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Identifying outbreak risk factors through
case-controls comparisons
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Outbreaks are typically investigated using approaches that aim to identify place- and context-
dependent causative factors. As the focus is on understanding the basis of a specific outbreak, the
resulting narratives are rarely suitable for forecasting risk or developing generalizable predictive and
preventative measures. This Perspective article proposes applying a case-control framework as an
outbreak epidemiological study design to promote evidence-based decision-making for prevention
and response to outbreaks. The approach involves identifying counterfactuals, with case-control
comparisons drawn to test hypotheses about conditions thatmanifest outbreaks. First, a framework is
described for iterative multidisciplinary interrogation to elucidate and identify minimally sufficient sets
of factors that lead to disease outbreaks. Next, example case-control comparison frameworks are
discussed, centered on pathogen(s), influential contributor(s), or landscape(s), illustrated with
examples focused on pathogen transmission.

Investigations of infectious disease outbreaks often focus on identifying
place- and context-dependent factors responsible for the emergence and
spread of that specific outbreak. This makes it hard to develop generalizable
predictive and preventive measures. Understanding disease emergence and
spread is a complex challenge that extends beyond the current modes of
investigation. While it is widely understood that factors rarely act in isola-
tion, conventional approaches can fall short when disease dynamics arise
from synergies among multiple factors, warranting study from multiple
disciplinary perspectives. Contributing factors can be firmly rooted in vir-
ology, immunology, and pharmacology1, or may describe ecological and
environmental influences2, while others might relate to social and engi-
neering domains involving human actions, behaviors, and interventions3,4.
Phenomenological investigations of particular outbreaks also can fail to
capture the contingent nature of multifactorial dynamics, where the
importance of one factor can be contingent on a “perfect storm” of other
concurrent factors.

Progress has been made in developing new approaches to investigate
outbreaks. For example, capturing complex dynamics in landscape-based
epidemiological modeling of outbreaks5–7. Whereas initial models

considered a particular outbreak scenario of interest and hypothesized the
contributions of observable sets of features8–12,more recent efforts examined
multiple outbreaks13–15 and have utilized techniques such as fore- and
hindcasting to test predictivemodels relying on either statistical patterns5,6,16

or inferred causal dynamics, as described previously7. While these approa-
cheshaveprovidedvaluable insights, it is unclearwhether theywill provide a
robust basis for studying and forecasting dynamics of outbreaks that rely on
many different contributing, potentially synergistic, factors.

This Perspective article proposes adopting a multidisciplinary case-
control hypothesis testing framework, at the scale of an outbreak rather than
of an individual, to substantively advance understanding of disease emer-
gence and spread. This provides a key component of a case-control analy-
tical toolkit17. Existing case-control epidemiological analysis methodology
can serve as a platform for iterative rounds of hypothesis generation and
testing. By analyzing combinations of conditionally dependent factors from
across disciplines, the approach allows identification ofminimally sufficient
sets of factors (Box 1) present in early stages of outbreaks that turn emergent
infections into outbreaks. In this Perspective, we propose a case-control
approach as a way of increasing the capability of epidemiological studies to
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isolate and predict causal scenarios that increase the likelihood of outbreaks
occurring, presenting three types of controls, with examples as illustrations.

Modernmedical research serves as a valuableprecedent, illustrating the
merits of adopting case-control comparisons to investigate multifactorial
dynamics. Medical research shifted from investigating pathology in the
human body as a set of independent tests of hypotheses based on expert
opinion and careful observation towards employing a framework for
evidence-based inquiry that forces an inclusion of otherwise unanticipated
drivers and that provides a pathway for synthesis within a hierarchy of
evidence18. Within that hierarchy are tools designed specifically to move
scientific understanding from enigmatic, heterogeneous, multifactorial data
to a well-supported, evidence-based understanding of the drivers of
pathology. A basic tool of evidence-based medicine is the concept of the
Case-Control Study17: a retrospective analysis in which individuals who
exhibit an observed outcome (cases) are “paired” in study design with
individuals who do not exhibit the observed outcome (controls), with
analysis then performed to identify which exposures (i.e., potential driving
factors) they share and which are distinct only among the cases. This allows
for the calculation of measures such as odds ratios19 to estimate the likely
impact of combinations of particular features on health outcomes.

