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Abstract
This paper examines networks of n measuring parties sharing m nonsignaling
resources that can be locally wired together: that is, each party follows a
scheme to measure the resources in a cascaded fashion with inputs to later
resources possibly depending on outputs of earlier-measured ones. A speci昀椀c
framework is provided for studying probability distributions arising in such
networks, and this framework is used to directly prove some accepted, but
often only implicitly invoked, facts: there is a uniquely determined and well-
de昀椀ned joint probability distribution for the outputs of all resources shared by
the parties, and this joint distribution is nonsignaling. It is furthermore shown
that is often suf昀椀cient to restrict consideration to only extremal nonsignaling
resources when considering features and properties of such networks. Finally,
the framework illustrates how the physical theory of nonsignaling boxes and
local wirings is causal, supporting the applicability of the in昀氀ation technique
to constrain such models. For an application, we probe the example of (3,2,2)
inequalities that witness genuine three-party nonlocality according to the local-
operations-shared-randomness de昀椀nition, and show how all other examples can
be derived from that of Mao et al (2022 Phys. Rev. Lett. 129 150401).

Keywords: causality, wired nonsignaling resources,
genuine multipartite nonlocality

1. Introduction: nonsignaling resources and networks

Quantum mechanics is nonlocal in the sense that certain quantum experiments involving spa-
tially separated measuring parties do not admit a local hidden variable description [1, 2].
Quantum nonlocality experiments have been performed under strict conditions [3–6], con-
昀椀rming the phenomenon.

© 2024 IOP Publishing Ltd.
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Quantum nonlocality experiments, while demonstrating strange correlations between dis-
tant parties, still satisfy a condition known as the nonsignaling condition: a measuring party
cannot exploit a quantum experiment to send signals to a spatially separated party. This assures
compliance with special relativity in experiments where separated measurements can be per-
formed near-simultaneously at great distances such that any signals would need to be traveling
faster than the speed of light. The study of the non-signaling condition is of interest in vari-
ous contexts, such as abstract de昀椀nitions of nonlocality not invoking quantum mechanics [7],
attempts to derive quantum mechanics from physical principles [8], and certifying unpredict-
ability of random numbers under minimal assumptions [9].

The nonsignaling condition can be stated formally as follows: consider an experiment of
two spatially separated parties named Alice and Bob, each of whom performs a measurement
using an apparatus; each apparatus has a choice of measurement setting labeled (respectively)
X and Y and provides a measurement outcome labeled (respectively) A and B. Then the joint
probability distribution P(A,B|X,Y) of outcomes conditioned on settings is nonsignaling if
each party’s marginal outcome probabilities are independent of settings choices of the other.
Mathematically this can be expressed as the equalities

P(A= a|X= x,Y= y) = P(A= a|X= x,Y= y ′)

P(B= b|X= x,Y= y) = P(B= b|X= x ′,Y= y) (1)

which hold for all values a,x,y and x ′,y ′, where a marginal probability such
as P(A= a|X= x,Y= y) is obtained from the joint distribution by the summation
∑

bP(A= a,B= b|X= x,Y= y). All distributions P obtainable with quantum mechanics
satisfy the nonsignaling condition (1), but the converse is not true: there are distributions sat-
isfying (1) that cannot be observed through measurements of entangled quantum states, such
as the paradigmatic example of the Popescu–Rohrlich ‘PR box’ distribution [8]. Equation (1)
can be generalized to scenarios of n> 2 separated measuring parties, whereby it is stipulated
that the outcome distribution of any given subset of the n parties is required to be independent
of the settings of the other parties.

An interesting question is what sort of probability distributions can be observed in a three-
party experiment for which each pair of parties share bipartite nonsignaling resources satis-
fying (1)—possibly multiple such resources, allowing local ‘wirings’ whereby each party can
access their resources in cascaded fashion and condition inputs provided to later resources
on observed outputs from earlier ones. Early results on this question can be found in section
IIIC of [10] and [7]. Recently, the question is of renewed interest in light of arguments [11, 12]
that only three-party probability distributions that cannot be replicated by such underlying net-
works of bipartite resources—possibly supplemented with global shared randomness—should
be considered genuinely multipartite nonlocal (GMNL). This approach resolves an anomaly
[12] in earlier de昀椀nitions of the GMNL concept [13–15] in which parallel independent two-
party nonlocality experiments can be counterintuitively classi昀椀ed as GMNL. The new revised
notion of GMNL is named in [16] as LOSR-GMNL, with LOSR standing for local operations
and shared randomness; quantum measurements of the three-way entangled GHZ state [17]
can exhibit LOSR-GMNL [11, 12, 18] and recent experiments [19–21] provide some initial
evidence of the phenomenon.

