ε) · n)) for some

fixed function f independent of ω0,ω1.

In the limit, if ORS graphs cannot be much denser than the lower bounds in Equation (1.1), Result 1 achieves
an no(1) amortized update time, almost fully settling the question of (1 → ω)-approximation of fully dynamic
matching. Beside the conditional upper bound of [BG24] (which would be an n1/2+o(1) update time algorithm
under this hypothesis), it is also known unconditionally how to obtain an update time of n/2”(

↑
logn) · poly(1/ω)
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on bipartite graphs [Liu24] (and presumably a similar runtime with O(1/ω)O(1/ω)-dependence instead on general
graphs using the reduction of [McG05]; see Proposition 2.1). Moreover, [BKS23], building on [Beh23, BKSW23],
designed an algorithm that for any fixed ω > 0, obtains an update time of m1/2→!ε(1) for the easier problem of
maintaining the size of the maximum matching (but not its edges).

Result 1 also suggests that almost any interesting lower bound for this problem (even under computational
hardness assumptions) should e”ectively rule out existence of even mildly dense ORS graphs, which will constitute
a big breakthrough given the close connection of these graphs to RS graphs (or alternatively, explicitly condition
on the assumption that ORS graphs are dense; similar assumptions for RS graphs have been used to prove lower
bounds for (1 → ω)-approximation of the maximum matching problem in other settings, e.g., in the streaming
model [AS23]).

It is worth noting here that existing conditional lower bounds in [HKNS15] rule out n1→!(1) update time
algorithms for computing an exact maximum matching, and more recently in [Liu24], for even a (1 → ω)-
approximation but only when ω = n→!(1). On the other hand, our focus in Result 1 is on the regime when
ω ↑ (0, 1) is fixed and independent of n (which is often the main regime of interest in the context of sublinear
algorithms). Indeed, the RS graph constructions of [RS78] (see also [AMS12]) imply that ORS(n, εn) = #(n)
for ε ↭ 2→”(

↑
logn). This implies that for small enough ω, it is already known that Result 1 cannot achieve any

non-trivial guarantee.

1.2 Our Algorithm at a High Level By the existing boosting frameworks for matchings (see Proposition 2.1),
obtaining an ωn additive approximation reduces to the following problem: given a fully dynamic graph G = (V,E),
every !ω(n) updates we receive Oω(1) queries of the form U ↔ V and must return an O(1)-approximate maximum
matching in the induced subgraph G[U ] (see Problem 4.1). An additive ωn approximation to matching can also
be turned into a multiplicative one, using another standard technique (see Proposition 2.3). Both these parts are
by-now standard; see, e.g. [Kis22, Beh23, BKSW23, BKS23, ABR24, Liu24, BG24]. The main part then is to
solve Problem 4.1.

The approach of [BG24]. The solution of [BG24] for Problem 4.1 can be summarized as follows. The
algorithm processes the updates in batches. In each batch, G0 will be the current graph at the start of the batch
and the new updates are inserted into a new graph G1. There will also be a graph G2 which is created by moving
certain edges from G0 (will be described later). Given a query U , the algorithm tries to find a large matching in
(G1 ↓ G2)[U ] and if it succeeds, it returns that one and moves on. This step is done using the greedy matching
algorithm taking time linear in the size of G1 ↓ G2. But, if (G1 ↓ G2)[U ] does not have a large matching, the
algorithm needs to search for a one in G0[U ]. This is done via a novel sublinear time “opportunistic” algorithm:
the algorithm takes O(n2+ω/d) time with high probability where d is the average degree of the graph G0[V (M)];
i.e., if the matching M is “far from” being induced, then it can be found much faster than when it is close to
being induced. The edges in this matching are then moved from G0 to G2.

The runtime analysis of this algorithm is as follows. Suppose each batch consists of s updates. Since Oω(1)
queries are called every !ω(n) updates, the algorithm needs to handle Oω(s/n) queries in a batch. Moreover,
both graphs G1 and G2 can only have Oω(s) edges: the first one since there are s updates in a batch and the
second because each of the Oω(s/n) queries may insert a matching inside G2. Thus, the entire time spent in this
batch for running the greedy algorithm on G1 ↓ G2 is Oω(s2/n) time. The runtime on G0 however is calculated
di”erently using a global argument. Using the fact that G0 only undergoes deletions during a batch, [BG24] come
up with an elegant analysis that shows that if the algorithm is spending a “lot of time” in finding “near induced”
matchings in G0, then, one can find a “dense” ORS graph in G0 – this allows for bounding the entire time the
algorithm is spending on G0 during this batch by O(n2+ω · ORS(n,!ω(n))) time. This implies that by taking
s ↗ n3/2 · ORS(n,!ω(n))1/2, the amortized update time of the algorithm will become Oω(s/n) (over s updates)
which is Oω(

√
n1+ω · ORS(n,!ω(n))) time.

Our approach. In the algorithm of [BG24], if the size of batch grows then so do the number of edges in
the graph G1 ↓G2, and hence the cost of finding a greedy matching in (G1 ↓G2)[U ]. However, the ORS-density
based upper bound of the total running time of calls to the opportunistic algorithm remains unchanged with
larger batches. Our main goal is to accelerate the step of finding matchings in G1 ↓G2 to allow for larger batches
to amortize over the running cost of the opportunistic algorithm. To do this, observe that G1 and G2 are both
dynamic graphs undergoing a small number of updates per each update to the underlying graph. This suggests
that instead of statically finding matchings in G1↓G2 we may dynamically maintain them via an e$cient dynamic
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matching algorithm.
We develop a recursive variant of the algorithm of [BG24]. The first main ingredient is a sublinear time

algorithm that given a graph G = (V,E) with m edges and a query U ↔ V , finds a large matching M in G in
O(m1+ω/d) time where d is the maximum degree of M in G[V (M)]. Thus, this result strengthens the algorithm
of [BG24] in both relating it to the density of G (instead of O(n2) always) and providing a stronger guarantee on
the maximum internal degree of M instead of the average degree. The main step however is how to perform the
recursion.

We present a family of algorithms
{Ai

}
i↭1

with progressively better update times, where A1 is similar to the

algorithm of [BG24] with a key di”erence of having Oω(
√

(m/n)1+ω · ORS(n,!ω(n))) update time instead (here,
m is a promised upper bound on the number of edges in G). Let us now consider constructing A2 from A1.

We also process the inputs in batches of size s with G0 being the current graph at the start of the batch,
G1 receiving the updates during the batch, and G2 receiving some removed matchings from G0 while answering
the queries. The main di”erence is that we are going to run A1 on G1 and G2 separately instead of the greedy
algorithm. These graphs now are going to have Oω(s) edges in total (similar to what argued earlier) and thus
the total runtime of processing these graphs is Oω(s ·

√
(s/n)1+ω · ORS(n,!ω(n)). If we find a large matching for

a given query U from either G1 or G2, we will be done, but if not, we need to rely on G0[U ]. In this case, we
run our new sublinear time algorithm to find a matching with maximum internal degree d in O(m1+ω/d) time.
A similar argument as in [BG24] (in fact considerably simpler given our stronger maximum degree guarantee)
allows us to bound the total runtime of this step with Oω(m1+ω ·ORS(n,!ω(n))) time. Optimizing for the choice
of s then leads to an Oω((m/n)1/3+ω · ORS(n,!ω(n))2/3) amortized update time.

Continuing like this for A3,A4, · · · , while explicitly accounting for the loss in parameters (especially size of
induced matchings in ORS graphs), gives us our final algorithm.

