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Abstract
This paper examines networks of n measuring parties sharing m nonsignaling
resources that can be locally wired together: that is, each party follows a
scheme to measure the resources in a cascaded fashion with inputs to later
resources possibly depending on outputs of earlier-measured ones. A specific
framework is provided for studying probability distributions arising in such
networks, and this framework is used to directly prove some accepted, but
often only implicitly invoked, facts: there is a uniquely determined and well-
defined joint probability distribution for the outputs of all resources shared by
the parties, and this joint distribution is nonsignaling. It is furthermore shown
that is often sufficient to restrict consideration to only extremal nonsignaling
resources when considering features and properties of such networks. Finally,
the framework illustrates how the physical theory of nonsignaling boxes and
local wirings is causal, supporting the applicability of the inflation technique
to constrain such models. For an application, we probe the example of (3,2,2)
inequalities that witness genuine three-party nonlocality according to the local-
operations-shared-randomness definition, and show how all other examples can
be derived from that of Mao et al (2022 Phys. Rev. Lett. 129 150401).

Keywords: causality, wired nonsignaling resources,
genuine multipartite nonlocality

1. Introduction: nonsignaling resources and networks

Quantum mechanics is nonlocal in the sense that certain quantum experiments involving spa-
tially separated measuring parties do not admit a local hidden variable description [1, 2].
Quantum nonlocality experiments have been performed under strict conditions [3—6], con-
firming the phenomenon.

© 2024 IOP Publishing Ltd.
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Quantum nonlocality experiments, while demonstrating strange correlations between dis-
tant parties, still satisfy a condition known as the nonsignaling condition: a measuring party
cannot exploit a quantum experiment to send signals to a spatially separated party. This assures
compliance with special relativity in experiments where separated measurements can be per-
formed near-simultaneously at great distances such that any signals would need to be traveling
faster than the speed of light. The study of the non-signaling condition is of interest in vari-
ous contexts, such as abstract definitions of nonlocality not invoking quantum mechanics [7],
attempts to derive quantum mechanics from physical principles [8], and certifying unpredict-
ability of random numbers under minimal assumptions [9].

The nonsignaling condition can be stated formally as follows: consider an experiment of
two spatially separated parties named Alice and Bob, each of whom performs a measurement
using an apparatus; each apparatus has a choice of measurement setting labeled (respectively)
X and Y and provides a measurement outcome labeled (respectively) A and B. Then the joint
probability distribution P(A, B|X,Y) of outcomes conditioned on settings is nonsignaling if
each party’s marginal outcome probabilities are independent of settings choices of the other.
Mathematically this can be expressed as the equalities

PA=alX=x,Y=y)=PA=alX=x,Y=y)

which hold for all values a,x,y and x’,y’, where a marginal probability such
as P(A=a|X=x,Y=y) is obtained from the joint distribution by the summation
> ,P(A=a,B=b[X=x,Y=y). All distributions P obtainable with quantum mechanics
satisfy the nonsignaling condition (1), but the converse is not true: there are distributions sat-
isfying (1) that cannot be observed through measurements of entangled quantum states, such
as the paradigmatic example of the Popescu—Rohrlich ‘PR box’ distribution [8]. Equation (1)
can be generalized to scenarios of n > 2 separated measuring parties, whereby it is stipulated
that the outcome distribution of any given subset of the n parties is required to be independent
of the settings of the other parties.

An interesting question is what sort of probability distributions can be observed in a three-
party experiment for which each pair of parties share bipartite nonsignaling resources satis-
fying (1)—possibly multiple such resources, allowing local ‘wirings’ whereby each party can
access their resources in cascaded fashion and condition inputs provided to later resources
on observed outputs from earlier ones. Early results on this question can be found in section
IIIC of [10] and [7]. Recently, the question is of renewed interest in light of arguments [11, 12]
that only three-party probability distributions that cannot be replicated by such underlying net-
works of bipartite resources—possibly supplemented with global shared randomness—should
be considered genuinely multipartite nonlocal (GMNL). This approach resolves an anomaly
[12] in earlier definitions of the GMNL concept [13—15] in which parallel independent two-
party nonlocality experiments can be counterintuitively classified as GMNL. The new revised
notion of GMNL is named in [16] as LOSR-GMNL, with LOSR standing for local operations
and shared randomness; quantum measurements of the three-way entangled GHZ state [17]
can exhibit LOSR-GMNL [11, 12, 18] and recent experiments [19-21] provide some initial
evidence of the phenomenon.

Motivated in part by the LOSR-GMNL definition, this paper studies the general ques-
tion of how to systematically model n-party conditional distributions, or behaviors, of the
form P(Ay,...,A,;|X1,...,X,) that are induced as follows: a network of m nonsignaling
resources, each shared by a subset of the parties, is measured by the parties in cascaded fash-
ion after each party i receives a setting X;; then, each party’s final outcome A; is a function
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of the observed outputs from the resources. This scenario can be referred to as nonsignaling
resources with local wirings. The study of behaviors obtained this way essentially reduces
to the study of the joint distribution of all the resource outputs in the underlying network:
]P’(K 1 ....,Km\Xl, .., Xy) where A} refers to all the outputs of the jth shared resource.

The central goal of this work is thus to provide a framework for direct study of the joint prob-
ability distributions ]P’(K 1 ....,Xm|X 1, Xp,) 80 as to 1) directly prove here some commonly
accepted properties of such distributions, and 2) provide a foundation for rigorous future results
about them. Regarding point (1), it has been accepted, often tacitly, that there is a well-posed
joint distribution }P’(X 1 ....,14_\’,,1|X17 ..., X,) which is itself nonsignaling and causal (causality
here roughly corresponding to an intuitive notion that the marginal distribution of a subset of
parties is determined only by the resources they measure and how they measure them; quantum
mechanics is an example of a causal theory but other more exotic theories may be causal as
well). But considering that for wired signaling resources, a consistent joint distribution is not
in general possible (see figure 1 of [15] for an example), it is good to be clear about why this
is true when the resources are nonsignaling. Accordingly, this work rigorously demonstrates
that the joint distribution induced by a network of wired nonsignaling resources is well-defined
and itself nonsignaling. Moreover, while previous works such as [22-24] are cited in [12, 16]
to justify the causality of the paradigm, these previous works are somewhat abstract and do
not always address the point directly. The framework of this paper provides a clear foundation
for demonstrating the causality of the theory of wired nonsignaling resources. An important
consequence of the causality of the paradigm is that it enables use of the powerful inflation
technique [25], which applies to causal theories.

Indeed, while this work reinforces the fact that that constraints derived from the inflation
technique [25] are valid in constraining behaviors in networks of wired nonsignaling resources,
it will provide an important foundation for deriving constraints satisfied by only these behavi-
ors but possibly violated by different causal theories—an important example being scenarios
allowing for entangled measurements and/or generalizations thereof. Since the inflation tech-
nique applies to all causal theories, it cannot readily be used to address this separation. Thus
the framework introduced here for direct study of just wired nonsignaling resources will be
useful in resolving the question of when/whether behaviors that can be observed in generalized
probabilistic theories with entangled measurements (or generalized analogues thereof) can not
be observed in networks where these are prohibited (such as nonsignaling resources with local
wirings). This corresponds to the question of whether there are behaviors in regions R3/Rs
in the Venn diagram of figure 2 of [26]; conjecture 1 in section V-C of [16] is an argument that
Rs is nonempty. The question is somewhat subtle as some behaviors that would seemingly
require entangled measurements—such as the device-independent certification of entangled
measurements protocol of [27]—can be counterintuitively simulated with wired nonsignaling
boxes [26]. Study of this region will increase our understanding of entangled measurements;
it is also motivated by a variant definition [11] of LOSR-GMNL in which entangled measure-
ments and generalizations thereof are not allowed for the class of behaviors that are classified
as bipartite-only nonlocal.

Note that since quantum resources are nonsignaling, any constraint proved in this context
will apply to a practical scenario of networks of quantum-achievable nonsignaling resources
measured in cascaded fashion—the ‘quantum box’ paradigm of the set OB, in [26], which is
directly relevant to the proposed definition of genuine network nonlocality given in [28].

The paper starts by defining nonsignaling resources and networks thereof in section 2,
where a method for determining the joint distribution is formalized and shown to be con-
sistent. Section 3 derives properties of joint distribution: the nonsignaling property, the ability
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to restrict attention to extremal nonlocal nonsignaling resources in certain cases (an import-
ant technique that was used in, for example, [11]), and a discussion of the causality of the
framework which supports the applicability of the inflation technique.

The paper concludes with a case study example: inequalities witnessing LOSR-GMNL in
the three-party scenario. It is shown that all known three-party inequalities with two settings per
party and two outcomes per setting—the simplest possible scenario witnessing LOSR-GMNL
(see section SM 3 of [26])—can be derived from the inequality of Mao et al [19] (which
was obtained with the inflation technique, and so the causality results of this paper reinforce
the applicability of this inequality to the paradigm of wired nonsignaling resources). These
derivable inequalities include the inequality of Chao and Reichardt [18] as formulated in [11]
(which is notable as the Chao—Reichardt inequality had previously only been derived directly
within the paradigm of wired nonsignaling resources; by deriving it here as a consequence of
the inequality of Mao et al we show it holds of the more broad class of causal theories), and
inequality (1) of Cao et al [20]. A second inequality of Cao et al, which has an extra setting
for one of the parties, can also be derived from that of Mao et al; a natural open question is
whether different inequalities can be discovered in this scenario.