Analogous to clinical medicine concerning pathologies of the body,
epidemiology considers outbreaks as pathologies of a population. Unlike
physiology, however, a multitude of potential types of controls may be
matched to outbreak cases for exploration and analysis. To isolate and
understand epidemiological risk and the factors that drive (re)emergence of
pathogens of concern, threemain categories of case-control formulation are
proposed for outbreaks that can serve as a general foundation for evidence-
based epidemiological analysis of outbreak risk: factors; pathogens; and
landscapes. In each of these categories, the observed outcome that exists for
cases and that does not for controls is a circulating outbreak, but what
constitutes a well-matched control is partitioned into a narrower equiva-
lence class, concentrating on the nature of the comparators considered.

Influential contributors as case controls
Evidence-based epidemiological analysis of outbreak risk focuses on factors
that may limit or foster a disease outbreak (Box 2). Abiotic factors such as
temperature, humidity, and precipitation can define the distribution and
abundance of a pathogen. Contextual or geographic factors capturing
socioeconomic conditions, aspects of the built environment, or human
demography and behavior (e.g., lockdowns) may also influence pathogen
transmission risk.

Temperature. Dengue fever virus is a flavivirus transmitted by Aedes
aegypti andAedes albopictusmosquitoes. Originally of animal origin, the
virus is now characteristically found in the human environment, with
seasonal to perennial circulation among container-breeding mosquitoes
and humans20. When symptomatic in humans, infection causes high

fever, joint aches, and often there is a characteristic macular rash21.
Typically thought of as a tropical disease, dengue has been (re)emerging
in new extra-tropical locations as climate change has been shifting
temperature boundaries for transmission22. Accordingly, temperature
could limit transmission to locations where the environment is sufficient
to support the vector, Aedes spp. mosquitoes. A case-control pairing
could be established on the basis of the presence or absence of suitable
temperature for the Aedes vector(s). By extension, a related factor in the
prevention of outbreaks, such as knowledge of dengue risk, could be
assessed by exploring it in a city well within the temperature range of
suitability, versus a city whose average temperatures never or rarely
exceed the minimum threshold for transmission.

Sociopolitical and economic (in)stability. Diphtheria, caused by the
bacteriumCorynebacteriumdiphtheriae, can form anobstructive biofilm
that hinders breathing and swallowing. It can also produce a blood-borne
toxin that can cause fatal heart and nerve damage. Disruption of child-
hood vaccination protocols during the fall of the Soviet Union led to
widespread and unanticipated outbreaks of diphtheria among adults due
to waning immunity23. The duration of childhood immunity also
degraded more rapidly and for a greater percentage of vaccination reci-
pients than anticipated24. This effectively served as a natural case-control
experiment, contrasting the same population against itself in a scenario of
demographically dependent herd immunity. When outbreaks were suf-
ficiently prevented among children, the entire population was largely
protected against widespread transmission, but as the demography of
vaccine protection shifted, so did outbreak dynamics. Socioeconomic
instability was also an obvious contributing factor, limiting access to
transmission-blocking care. Disruptions of an intervention aimed at
population-level protection (e.g., vaccination, water treatment, food aid)
as a function of sociopolitical and economic instability are not unusual.
Treating the “before and after” in a time-series of health outcomes as
case-control comparisons can provide evidentiary support for long-term
investment in population-level health and nutrition programs.

Pathogens as case controls
Evidence-based epidemiological analysis of outbreak risk might focus
explicitly on a pathogen of interest, with case-control comparisons exam-
ining biological conditions thatmay limit or foster a disease outbreak. Here,
the focus might be on the nature of distributions, relative abundance, or
ecological interactions that shape pathogen transmission or exposure risk.

Trypanosoma cruzi. Chagas disease is caused by Trypanosoma cruzi, a
protozoan parasite transmitted to humans and other mammals via
triatomine “kissing” bugs. Chagas is a global health threat, with the
current majority of cases primarily concentrated in Central and South
America. It is estimated that 8 million individuals are currently infected,

Box 1 | Minimally sufficient sets of potential causal factors

Consider any case in which the objective is to study what leads to a
positive versus negative outcome (i.e., an outbreak versus contained
infection). Suppose also that a set, S, can be described, of elements 1
throughN of possible causal factors that we hypothesize might together
determine the outcome. A sufficient set, Mj, is any subset S that, taken
together, leads to a positive outcome.Mathematically, if S ¼ x1; :::; xN

� �

where each element xi ¼ 0 if absent=false1if present=true
� �

, then a
sufficient set is a subsetM � S such that if 8yi 2 Mj; yi ¼ 1 then the
studied outcome is guaranteed to be positive. Note, that this means that
the satisfaction of each element of the specific set is required for an
outbreak, not the total number of elements in the sufficient set. Further,M
is minimally sufficient if for any yi 2 Mj ; yi ¼ 0, then the studied outcome

is guaranteed to be negative (i.e., a subset is minimally sufficient if the
exclusion of any one of the elements changes the outcome from positive
to negative). Note that one minimally sufficient set cannot be a subset of
another, but there is otherwise no restriction on overlap between mini-
mally sufficient sets, nor on the number of elements contained in the
minimally sufficient set. For example, if N ¼ 10; then we could have
M1 ¼ x1; x2; x3