Motivated in part by the LOSR-GMNL de昀椀nition, this paper studies the general ques-
tion of how to systematically model n-party conditional distributions, or behaviors, of the
form P(A1, . . .,An|X1, . . .,Xn) that are induced as follows: a network of m nonsignaling
resources, each shared by a subset of the parties, is measured by the parties in cascaded fash-
ion after each party i receives a setting Xi; then, each party’s 昀椀nal outcome Ai is a function
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of the observed outputs from the resources. This scenario can be referred to as nonsignaling
resources with local wirings. The study of behaviors obtained this way essentially reduces
to the study of the joint distribution of all the resource outputs in the underlying network:
P(A⃗1, ...., A⃗m|X1, . . .,Xn) where A⃗j refers to all the outputs of the jth shared resource.

The central goal of this work is thus to provide a framework for direct study of the joint prob-
ability distributions P(A⃗1, ...., A⃗m|X1, . . .,Xn) so as to 1) directly prove here some commonly
accepted properties of such distributions, and 2) provide a foundation for rigorous future results
about them. Regarding point (1), it has been accepted, often tacitly, that there is a well-posed
joint distribution P(A⃗1, ...., A⃗m|X1, . . .,Xn) which is itself nonsignaling and causal (causality
here roughly corresponding to an intuitive notion that the marginal distribution of a subset of
parties is determined only by the resources theymeasure and how theymeasure them; quantum
mechanics is an example of a causal theory but other more exotic theories may be causal as
well). But considering that for wired signaling resources, a consistent joint distribution is not
in general possible (see 昀椀gure 1 of [15] for an example), it is good to be clear about why this
is true when the resources are nonsignaling. Accordingly, this work rigorously demonstrates
that the joint distribution induced by a network of wired nonsignaling resources is well-de昀椀ned
and itself nonsignaling. Moreover, while previous works such as [22–24] are cited in [12, 16]
to justify the causality of the paradigm, these previous works are somewhat abstract and do
not always address the point directly. The framework of this paper provides a clear foundation
for demonstrating the causality of the theory of wired nonsignaling resources. An important
consequence of the causality of the paradigm is that it enables use of the powerful in昀氀ation
technique [25], which applies to causal theories.

Indeed, while this work reinforces the fact that that constraints derived from the in昀氀ation
technique [25] are valid in constraining behaviors in networks of wired nonsignaling resources,
it will provide an important foundation for deriving constraints satis昀椀ed by only these behavi-
ors but possibly violated by different causal theories—an important example being scenarios
allowing for entangled measurements and/or generalizations thereof. Since the in昀氀ation tech-
nique applies to all causal theories, it cannot readily be used to address this separation. Thus
the framework introduced here for direct study of just wired nonsignaling resources will be
useful in resolving the question of when/whether behaviors that can be observed in generalized
probabilistic theories with entangled measurements (or generalized analogues thereof) can not
be observed in networks where these are prohibited (such as nonsignaling resources with local
wirings). This corresponds to the question of whether there are behaviors in regions R3/R5

in the Venn diagram of 昀椀gure 2 of [26]; conjecture 1 in section V-C of [16] is an argument that
R5 is nonempty. The question is somewhat subtle as some behaviors that would seemingly
require entangled measurements—such as the device-independent certi昀椀cation of entangled
measurements protocol of [27]—can be counterintuitively simulated with wired nonsignaling
boxes [26]. Study of this region will increase our understanding of entangled measurements;
it is also motivated by a variant de昀椀nition [11] of LOSR-GMNL in which entangled measure-
ments and generalizations thereof are not allowed for the class of behaviors that are classi昀椀ed
as bipartite-only nonlocal.

Note that since quantum resources are nonsignaling, any constraint proved in this context
will apply to a practical scenario of networks of quantum-achievable nonsignaling resources
measured in cascaded fashion—the ‘quantum box’ paradigm of the set QB2 in [26], which is
directly relevant to the proposed de昀椀nition of genuine network nonlocality given in [28].