2 Preliminaries

2.1 Basic Notation and Representation of Graphs For a graph G = (V,E), we use n := |V | and m := |E|.
For a vertex v ↑ V , we use N(v) to denote the neighbors of v and deg(v) := |N(v)| to denote its degree. For a
subset U ↔ V , G[U ] denotes the induced subgraph of G on U . We use µ(G) to denote the maximum matching
size in G.

Since we will be designing sublinear-time algorithms for a dynamically changing graph, we briefly describe
how the graphs will be represented to support various operations, namely, insertion and deletion of edges, neighbor
queries, and pair queries, each in O(1) expected time. For each vertex u ↑ V , we maintain a dynamic array Au,
a dynamic hash table hu, and the current degree deg (u) of u. Here, dynamic refers to the property that at all
times, the size of Au is !(deg (u)).

When an edge (u, v) is inserted, we increment deg (u) by 1, set Au[deg (u)] = v, and insert v in the hash table
hu, storing along with it it the value deg (u), namely, the location of the vertex v in the array Au. This takes
O(1) expected time.

When an edge (u, v) is deleted, let w be the vertex at Au[deg (u)]. We decrement deg (u) by 1. If w = v,
we simply delete v from the hash table hu. Otherwise, let j be the location of the vertex v in Au which can be
recovered using hu(v). We set Au[j] = w, delete both v and w from hu, and reinsert w in hu associating j to be
its new location in Au. This takes O(1) expected time.

Finally, given any integer i ↑ [deg (u)], the task of outputting the i-th neighbor of u is done by simply
returning the vertex stored in Au[i]. This also allows for sampling a random neighbor of u.

2.2 Tools from Prior Work We start by recalling the following standard fact about the greedy algorithm for
approximating maximum matchings.

Fact 2.1. Let G = (V,E). The greedy algorithm that starts with M = ↘, iterates over edges of G in any

arbitrary order, and add an edge to M if both its endpoints are currently unmatched, returns a matching M of

size |M | ↫ 1/2 · µ(G) in O(n+m) time.

Boosting frameworks for approximate matching. We use standard boosting frameworks for obtaining
a (1 → ω)-approximation to matching, using a “weak” approximation algorithm that only returns an O(1)-
approximation. The original version of this framework is due to [McG05] and was de-randomized in [Tir18];
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for bipartite graphs, more e$cient reductions are known in [AG11, ALT21]. These results were tailored to
additive approximation and dynamic graphs in [BKS23].

Proposition 2.1. ([McG05, AG11, Tir18, ALT21, BKS23]) Let ϑ, ω ↑ (0, 1) be parameters. There exist

functions f(ϑ, ω) and g(ϑ, ω) such that the following holds. Let Aweak be an algorithm that given an n-vertex
graph G = (V,E) and any set U ↔ V of vertices with µ(G[U ]) ↫ f(ϑ, ω) · n, returns a matching of size at least

ϑ · f(ϑ, ω) ·n in G[U ]. Then, there is a algorithm that given G = (V,E) makes g(ϑ, ω) calls to Aweak on adaptively

chosen subsets of vertices, spending O(f(ϑ, ω) · n) time preparing each subset, and returns a matching of size

µ(G)→ ω · n in G.

For bipartite graphs, f(ϑ, ω) = poly(ω) and g(ϑ, ω) = poly(1/(ϑ · ω)) by [AG11, ALT21], while for general

graphs, both f(ϑ, ω)→1, g(ϑ, ω) = (1/(ϑ · ω))O(1/(ϑ·ω)) = Oϑ,ω(1) by [McG05, Tir18].

Sublinear-time estimation of maximum matching size. We also rely on the sublinear-time algorithm
of [Beh21] for matching size estimation.

Proposition 2.2. ([Beh21]) There is a randomized algorithm Asublinear that for any n-vertex graph G = (V,E)
and a parameter ω ↑ (0, 1), makes Õ(n · poly(1/ω)) queries to the adjacency matrix of G and with high probability

outputs an estimate µ̃(G) such that

1

2
· µ(G)→ ω · n ↭ µ̃(G) ↭ µ(G).

Vertex sparsification. Finally, we use vertex sparsification approaches of [AKLY16, AKL16, CCE+16] as
implemented by [Kis22] for dynamic graphs. These sparsification approaches reduce the number of vertices to
O(µ(G)/ω) via vertex contraction while preserving a (1→ ω)-approximate maximum matching in the graph. This
allows one to turn additive approximation to matching into a multiplicative one, with minor overhead (see,
e.g. [BG24], for an example of how this is used).

Proposition 2.3. ([AKLY16, AKL16, CCE
+
16, Kis22]) Suppose Aadditive is an algorithm that given a pa-

rameter ω > 0 can process a fully dynamic n-vertex graph G = (V,E) and maintains a matching of size at

least µ(G) → ω · n in T (n, ω) amortized update time. Then, there is a randomized algorithm that can with

high probability maintain a (1 → ω)-approximation to maximum matching in n-vertex fully dynamic graphs in

O(T (n,!(ω2)) · poly(log (n)/ω)) amortized update time.

2.3 An Auxiliary Lemma on ORS Graphs For a matching M in a graph G, we define the maximum
internal degree%in(M) ofM , as the maximum degree of the induced subgraph G[V (M)]. This way, %in(M) = 1
i” M is an induced matching, and in general, smaller the value %in(M), the “closer” M is to an induced matching.

The following lemma is a simplification of a similar result in [BG24, Lemma 14] (which even works for average
internal degree instead of maximum degree), using a simple variant of the rounding approach of [GKK12] for RS
graphs.

Lemma 2.1. Let G = (V,E) be any graph and M := (M1, . . . ,Mϖ) be an ordered set of matchings in G, each of

size ϖ, such that for every i ↑ [ϱ], %in(Mi) in the subgraph of G on edges Mi ↓ Mi+1 ↓ . . . ↓ Mϖ is some given

di ↫ 1. Then, for every ς ↑ (0, 1/100),

ϖ∑

i=1

1

di
↭ 34 log n

ς
· ORS(n, (1→ ς) · ϖ).

Proof. For any integer d ↑ {1, 2, 4, . . . , n}, define M(d) := {Mi ↑ M | d ↭ di < 2di} . Moreover, let

d↓ := argmax
d

∑

Mi↔M(d)

1/di.

Since M(1),M(2), · · · partition M, we have that

|M(d↓)| = d↓ ·
∑

Mi↔M(d→)

1

d↓
↫ d↓ ·

∑

Mi↔M(d)

1

di
↫ d↓

log n
·

ϖ∑

i=1

1

di
.(2.2)
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We now show that a random subset of M(d↓) indeed forms an ORS graph with induced matchings of size
(1→ ς) · ϖ which will be enough to conclude the proof.

Pick M↓ = (M1, . . . ,Mϖ↑) ↔ M(d↓) wherein each matching of M(d↓) is chosen with probability

p :=
ς

20d↓

independently (with the sampled matchings ordered in the same manner as they were inM). Fix any matchingMi

in M↓. For any vertex v matched by Mi, define deg↓
i
(v) as the degree of v in the subgraph Mi+1, . . . ,Mϖ↑ ↑ M↓

(notice that this excludes degree of v in Mi itself). We have,

E [deg↓
i
(v)] =

∑

j>i↔M(d→)
v has an edge in Mj

Pr (Mj is chosen in M↓) ↭ 2d↓ · ς

20d↓
=

ς

10
,

where in the inequality uses the fact that degree of all vertices in M(d↓) in the su$x matchings is at most 2d↓ in
the entire M (and thus among M(d↓) for sure).