2. Nonsignaling resources: definition, a framework for studying networks, and
consistency of the joint distribution

We are interested in behaviors P(Ay,...,A,|X|,...,X,) that can be induced by underlying
networks of nonsignaling resources. We will notate the distributions of the underlying network
resources with R, as in R(ABC|XYZ), to distinguish these from the final global distribution P.
It is also helpful to refer to the variables of the resource occurring in R(- - - | - -+ ) as outputs and
inputs, to distinguish them from the variables of the overall behavior P(A4,...,A,|X|,...,X,),
for which we call Xj the setting and A; the outcome or final outcome. In the next subsection,
we introduce a formal definition of nonsignaling for an n party resource R that generalizes (1),
and derive some important consequences of the nonsignaling condition.

2.1 Properties of nonsignaling resources

For an n-party resource R(---|---), the nonsignaling condition is as follows: for each j in
{1,...,n} and each pair of possible values x; and x/ that the input choice X; can assume,
we have

E R A] :al,...,Aj:aj,...,Anzan|X1 :xl,...,Xi:xj,...,X,1 = Xn
4aj

change

/
:ZR <A1 :al,...,Aj:aj,...,A,, :an|X1 :xl,...,Xj :xj,...,Xn :x,,) (2)
aj

for each fixed choice of x; among i # j. In words, this means that the conditional distribution
of the A; excluding A; is independent of party j’s input choice. This represents the idea that
one party (the jth) cannot signal to the rest through their choice of input. For the rest of the
paper, we will use a shorthand in expressions like (2) whereby R(d|X) = R(ay, . ..,a|x1,. .., ;)
is shorthand for R(A| = ay,...,A, = ap|X1 = x1,.. ., Xp).

A few points are worth mentioning before moving on. First, use of the conditional distri-
bution notation R(d|X) suggests the existence of a joint distribution of all random variables
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(2) Al uses signal (3)A2-A5 immediately (4) Receiver reconstructs
1) Source to determine - transmit outputs Ag-As information about signal
P 2-45
emits a signal input choice X using Ag-As
g
. o
- =
Gap

Figure 1. Faster-than-light signaling through violation of (2). In the scheme above, the
signal distance between Source and Receiver is effectively shortened by the length of
the span marked ‘Gap,” with a small € correction owing to slight diagonality in the
paths. The correction vanishes asymptotically as the distance to Receiver increases. If all
dashed-line signals travel at the speed of light, signal information traverses the Source-
Receiver span faster than the speed of light. Sources and receivers positioned along
different diagonal axes motivate (2) for other choices of the signaling input X; (=1
above). A similar figure with a regular n-gon motivates (2) for a set of n parties.

comprising A and X from which the conditional probabilities are derived. However, in studies
of networked nonsignaling resources, a full probability distribution of the inputs X is some-
what besides the point (even if it may exist)—we want to think of the inputs more as choices
one can supply to the resources to which they respond. In this sense R(---|---) is perhaps bet-
ter thought of as a family of (unconditional) probability distributions of random variables A,
merely indexed by X. Thus we avoid tacitly appealing to input probability distributions in the
derivations below, so that consequences of (2) below could just as easily apply to X,-indexed
families of (unconditional) probability distributions ‘R, (K,,)’ satisfying a suitably re-notated
(2), while keeping the standard convention of conditional probability notation R(---|---).

It also merits briefly discussing the physical motivation of (2). The justification via special
relativity can be seen by considering a scenario where the n parties are arranged at the vertices
of a regular polygon, in which case any violation of (2) could result in a signal-speed boost
in a particular direction: see figure 1 for an illustration in the case of five parties. The figure
may make (2) seem incomplete, as there are of course other signalings that could be well
motivated, such as many-to-one (running the figure in reverse), or a group of two adjacent
parties signaling to the remaining three; conversely, certain other subset-to-subset signaling
prohibitions might not be so clear how to intuitively justify based solely on special relativity
considerations in the context of figure 1. However, it is known (see [10] section IITA) that the
other subset-to-subset signaling prohibitions can be derived mathematically from (2), and so
once the (2) condition is accepted, one does not require new physical motivation to accept
other nonsignaling conditions.

We now derive important consequences of (2). First, a more general prohibition on subset-
to-subset signaling among the parties can be formulated in the following manner: For 1 < p <
n,letd, denote ay, . . .,a, and d, denote @, 1, . .., a,, and let X, and X, denote the corresponding
sets of x; variables. Then for any fixed choice of d,,%,, ¥, and X, # X, we can prove

> R(Gy,dg|%y. %) = > R (dp,d,]5%, %)) . 3)
- )

aq

The condition above applies to any partition of the parties into two sets. The proof of (3),
which we write out in appendix A, amounts to iterated applications of (2). Condition (3) can
be equivalently re-written a little more compactly in terms of the marginal distribution of d,
as
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R(ay|X,, %) = R (a@y|%,, X}) . (4)
With this in mind, we can define the probability distribution R(d,|X,) as
R(a,|%,) == R(dp|X,,%,) o)

for some fixed choice of X,—any choice of which will do, as (4) ensures there is no ambiguity
in leaving this choice arbitrary. We note that if a distribution over Xis presumed, so that a joint
distribution of all random variables A, X exists and the conditional probabilities R(d,|%,) can
be calculated directly from it, satisfaction of (2) ensures that these calculations will be con-
sistent with (5); see appendix A for a demonstration. Finally, and unsurprisingly, the reduced
distribution (5) is itself nonsignaling: Subdividing a, into two strings d,, (receiver) and d,
(signaler), we have:

> R(Gy, .y, |%),. %) = R (@), |, %)

=R (G, %, %y, %)
=R (5P, Xprs 41; ’fé)
=R(

5pr|£pr’f;s) = ZR (ﬁp”a’h pr”fpls) (6)
aﬁj

where we applied (5), then (4), then (5) after converting the sums into equivalent expressions
about marginal probabilities. The equality R(d), |X,,,Xp,) = R(d),|X,,, X, ) can be given an oper-
ational interpretation as the broadest notion of nonsignaling, encapsulating the idea that no
subset of parties (those corresponding to ), ) can signal to any disjoint other subset (those
corresponding to d, ) without explicit reference to the third uninvolved subset of remaining
parties (those corresponding to d,).

The final property that we derive, required for some arguments in the next section, is as
follows: the input-conditional distribution of a subset of parties, conditioned additionally on
the inputs and outputs of the other parties, is nonsignaling. That is, assume a particular set
of outputs g, of the last g parties occurs with nonzero probability, given the input vector X,:
R(d,|x;) > 0. Then the natural definition of the distribution of the first p parties’ output d,
conditioned on their input X,,, as well as the inputs X, and outputs g, of the g group, is

R(dy,dg|%p,%y)

—— 7
R (dyl%,) @

R (a@p|%,) = R(dp|X,,Xq,dg) :=
where we exploit (5) to justify writing R(d,|x,) instead of the more generally valid R(d,|X,,X;)
in the denominator above. It is immediate that R%*(d,|X,) is a valid probability distribution
(nonnegative and sums to one over ,). Furthermore R%"¢(d,|x,) is no-signaling as follows:

Za,, R(dp—1,ap,dg|%—1,%p,%g)
R(d,|%,)

ZR(JP—Iaap‘fﬂ—lvxp"_"qqu) =

ap
B ZapR<5p*1>apa5q‘)z}ﬂflvxéqu)

R (dy|%,)

= Y R (ol 5 %) ®
a,
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Output Legend

Alice 1 (Alice) alV o
Alice 2 (Bob) ag)
Alice 3 Alice 3 (Charlie) aél) agf)
(Charlie)

Figure 2. An example of three parties sharing two nonsignaling resources.

where in the middle equality we apply (2) to the numerator. As (8) is equivalent to (2) when
applied to the reduced distribution R%(,|x,), it naturally follows that R%" (G, |%,) satisfies
all of the properties (3)—(6) derived as a consequence of (2). Furthermore it is straightforward
to confirm that conditioning as in (7) iteratively is equivalent to performing the steps all at
once; i.e. if @ = (d,,d,,d,) and we take the no-signaling distribution R (d,,d,|x,,¥,) and
condition on the input-output combination d,, ¥, to get (R%~ )@ (g,|%,), the result is equi-
valent to R (G,|x,).