The paper starts by de昀椀ning nonsignaling resources and networks thereof in section 2,
where a method for determining the joint distribution is formalized and shown to be con-
sistent. Section 3 derives properties of joint distribution: the nonsignaling property, the ability
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to restrict attention to extremal nonlocal nonsignaling resources in certain cases (an import-
ant technique that was used in, for example, [11]), and a discussion of the causality of the
framework which supports the applicability of the in昀氀ation technique.

The paper concludes with a case study example: inequalities witnessing LOSR-GMNL in
the three-party scenario. It is shown that all known three-party inequalities with two settings per
party and two outcomes per setting—the simplest possible scenario witnessing LOSR-GMNL
(see section SM 3 of [26])—can be derived from the inequality of Mao et al [19] (which
was obtained with the in昀氀ation technique, and so the causality results of this paper reinforce
the applicability of this inequality to the paradigm of wired nonsignaling resources). These
derivable inequalities include the inequality of Chao and Reichardt [18] as formulated in [11]
(which is notable as the Chao–Reichardt inequality had previously only been derived directly
within the paradigm of wired nonsignaling resources; by deriving it here as a consequence of
the inequality of Mao et al we show it holds of the more broad class of causal theories), and
inequality (1) of Cao et al [20]. A second inequality of Cao et al, which has an extra setting
for one of the parties, can also be derived from that of Mao et al; a natural open question is
whether different inequalities can be discovered in this scenario.

2. Nonsignaling resources: definition, a framework for studying networks, and
consistency of the joint distribution

We are interested in behaviors P(A1, . . .,An|X1, . . .,Xn) that can be induced by underlying
networks of nonsignaling resources. We will notate the distributions of the underlying network
resources with R, as in R(ABC|XYZ), to distinguish these from the 昀椀nal global distribution P.
It is also helpful to refer to the variables of the resource occurring in R(· · · | · · ·) as outputs and
inputs, to distinguish them from the variables of the overall behavior P(A1, . . .,An|X1, . . .,Xn),
for which we call Xi the setting and Ai the outcome or 昀椀nal outcome. In the next subsection,
we introduce a formal de昀椀nition of nonsignaling for an n party resource R that generalizes (1),
and derive some important consequences of the nonsignaling condition.

2.1. Properties of nonsignaling resources

For an n-party resource R(· · · | · · ·), the nonsignaling condition is as follows: for each j in
{1, . . .,n} and each pair of possible values xj and x ′j that the input choice Xj can assume,
we have

∑

aj

R




A1 = a1, . . .,Aj = aj, . . .,An = an|X1 = x1, . . .,Xj = xj

︸ ︷︷ ︸

change

, . . .,Xn = xn






=
∑

aj

R

(

A1 = a1, . . .,Aj = aj, . . .,An = an|X1 = x1, . . .,
︷ ︸︸ ︷

Xj = x ′j , . . .,Xn = xn

)

(2)

for each 昀椀xed choice of xi among i ̸= j. In words, this means that the conditional distribution
of the Ai excluding Aj is independent of party j’s input choice. This represents the idea that
one party (the jth) cannot signal to the rest through their choice of input. For the rest of the
paper, we will use a shorthand in expressions like (2) whereby R(⃗a|⃗x) = R(a1, . . .,an|x1, . . .,xn)
is shorthand for R(A1 = a1, . . .,An = an|X1 = x1, . . .,Xn).

A few points are worth mentioning before moving on. First, use of the conditional distri-
bution notation R(⃗a|⃗x) suggests the existence of a joint distribution of all random variables
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Figure 1. Faster-than-light signaling through violation of (2). In the scheme above, the
signal distance between Source and Receiver is effectively shortened by the length of
the span marked ‘Gap,’ with a small ε correction owing to slight diagonality in the
paths. The correction vanishes asymptotically as the distance to Receiver increases. If all
dashed-line signals travel at the speed of light, signal information traverses the Source-
Receiver span faster than the speed of light. Sources and receivers positioned along
different diagonal axes motivate (2) for other choices of the signaling input Xj (j= 1
above). A similar 昀椀gure with a regular n-gon motivates (2) for a set of n parties.