We now say that v is bad for Mi i” deg↓
i
(v) ↫ 1. By the above calculation and a Markov bound, the

probability that v is bad for Mi is at most ς/10. This means that the expected number of bad vertices for Mi is
at most 2ϖ · ς/10 = ϖ · ς/5.

We further say that the matching Mi itself is bad if it has at least ς · ϖ bad vertices. Another application of
Markov bound implies that the probability Mi is bad is at most 1/5. This means that in expectation, at least
4/5 of the sampled matchings in M↓ are not bad.

By the probabilistic method (and since the size of M↓ is concentrated), there exist a set of 3/5 · p · |M(d↓)|
matchings in M↓ none of which are bad. For each of these matchings, remove all their bad vertices which reduces
their size to (1→ς) · ϖ in the worst case and arbitrarily remove more edges such that all of them have size (1→ς) · ϖ
exactly. By definition, the resulting graph is now an (r, t)-ORS graph with parameters

r = (1→ ς) · ϖ, and t =
3

5
· ς

20d↓
· |M(d↓)| .

By definition, we have t ↭ ORS(n, (1→ ς) · ϖ) which implies that

|M(d↓)| ↭ 34d↓

ς
· ORS(n, (1→ ς) · ϖ).

Plugging in this bound in Equation (2.2) concludes the proof.

3 An Opportunistic Sublinear-Time Algorithm for Matching

In this section, we provide one of the key subroutines used by our dynamic algorithm. This subroutine takes as
input a “base” static graph G and a set U with the promise that G[U ] is of size #(n), and outputs a matching
of size #(n) in G[U ]. While the worst-case runtime of this algorithm is (almost) linear in the number of edges of
the base graph, it can be much better if the maximum internal degree of the matching it outputs is large.

Lemma 3.1. There is an algorithm (Algorithm 1) that given an n-vertex graph G = (V,E) with m edges,

parameters ϑ, ε ↑ (0, 1/6), and vertices U ↔ V with µ(G[U ]) ↫ εn, with high probability returns a matching

M in G[U ] with size at least ϑ · εn in O(m · n3ϑ · log (n)/%in(M)) time.

We note that the worst-case bound of #(m) in Lemma 3.1 is necessary due to a lower bound of [ACK19]
(as opposed to Proposition 2.2 for size estimation); however, in the hard instances of that lower bound, one
necessarily needs to find a large matching with maximum internal degree O(1), which means, one cannot benefit
from the extra power of this lemma (as is expected given the lower bound).

This result is inspired by [BG24, Lemma 9] and generalizes and strengthens it. Algorithm of [BG24] finds a
matching of size ϑ · εn in O(n2+O(ϑ)/d) time (thus, does not benefit from the number of edges of G) and moreover
d is the average degree of G[V (M)] instead of our stronger guarantee on maximum degree. To obtain our result,
we use an argument similar in spirit to that of “residual sparsity guarantee” of the greedy algorithm used for
maximal independent set and maximal matching problems, e.g., in [ACG+15, Kon18, AOSS19].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2976

D
ow

nl
oa

de
d 

06
/2

7/
25

 to
 1

95
.3

9.
65

.1
88

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



The algorithm in Lemma 3.1 works by sampling the edges of G with geometrically increasing probabilities
and only consider edges of G that are sampled and belong to G[U ]. It then attempts to find a “large” matching
in this sampled graph using the greedy algorithm; if it succeeds, it returns this matching only, otherwise, it will
remove vertices of this matching and continues to the next sampling phase. Formally, the algorithm is as follows.

Algorithm 1 The algorithm of Lemma 3.1

Input: A graph G(V,E), a set U ↔ V , s.t. µ(G[U ]) ≃ εn, and ϑ, ε ↑ (0, 1/6)
Output: A matching M in G[U ] of size at least ϑ · εn
Let X1 = U
for i = 1 to & := 1/(3ϑ) do

Let the sampling probability be pi := n(3ϑ)·i/n
For every vertex v ↑ Xi, pick a set Ni(v) ↔ N(v) by sampling each neighbor of v in G independently
Start with Mi = ↘
for v ↑ Xi do

if v and some w in Ni(v) ⇐Xi are unmatched by Mi then
Add (v, w) to Mi

if If |Mi| ↫ ϑ · εn then
Return Mi and Terminate

else
Xi+1 = Xi \ V (Mi) and continue to the next sampling step

We start by arguing that the algorithm always returns a matching in one of its iterations.

Claim 3.1. Algorithm 1 always returns a matching Mi of size at least ϑ · εn in some i ↑ [&].

Proof. Suppose the algorithm has not terminated until the beginning of the last iteration. This means that for
all i < &, we have, |Mi| < ϑ · εn. Thus, the total number of vertices from U that are removed until reaching X# is

#→1∑

i=1

|V (Mi)| < & · 2 · (ϑ · εn) = 2εn/3,

given & = 1/(3ϑ). Given that G[U ] has a matching of size at least εn by the theorem statement, there is still a
matching of size at least εn → 2εn/3 = εn/3 inside G[X#] (after removing the vertices counted above). But, in
iteration i = &, every edge is sampled with probability n3ϑ·1/(3ϑ)/n = 1 and thus Ni(v) is the entire neighborhood
of v in G[X#]. Hence, the greedy algorithm necessarily finds a matching of size at least εn/6 > ϑ · εn in this case
(since ϑ < 1/6). Thus the algorithm terminates in this last iteration and outputs M# as the answer.

The next step is to bound the runtime of the algorithm based on the iteration it terminates in.

Claim 3.2. With high probability, for every i ↑ [&], if Algorithm 1 returns the matching Mi and terminates in

this iteration, then its runtime is O(m · pi).

Proof. Firstly, with high probability, the runtime of the algorithm in each iteration j ↑ [&] is O(m · pj). This is
because with high probability, the number of edges in Gj is O(m · pj) by a simple application of Cherno” bound,
and the edges can be sampled in this much time using standard ideas instead of explicitly going over each edge
and sampling them1. Running the greedy matching algorithm also take another O(m · pj) time now. Finally,

since pj ’s form a geometric series (as pj+1 = n3ϑ · pj), we have
∑

i

j=1 pj = O(pi) which concludes the proof.

We now bound %in(Mi) for the matching Mi returned by the algorithm. Instead of bounding the maximum
internal degree of the matching itself, we simply bound the maximum degree of the subgraph G[Xi] where the
matching Mi is chosen from.

1
For each vertex v, first sample a number kv from the binomial distribution of deg(v) and pi (using its closed-form formula); then,

sample kv neighbors of v uniformly at random from N(v).
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Claim 3.3. With high probability, for every i ↑ [&], max-degree of G[Xi] is O(n3ϑ · log (n)/pi).
Proof. The claim trivially holds for i = 1 since p1 = n3ϑ/n and G[X1] can only have maximum degree
n < n log (n) = n3ϑ log (n)/p1. We focus on the i > 1 case in the following.

Fix any vertex v in G[Xi→1]. Consider the step wherein v is being processed by the greedy algorithm. First,
suppose that the degree of v to vertices in Xi→1 \ V (Mi→1) at this point is at most 100 ln (n)/pi→1. In this case,
even if v remains unmatched, its degree in G[Xi] will be O(log (n)/pi→1) = O(n3ϑ · log (n)/pi) as desired.