2.2. Networked collections of nonsignaling resources: paths and decision trees

Having defined the nonsignaling condition (2) and derived some of its consequences, we are
ready to study networked collections of nonsignaling resources. We consider a scenario of n
spatially separated measuring parties, which we call Alice 1 through Alice n (or Alice-Bob-
Charlie in scenarios of n = 3 parties). The n parties share a set of m nonsignaling resources R =

{Ry,...,R,}; figure 2 gives a schematic example of n = 3 parties sharing m = 2 resources. Each
nonsignaling resource Ry, is shared by a subset of parties indexed by a set My = {ky,...,k, } C
{1,...,n} whose cardinality nj can be as small as 1 and as large as n; in the example figure 2

these sets correspond to columns in the ‘Output Legend’ of figure 2, so the set M is all three
parties while M, is only Alice and Charlie. Each party sharing the resource Ry has an input
X,(f) that can take one or more values x,(;), for which there is then a corresponding output A,(;)

taking values a,(f). Below, we will omit the superscripts (k) from the X and A variables when

it is clear from context to which Ry they are associated. We assume that the output space for
a fixed A,(,k) is the same for every choice of input x,(,k). (This is not restrictive, because we can

7
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always make it true of a resource by artificially augmenting value spaces, assigning probability
zero to the added outputs; (2) will hold of the augmented distribution.)

We want to examine the joint probability distributions that arise when each party can
measure the portion of the resources they share in different orders and use outputs of earlier
resources to influence choices of inputs provided to later resources, as well as the order in
which they access the later resources. Mathematically: letting Ay denote the vector of all out-
puts of resource k possessed by the subset of parties M, we are interested in the distribution
of joint outputs of all n resources P(Kl,...,gm|X1, ..., X,) when each party follows such a
scheme. A fixed party p observes one entry from each resource-output vector Ay that corres-
ponds to a resource Ry they share; X, denotes an initial setting provided to the pth party, on
which they can condition their strategy for accessing the resources. Recall that we call X,

the setting to differentiate it from the various X,S") supplied to the Ry resources which we call
inputs.

We model the scheme with a decision tree for each party p, which encompasses their
strategy for accessing their resources: which resource Ry she will access first, then how she
will proceed to the next resource depending on the observed output, and so forth. After care-
fully stipulating the structure of these decision trees, we provide a formula for computing
IP(KI ve A [Xi,...,X,), and show that the procedure is sound (i.e. leads to a well-posed prob-
ability distribution).

Given a party Alice p who possesses a share of m, <m of the resources in R =
{R1,...,Rn}, let us denote the index set of the resources she has access to as R,,. (Here it
is visually useful to note that R, corresponds to rows of the output legend in figure 2; in con-
trast the sets M defined earlier correspond to columns.) Then we define a decision tree as
follows, with figure 3 providing an illustrative example:

Definition. A decision tree for Alice p is a tree graph, consisting of nodes connected by edges,
where all maximal length paths (those starting at the root node and ending at a terminal node)
are of the same length, exactly m, + 1 edges—the number of resources shared by party p, plus
one. Furthermore all edges and nodes except for terminal nodes and the root node are labeled,
satisfying the following conditions:

(i) There is exactly one edge leaving the root node for each choice of setting x,,, which is
labeled with this setting choice. (This tells Alice p what to do for each choice of setting
X,).

(i) Every non-root and non-terminal node is labeled with two entries instructing Alice p what
to do. If i is the number of edges downstream from the root node—this is known as the
depth, or level, of the node—we notate these two values (c;,inp;), where ¢; represents
the choice of resource to use, and inp; represents the choice of input to provide to the
corresponding resource R,,. The label ¢; is never equal to the earlier ¢; label appearing in
one of its ancestor nodes—a resource is only used once.

(iii) For every node carrying a (c;,inp;) label (i.e. non-root, non-terminal nodes), the number
of edges descending from it is equal to the number of valid outputs from the resource R,
for party p’s output A;k). Each emerging edge is labeled with a unique one of these valid
outputs, which we notate out;; the subtree descending from this edge represents what the
party proceeds to do conditioned on observing this particular output.

Figure 3 is an example of a decision tree for Alice 1 in the three-party, two-shared-resources
experiment of figure 2. The decision tree framework can be slightly augmented if we want
to have each party p report an overall outcome upon reaching a terminal node, depending on

8
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outa =0 End

co=2,inpy =1

c2 =2, inpy =0 End
outy = 2 End
outa =0 E
nd
outy =1 End
outa =0 End
outy =1 End

outz =0 End

outy =1 End

-Start Alice Settmgs Alice uses resource Ry Alice sees Alice moves to resource Rg Alice sees
isX =0 providing input 0 output 1 providing input 0 output 0

Figure 3. A decision tree. The following example is for Alice 1 in the 3-party, 2-resource
scenario of figure 2 where Alice 1 shares resource R; with Alice 2 (Bob) and Alice 3
(Charlie), and shares resource R, with Charlie only. Her setting X can take one of two
values {0,1}; note that which resource she consults first depends on this setting. Alice
can observe one of two possible outputs {0,1} from resource R; and three possible
outputs {0, 1,2} from resource A. A sample path is highlighted with dashes; Alice’s
actions and observations for this sample path are detailed at the bottom of the figure.

which terminal node is reached: we model this as the ‘final outcome’ A, where disjoint subsets
of terminal nodes are labeled with different values a,,.

Note that in condition (iii), it is possible for a valid output to occur with probability zero;
these are still included on the tree just to avoid some cluttering caveats in the formal argu-
ments below. In a similar vein, conditions (i)—(iii) ensure that in every maximal-length path
connecting the root node to a terminal node, the sequence ¢, ..., Cm, contained in the traversed
nodes maps bijectively to R, (every resource is consulted exactly once). The framework above
thus assumes that all parties always use every resource they have access to. This assumption
makes the construction of the joint distribution in the next section a little more natural, and is
not actually restrictive—we discuss how to account for the possibility of ‘unused’ resources
further below.

The key observation about the structure of a party p’s decision tree, which enables the sound
construction of the joint probability distribution, is as follows: given a setting x,,, a fixed choice
of outputs a,(,k) for each resource Ry shared by party p uniquely determines a max-length path
through the decision tree. This is can be confirmed visually by following through figure 3: If

we are told the setting X is 0, then the aSSignmentAgl) =1land Agz) = 0 uniquely corresponds

9
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to the highlighted path in the tree. Any other assignment Agl) = agl) and AE2) = asz) corres-

ponds to a different unique branch. Once the branch of the tree is determined, the inp; labels
contained in the nodes along this path specify the inputs that the party must have provided to

each resource. Thus each resource input xpk is a function of the string of a,(,k) (as well as the
initial setting Xx,,), and so could be written xI(,k) (xp,a,(j), . .,a,@), though we do not use this
e

explicit functional notation below. Indeed, the soundness of the joint probability distribution

construction will depend crucially on a further observation that each x,(,k) is determined by only

a proper subset of the a,gk): if we work down the initial segment of a path descending to level

i, this initial segment is determined by X, and i — 1 choices of A¥ and fixes i choices of xék)

that will then be constant independent of the other A,(,k).

For example: consider a party who possesses a share of five resources R, R, R3, R4, R5, and
assume a setting choice X,, = x,,. Consider a fixed string of outputs aé,l),al(f),al(f) az(,4),a§5) .
Then it is true that the only way that Alice p ends up having observed this specific choice of
a,(,l) , a,(,z) , a,(,3) , a,(,4) , a,(,s) is to have traversed a specific unique path through the decision tree, in
which she observed these outputs in a certain order and provided specific resource inputs along
the way. Suppose that on this path, we have ¢; =3,cx =2,c3 =5, so that Alice p must have
initially consulted resource Rj3, then R;, then Rs to be consistent with observing the given out-

put string. Then for other strings of outputs Aél),a,(,z),a,(f) ,A§4),a,(,5) with any different values

of A,(,l) and A£4), the corresponding path on the decision tree will have a same initial segment,
2 ,0)

and map to the same resource input choices of x,”’, x,’, and xés) (and indeed one additional
(k)
Ap

9

will be determined by inp,, where k = c4). Notice that alternate choices of Af,z) ,Af) 7A,(,5)

do not necessarily determine XI(,Z), XS), and XI(,S): it could be on the decision tree that if AI(,Z)

(2), then c3 equals (say) 4 instead of 5 so that Ry is the third resource

used; then, we would have instead all strings of the form A,gl),a,ﬁ(2),a§,3),a,(,4),A;(,5)

the same x,(,z) ,x,(,3) ,x,(,4) (and one additional x,(,k) determined by inp, and c4) for all choices of

AV and A0,

Before moving to the construction of the joint probability distribution, let us briefly return
to the question of modeling situations where a party might not use a resource, or may decide
to use it only conditionally on seeing certain outputs from other resources. Within the above
framework, we can model this a couple of different ways. One option is to introduce an input
choice L intended to mean ‘unused:’ if party ¢ supplies the input L for X, the resource then
with probability 1 returns for A, a ‘no output recorded’ result which we also denote as _L; the
distribution for the non-g parties R+ (---|--) is then just their marginal (5). Another option
that avoids the introduction of an extra input choice is to collect all unused resources and put
them at the end of the decision tree with an arbitrary dummy choices of input provided, where
all outputs lead to the same subtree—the output is essentially ignored, as the party behaves the
same way no matter the output value.