comprising A⃗ and X⃗ from which the conditional probabilities are derived. However, in studies
of networked nonsignaling resources, a full probability distribution of the inputs X⃗ is some-
what besides the point (even if it may exist)—we want to think of the inputs more as choices
one can supply to the resources to which they respond. In this sense R(· · · | · · ·) is perhaps bet-
ter thought of as a family of (unconditional) probability distributions of random variables A⃗,
merely indexed by x⃗. Thus we avoid tacitly appealing to input probability distributions in the
derivations below, so that consequences of (2) below could just as easily apply to x⃗n-indexed
families of (unconditional) probability distributions ‘R⃗xn(A⃗n)’ satisfying a suitably re-notated
(2), while keeping the standard convention of conditional probability notation R(· · · | · · ·).

It also merits brie昀氀y discussing the physical motivation of (2). The justi昀椀cation via special
relativity can be seen by considering a scenario where the n parties are arranged at the vertices
of a regular polygon, in which case any violation of (2) could result in a signal-speed boost
in a particular direction: see 昀椀gure 1 for an illustration in the case of 昀椀ve parties. The 昀椀gure
may make (2) seem incomplete, as there are of course other signalings that could be well
motivated, such as many-to-one (running the 昀椀gure in reverse), or a group of two adjacent
parties signaling to the remaining three; conversely, certain other subset-to-subset signaling
prohibitions might not be so clear how to intuitively justify based solely on special relativity
considerations in the context of 昀椀gure 1. However, it is known (see [10] section IIIA) that the
other subset-to-subset signaling prohibitions can be derived mathematically from (2), and so
once the (2) condition is accepted, one does not require new physical motivation to accept
other nonsignaling conditions.

We now derive important consequences of (2). First, a more general prohibition on subset-
to-subset signaling among the parties can be formulated in the following manner: For 1⩽ p⩽
n, let a⃗p denote a1, . . .,ap and a⃗q denote ap+1, . . .,an, and let x⃗p and x⃗q denote the corresponding
sets of xi variables. Then for any 昀椀xed choice of a⃗p, x⃗p, x⃗q, and x⃗ ′q ̸= x⃗q, we can prove

∑

a⃗q

R (⃗ap, a⃗q |⃗xp, x⃗q) =
∑

a⃗q

R
(
a⃗p, a⃗q |⃗xp, x⃗

′
q

)
. (3)

The condition above applies to any partition of the parties into two sets. The proof of (3),
which we write out in appendix A, amounts to iterated applications of (2). Condition (3) can
be equivalently re-written a little more compactly in terms of the marginal distribution of a⃗p
as
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R (⃗ap |⃗xp, x⃗q) = R
(
a⃗p |⃗xp, x⃗

′
q

)
. (4)

With this in mind, we can de昀椀ne the probability distribution R(⃗ap |⃗xp) as

R (⃗ap |⃗xp) := R (⃗ap |⃗xp, x⃗q) (5)

for some 昀椀xed choice of x⃗q—any choice of which will do, as (4) ensures there is no ambiguity
in leaving this choice arbitrary. We note that if a distribution over X⃗ is presumed, so that a joint
distribution of all random variables A⃗, X⃗ exists and the conditional probabilities R(⃗ap |⃗xp) can
be calculated directly from it, satisfaction of (2) ensures that these calculations will be con-
sistent with (5); see appendix A for a demonstration. Finally, and unsurprisingly, the reduced
distribution (5) is itself nonsignaling: Subdividing a⃗p into two strings a⃗pr (receiver) and a⃗ps
(signaler), we have:

∑

a⃗ps

R (⃗apr , a⃗ps |⃗xpr , x⃗ps) = R (⃗apr |⃗xpr , x⃗ps)

= R (⃗apr |⃗xpr , x⃗ps , x⃗q)

= R
(
a⃗pr |⃗xpr , x⃗

′
ps , x⃗

′
q

)

= R
(
a⃗pr |⃗xpr , x⃗

′
ps

)
=
∑

a⃗ps

R
(
a⃗pr , a⃗ps |⃗xpr , x⃗

′
ps

)
(6)

where we applied (5), then (4), then (5) after converting the sums into equivalent expressions
about marginal probabilities. The equality R(⃗apr |⃗xpr , x⃗ps) = R(⃗apr |⃗xpr , x⃗

′
ps) can be given an oper-

ational interpretation as the broadest notion of nonsignaling, encapsulating the idea that no
subset of parties (those corresponding to a⃗ps) can signal to any disjoint other subset (those
corresponding to a⃗pr) without explicit reference to the third uninvolved subset of remaining
parties (those corresponding to a⃗q).