On the other hand, consider the case where degree of v to vertices of Xi→1\V (Mi→1) is at least 100 ln (n)/pi→1

when we start processing v. Then, the probability that none of these neighbors are sampled in Ni(v) is at most

(1→ pi→1)
100 log (n)/pi↓1 ↭ e→100 lnn = n→100;

thus, with high probability, at least one of these vertices is sampled in Ni(v). Conditioned on this event, v
will surely get matched (if it was not already matched) by the greedy algorithm. Taking a union bound over
all vertices now ensures that with high probability, every vertex in Xi→1 that remains unmatched by Mi→1 has
degree O(n3ϑ · log (n)/pi) to other unmatched vertices in Xi→1, and hence in the graph G[Xi]. This concludes the
proof.

We are now ready to conclude the proof of Lemma 3.1.

Proof. [Proof of Lemma 3.1] By Claim 3.1, we know Algorithm 1 terminates in some iteration i ↑ [&] and returns
a matching Mi of size at least ϑ · εn by the termination condition. By Claim 3.2, this takes O(m · pi) time with
high probability.

Finally, since V (Mi) is a subset of Xi, we obtain that %in(Mi) is at most the maximum degree of G[Xi] which
itself is at most O(n3ϑ · log (n)/pi) with high probability by Claim 3.3. Thus, the runtime of the algorithm is
O(m · n3ϑ · log (n)/%in(Mi)) with high probability as desired.

remark 3.1. One can also prove an alternate form of Lemma 3.1 where the runtime of Algorithm 1 is O(m·n3ϑ/d̄)
but d̄ is now the average internal degree of the returned matching instead of the maximum, and the failure
probability is now exponentially small. This means a weaker guarantee in terms of average degree instead of
maximum degree, but a stronger guarantee on the probability of success of the algorithm.

This is done by proving that the subgraph G[Xi] in Algorithm 1 only has O(n1+3ϑ/pi) edges by a union
bound over all possible subgraphs of G[Xi→1] (this corresponds to replacing the “residual sparsity guarantee”
of [ACG+15, Kon18, AOSS19] in the above argument by the “filtering” technique of [LMSV11] instead).

4 A Key Intermediate Dynamic Problem

In order to prove our main result, we focus on solving the following intermediate problem. Similar versions of
this problem also appear in recent work including [BKS23, Liu24, BG24].

Problem 4.1. The problem is parameterized by integers n,m, q ↫ 1 and reals ϑ, ε,φ ↑ (0, 1). We have a fully

dynamic n-vertex graph G = (V,E) that starts empty, i.e., has E = ↘, and throughout, never has more than m
edges, nor receives more than poly(n) updates in total.

Updates: The updates to G happen in chunks C1, C2, . . ., each consisting of exactly φ ·n edge insertions or

deletions in G.

Queries: After each chunk, there will be at most q queries, coming one at a time and in an adaptive manner

(based on the answer to all prior queries including the ones in this chunk). Each query is a set U ↔ V of vertices

with the promise that µ(G[U ]) ↫ εn; the algorithm should respond with a matching of size at least ϑ · εn from

µ(G[U ]).
For ease of reference, we list the parameters of this problem and their definitions:

n : number of vertices in the graph;

m : maximum number of edges at any point present in the graph;

q : number of adaptive queries made after each chunk;

ϑ : approximation ratio of the returned matching for each query;

ε : a lower bound on the fraction of vertices matched in the subgraph of G for the query;

φ : a parameter for determining the size of each chunk as a function of n.
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For technical reasons, we allow additional updates, called empty updates to also appear in the chunks but these

“updates” do not change any edge of the graph, although will be counted toward the number of updates in their

chunks
2
.

We will design a family of recursive algorithms for solving Problem 4.1 in this section, starting with the base
case, which also acts as a good warm-up for the key ideas of the algorithm.

4.1 Base Case The proof of the following lemma follows a similar approach as used in [BG24] albeit with several
modifications to take into account the dependence on the (overall) sparsity of the input graph and to match the
requirements of Problem 4.1. This lemma e”ectively gives an algorithm with ↗

√
(m/n · ORS(n,!(n))) update

time for solving Problem 4.1.

Lemma 4.1. There is an algorithm (Algorithm 2) for Problem 4.1 that with high probability takes

O
(
q ·

√
m · n6ϑ · ORS(n, ϑ · εn/2)

φ · n

)
,

amortized time over the updates to maintain the answer to all given queries in each chunk. The algorithm works

as long as ϑ < 1/12 and φ ↫ ϑ · ε.

The algorithm in Lemma 4.1 processes the chunks in batches. Each batch B processes t chunks of updates
to G for some t to be fixed later (t is going to be ↗

√
(m/n · ORS(n,!(n)))). Whenever a batch starts, the

algorithm maintains threes graphs (see also Figure 1 for an illustration):

• Gold which starts as the graph G at the beginning of the batch; no further insertions will be added to Gold

during the processing of this batch and if an edge already in Gold is deleted in an update, the algorithm
removes the edge from Gold (i.e., Gold is a decremental graph);

• Gbatch which starts as an empty graph and receives all subsequent insertion of edges to G during the updates
of this batch and will be updated based on their deletions also;

• Gmatch which starts as an empty graph and is updated by the algorithm by moving certain matchings from
Gold to Gmatch instead. Once an edge is moved to Gmatch, if it gets deleted, the algorithm deletes the edge
from Gmatch (and subsequent insertions are processed in Gbatch; in other words, insertions to Gmatch only
come from moving edges from Gold to Gmatch).

Given a query U ↔ V , the algorithm starts by examining the edges of Gbatch to see if it can already find a
large matching in Gbatch[U ]. This is done by running the greedy matching algorithm (in Fact 2.1) over the edges
of Gbatch[U ] to obtain a matching Mbatch. If Mbatch is large enough, it will be returned as the answer to the
query. Otherwise, the algorithm runs the greedy matching algorithm on Gmatch[U ] to obtain a matching Mmatch.
Again, if this matching is large enough, it will be returned as the answer to the query. Finally, if neither of these
cases happen, then the algorithm runs Algorithm 1 on Gold with the subgraph U to obtain a matching Mold; we
can guarantee this matching is large enough given G[U ] is promised to have a large matching. The algorithm
then moves all edges of Mold from Gold to Gmatch and returns Mold as the answer to the query.

A formal specification of the algorithm is as follows.

2
This is used for simplifying the exposition when solving this problem recursively; these empty updates will still be counted when

computing amortized runtime of these recursive algorithms.
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Figure 1: An illustration of the three graphs Gold, Gbatch, Gmatch in Algorithm 2, their role, and how they are
being processed. Notice that Gold is a decremental graph, while Gbatch, Gmatch are fully dynamic. The analysis
of the algorithm forms an ORS from the edges of the matchings M1,M2, . . . , moved from Gold to Gmatch – this
ORS is a subgraph of the static graph G at the beginning of the batch and does not contain any edges inserted in
this batch.