We also note that local probabilistic choices can be encompassed by our framework: if, for
instance, Alice p at some point decides to flip a fair coin and condition her input to a later
resource based on the coin result, we can model this coin flip as a one-party, single-choice-of-
input resource Ry(A,|X,,) satisfying Ry(A,|X, = the one input) = 1/2. As the degenerate input
plays no role, we omit it and represent such resources as Ry(A,). Multiple parties can also
share such input-free resources, which will look like (for example) Ry (A;,A3). Such resources
correspond to shared local randomness and have an operational interpretation as a random
process whose output is distributed to the parties prior to the beginning of the experiment. As

is equal to a different a,,
determine
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is well known in the literature, it is convenient to model such choices by combining all of them
into a single classical random resource that is shared by all parties; this can be encompassed
in our framework and we will return to it more formally later.

We now move on to building the joint distribution from the decision trees of each party,
and showing that it is consistent/well-defined (i.e. resulting in a normalized probability
distribution).

2.3. Determining the joint distribution ]P)(/Z\} ye- .,Z\m|X1 ,..-,Xpn). Soundness of the method

Given a candidate probability P(dj,...,dyu|x,...,X,) for a fixed choice of d,...,d, and
Xi,...,X,, We assign a value between 0 and 1 according to the following method: For each

party p € {1,...,n}, locate the unique branch (maximal-length path) from their decision tree

determined by X, and that party’s a ( )

the resource inputs xj(

outputs extracted from among the dj, . ..,d,,. Then note
) that are determined by the inp; along these paths, and set

m m

P(dy,. .. dm|X1,. .., X,) H (G| %) HR" (a]((]f),...,a,((f3|x,£]:),...,x(k)) ©)

"k
k=1 k=1

where we have written out d; as a,E]:), e a,((f) on the right. The product form of (9) reflects the
intuitive notion that the different resources are indeed different and so operate independently of
each other; this eventually underpins the derivation of nontrivial constraints in paradigms such
as LOSR-GMNL [12]. The sense in which the resources ‘operate independently’ is not quite
the same as independence of random variables/events with the attendant standard factorization
rule P(SNT) =P(S)(T): a more relevant (though signaling) analogy would be a scenario of
two telephones whose inner workings are completely separate (so ‘independent’) but one can
take what one hears from one telephone (output) and repeat it into the other (as input). Thus

in (9), while the conditional distributions factor, for a party p an input xék) to one resource Ry

can depend on (be a function of) an output az(, " from another resource Ry, with the form of the

dependence dictated by party p’s decision tree. We remark that this notion of independence
of resources is important in related but different approaches such as the study of network
nonlocality [29].

As an example to illustrate how (9) is computed, consider the three-party scenario of
figure 2. Here we have

aj a

P(d),d|x1,%2,X3) =P ail) 051)7 )7 @ §2)|X1,X27X3

R (0087, 180 0 R (o, 2 2 )

=R (a1,a2,a3|x1,%2,x3) R (a1, a3|x1,x3), (10)

where we remove the (k) superscripts in the last line as they are redundant within an Ri(---|--+)

expression. If party 1’s decision tree is as in figure 3, and if on the left side of (10) we have x;,

(1) (2

a;’,and a;”’ as 0, 1, and O respectively, then this corresponds to the highlighted path in the

figure. The inp; along this path then determine the corresponding xgl) and xgz) values that will

appear on the right side of (10); specifically, we then obtain R; (1,a,,a3|0,x2,x3)R2(0,a3]0,x3).

1
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To complete the computation of the probability, one would then consult decision trees for the
second and third parties to fill in the remaining values.

We claim (9) yields a valid joint probability distribution for each choice of xi,...,X,.
Nonnegativity is immediate: the right side of (9) is a product of nonnegative terms. Showing
that the sum over all values of @y, .. .,d,, is equal to 1 is more involved, and depends critically
on the fact that the Ry resources are nonsignaling.

To further motivate our derivations below, let us discuss the potential failure of normal-
ization if the resources are signaling. Figure 1 in [15] leads to such a failure: here, there
are two parties sharing two signaling resources that they access in opposite order resulting
in a sort of ‘grandfather paradox’ inconsistency as described in further detail in that paper.
Mathematically, if we try to apply our formula (9) to this example, the right hand side will
always take the form Ry (ay, 8|0,b2)Ry (v, by|ay,~y) with the multiple appearances of a; and b,
resulting from Alice consulting R, first and using her output as input to R, while Bob consults
R, first and uses his output as input to R;. Then with the signaling properties of the R; and R,
distributions as described in [15], at least one of the resources R; and R, assigns zero probab-
ility for all choices of a; and b, independently of the other entries «, 3,7, d, so all probabilities
assigned by (9) are zero and thus cannot sum to one. We do not encounter such problems when
the nonsignaling condition (2) is satisfied by the resources.

The proof of normalization, while not immediate, is also not exceedingly involved.
However, applying it directly to the general equation (9) requires some unwieldy notation
that can obfuscate what is going on. Hence we first illustrate the key idea with the three-party,
two-resource example of figure 2. Summing (9) over all outputs will yield

> P (), ax1, %0, x3) = > Ry (a1,a2,a3|x1,%2,%3) Ry (a1, a3]x1,x3),  (11)

@ FONOIITINCIC

where we can re-write the right side above in a little more readable fashion, using a standard
Alice-Bob-Charlie renaming, as

Z Ry (abc|xyz) Ry (ac|xz) . (12)
a® p1) (D) 4?) @)

Now, certain x*), y® and z(*) values can depend on @, and @, and thus can vary as the sum
is performed. However, the input to a party’s first used resource depends only on their setting
X,. Let us suppose that for the given choices of X1, X, X3, Alice’s and Bob’s first steps in their
decision trees are to consult resource R, whereas Charlie consults the other resource R,. Then
itis only z(") and x(® that can vary in (12). In particular, z(?) is constant in the sum which will
allow us to pull a term out as follows. First, re-write (12) as

Z Z R\ (abc|xyz) Ry (ac|xz)

@ g p1) () q®

= Z Z Ry (abc|xyz) Ry (aclxz),

c@:Ry(clz)>0  a b)) a2
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where the restriction of the outer sum is valid because given any choice of ¢(?) for which
Ry(c|z) = 0 holds, Ry (ac|xz) will equal zero as well, and hence the corresponding term in the
summand is zero. Then, by (7) we can make the substitution

Ry (aclxz) = Ry (c[z) Rz (alxz; ) (13)

and pull out Ry(c|z) to write

= Z R (c|z) Z R\ (abc|xyz) R, (alxz,c). (14)

c@:Ry(c|z)>0 a®) p(M) (1) 4(2)

We remark that this step may fail in the absence of the no-signaling assumption; one would
be attempting to pull out R;(c|xz) instead of just Ry(c|z), and Alice’s input x(>) to R, might
not be independent of her output a(!) from R; (which she consulted first). Continuing on, we
can enlist the fact that x(!) and y(!) similarly do not vary in the sum, so that the process can be
repeated on the inner sum to rewrite (14) as

Z Ry (c|z) Z R, (ablxy) Z R (c|xyz,ab) Ry (alxz,c). (15)

c@:Ry(c|z)>0 a®) bR (ablxy) >0 c(),a®)

We have pulled out the probabilities corresponding to the first resource each party consults.

Now looking at Ry (c|xyz,ab) in the innermost sum, the inputs x(!) and y(!) are fixed, but
Charlie’s input z(") can depend on his output ¢(? from R, which he consulted earlier on his
decision tree. However, for each choice of ¢ in the outermost sum, z(!) is fixed; and for
each fixed choice of a(!) and b(!) in the middle sums, R, (c|xyz,ab) will be a single probability
distribution for which we are summing over all outputs ¢(!) in the innermost sum. We can
make a parallel argument for R, (a|xz,c). So for each fixed choice of a"),b(1) ¢(?) the inner
sum is

Z R, (c|xyz,ab) Ry (alxz,¢) = ZR' (c|xyz,ab) ZRZ (alxz,c) = 1.

c(),a®) () a®

Then (15) reduces to just the outer sums, for which we have

Z R>(clz) Z R, (ablxy) = 1.

c@:Ry(c|z)>0 aM bR (ablxy)>0

The above example contains the essence of the proof of normalization. For scenarios
involving decision trees of depth 3 or more the process of replacing (12) with (15) must
be applied iteratively to the inner sum in (15): pulling out probabilities corresponding to the
second consulted resource on a decision tree, then the third, etc. There is a slight notational
complication because the choice of which resource is consulted next may change depending
on the values fixed by outer sums (i.e. the outputs of the previously consulted resource). For
completeness we present the proof of the general case in appendix B.
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3. Properties of the induced distribution

The distribution defined by (9) satisfies a number of important properties that we describe here.

3.1. Nonsignaling of the induced distribution

We can demonstrate that the distribution P defined in (9) is nonsignaling, in the following
sense illustrated for our 3-party example. Recall that for this example PP is given by

P(d1,d|X1,X2,X3) = R, (a1,a2,a3]x1,%2,X3) Ry (a1, a3|x1,x3) .