The 昀椀nal property that we derive, required for some arguments in the next section, is as
follows: the input-conditional distribution of a subset of parties, conditioned additionally on
the inputs and outputs of the other parties, is nonsignaling. That is, assume a particular set
of outputs a⃗q of the last q parties occurs with nonzero probability, given the input vector x⃗q:
R(⃗aq |⃗xq)> 0. Then the natural de昀椀nition of the distribution of the 昀椀rst p parties’ output a⃗p
conditioned on their input x⃗p, as well as the inputs x⃗q and outputs a⃗q of the q group, is

Ra⃗q ,⃗xq (⃗ap |⃗xp) = R (⃗ap |⃗xp, x⃗q, a⃗q) :=
R (⃗ap, a⃗q |⃗xp, x⃗q)

R (⃗aq |⃗xq)
(7)

where we exploit (5) to justify writing R(⃗aq |⃗xq) instead of the more generally valid R(⃗aq |⃗xp, x⃗q)
in the denominator above. It is immediate that Ra⃗q ,⃗xq (⃗ap |⃗xp) is a valid probability distribution
(nonnegative and sums to one over a⃗p). Furthermore Ra⃗q ,⃗xq (⃗ap |⃗xp) is no-signaling as follows:

∑

ap

R (⃗ap−1,ap |⃗xp−1,xp, a⃗q, x⃗q) =

∑

ap
R (⃗ap−1,ap, a⃗q |⃗xp−1,xp, x⃗q)

R (⃗aq |⃗xq)

=

∑

ap
R
(
a⃗p−1,ap, a⃗q |⃗xp−1,x ′p, x⃗q

)

R (⃗aq |⃗xq)

=
∑

ap

R
(
a⃗p−1,ap |⃗xp−1,x

′
p, a⃗q, x⃗q

)
(8)
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Figure 2. An example of three parties sharing two nonsignaling resources.

where in the middle equality we apply (2) to the numerator. As (8) is equivalent to (2) when
applied to the reduced distribution Ra⃗q ,⃗xq (⃗ap |⃗xp), it naturally follows that Ra⃗q ,⃗xq (⃗ap |⃗xp) satis昀椀es
all of the properties (3)–(6) derived as a consequence of (2). Furthermore it is straightforward
to con昀椀rm that conditioning as in (7) iteratively is equivalent to performing the steps all at
once; i.e. if a⃗= (⃗ap, a⃗q, a⃗r) and we take the no-signaling distribution Ra⃗r ,⃗xr (⃗ap, a⃗q |⃗xp, x⃗q) and
condition on the input-output combination a⃗q, x⃗q to get (Ra⃗r ,⃗xr)a⃗q ,⃗xq (⃗ap |⃗xp), the result is equi-
valent to Ra⃗qa⃗r ,⃗xq⃗xr (⃗ap |⃗xp).

2.2. Networked collections of nonsignaling resources: paths and decision trees

Having de昀椀ned the nonsignaling condition (2) and derived some of its consequences, we are
ready to study networked collections of nonsignaling resources. We consider a scenario of n
spatially separated measuring parties, which we call Alice 1 through Alice n (or Alice-Bob-
Charlie in scenarios of n= 3 parties). The n parties share a set ofm nonsignaling resourcesR=
{R1, . . .,Rm}; 昀椀gure 2 gives a schematic example of n= 3 parties sharingm= 2 resources. Each
nonsignaling resource Rk is shared by a subset of parties indexed by a setMk = {k1, . . .,knk} ⊆
{1, . . .,n} whose cardinality nk can be as small as 1 and as large as n; in the example 昀椀gure 2
these sets correspond to columns in the ‘Output Legend’ of 昀椀gure 2, so the setM1 is all three
parties while M2 is only Alice and Charlie. Each party sharing the resource Rk has an input
X(k)
kj

that can take one or more values x(k)kj , for which there is then a corresponding output A
(k)
kj

taking values a(k)kj . Below, we will omit the superscripts (k) from the X and A variables when
it is clear from context to which Rk they are associated. We assume that the output space for
a 昀椀xed A(k)

p is the same for every choice of input x(k)p . (This is not restrictive, because we can
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always make it true of a resource by arti昀椀cially augmenting value spaces, assigning probability
zero to the added outputs; (2) will hold of the augmented distribution.)