Algorithm 2 Algorithm of Lemma 4.1

Process the updates in batches B of t chunks C1, . . . , Ct

for Each Batch do
Gold = G, Gbatch = ↘, and Gmatch = ↘ (on vertices V )
for Updates in each chunk do

For an edge insertion e = (u, v), add the edge to Gbatch

For an edge deletion e = (u, v), remove the edge e from each of the graphs Gold, Gbatch, or Gmatch that
it belongs to currently

for Query U ↔ V do
Go over all edges of Gbatch and run the greedy matching algorithm on Gbatch[U ] to obtain a matching

Mbatch. If |Mbatch| ↫ ϑ · εn, return Mbatch, otherwise continue.
Go over all edges of Gmatch and run the greedy matching algorithm on Gmatch[U ] to obtain a matching

Mmatch. If |Mmatch| ↫ ϑ · εn, return Mmatch, otherwise continue.
Run Algorithm 1 on Gold, the set U , and parameter 2ϑ with the guarantee that µ(Gold[U ]) ↫ εn/2

(which we establish in Claim 4.1) to obtain a matching Mold. Move Mold from Gold to Gmatch and return Mold.

We start by establishing the correctness of Algorithm 2.

Claim 4.1. With high probability, the answer to each query U in Algorithm 2 is a valid answer according

to Problem 4.1.

Proof. Notice that Gold, Gbatch, Gmatch at any point partition the current graph G. If either of Mbatch or Mmatch

is of size at least ϑ · εn, the output is correct. Otherwise, by the guarantee of the greedy algorithm, we know that
both µ(Gbatch[U ]), µ(Gmatch[U ]) are at most 2ϑ · εn. Thus,

µ(Gold[U ]) ↫ µ(G[U ])→ µ(Gbatch[U ])→ µ(Gmatch[U ]) ↫ εn→ 4ϑ · εn ↫ εn/2,

by the choice of ϑ < 1/12. This implies that the requirement of Lemma 3.1 for Gold[U ] is satisfied (including
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having 2ϑ < 1/6) and thus, its output, with high probability, is of size 2ϑ · εn/2 = ϑ · εn. Thus, the returned
matching in this case is also of the proper size, concluding the proof.

The main part is to analyze the running time of Algorithm 2. The following claim is the key to relating the
runtime of this algorithm to the density of ORS graphs.

Claim 4.2. Let M1,M2, . . . ,Mϖ be the matchings computed from Gold in Line (10) of Algorithm 2 and added

to Gmatch at the time of their computation (i.e., here, we ignore the deletions that have happened subsequently,

namely, some edges of Mi might have been deleted from Gold when we are inserting Mi+1, but we still keep those

edges in the definition of Mi). These matchings are edge-disjoint and for every i ↑ [ϱ], maximum degree of Mi

among the matchings Mi, . . . ,Mϖ is at most %in(Mi) in the graph Gold at the time Mi was computed.

Proof. The edge-disjoint part follows from the fact that each Mi is chosen from Gold and at that point, edges of
M1, . . . ,Mi→1 are already removed from Gold (and cannot be inserted back to Gold).

Fix any i ↑ [ϱ] and matching Mi. Since Gold is a decremental graph, all edges in Mi+1, . . . ,Mϖ belong to
Gold at the time of computation of Mi. Thus, these edges will be counted toward %in(Mi) in Gold at the time of
computation of Mi. As such, the maximum degree of Mi among the matchings Mi, . . . ,Mϖ is at most %in(Mi)
as desired.

We can now bound the runtime of the algorithm.

Claim 4.3. With high probability, when running Algorithm 2 on a single batch of t chunks:

1. the total time spent for maintaining the graphs and bookkeeping is O(t · q · φ · n) time;

2. the total time spent computing Mbatch in Line (8) is O(t · q · t · φ · n) time;

3. the total time spent computing Mmatch in Line (9) is O(t · q · t · q · φ · n) time;

4. the total time spent computing Mold in Line (10) is O(m · n6ϑ · log2(n) · ORS(n, ϑ · εn/2)) time.

Proof. There are t chunks in a batch, each involving φn updates and q queries. Processing the updates can be
done in O(1) expected time for each update by maintaining the three graphs Gold, Gbatch, Gmatch as explained
in Section 2.1. Thus, with high probability, these steps take O(t · q · φ · n) time in total. Finally, given φ ↫ ϑ · ε
in Lemma 4.1, moving each choice of Mold from Gold to Gmatch takes O(φ ·n) time per each query (at most), and
thus O(t · q · φ · n) in total.

For computing Mbatch for each query, the algorithm iterates over edges of Gbatch and takes linear time in the
size of the entire Gbatch to run the greedy matching algorithm (on Gbatch[U ]). Given that Gbatch can only have
↭ t · φ · n edges at any point (before a new batch is restarted), the runtime for each query is O(t · φ · n) time.
Given there are t · q queries in total, this part takes O(t · q · t · φ · n) time.

Similarly, computing Mmatch for each query is done by iterating over all edges of Gmatch and taking linear
time on those. The edges in Gmatch come from inserting a matching of size ϑ · εn ↭ φn (by the assumption in
the statement of Lemma 4.1) after a query (possibly) and since there are most t · q queries, there can be at most
O(t ·q ·φ ·n) edges in Gmatch. Thus, similar (but not identical) to the previous case, this step takes O(t ·q ·t ·q ·φ ·n)
time (this is a factor q larger).

We now get to the main part of bounding the runtime of computing Mold. Let M1,M2, . . . ,Mϖ be the
matchings computed as Mold throughout this entire batch. For each i ↑ [ϱ], let %in(Mi) denote the maximum
degree of Mi in Gold at the time Mi was computed; additionally, let di denote the maximum degree of Mi

among the matchings Mi, . . . ,Mϖ. By Claim 4.2, we have %in(Mi) ↫ di. Moreover, by Lemma 3.1, the runtime
for computing Mi in Algorithm 1 with high probability is O(m · n6ϑ · log (n)/%in(Mi)). Putting these together
with Claim 4.2 in Lemma 2.1 (for parameter ς = 1/2, and since size of each matching is ϑ · εn by Claim 4.2), we
have that the total time spent computing M1, . . . ,Mϖ is

ϖ∑

i=1

O(m · n6ϑ · log (n) · 1

%in(Mi)
) ↭ O(m · n6ϑ · log(n)) ·

ϖ∑

i=1

1

di

↭ O(m · n6ϑ · log2(n) · ORS(n, ϑ · εn/2)).

This concludes the proof.
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Proof. [Proof of Lemma 4.1] The correctness of the algorithm follows from Claim 4.1 and a union bound over
poly(n) intermediate graphs created in Problem 4.1 (by the assumption on number of updates).

Furthermore, the amortized runtime per each of t · φ · n updates during a batch, by Claim 4.3 is

O(t · q2) +O(
1

t · φ · n ·m · n6ϑ · log2(n) · ORS(n, ϑ · εn/2)).

We can now balance these terms by setting

t :=

(
m · n6ϑ · ORS(n, ϑ · εn/2)

φ · n · q2

)1/2

,

which leads to the desired update time of

O(q) ·
(
m · n6ϑ · ORS(n, ϑ · εn/2)

φ · n

)1/2

.

Note however that it is possible the entire number of updates to Problem 4.1 is less than t, namely, the algorithm
does not receive even one full batch of updates. In that case, we cannot amortize the runtime as above given the
fewer number of updates.

Nevertheless, since by the definition of Problem 4.1, the graph starts as an empty graph, in this case both
Gold = ↘ and Gmatch = ↘ for the single batch processed by the algorithm. Thus, the entire runtime of the
algorithm will be based on the first two items of Claim 4.3 and thus is still upper bounded as above.

4.2 The Recursive Step We now design a family of recursive algorithms
{A}↗

k=1
with progressively better

update times for Problem 4.1 using Algorithm 2 as the base case of this family (i.e., A1). Roughly speaking, the

algorithm Ak in this family achieves an update time ↗ (m/n)1/(k+1) · ORS(n,!k(n))1→1/(k+1).