Now re-ordering the outputs in the front of P(- - -| - - - ) so that they are grouped by party instead
of by resource, we can re-write the probability as

P agl)’a?)’ agl) ?agl)aagZ) |X1,X27X3
N _‘ prmm—

a) a az

Then, the assertion is that P(A;,A;, A3|X;,X,,X3) satisfies the no-signaling condition (2):
> Planag,a3)x1,%0,x3) = >, P(ar,az,a3/x"1,%2,%3) for all fixed choices of the non-
summed over variables, and the corresponding equalities hold for the parallel expressions with
Zaz and a,- Here, we are taking the ‘final outcome’ of party p—discussed after the definition
of decision trees in section 2.2—to be the complete transcript of all resource outputs recorded
by that party. If party p instead bins together some of these transcripts to report a final outcome
as some non-injective function of the complete transcript of resource outputs, the nonsignaling
property of the distribution of these binned final outcomes will follow from the nonsignaling
property of the distribution of complete transcripts.

To prove the nonsignaling property in the general n-party, m-resource setting, recall R, C
{1,...,m} denotes the subset of k indices that correspond to resources Ry that are shared by
party p; these correspond to rows in the output legend of figure 2. Then we want to show that
for each fixed choice of p,

Z P (@1, ey G [X1y oy Xy ey X)) = Z P (@1, Gon|X1y oy X ey Xn) (16)
a[(,k) k€R, a,Ek) kER,

for all fixed choices of the non-summed-over variables and settings. We prove this as fol-
lows for p=1 (the proof applies without loss of generality to the other parties). First, let
us deal with a trivial case: suppose that for some resource k shared by party 1, we have
Ri(ak,; .., ax, |Xu, - - X, ) = 0; that is, the marginal probability of the other parties’ outputs
is zero. Enlisting (5), this implies that for any choice of xi,

0:Rk<ak2,...7aknk xl,xkz,...7xknk) = E Rk(al,akz,...,aknk xl,xkz,...7xknk)
ay

and so Ry(ay,ay,,.. o Gk |X1, Xk - .,xknk) must equal zero for all choices of a;. This implies
both sides of the equality in (16) are zero, after re-expressing P(---|---) terms as products of
R(---|---) terms according to (9). So let us now assume that all Ry(ay, - - ., ax, |Xk,, - -, X, ) are

14
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positive. Now using (9) to write the left side of (16) as a product of R(: - -|- - -) terms, factoring
out those not shared by party 1, and applying (7), we can write

Z P(El,....,c_im|x1,...,x,,)

alm:keRl

m
é HRk (ak17"'>akn]<

a](k) kER k=1

ka“‘axknk)

:HRk(|) Z HR" \akfl,’akz""’aku

Xy 3 Xk s+ - oy Xy,
~~

KER, o ker, KERY o o
a, x;

= HRk(|) Z HRk(akz,...,aknk xkz,...,xk"k)Rk(a1|x1,xk274“,xknk?akm...,aknk)
kER, o ke, KER

= HRk(|) HRk(ak27"'7aknk ka,"'7xknk) Z HRk(al|x17'xk27"'7xknk7ak27"'7aknk)
kgR, kER, o ke, KER

= H Re(-+|-+) H Ry (akz,...,ak,,k xkz,...,xk”k) 17)
kER) kER

where the last equality holds because the sum in the penultimate line evaluates to one—a result
that can be obtained by noting that this sum is a quantity of the form (B.4) in appendix B,
and thus equals 1 by the arguments presented there'. Now the final expression in (17) has
no variables belonging to party 1; all R(ay,,.. o A, | Xy - .,xk,,k) terms depend solely on the
settings x; and decision trees of the other parties. Since the same expression can be reached if
we apply these manipulations to the right side of (16), the equality holds.

3.2. Shared local randomness and local deterministic distributions

Consider an n-party paradigm in which arbitrary shared local randomness is allowed: the
parties are allowed to consult n-party no-input resources R(ay,...,a,) of arbitrary distribu-
tion. However, restrictions are imposed on the type of nonlocal resources with inputs that can
be consulted. An important motivator for this paradigm is the LOSR-GMNL definition of
[12], where global local shared randomness is considered a free resource always available to
all n parties, and it is the networks where nonlocal nonsignaling resources (with inputs) are
restricted to subsets of two parties that are considered (only) bipartite nonlocal—or for a more
generalized hierarchical notion of LOSR-GMNL [16], networks allowing nonlocal nonsignal-
ing resources shared among subsets of at most n — 1 parties are classified as not genuinely
n-partite nonlocal.

If we study the class of behaviors satisfying such a paradigm, this class is equivalent to
the following: convex mixtures of behaviors induced by networks comprising only extremal
nonlocal nonsignaling resources satisfying whatever restrictions were previously imposed on

I We can alternatively obtain equality to 1 as a consequence of the normalization of joint probability distribu-
tions defined by (9): for a fixed choice of (xx,,...,xx, ) and (ax,, ... ak, ) Re(a1]x1, Xk, - Xk, s ahys - - Ak, ) =
Rakz 3o sl Xk 55X

ﬁ a, X X

ky 5Ok 3 Xky 5o e e 5 Xk, . . . . . . s ..
R’ * * resources appearing in the penultimate line of (17) is the expression for the probability distribu-
tion of a one-party network of nonsignaling resources accessed according to party 1’s decision tree; summing over all

outputs then yields one as a consequence of normalization as proved in section 2.3.

" (ay]x1) can be viewed as a one-party nonsignaling resource; then, the product of these reduced

15
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the nonlocal resources. Here, extremal resources refers to resources that are extremal in the
polytope of nonsignaling resources as defined and discussed in for example [10, 30]; by say-
ing nonlocal we specify that these extremal behaviors are not the local deterministic (classical)
ones. The equivalence is useful because it means a linear constraint on behaviors induced by
networks of extremal nonlocal nonsignaling resources will automatically translate to a lin-
ear constraint on the whole class of behaviors by convexity; this technique was used in for
example [11].

Let us prove the equivalence. The first key property is that shared local randomness
resources like R(ay,as3) or R(ay, .. .,a,) can always be factored out of the distribution entirely,
in the following sense: if R; is such a resource, we can write

m
P (d1,dy, ..., an[X1, .. Xa) = Ry (@) | [ Re (@l %)
k=2

:R(ﬁl)P,;l (ﬁz,...,ﬁm|xl,...,xn) (18)

where P is the distribution that obtains if all parties modify their decision trees as follows:
remove all consultations of the resource R;; where such consultations previously occurred,
instead proceed directly to the subsequent subtree that followed in the original tree when the
output corresponding to @, was observed. Figure 4 provides an illustration of this excision/by-
passing procedure. Observe that the inputs X of the other resources will be the same whether
P and [Pz are expanded according to (9), which is why (18) holds.

A key aspect of (18) is the following operational interpretation: that of a scenario where
the random process R is sampled prior to the experiment and the output &, is distributed to
all parties; then when the experiment is run, they proceed with the @;-indexed decision tree.
Indeed, if there are multiple local random resources R; through R;, they can all be pulled out
front as

m

t
P(&‘X) :]:!;[]Rk(al,...,an) H Rk(dk|,fk)

k=t+1

t
== HRk (Eik) ]Pyﬁl,..‘,ﬁ, (Zit-‘rl 3. '7ﬁm) )
k=1

and H,l(:l R;(dy) can be interpreted as a single combined shared resource R; with the distri-
bution Ry(d,...,d;) = [[,_, Rk(dx). Hence any behavior in the class P(A|X) is equivalent to
a convex mixture of behaviors induced by networks of only resources R with inputs.

A further reduction can be performed. As mentioned earlier, the set of all nonsignaling
resource R(ay,...,ayl|xy,...,x,) for a fixed number of parties, inputs, and outputs, comprises
a polytope, as it is the set of behaviors satisfying linear equalities (2) along with the linear
equalities and inequalities that define valid probability distributions. As such, this polytope
will have a certain number N of extreme points RS (ay,...,a,|x1,...,x,), i €{1,...,N}, for
which a general R(ay,...,a,|x1,...,x,) can be written as a convex combination:

R(ai,..,an|x1,...,x,) = z:p(i)Rf?Xt (@i, anlxry....xn), (19)
i
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Party p original decision tree:

out; = i | Ci+1 =Ky inpip1 = +“H” subtree
ti=T . .
) ~ o [Cz+1 =1, inpiy1 = l"] -+« “T” subtree
(i — 1 ancestors)
Shortened tree for a), = H: Shortened tree for a) = T

+ “H” subtree ci=1,inp; =a"| « -« “T" gubtree
= =
(i — 1 ancestors) (¢ — 1 ancestors)

Figure 4. Removing local randomness from decision trees. If R is a no-input resource,
it can be thought of as shared local randomness. Such resources can be removed from
decision trees as follows: for party p’s original decision tree (top), locate every appear-
ance of the resource (nodes with ¢; = 1), then create a new decision tree for each possible
choice of output of the resource (here, there are two outputs) by excising the step where
R is consulted, bypassing it as though the given choice of output had been observed.
Above, we create a new ‘H’ decision tree by replacing every instance of the top subtree
with the shortened below-left subtree, or a new ‘T’ decision tree by replacing with the
shortened below-right subtree.

where p(i) is a probability distribution over the values of i. Employing such an expression for
Ri(d;|X;), we can write

m
P(Ef],ﬁz,. . ~;‘_im X1,...7Xn) :Rl(ﬁl |fl)HRk(ak|;fk)
k=2

> (R (@ fl)] [T Rl %)
i k=2

> p() [RY (@ %) ] [ Re(del, (20)

i k=2

and the term in brackets in (20) is equal to P;(dy,d, . . .,dm|X1, . ., X, ), Which we define to be
the distribution induced when each party uses their original decision with the single change
of replacing consultations of R, with consultations of R$*'. Hence P is equal to the convex
mixture ). p(i)P;. This process can be repeated for all Ry so that I is a convex mixture of
distributions each induced by extremal-only resources.