We want to examine the joint probability distributions that arise when each party can
measure the portion of the resources they share in different orders and use outputs of earlier
resources to in昀氀uence choices of inputs provided to later resources, as well as the order in
which they access the later resources. Mathematically: letting A⃗k denote the vector of all out-
puts of resource k possessed by the subset of parties Mk, we are interested in the distribution
of joint outputs of all n resources P(A⃗1, . . ., A⃗m|X1, . . .,Xn) when each party follows such a
scheme. A 昀椀xed party p observes one entry from each resource-output vector A⃗k that corres-
ponds to a resource Rk they share; Xp denotes an initial setting provided to the pth party, on
which they can condition their strategy for accessing the resources. Recall that we call Xp

the setting to differentiate it from the various X(k)
p supplied to the Rk resources which we call

inputs.
We model the scheme with a decision tree for each party p, which encompasses their

strategy for accessing their resources: which resource Rk she will access 昀椀rst, then how she
will proceed to the next resource depending on the observed output, and so forth. After care-
fully stipulating the structure of these decision trees, we provide a formula for computing
P(A⃗1, . . ., A⃗m|X1, . . .,Xn), and show that the procedure is sound (i.e. leads to a well-posed prob-
ability distribution).

Given a party Alice p who possesses a share of mp ⩽ m of the resources in R=
{R1, . . .,Rm}, let us denote the index set of the resources she has access to as Rp. (Here it
is visually useful to note thatRp corresponds to rows of the output legend in 昀椀gure 2; in con-
trast the sets Mk de昀椀ned earlier correspond to columns.) Then we de昀椀ne a decision tree as
follows, with 昀椀gure 3 providing an illustrative example:

Definition. A decision tree for Alice p is a tree graph, consisting of nodes connected by edges,
where all maximal length paths (those starting at the root node and ending at a terminal node)
are of the same length, exactly mp+ 1 edges—the number of resources shared by party p, plus
one. Furthermore all edges and nodes except for terminal nodes and the root node are labeled,
satisfying the following conditions:

(i) There is exactly one edge leaving the root node for each choice of setting xp, which is
labeled with this setting choice. (This tells Alice p what to do for each choice of setting
Xp).

(ii) Every non-root and non-terminal node is labeled with two entries instructing Alice pwhat
to do. If i is the number of edges downstream from the root node—this is known as the
depth, or level, of the node—we notate these two values (ci, inpi), where ci represents
the choice of resource to use, and inpi represents the choice of input to provide to the
corresponding resource Rci . The label ci is never equal to the earlier cj label appearing in
one of its ancestor nodes—a resource is only used once.

(iii) For every node carrying a (ci, inpi) label (i.e. non-root, non-terminal nodes), the number
of edges descending from it is equal to the number of valid outputs from the resource Rci
for party p’s output A(k)

p . Each emerging edge is labeled with a unique one of these valid
outputs, which we notate outi; the subtree descending from this edge represents what the
party proceeds to do conditioned on observing this particular output.

Figure 3 is an example of a decision tree for Alice 1 in the three-party, two-shared-resources
experiment of 昀椀gure 2. The decision tree framework can be slightly augmented if we want
to have each party p report an overall outcome upon reaching a terminal node, depending on

8
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Figure 3. Adecision tree. The following example is for Alice 1 in the 3-party, 2-resource
scenario of 昀椀gure 2 where Alice 1 shares resource R1 with Alice 2 (Bob) and Alice 3
(Charlie), and shares resource R2 with Charlie only. Her setting X can take one of two
values {0,1}; note that which resource she consults 昀椀rst depends on this setting. Alice
can observe one of two possible outputs {0,1} from resource R1 and three possible
outputs {0,1,2} from resource A2. A sample path is highlighted with dashes; Alice’s
actions and observations for this sample path are detailed at the bottom of the 昀椀gure.

which terminal node is reached: we model this as the ‘昀椀nal outcome’Ap where disjoint subsets
of terminal nodes are labeled with different values ap.