Lemma 4.2. There exists an absolute constant c ↫ 1 such that the following holds. For any k ↫ 1, there is an

algorithm Ak(n,m, q, ϑ, ε,φ) (Algorithm 3) for Problem 4.1 that with high probability takes

O
(
(2q)k→1 ·

(m
n

)1/k+1
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · (log (n)/ε)c

)
,

amortized time over the updates to maintain the answer to all given queries. The algorithm works as long as

ϑ < (1/12)k and φ ↫ ϑ · ε.

We prove Lemma 4.2 by induction. The base case is handled by Lemma 4.1 for A1. Now, suppose the lemma
is true for some k ↫ 1 and we prove it for k + 1. The algorithm Ak+1 follows the same approach of Algorithm 2
in processing the graph in batches of t chunks of size φk+1 · nk+1 for some t to be determined later (it is going

to be ↗ (m/n)k+1/(k+2) ·ORS(n,!(n))1/(k+2)). In each batch, the algorithm also partitions the graph into three
subgraphs Gold, Gbatch, Gmatch with very similar definitions as in the past. The main di”erence however is that
both graphs Gbatch and Gmatch are now handled by running algorithm Ak over them (instead of the greedy
approach of Algorithm 2).

We first specify the parameters used for running Ak on Gbatch and Gmatch:

nk := n mk := t · q · φ · n qk := q

ϑk := 12 · ϑ εk := ε/12 φk := φ.(4.3)

We will run Ak(nk,mk, qk, ϑk, εk,φk) on Gbatch and Gmatch. By the assumption in Lemma 4.2, we have
ϑ < (1/12)k+1 and thus ϑk = 12 · ϑ < (1/12)k; hence we satisfy the condition for invoking the induction
hypothesis of Ak. Similarly, we have φ = φk and ϑk · εk = ϑ · ε and so φk ↫ ϑk · εk also holds. Finally, at the
beginning of each batch, Gbatch, Gmatch are both empty graphs and thus satisfy the promise of Problem 4.1. As
such, we can indeed apply the induction hypothesis to Ak in the following (the only remaining part we need
to explicitly account for is to make sure that for each query U , we are guaranteed that µ(Gbatch[U ]) is at least
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εk · n, before calling Ak on Gbatch to be consistent with the definition of Problem 4.1 (similarly for Gmatch); we
use Proposition 2.2 for ensuring this guarantee). This is formalized in Algorithm 3.

The following algorithm follows the same strategy of Algorithm 2 modulo applying Ak to Gbatch and Gmatch

instead of running the greedy algorithm over them (see also Figure 2).

Algorithm 3 Algorithm Ak+1(n,m, q, ϑ, ε,φ) of Lemma 4.2

Process the updates in batches B of t chunks C1, . . . , Ct

for each batch do
Let Gold = G, Gbatch = ↘, and Gmatch = ↘ (on vertices V ). Start two copies of Ak(nk,mk, qk, ϑk, εk,φk) on

Gbatch and Gmatch separately with the parameters in Equation (4.3).
for Updates in each chunk (these graphs may also be updated based on queries) do

For an edge insertion e = (u, v), add the edge to Gbatch.
For an edge deletion e = (u, v), remove the edge e from any of the graphs Gold, Gbatch, or Gmatch that

it belongs to currently.

for Each query U ↔ V after a chunk is updated do
Run Proposition 2.2 on Gbatch[U ] with parameter ω = (εk/2) to obtain an estimate µ̃ := µ̃(Gbatch[U ])

of µ(Gbatch[U ]). If µ̃ ↫ εk · n, pass the query U to Ak on Gbatch and return its output matching Mbatch as the
answer; otherwise, continue.

Run Proposition 2.2 on Gmatch[U ] with parameter ω = (εk/2) to obtain an estimate µ̃ := µ̃(Gmatch[U ])
of µ(Gmatch[U ]). If µ̃ ↫ εk · n, pass the query U to Ak on Gmatch and return its output matching Mmatch as
the answer; otherwise, continue.

Run Algorithm 1 on Gold, the set U , and parameter 2ϑ with the guarantee that µ(Gold[U ]) ↫ εn/2
(which we establish in Claim 4.5) to obtain a matching Mold. Remove Mold from Gold and insert it into Gmatch.

A remark about the updates in Algorithm 3 is in order. Firstly, when processing an arriving chunk, to update
Gbatch or Gmatch, we create two separate chunks of size φk · nk based on these updates for Ak on Gbatch and
Gmatch separately (appending them with empty updates if needed, to have length exactly φk · nk). We then pass
these chunks to each algorithm as their updates. The updates to Gold are done directly. Moreover, in Line (10),
we insert Mold of size ϑ · εn ↭ φk ·nk (by the guarantee of Lemma 4.2 and choice of parameters in Equation (4.3))
as a single chunk (possibly with empty updates) to Ak running on Gmatch (there will be no queries after these
chunks for Ak).

We first ensure that the subroutine calls in Algorithm 3 are all valid.

Claim 4.4. With high probability, when running Algorithm 3 on a single batch of t chunks:

1. Gbatch starts empty, at any point it has at most mk edges, and in total it receives t chunks of size φk · nk

each; moreover, each query U to Ak on Gbatch satisfies µ(Gbatch[U ]) ↫ εk · n;

2. Gmatch starts empty, at any point it has at most mk edges, and in total it receives at most t · (q+1) chunks
of size φk · nk; moreover, each query U to Ak on Gmatch satisfies µ(Gmatch[U ]) ↫ εk · n;

3. Gold, Gbatch, Gmatch at any point partition the edges of G.

Proof. We prove each part as follows:

1. At the beginning of the batch, we have Gbatch = ↘ and for each chunk as input to Algorithm 3, Ak also
receives a chunk of size φk · nk = φ · n as an update (possibly with empty updates; recall that Gbatch

only processes insertions in the batch and deletions of the edges inserted during the batch). Since there
are t chunks in each batch of Algorithm 3, there will be at most t · φ · n edge insertions to Gbatch which
is equal to mk/q ↭ mk by Equation (4.3). Moreover, running Proposition 2.2 with high probability,
returns µ̃(Gbatch[U ]) ↭ µ(Gbatch[U ]) and thus when Algorithm 3 decides to query Ak on Gbatch, we have
µ(Gbatch[U ]) ↫ εk · n.

2. At the beginning of the batch Gbatch = ↘ and for each chunk as input to Algorithm 3, Ak also receives a
chunk of size φk · nk = φ · n as an update, which can only include deletions and empty updates. Moreover,
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Figure 2: An illustration of the three graphs Gold, Gbatch, Gmatch in Algorithm 3 for Ak+1, their role, and how
they are being processed. Notice that Gold is a decremental graph, while Gbatch, Gmatch are fully dynamic. The
main di”erence with Algorithm 2 is that Gbatch and Gmatch are now being handled recursively with Ak (steps (a)
and (b) also now involve running Proposition 2.2 to check if applying Ak is valid). This algorithm also form an
ORS from the edges of the matchings M1,M2, . . . , moved from Gold to Gmatch.

each time the algorithm reaches Line (10), it will be inserting edges of a matching Mold as updates in chunks
of size φk ·nk. Given that Mold is of size ϑ ·εn ↭ φn (by the technical assumption on ϑ, ε,φ in Problem 4.1),
this translates into having one more chunk here as well. Thus, for each chunk and each of its q queries, we
may insert another chunk of size φk · n into Gmatch, implying that the total number of inserted chunks is
t · (q + 1). Moreover, running Proposition 2.2 with high probability, returns µ̃(Gmatch[U ]) ↭ µ(Gmatch[U ])
and thus when Algorithm 3 decides to query Ak on Gmatch, we have µ(Gmatch[U ]) ↫ εk · n.