As a final simplification, consider local deterministic distributions. These distributions are
extremal in the nonsignaling polytope, but they do not exhibit nonlocal behavior: they are
classical where each party’s output is a deterministic function of their local input. That is,
there is a function f mapping each input x; to a fixed value in the range of A; for which

R(ai,..,an|x1,...,x,) = H‘Sa,-f(xi)

i=1
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where the Kronecker delta function d,, 4, maps to one if a; = f(x;) and zero otherwise. Such a
resource can be removed from decision trees with no meaningful consequences for the induced
distribution [P by merely bypassing all steps where it is consulted: there is only one relev-
ant edge descending from a consultation of R, the one labeled with the probability-one out-
put f{x;). Specifically, for a local deterministic Ry we can write P(d},d,...,dn|X1,...,X,) =
PG, .., GlX1, - Xn) [T} O, f(x) Where P’ is the distribution resulting from the shortened
decision trees; IP has no meaningful characteristics not already possessed by P’.

3.3. A discussion of causality

The inflation technique [25] is an important tool for deriving constraints on behaviors that can
arise in multiparty networks. It applies to all theories that are causal, which includes quantum
mechanics, the scenario of wired nonsignaling boxes studied in this paper, and even more
general probabilistic theories that would allow generalized analogs of entangled measurements
on the nonsignaling resources. It is accepted in [12, 16] that the theory of wired nonsignaling
boxes is causal. However, as discussed in the introduction, some references cited regarding this
question [22-24] are somewhat abstract/general and focused on other questions, not explicitly
addressing the matter in regards to wired nonsignaling boxes. It is thus useful to spend a few
paragraphs discussing how the results derived in earlier sections imply the causality of wired
nonsignaling boxes.

A definition of a causal theory amenable to the inflation technique can be found in section
IIB of [16]: a theory is causal if it satisfies the conditions of Definition 1 therein along with
‘device replicability.” We paraphrase the proffered definition of causality loosely as follows:
consider a theory with multipartite resources (for us, the R; resources), parties who measure
them (Alice 1, Alice 2,...), and rules that determine the probabilities observed by the parties
given the resources they measure (for us, the decision trees of section 2 and the induced prob-
ability rule (9)). Then the theory is causal if it satisfies the following conditions: first, given
a subset of parties along with all the resources they share—some of which may be addition-
ally shared with parties outside the subset—the subset parties’ marginal distribution will be
the same regardless of how the measured resources are connected to (or disconnected from,
or re-connected to) parties outside the subset: for example, in figure 2, if we look at just the
two parties Alice and Bob, their marginal distribution should be the same even if resource R
is connected to one Charlie-type party while resource R is measured by a different Charlie-
type party (where the different Charlies, in turn, are perhaps measuring different R; and R,
resources connected to other Alice and Bob-type parties, etc). A ‘Charlie-type’ party is a meas-
uring party with the same decision tree.

The second condition, somewhat implicit in the wording of the first given above, is that it
makes sense to speak of multiple copies of R; and R, resources: the theory should allow the
devices to be replicated, and if a network is sound in the sense that each resource is always
connected to an appropriate party and vice versa (for example, a resource like R, in figure 2 is
always connected to a party like Alice and a party like Charlie; Charlie is always connected to
aresource of form R| and R;), then the theory provides a sound probability distribution for the
parties of the network. (This is key for the mechanics of the inflation technique: a network of
interest is ‘inflated’ to a larger network locally isomorphic to the original one; straightforward
constraints on the probability distribution of the larger network reveal subtler insights about
the smaller network—for this to work, it is necessary that the larger network have a probability
distribution.)

The third condition is independence of distributions among parties with no common
resources: if two parties measure no common resources, then their joint distribution should

18
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factor: P(AB|XY) = P(A|X)P(B|Y) if there is no resource R measured by both Alice and
Bob. This condition is also required to hold more generally for two disjoint subsets of parties.

We now discuss how the theory of wired nonsignaling resources satisfies the conditions
of causality described above. First, the nonsignaling condition derived in section 3.1 ensures
that the marginal distribution of a subset of parties does not depend on how the resources
they share are connected to parties outside the subset. Specifically, looking back to (17), we
see that if we remove Alice 1 from consideration, the marginal distribution of the remaining
parties is the product of the resource distributions R(- - - | - - - ) with Alice 1’s variables removed.
Thus if we have a set of n’ < n parties of interest, we can remove the non-n’ parties one by
one until only the n’ parties remain, at which point their marginal distribution is (uniquely)
determined as the product of the resources they share, now treated as the marginal resources
R(ai,...,ayl|x1,...,x,) that remain when the other parties’ @; and x; variables have been
removed. This will be the same expression regardless of how the removed parties were con-
nected or not connected to resources, with the resulting marginal distribution only depending
on the decision trees of the n’ parties.

The second condition (device replication) follows from the soundness of the probability
formula (9) for always producing a consistent probability distribution from cascaded meas-
urements of nonsignaling resources Ry, as discussed at length and proved in section 2.3 and
appendix A. Finally, the third condition (independence) follows from (9) when we consider
that

HRk (akl7""aknk
= HRk (akl7...7aknk |xk1,...7xk”k> H Rk (akl,...,aknk

keS keSC

KXkyyo e .,xk”k)

KXkyye e .,xk”k)

and if each party either shares resources only from S, or only from S, then the factors above
will correspond to respective distributions Ps and Pgc that would obtain individually from
two disjoint networks treated separately, so that [P factors into the product of Ps and Pgec.

4. An application: deriving the Chao—Reichardt inequality [18] and others from
that of Mao et al [19]

We now turn to inequalities witnessing LOSR-GMNL in the three-party setting. Chao and
Reichardt [18] give an early example of a constraint on three-party behaviors induced by wired
networks of 2-party-only nonlocal nonsignaling resources, with access to global shared (local)
randomness; a linear version of this constraint is given in [11] where it is derived rigorously.
The arguments in [11, 18] directly work with the nonsignaling resources and do not invoke
the inflation technique. Later constraints introduced by [12, 16] and improved upon in [19, 20]
employed the inflation technique and so constrain a more general class of behaviors (allow-
ing for additional features in the bipartite-only networks such as entangled measurements of
quantum resources).

In the context of the previous section, which solidifies the applicability of the inflation tech-
nique to wired nonsignaling boxes, it is notable to show how the early inequality of [11, 18] can
be obtained from that of [19]: this exercise provides an alternate proof of the Chao—Reichardt
inequality, and shows it constrains a more general class of theories (i.e. all causal theories as
opposed to just wired nonsignaling boxes). Let us stipulate that each of the parties have two
settings and outcomes, where the settings X, Y, Z take a value in {0, 1} and the outcomes A, B, C
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take a value in {—1,+1}. (Note in previous sections we denoted A, B, C, X, Y, Z with boldface;
we do not do so here to align with the notation of [19].) Define

(AxBy) = P(A = Blxy) — P (A # Blxy)

so that the above is equal to the expected value E(AB|xy) of the product of the outcomes of A
and B. Similarly, we can define a three-way expectation

(A(B,C.) =P (ABC = +1|xyz) —P(ABC = —1|xyz) .
Now the inequality of Mao et al [19] is
(AoBo) + (AoB1) + (A1BoC1) — (A1B1C1) +2(AgCo) < 4 (21

(see expression (3) in this reference), where the above must hold of networks of bipartite-only
nonlocal resources but can be violated if the three-way entangled GHZ resource is measured.
The 3-party inequality of Chao and Reichardt [18] is formulated in [11] (see expressions (14)
and (15) therein) as

AP(A#C|IX=0,Z=0)+P(A#B|X=0,Y=0)+PA#B|X=0,Y=1)
+PABC=—1X=1,Y=0,Z=1)+PABC=+1|X=1,Y=1,Z=1)>1 (22
which if we re-write in terms of (AB) type expressions using conversions of the form P(A =

Blxy) = (1 + (A(B,))/2 and P(A # B|xy) = (1 — (A.B,))/2 along with their three-party ana-
logs, and perform some algebra, we get

(AoBo) + (AoB1) + (A1ByCi) — (A1B1Ci) +4(A¢Cp) <6

which can be obtained from (21) by adding the trivial algebraic inequality (AoCp) < 1 twice.
Equation (21) is evidently the stronger constraint.