� �
,M2 ¼ x1; x2; x4

� �
,M3 ¼ x1; x2; x5; x6; x7

� �
,

M4 ¼ x8
� �

, andM5 ¼ x9; x10
� �

all asminimally sufficient sets. If thoseare
all of the minimally sufficient sets contained within S, then a maximal set
of minimally sufficient subsets exists, and, therefore, a full description of
all the ways in which we could have a positive outcome.
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and upwards of 100 million people live in areas of high infection risk25.
While Chagas has historically been considered a disease of rural com-
munities, there is growing evidence that urban populations are at risk of
T. cruzi infection26,27. Evidence of T. cruzi in cities implies the presence of
triatomine vectors that sustain infection in peridomestic reservoir hosts
(e.g., rodents, raccoons, dogs), but triatomines have been sparingly
observed in urban landscapes. A case-control approach could test the
hypothesis of transient infection of T. cruzi in cities, with consideration
given to conditions that can sustain infection in hosts where triatomines
are rare or absent. This could reveal novel mechanisms contributing to

infection (e.g., vertical transmission) and offer new insights into the eco-
epidemiology of one of the world’s most burdensome diseases.

Hantaviruses. Hantaviruses that cause human disease persist in some
species of rodents, maintained via horizontal transmission among reser-
voir species28,29. The virus is excreted in urine and feces, with human
infection occurring most commonly via inhalation of aerosolized matter
containing the virus inside dwellings29 and, as treatment comprises only
supportive care, can lead to death29. Each of the hantaviruses known to
infect humans corresponds to a single rodent host genus30, but viral

Box 2 | Case control approach in pandemic response—seasonality, relative humidity and
covid-19

The severity of infectious respiratory diseases, such as Influenza or
COVID-19, is often suggested to be seasonal, though the evidence
supporting a relationship between weather and respiratory infectious
disease outbreaks remains controversial39,40. Any causal relationship
between weather and respiratory infectious diseases is expected to be
complex and multifaceted, involving rich biophysical and fluid physics
processes as well as host and pathogen physiology modulated by
environmental factors41. Research on this topic has thus far primarily
focused on geographically localized datasets and outdoor conditions.
Case-control analysis could be a more suitable and even necessary
approach to shed light on the nature of respiratory disease dynamics. For
example, the pre-vaccine COVID-19 pandemic stage covered a wide
range of climates and is thus suitable for contrasting regional conditions.
Verheyen and Bourouiba conducted a large-scale retrospective analysis
blending both case-control and cohort methodologies across a com-
prehensive global dataset (Box fig. 1) comprising COVID-19 statistics,
outdoor meteorological variables, and experimentally validated indoor
relative humidity (RH) estimates38. The study revealed a robust relation-
ship between regional indoor RH and COVID-19 outbreak severity. The
study also revealed that COVID-19 outcomes during the early stages of
the pandemic (i.e., pre-vaccination) were consistently less severe at

intermediate indoor RH between 40% and 60% and more severe at
extreme indoor RH outside of this range. The association remained
robust even after controlling for outdoorweather conditions, government
response, and the statistical methodologies and data processing
approachesused.Case-control and cohortmethodswereused to further
refine the potential relationship betweenCOVID-19outbreaks and indoor
climate, with odds ratios supporting further association between inter-
mediate indoor RH and better global outcomes, such as fewer deaths, a
smaller increase in deaths, or a smaller percentage change in deaths. The
consistent findings38 may be a function of the high-level nature of the
analysis, where data aggregation masks lower-level variations while
enabling the extraction of the general most robust patterns in the data42.
Caution is essential, however, when conducting global case-control
analyses. Inter-country variability in outbreak magnitudes and reporting
conditions can lead to noisy, error-prone datasets, indicating a need for
normalization to ensure validity of comparisons. Thus, the very notion of
robustness ought to include extensive sensitivity analyses (e.g.,38), cov-
ering differing treatments and assumptions for both the underlying
datasets and the methodology. Emerging associations should persist
even when many of the assumptions or methods of analysis are
perturbed.