Note that in condition (iii), it is possible for a valid output to occur with probability zero;
these are still included on the tree just to avoid some cluttering caveats in the formal argu-
ments below. In a similar vein, conditions (i)–(iii) ensure that in every maximal-length path
connecting the root node to a terminal node, the sequence c1, . . .,cmp contained in the traversed
nodes maps bijectively toRp (every resource is consulted exactly once). The framework above
thus assumes that all parties always use every resource they have access to. This assumption
makes the construction of the joint distribution in the next section a little more natural, and is
not actually restrictive—we discuss how to account for the possibility of ‘unused’ resources
further below.

The key observation about the structure of a party p’s decision tree, which enables the sound
construction of the joint probability distribution, is as follows: given a setting xp, a 昀椀xed choice
of outputs a(k)p for each resource Rk shared by party p uniquely determines a max-length path
through the decision tree. This is can be con昀椀rmed visually by following through 昀椀gure 3: If
we are told the settingX1 is 0, then the assignment A(1)

1 = 1 and A(2)
1 = 0 uniquely corresponds

9
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to the highlighted path in the tree. Any other assignment A(1)
1 = a(1)1 and A(2)

1 = a(2)1 corres-
ponds to a different unique branch. Once the branch of the tree is determined, the inpi labels
contained in the nodes along this path specify the inputs that the party must have provided to
each resource. Thus each resource input x(k)p is a function of the string of a(k)p (as well as the

initial setting xp), and so could be written x(k)p
(

xp,a
(k)
k1
, . . .,a(k)knk

)

, though we do not use this

explicit functional notation below. Indeed, the soundness of the joint probability distribution
construction will depend crucially on a further observation that each x(k)p is determined by only

a proper subset of the a(k)p : if we work down the initial segment of a path descending to level

i, this initial segment is determined by Xp and i− 1 choices of Akp, and 昀椀xes i choices of x(k)p

that will then be constant independent of the other A(k)
p .

For example: consider a party who possesses a share of 昀椀ve resources R1,R2,R3,R4,R5, and
assume a setting choice Xp = xp. Consider a 昀椀xed string of outputs a(1)p ,a(2)p ,a(3)p ,a(4)p ,a(5)p .
Then it is true that the only way that Alice p ends up having observed this speci昀椀c choice of
a(1)p ,a(2)p ,a(3)p ,a(4)p ,a(5)p is to have traversed a speci昀椀c unique path through the decision tree, in
which she observed these outputs in a certain order and provided speci昀椀c resource inputs along
the way. Suppose that on this path, we have c1 = 3,c2 = 2,c3 = 5, so that Alice p must have
initially consulted resource R3, then R2, then R5 to be consistent with observing the given out-
put string. Then for other strings of outputs A(1)

p ,a(2)p ,a(3)p ,A(4)
p ,a(5)p with any different values

of A(1)
p and A(4)

p , the corresponding path on the decision tree will have a same initial segment,

and map to the same resource input choices of x(2)p , x(3)p , and x(5)p (and indeed one additional

x(k)p will be determined by inp4, where k= c4). Notice that alternate choices of A
(2)
p ,A(3)

p ,A(5)
p

do not necessarily determine X(2)
p , X(3)

p , and X(5)
p : it could be on the decision tree that if A(2)

p

is equal to a different a ′(2)
p , then c3 equals (say) 4 instead of 5 so that R4 is the third resource

used; then, we would have instead all strings of the form A(1)
p ,a ′(2)

p ,a(3)p ,a(4)p ,A(5)
p determine

the same x(2)p ,x(3)p ,x(4)p (and one additional x(k)p determined by inp4 and c4) for all choices of

A(1)
p and A(5)

p .
Before moving to the construction of the joint probability distribution, let us brie昀氀y return

to the question of modeling situations where a party might not use a resource, or may decide
to use it only conditionally on seeing certain outputs from other resources. Within the above
framework, we can model this a couple of different ways. One option is to introduce an input
choice ⊥ intended to mean ‘unused:’ if party q supplies the input ⊥ for Xq, the resource then
with probability 1 returns for Aq a ‘no output recorded’ result which we also denote as ⊥; the
distribution for the non-q parties R⊥q⊥q(· · · | · · ·) is then just their marginal (5). Another option
that avoids the introduction of an extra input choice is to collect all unused resources and put
them at the end of the decision tree with an arbitrary dummy choices of input provided, where
all outputs lead to the same subtree—the output is essentially ignored, as the party behaves the
same way no matter the output value.