Interestingly, the inequality of Cao et al [20] can be derived from (21) as well: If we re-label
Bob’s outcomes when his setting is 1 by interchanging +1 and —1, (21) becomes

<A()B()> — <A()B1> + <A1B()C1> + <A131C1> + 2<A0C()> <4. (23)
Switching the roles of Alice and Charlie in (23) yields
(CoBo) — (CoB1) + (A1BoC1) + (A1B1Cy) +2(A0Co) < 4, (24)
and adding (23) and (24) together yields
(AoBo) + (BoCo) — (AoB1) — (B1Co) +4(A0Co) +2(A1BoC1) +2(AB,Cy) <8 (25)
which is the 3-party inequality (1) in [20]. Thus all known (3,2,2) inequalities (3-party, 2-
outcome, 2-setting) can be derived from that of Mao et al [19]. Note that since both (23)
and (24) require genuine tripartite nonlocality to violate, their sum (25) should not necessarily
be considered a weaker witness of LOSR-GMNL when compared to (21).
Cao et al [20] contains another inequality (S14) in the supplementary material which in

the 3-party case is not a (3,2,2) inequality (Bob has a third setting) but it can be obtained
from (21) nonetheless. The three party version of (S14) is

20



J. Phys. A: Math. Theor. 57 (2024) 425301 P Bierhorst

1-{(C
% ((AoBo)c=—1,2=1 — {(AoB1)c=—1,2=1 + (A1Bo)c=—1,7=1 + (A1B1)c=—12=1)
1+(C
+ # ((AoBo) c=+1,2=1+ (AoB1)c=+1,2=1 + (A1Bo) c=+1,2=1 — (A1B1)c=+1,2=1)
+ (AoB2) + (B2Co) < 6, (26)

where <AxBy>C:c,Z:l is the expectation conditioned on C = ¢,Z = 1. It turns out that the first
two lines of (26) are equivalent to the first four terms of (21), and the fifth term of (21) can
be replaced using the algebraic inequality (AgCo) = (A¢B,) + (B2Cy) — 1 (this inequality is
used in [16, 20, 25] and can be confirmed by writing out all the probabilities), leading to (26).
Details of the derivation are given in appendix C.

The only other three party inequality currently known to witness LOSR-GMNL is (1) in
[16], which was tested in [21]. Like (26), this inequality has a third setting for Bob, and while
(1) of [16] admits a linear form [31] it does not appear to be directly derivable from (21).

5. Conclusion

We have shown the consistency of probability distributions induced by wired nonsignaling
resources, shown that such distributions are themselves nonsignaling, and discussed other
properties such as causality and the ability to factor out classical random resources and ignore
local deterministic distributions while restricting attention to extremal nonsignaling resources.
This study was motivated in part by new definitions of Genuine Multipartite Nonlocality (the
‘LOSR-GMNL’ definition of [12]), and we closed with an example showing how most inequal-
ities witnessing tripartite GMNL can be derived from that of [19]. Going forward, the frame-
work developed in this paper will provide a useful foundation for rigorously proving future
results about wired nonsignaling resources; this will be useful in studying the gap between
this scenario and more general scenarios permitting entangled measurements—notably, the
inflation technique constrains all causal theories and so cannot directly target this gap. The
results here are also relevant to other paradigms, such as for example networks of quantum-
achievable nonsignaling resources measured in cascaded fashion as studied in the proposed
definition of genuine network nonlocality given in [28]. Future work may also explore general-
izations to encompass resources that admit some restricted form of signaling, such as in models
that utilize underlying one-way signaling resources to replicate quantum nonlocal behaviors
[15, 32], to see under what weaker conditions a consistent joint distribution as in (9) may still
be guaranteed.
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Appendix A. Proofs of nonsignaling properties

Here we write out a couple of the longer equation sequences proving claims in section 2.1.
First, we write out how (3) is a consequence of (2). The three party version of this argument
appears in section IIIA of [10] which we merely iterate more times to obtain the following:

D R (g%, %)

Aq

= E R(Gy,ap 1,y an|Xp, Xps1, -, Xn)

Ap15--+50n
= § § R(a/7,ap+1,---yan—laan|xp>xp+1;xp+27-“axn—laxn)
Ap4-1y---ydn—1 an

= - /
= E E R(apvap+17---7an—laan|xp7x[z+l;xp+27-”axn—laxn)
an

Ap4-1y---ydn—1

_ = 2 ’

= § E R(ap7ap+l7---aanflvan|xpaxp+laxp+2>--~7xn717xn)
Ap415--+50n—2,0n Aap—1

= E E R(a,,,a,,+],...,a,,_1,an x,,,xp+1,x,,+2,...,xn_l,xn)
Ap+1;-++50n—2,0n  \ Gn—1

o — — / li /
= E E R (ap,a1,+1, ce ey A1, | Xy, Xp 1, X0 3 Xy ,xn)

Ap424--+50n ap+1

o - - / / /

= E E R(ap,ap+1,...,an,l,an|xp,xp+l7xp+2,...,xn717xn)
Ap42;---50n  \ dp+1

_ > oo o/

= E R(ap,aq|xp,xq).

dq

The steps above alternate between re-arranging order of summation, and then applying (2)
to the inner sum within parentheses. The above proof does not depend on the ordering of the
parties; choosing ¥, as an initial string just makes it easier to notate. The condition thus applies
to any two complementary sets of parties.

We now show that our definition of R(d,|X,) in (5) is consistent with what we would find
for this quantity from a direct manipulating conditional probabilities, if we model the inputs
X; as random variables with a probability distribution (which along with the specification of
R(Kn |)?n) induces a full joint distribution of A, and X,). Assuming R(X,) > 0—if not, R(d,|x,)
is undefined—we can write, for any choice Ezp,
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R (ap|fp) = R_(‘_"pvfp) /R (fp)

=| D R(@%.5)| /RE)

| %R (3, %) >0

= Z R(5/7|fpafq)R(fpafq) /R(fp)
| 4R (3,.5,)>0

=| Y R@E.F)RE.T)|/RE,)

| %R (5, %) >0 |

R(@%, %) > R(%.%)|/R(%)
¥y R(%,,%4) >0

— [R(@l%. %)) R(5,)] /R (5,)

=R (5p|fpvf;) )

= o

where ¥, is a fixed choice of values for X,, which allows for pulling the term R(dp|%,,%;) out
of the sum over X, after previously replacing each (varying) choice of X, in R(d,|X,,X,) with
this fixed ¥ by invoking (4). Since X above can be any value of ¥, for which R(x,,%,;) >0,
defining R(d,|X,) in (5) as R(d,|X,,X,) for any fixed choice of X, is sensible.

Appendix B. Normalization in the general setting

To prove normalization of (9) in the general case, we rely on the following arithmetic con-
struction. Suppose a quantity Q can be written as

Q=Y &f(i), withy & =1 (B.1)

where each f(i) is a number which may vary with i. If (i) happens to equal 1 for all choices
of i, then Q =1, but we do not initially assume this is the case. We assume instead that each
f(@) can be written in a form parallel to (B.1):

£y = "nig'(j), with > ni=1
J j

where g(j) is a number that may vary with j, and then we say that Q satisfies the recursive sum-
to-1 property if the process can always be repeated such that each new nested functional term
can be written in the form of (B.1), while assuming that this process eventually terminates in a
final expression of the form (B.1) where the functional term does equal one uniformly (i.e. not
varying with the summed index). Then with a little thought, we see that the original quantity O
must equal one as follows: each bottom-level sum, for which the functional term is uniformly
one, will itself equal one; then move back up one level where the functional terms are now
known to be 1, and the next-higher-level sum will equal one as well; continuing to recursively
work back up to the original quantity Q level by level, we find O = 1.
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For our problem, we show that for a fixed setting choice Xxi,...,X,, the sum of all
P(d,...,dm|X1,...,X,) terms, which is the quantity

k k k k
S TTRe (0 oa i a)), (B.2)

satisfies this recursive sum-to-1 property, and thus equals 1. The idea is to successively perform
the manipulation that took us from (12) to (14) as we work down a decision tree until eventually
what is left in the inner sum is a sum over a single variable that is equal to one.