3. This step simply follows from the above (on validity of updating edges of Gbatch and Gmatch) and since we
only remove an edge from Gold if it is deleted or if it is moved to Gmatch.

We can now establish the correctness of Algorithm 3.

Claim 4.5. With high probability, the answer to each query U in Algorithm 3 is a valid answer according

to Problem 4.1.

Proof. Claim 4.4 ensures that each query to recursive calls on Ak on Gbatch and Gmatch returns a valid answer
(given all promises required by Problem 4.1 and the induction hypothesis of Lemma 4.2 for running this algorithm
are satisfied). Thus, it remains to consider the case when Algorithm 3 reaches Line (10) to answer the query U .

Recall that we have the assumption µ(G[U ]) ↫ εn. At the same time, each call to Proposition 2.2 in Lines (8)
and (9) guarantees that, respectively,

µ̃(Gbatch[U ]) ↫ 1

2
· µ(Gbatch[U ])→ 1

2
· εk · n,

µ̃(Gmatch[U ]) ↫ 1

2
· µ(Gmatch[U ])→ 1

2
· εk · n.

Thus, if the algorithm has reached Line (10), we know that

µ(Gbatch[U ]) ↭ 2µ̃(Gbatch[U ]) + εk · n ↭ 3 · εk · n,
µ(Gmatch[U ]) ↭ 2µ̃(Gmatch[U ]) + εk · n ↭ 3 · εk · n.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited2984

D
ow

nl
oa

de
d 

06
/2

7/
25

 to
 1

95
.3

9.
65

.1
88

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



We further have that Gold, Gbatch, Gmatch at any point partition G by Claim 4.4. Thus,

µ(Gold[U ]) ↫ µ(G[U ])→ µ(Gbatch[U ])→ µ(Gmatch[U ]) ↫ εn→ 6 · εkn ↫ εn/2,

by the choice of εk = ε/12 in Equation (4.3). This implies that Gold[U ] satisfies the guarantee of Lemma 3.1
for Algorithm 1 with parameters (ε/2) and (2ϑ). As such, this algorithm, with high probability, returns a matching
Mold of size ϑ · εn from Gold[U ], concluding the proof.

The following claim is a direct analogue of Claim 4.2. Its proof is verbatim as before and hence is omitted.

Claim 4.6. Let M1,M2, . . . ,Mϖ be the matchings computed from Gold in Line (10) of Algorithm 3 and added

to Gmatch at the time of their computation (i.e., here, we ignore the deletions that have happened subsequently,

namely, some edges of Mi might have been deleted from Gold when we are inserting Mi+1, but we still keep those

edges in the definition of Mi). These matchings are edge-disjoint and for every i ↑ [ϱ], maximum degree of Mi

among the matchings Mi, . . . ,Mϖ is at most %in(Mi) in the graph Gold at the time Mi was computed.

The last part is then to bound the runtime of the algorithm.

Claim 4.7. With high probability, when running Algorithm 3 on a single batch of t chunks:

1. the total time spent for maintaining the graphs and bookkeeping is

O(t · φ · n);

2. the total time spent for running Proposition 2.2 in Lines (8) and (9) is

O(t · q · n · poly(log (n)/ε));

3. the total time spent computing Mbatch in Line (8) is

O
(
t · φ · n · (2q)k→1 ·

(
t · q · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · log2(n)

)
;

4. the total time spent computing Mmatch in Line (9) is at most

O
(
t · (q + 1) · φ · n · (2q)k→1

(
t · q · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · log2(n)

)
;

5. the total time spent computing Mold in Line (10) is at most

O
(
m · ORS(n, ϑ · εn/2) · n6ϑ · log2(n)

)
.

Proof. The proof just follows the same argument as in Claim 4.3.
Specifically, the first part follows immediately, and the second part is by Proposition 2.2. For parts three and

four, plugging the choice of mk = t · q · φ · n when applying the induction hypothesis of Lemma 4.2 for Ak on
Gbatch and Gmatch, implies the bounds.

Finally, the last part holds by Claim 4.6 and Lemma 2.1 exactly as in Claim 4.3 as here also, each matching
Mold is of size ϑ · εn and is chosen from Gold which is a decremental graph throughout the batch.

Proof. [Proof of Lemma 4.2] The correctness of the algorithm follows from Claim 4.5 and a union bound over
poly(n) intermediate graphs created in Problem 4.1 (by the assumption on number of updates).
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Furthermore, the runtime per each of t · φ · n updates during a batch, by Claim 4.7, is at most

O(t · φ · n)
+O(t · q · n · poly(log (n)/ε))

+O
(
t · φ · n · (2q)k→1 ·

(
t · q · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · log2(n)

)

+O
(
t · (q + 1) · φ · n · (2q)k→1

(
t · q · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · log2(n)

)

+O
(
m · ORS(n, ϑ · εn/2) · n6ϑ · log2(n)

)

= O
(
t · (2q) · φ · n · (2q)k→1

(
t · (2q) · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · (log(n)/ε)c

)

+O
(
m · ORS(n, ϑ · εn/2) · n6ϑ · (log(n)/ε)c

)
,

where in the equality, we used several loose upper bounds (to simplify the subsequent calculations) and use c as
the absolute constant which is equal to the exponent of the poly-term in Proposition 2.2 (we also take c > 2 to
subsume the log2(n) term of prior equations).

We can now balance these terms by setting

t :=
(m
n

)k+1/(k+2)
· ORS(n, ϑ · εn/2)1/(k+2) · 1

(2q)
(k↓1)·(k+1)+(k+2)

k+2 · φ
,

which leads to the amortized update time of

O
(
m · ORS(n, ϑ · εn/2) · n6ϑ · (log(n)/ε)c · 1

t · φ · n

)

= O
((m

n

)1/(k+2)
· ORS(n, ϑ · εn/2)1→1/(k+2) · (2q)k · n6ϑ · (log(n)/ε)c

)
,

where we used (k → 1) · (k + 1) + (k + 2) = k2 + k + 1 ↭ k · (k + 2) for k ↫ 1.
Similar to the proof of Lemma 4.1, we should also handle the case wherein the total number of chunks given

to the algorithm does not even reach a single batch. As before, in this case, given the promise that the graph G
starts empty, the only graph that is non-empty will be Gbatch, and thus the amortized runtime of the algorithm
is the same as Ak on Gbatch (with the given parameters, in particular mk = t · q · φ · n). Thus, the amortized
runtime of Algorithm 3 will be at most (by Claim 4.7 for bookkeeping, running Proposition 2.23and running Ak

on Gbatch),

O
(
(2q)k→1 ·

(
t · q · φ

)1/(k+1)
· ORS(n, ϑ · εn/2)1→1/(k+1) · n6ϑ · (log(n)/ε)c

)

= O
((m

n

)1/(k+2)
· ORS(n, ϑ · εn/2)1→1/(k+2) · (2q)k→1 · n6ϑ · (log(n)/ε)c

)
,

by the choice of t (using the same exact calculation and the above step).
This proves the induction step of Lemma 4.2 and concludes the proof.