BoxFig. 1 | Theglobal dataset described in38 established to understand the role of indoor climate inCOVID-19deaths. The aggregatedglobal datasetwas
stratified in color-coded regions (map) to investigate the effects of low indoor relative humidity (RH) in contrast to moderate and high RH.
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assortment occurs, potentially generating new strains30. Factors associated
with human infection include environmental conditions (e.g., rainfall,
temperature), reservoir population density affecting viral prevalence, and
variation in human-reservoir interactions across different landscapes28. A
case-control approach for hantavirus could therefore test for the presence
(i.e., external to and inside of human dwellings) and population size of a
particular rodent reservoir. This approach could reveal human-reservoir
interaction tipping points as a function of the number and nature (e.g.,
duration, frequency) of exposures leading to human infection.

Landscapes as case controls
Finally, evidence-based epidemiological analysis of outbreak risk might
consider landscape-level phenomena that shape disease emergence and
spread. As illustrated below, consideration might be given to landscape
functionality and features such as, degree and type of habitat connectivity.

Public water systems. Cryptosporidium is a parasite that causes the
diarrheal disease cryptosporidiosis. Humansmay be infected as a result of
exposure to fecal matter shed by animals carrying certain species of
Cryptosporidium31. Waterborne Cryptosporidium is very resistant to
chlorine, the most common disinfectant in the United States32. Conse-
quently, outbreaks of cryptosporidiosis can result from exposure to
Cryptosporidium in drinking water, potentially impacting large popula-
tions served by public water systems in the United States. The landscape
can be a critical determinant of the transport of fecalmatter from infected
animals, such as livestock in concentrated animal feeding operations, to
the sources of public water systems. Landscape features may include
proximity of the source water to infected animals, weather and land cover
conditions that are conducive to stormwater runoff (i.e., connectivity and
transport), and inadequate source water management practices (i.e.,
containment or removal). Accordingly, a case-control analysis could
compare populations served by public water systems with distinctive
landscape features to identify the causes of cryptosporidiosis outbreaks.

Social-ecological mosaics. Cities can be described as social-ecological
landscapes, wherein there is an admixture of natural and built spaces
adjoining or overlapping with one another. Within social-ecological
landscapes, habitatmosaics can reflect differences in land use, habitation,
disturbance (e.g., natural disasters), and economic development, some-
times reflecting disparities driven by discriminatory public policy33–35.
Spatial patterns in outbreak preparedness, perhaps driven by regional
beliefs, can shape exposure risks36. Phenomena such as property aban-
donment and persistent vacancy can create social-ecological mosaics that
influence risk of exposure to peridomestic animals that host pathogens of
concern35. It has been demonstrated, for example, that the diversity,
distribution, and prevalence of rodents and associated pathogens can
reflect patterns of abandonment in neighborhoods within a city33,34.
Notably, these patterns can directly tie exposure risk to spatial socio-
economic landscapes, creating risk hotspots in already historically
underserved areas. Case-control analysis of rodent demography in dif-
ferent neighborhoods could reveal how abandonment shapes exposure
risk among neighborhoods within cities33,34 and between cities (i.e.,
exhibiting distinct patterns of abandonment) to consider how social-
ecological forces manifest risk across distinct geographies.

Conclusion
While many factors driving outbreak risk are well-studied, more work is
warranted to better understand what allows an infectious disease to emerge
and then tip from endemic to epidemic to pandemic. Greater knowledge
and predictive capacity can be achieved by employing a case-control fra-
mework for inquiry that forces consideration of multidisciplinary drivers of
disease outbreaks, providing a pathway towards synthesis across a hierarchy
of evidence (Box 2). Case-control formulations allow formore rigorous and
explicit consideration of complex interactions among sets of factors (Box 1)
that may not yet be fully identified or understood; generate hypotheses for

further investigation; and bridge gaps among disciplines in ways that are
otherwise difficult to synthesize. This illustrates the versatility andmerits of
a case-control approach to promote evidence-based decision-making.
Further, themerits of isolatingminimally sufficient sets of factors allowus to
move away from a more traditional focus on identifying and reducing one
large single-source risk, since that may inadvertently create equal, if not
greater, risks from a diffuse suite of other, now slightly altered contributory
factors37. While many of the factors driving outbreak risk have been well
studied, and many case-control studies have focused on individual risk
factors at the scale of the individuals who are infected (or not) during an
outbreak, further work is warranted to better understand the many ways in
which an infectious disease can tip from endemic to epidemic to pandemic.
Employing amore robust analytical framework and investigative toolkit can
only aid in ongoing efforts to progress beyond phenomenological inter-
rogation and establish a consistent basis for developing generalizable pre-
ventable measures that respond to dynamic, multifactorial risks.
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