As a first step, pick a party p—for ease of notation, let us say it is Alice 1—and consult
this party’s decision tree to find the first resource they consult after being provided setting X ;

denote this R, and let x,(f) = xgt) denote the input specified by inp;. Now in (B.2), limit the sum

over agl) to precisely those values for which R,(a; |x;) > 0, which does not change the value of

the sum as R;(a;|x;) = 0 implies that the term R(a;,,ay,, . .., a, | X, X, - - -, X, ) appearing in

the summand will be zero as well. (Recall that #1,1,, .. .,#, denotes the indices of the subset of

parties sharing resource R;, so for this resource a,(f ) = agl) and x,(lt ) = x%r) .) Now for each value

of agt) for which R,(a;|x;) > 0 we can write

Rt (alaatgw'-aat,,t xla-xt27"'7xl,lr) :Rt (atza-'watnr -x17x127'">xtn,aa1)Rt(al|xl)

via the same manipulation that was performed in (13). Then since x| is determined by x; alone,
we can pull R;(a;|x;) out of the sum and re-write (B.2) as follows:

Z R, (ai|x;) Z Ri(-|- )Ry (-ee| o) R (-], (B.3)

a§/> Re(ay|x1)>0 {a,..., ﬁ,,,}\af')
& f@)
where the R(---|---) terms of the inner sum are as in (B.2) except for R,(--|---) which now
equals Ri(ar,,...,a, |xX1,X,,...,%, ,a1). Now, following (5) the terms R;(a;|x;) constitute a

probability distribution and so will sum to one, justifying the labeling with )", & above, so the
above expression is a Q-type quantity as in (B.1). The value of the inner sum can vary with
the choice of index of the outer sum, as is allowed for the f(i) terms in (B.1).

To perform the inductive step of the argument, we show that that the terms labeled f(7)
in (B.3) satisfy certain general conditions, and that these conditions (alone) ensure that each
f(i) term can always be re-written in a form Zj n;8(j) with Zj 7; = 1 such that that the same
general conditions will hold for each g(j); thus the process will always be repeatable, and as a
final step we will see that it terminates in an expression uniformly equaling one. The general
conditions are motivated by the idea that we will pull out terms from the inner sum one by
one, with each pull-out corresponding to taking a single step down a party’s decision tree to
the next consulted resource.

Now we lay out the conditions: each term labeled f(i) in (B.3) (which vary with the outer
sum) is an expression of the form

Z Ri(-|) Ry (--+]-+) (B.4)

MC{a,....am}

where summing over M C {d, .. .,d,} is to be understood that that a subcollection of variables
(k)

of the form a;"" are being summed over. If we think of ourselves as working down decision
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trees, M corresponds to parties’ ‘pending outputs’ from resources that have not yet been con-
sulted. The following properties are satisfied by expression (B.4):

(i) For each al(,k) € M®—that is, an a](,k) that is not being summed over—a fixed choice aék)

appears in the conditioner of Ri(---|---), along with a fixed choice of xék), and these do
not vary. (These correspond to resources that have already been consulted, having worked
part way down a path on a decision tree.)

(i1) For each party p, if we collect all the fixed values al(,k) from MC for this choice of p, these
determine an initial path in party p’s decision tree descending from the overall setting
choice x,. The fixed x,(,k) appearing inside the summand are consistent with the inp; on
this initial path.

(iii) For each a® in M, a® appears (varying) in the front of the appropriate Ry(---|---) term,

J J
and the corresponding x](k) will appear in the conditioner. These x](k) are not necessarily

fixed and may change as the sum over M is performed—they are determined by the fixed
choice of a values from M¢ along with the varying-with-the-sum choices of a values from
M.

(iv) We adopt a convention that any term of the form R ()| - - - )—that is, with no terms in the
front—equals one. This corresponds to a resource that all parties have already consulted
and so the corresponding aj(k) are all in M. (Operationally, this should be understood
to indicate a resource Ry that has been pulled out of the inner sum completely; however
we leave a rump term behind with this notational oddity to help maintain the inductive
form (B.4) through all steps.)

Now we show that the conditions ensure that (B.4) can be re-written as . 7;g(j) with
Zj 7n; = 1 and each g(j) also satisfying the conditions. To do so, consult the part of a party p’s
decision tree that is determined by that party’s initial setting X, along with the fixed choices
of that party’s a values from the collection M (if any), which by conditions (i) and (ii) does
determine a unique (initial) path for party p. Let i be the length of this initial path. Then it
will determine a choice of resource ¢; and input inp; to be used at the next step; thus for the

resource R;(:--|---) with f = ¢;, the value of x,(,t) in the conditioner will be fixed as inp; for all

terms of the sum in (B.4) (even as the corresponding a,(,t) € M varies as it is summed over). For

ease of notation let us assume that p=1, so R,(:--|---) will appear in (B.4) as

Rt (al ) aq'-xl 7)?(]7}}‘7 Zir) = Rfmar (al y Jq |)C] afq) (BS)
where d, are among the M indices and &, are among the MC indices. For values of a; for
which R,(ay|x1,%.,d,) = R;"“(a;|x;) is nonzero, we can apply (7) to ;" to re-write the above
expression as

Rt (al 9 Eiq'-xl 7-)?(]7}}‘7 ﬁr) = Rt (ﬁq|-xl 7)?(]7)?” a17ar) RZ‘ (Cl[ |x1 7)?}”7 ﬁl)

where the equality follows from the fact that this sort of conditioning can be performed iterat-
ively as discussed following (8). Now pull out R,(a;|x;,X,,d,) to re-write (B.4) as follows:

Z R, (ai|x1,%,,d,) Z Ri(|-)Ru(e]-)  (B.6)

a§’> R (ar|x1,%,d,) >0 M’:M\ail)
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where the inner summand above differs from the summand in (B.4) by replacing
Ri(a1,dy|x1,Xy, X, d,) With R,(dy|x1,%,,%,,a1,d,). Now, the first sum in (B.6) is the . & por-
tion of (B.1), where > . & =1 as R/(ai|x;,%,,d,) is a probability distribution over ;. And we

now can argue that for each fixed choice of agt),

Z Ri(-|-+)Rp(--| ) (B.7)

is an expression of the form (B.1) satisfying the general conditions (i)—(iv), where we have
effectively moved ai’) from M to M€. To elaborate: as required by (i) for M’C, a fixed choice
0
of xgk) will be fixed as well. The initial path for Alice 1 referred to in (ii) is now one level
longer in (B.7) compared to (B.4), while still satisfying the condition. For all other parties,
satisfaction of (i) and (ii) in (B.4) carries over immediately to (B.7). Finally, satisfaction of
(iii) carries over directly from (B.4) to (B.7) as M’ C M.

Regarding the eventual termination of this process, each round of induction moves an a
variable from the front of an Ri(---|---) term to the conditioner; there is a finite number of
times this will occur before all terms remaining in (B.7) are of the form described in condition
(iv)—and so M’ is the empty set—at which point (B.7) equals 1, completing the argument.

of a;”’ now appears in the conditioner of R,(--|---), and as noted preceding (B.5) the choice

Appendix C. Obtaining (S14) in [20] from (1) in [19]

In this appendix we explain how the first two lines of (26) are equivalent to the first four terms
of (21). Thus the expression (26) is a consequence of (21) when 2(A(Cy) is replaced according
to an algebraic inequality described in the main text.

Substituting (14 (C1))/2=P(C=+1|Z=1) and (1 —(C1))/2=P(C=—-1|Z=1), we
rewrite (26) as

P(C=—-11Z=1) ({(AoBo)c=—1,2=1 + (AoB1)c=—1,z=1 — (A1Bo)c=—1,2=1 + (A1B1)c=—1,2-1)
+P(C=+1|Z=1) ((AoBo)c=+1,2=1 + (A0B1) c=+1,2=1 + (A1Bo) c=+1,2=1 — (A1B1)c=+1,2=1)
+(AoB2) + (B2Co) < 6. (C.1)

Writing out expectations in a more explicit form
(ABy)c=cz=1 =E(ABX=x,Y=y,Z=1;C=¢)
and noting that by no-signaling
P(C=c|Z=1)=P(C=c|X=x,Y=y,Z=1),

we can rewrite the sum of two terms P(C=—1|Z=1){AoBo)c=—12z=1 and
P(C=+1|Z=1){A0Bo)c=+1,z=1 that appear in (C.1) after multiplying out as

E(ABX=0,Y=0,Z=1:C=—1)P(C=—-1|X=0,Y=0,Z=1)
+E(AB|X=0,Y=0,Z=1;C=+1)P(C=+1]X=0,Y=0,Z=1)
—E(AB|X=0,Y=0,Z=1)
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by the law of iterated expectation; E(AB|X = 0,Y =0,Z = 1) isequal to E(AB|X =0,Y =0) =
(AoBo) in turn by nonsignaling. A similar argument yields (AoB; ) from two other terms of (C.1)
after multiplying out. On the other hand, we can write —(ABo)c=—1 z=1 as

—PA=BX=1,Y=0Z=1:C=—1)-P(A#BX=1,Y=0,Z=1;C=—1)]
which when we multiply by P(C=—1|Z=1) =P(C=—-1|X=1,Y=0,Z= 1) becomes
~P(A=B,C=-1|X=1,Y=0,Z=1)+P(A#B,C=—1|X=1,Y=0,Z=1);

performing a similar calculation on (A;By) c=+1,z=1P(C = +1|Z = 1) and adding the result to
the expression above, the resulting sum can be equivalently re-written as

P(ABC=+1|X=1,Y=0,Z=1)—-P(ABC=—1]X=1,Y=0,Z=1) = (A;ByC}).

Similarly, the final remaining two (A,By) type terms in (C.1) are equivalent to —(AB;C}).
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