5 A Fully Dynamic Algorithm for Maximum Matching

The following theorem, which is the main contribution of our work, formalizes Result 1.

Theorem 5.1. Let ω ↑ (0, 1/100) be a given parameter and k ↫ 1 be any integer. Let ϑ = (1/20)k and f(ϑ, ω/4)
and g(ϑ, ω/4) be as defined in Proposition 2.1.

3
In fact, for the first batch, we do not even need to run Proposition 2.2, given that we know µ(G[U ]) ↫ ϑn (by the promise

of Problem 4.1 and since we know Gold = Gmatch = ↑. We ignore this extra optimization step since it does not a!ect the overall

runtime of the algorithm.
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There exists an algorithm for maintaining a (1→ ω)-approximation to maximum matching in a fully dynamic

n-vertex graph that starts empty with amortized update time of

O
(
n1/k+1 · ORS(n ,

1

15k
· f(ϑ,!(ω)2) · n)1→1/(k+1) · n15/(20)k

)
.

The guarantees of this algorithm hold with high probability even against an adaptive adversary.

Proof. [Proof of Theorem 5.1] The proof is a combination of the standard tools listed in Section 2.2 to reduce the
problem to Problem 4.1 and then applying Lemma 4.2 for solving this problem.

We start by obtaining an algorithm for an additive ω · n approximation to maximum matching. Define the
following parameters for solving Problem 4.1 via the algorithm Ak(nk,mk, qk, ϑk, εk,φk):

nk := n mk :=

(
n

2

)
qk := g(ϑ, ω/4)

ϑk := (1/15)k εk := f(ϑ, ω/4) φk := ω2.(5.4)

Suppose we have computed a (ω/4)·n additive approximate matching at some time. Then, for the next φk ·n = ω2·n
this remains at least a (ω/2) · n approximation (even if all updates delete edges of this matching). At this point,
we should recompute another (ω/4) ·n additive approximate matching. By Proposition 2.1, at this point, we need
to answer qk := g(ϑ, ω/4) queries U ↔ V with µ(G[U ]) ↫ εkn = f(ϑ, ω/4) · n and returning a matching of size
µ(G[U ]) ↫ ϑk · εk · n satisfies the requirement of answering the queries in Proposition 2.1. However, we do need
to ensure that µ(G[U ]) ↫ εk · n which can be done by running Proposition 2.2 first. At this point, the problem
we need to solve to implement Proposition 2.1 is exactly Problem 4.1 with the parameters of Equation (5.4).

Running Ak for solving Problem 4.1 by Lemma 4.2 is going to have an amortized update time of

O
(
(2qk)

k→1 ·
(
mk

nk

)1/k+1

· ORS(nk, ϑk · εk · n/2)1→1/(k+1) · n6ϑk · (log (n)/εk)c
)

= O
(
n1/k+1 · ORS(n ,

1

20k
· f(ϑ, ω/4) · n)1→1/(k+1) · n10/(20)k

)
,

with high probability; here, we used that (2g(ϑ, ω/4))k→1 · n6/(20)k · (log (n)/εk)c = O(n10/(20)k) given the values
f(ϑ, ω), g(ϑ, ω), εk = Ok,ω(1). Also, the runtime of O(n · poly(log (n)/εk)) for running Proposition 2.2 amortized
over the ω2 ·n updates is asymptotically upper bounded by the above and can be neglected. All in all, this implies
an algorithm with amortized update time of

O
(
n1/k+1 · ORS(n ,

1

20k
· f(ϑ, ω/4) · n)1→1/(k+1) · n10/(20)k

)
,

for maintaining an additive ωn approximate matching in a dynamic graph, with high probability.
Finally, we apply Proposition 2.3 to turn this into a multiplicative (1 → ω)-approximation guarantee. This

e”ectively requires re-parameterizing ω with !(ω2) in the above bounds (and bounding n10/(20)k ·poly(log (n)/ω) =
O(n15/(20)k) by the range of parameters). This implies an algorithm with amortized update time promised in
the theorem statement for maintaining a (multiplicative) (1→ ω)-approximation to maximum matching in a fully
dynamic graph, with high probability.

We shall remark that in the arguments above—in particular, to satisfy the guarantee promised in Prob-
lem 4.1—we need to assume that the total number of updates is poly(n) to be able to apply union bound in
conjunction with our high probability guarantees. This however can be easily fixed using a standard trick4 as we
explain next.

After every, say, n10 updates to the underlying graph G, we entirely terminate the current run of the algorithm
and erase all the data structures. Then, we start a new run of the algorithm on an initially empty graph H and
insert the current edges in G to this new graph H using at most O(n2) insertions. After this step, the graph H

4
In fact, it appears that many of existing dynamic matching algorithms make this assumption implicitly, e.g., in [BKS23, Liu24,

BG24], although some are also more explicit about this, e.g. [BK22].
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becomes the same as G and we continue with processing the upcoming updates the current data structures we
have. This does not change the asymptotic runtime of the algorithm, but now ensures that even if the algorithm
needs to process super-polynomial number of updates, after each update, with high probability, the output is
correct and the amortized runtime of the algorithm is as desired5. This concludes the proof.

5.1 Removing the Assumption on the Prior Knowledge of ORS In the description of our algorithms
throughout this paper, we assumed that the algorithm is aware of the value of ORS(n, c · n) (for a proper choice
of c in the algorithm) to find the right balancing point for size of batches. However, as we explain next, this
knowledge is actually not necessary, which is a desirable feature given our current state of (lack of) understanding
of ORS(n, c · n).

We again focus on the case of polynomially many updates. The algorithm starts with guessing that ORS(n, c·n)
is some ↼ = n!(1/ log logn) (the current best lower bound in Equation (1.1)), runs the algorithm of Theorem 5.1
with ↼ as the value of ORS, and continues as long as the runtime does not exceed the bounds dictated by the
current guess ↼. Now suppose during some run of the algorithm, the runtime exceeds the current update time
bound. Then there are two possibilities: either the high probability event of Theorem 5.1 has failed or the guess
↼ of ORS(n, c · n) falls shorts of the true value. The first case happens with a negligible probability which we can
ignore so let us focus on the second case.

The guarantees given in Lemma 4.2 hold for each fixed batch of updates (in other words, we amortize the
runtime over a single batch and not beyond that). Suppose we have a batch with longer than expected runtime.
We consider all the matchings moved from Gold to Gmatch throughout this batch and apply Lemma 2.1 to them in
an algorithmic fashion—which takes linear time in the size of the graph—to explicitly construct an ORS graph.
If we succeed in creating an ORS graph with strictly more matchings than the current estimate ↼, we terminate
the current algorithm, increase the value of ↼ by a factor of 4, and restart the process from the beginning of
the last batch. Since for any k ≃ 1, the target runtime of the algorithm Ak is proportional to ORS(n, c n)ϱ for
some ς ≃ 1/2, running the algorithm again with ↼ increased by a factor of 4, results in a geometrically increasing
sequence of runtimes. This makes the final runtime only a constant factor larger than if the algorithm had been
run with the correct value of ORS(n, c · n) from the very beginning. We also note that the value of ↼ only
monotonically increases over the execution of the algorithm because at every occurrence, we recover a certificate
of a new lower bound on the value of ORS(n, c · n). So the revision of parameter ↼ occurs only O(log n) times
over the entire execution of the algorithm.

In summary, we are able to recover the bounds of Theorem 5.1 without a prior knowledge of the value of
ORS(n, c · n) as also advertised in Result 1.
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