We also note that local probabilistic choices can be encompassed by our framework: if, for
instance, Alice p at some point decides to 昀氀ip a fair coin and condition her input to a later
resource based on the coin result, we can model this coin 昀氀ip as a one-party, single-choice-of-
input resource Rk(Ap|Xp) satisfying Rk(Ap|Xp = the one input) = 1/2. As the degenerate input
plays no role, we omit it and represent such resources as Rk(Ap). Multiple parties can also
share such input-free resources, which will look like (for example) Rk(A2,A3). Such resources
correspond to shared local randomness and have an operational interpretation as a random
process whose output is distributed to the parties prior to the beginning of the experiment. As

10
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is well known in the literature, it is convenient to model such choices by combining all of them
into a single classical random resource that is shared by all parties; this can be encompassed
in our framework and we will return to it more formally later.

We now move on to building the joint distribution from the decision trees of each party,
and showing that it is consistent/well-de昀椀ned (i.e. resulting in a normalized probability
distribution).

2.3. Determining the joint distribution P(A⃗1, . . ., A⃗m|X1, . . .,Xn). Soundness of the method

Given a candidate probability P(⃗a1, . . ., a⃗m|x1, . . .,xn) for a 昀椀xed choice of a⃗1, . . ., a⃗m and
x1, . . .,xn, we assign a value between 0 and 1 according to the following method: For each
party p ∈ {1, . . .,n}, locate the unique branch (maximal-length path) from their decision tree
determined by xp and that party’s a

(k)
p outputs extracted from among the a⃗1, . . ., a⃗m. Then note

the resource inputs x(k)j that are determined by the inpi along these paths, and set

P (⃗a1, . . ., a⃗m|x1, . . .,xn) =
m∏

k=1

Rk (⃗ak |⃗xk) =
m∏

k=1

Rk
(

a(k)k1 , . . .,a
(k)
knk
|x(k)k1 , . . .,x

(k)
knk

)

(9)

where we have written out a⃗k as a
(k)
k1
, . . .,a(k)knk

on the right. The product form of (9) re昀氀ects the
intuitive notion that the different resources are indeed different and so operate independently of
each other; this eventually underpins the derivation of nontrivial constraints in paradigms such
as LOSR-GMNL [12]. The sense in which the resources ‘operate independently’ is not quite
the same as independence of random variables/events with the attendant standard factorization
rule P(S∩ T) = P(S)(T): a more relevant (though signaling) analogy would be a scenario of
two telephones whose inner workings are completely separate (so ‘independent’) but one can
take what one hears from one telephone (output) and repeat it into the other (as input). Thus
in (9), while the conditional distributions factor, for a party p an input x(k)p to one resource Rk
can depend on (be a function of) an output a(k

′)
p from another resource Rk′ , with the form of the

dependence dictated by party p’s decision tree. We remark that this notion of independence
of resources is important in related but different approaches such as the study of network
nonlocality [29].

As an example to illustrate how (9) is computed, consider the three-party scenario of
昀椀gure 2. Here we have

P (⃗a1, a⃗2|x1,x2,x3) = P






a⃗1
︷ ︸︸ ︷

a(1)1 ,a(1)2 ,a(1)3 ,

a⃗2
︷ ︸︸ ︷

a(2)1 ,a(2)3 |x1,x2,x3






= R1

(

a(1)1 ,a(1)2 ,a(1)3 |x(1)1 ,x(1)2 ,x(1)3

)

R2

(

a(2)1 ,a(2)3 |x(2)1 ,x(2)3

)

= R1 (a1,a2,a3|x1,x2,x3)R2 (a1,a3|x1,x3) , (10)

where we remove the (k) superscripts in the last line as they are redundant within anRk(· · · | · · ·)
expression. If party 1’s decision tree is as in 昀椀gure 3, and if on the left side of (10) we have x1,
a(1)1 , and a(2)1 as 0, 1, and 0 respectively, then this corresponds to the highlighted path in the

昀椀gure. The inpi along this path then determine the corresponding x(1)1 and x(2)1 values that will
appear on the right side of (10); speci昀椀cally, we then obtainR1(1,a2,a3|0,x2,x3)R2(0,a3|0,x3).

11
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To complete the computation of the probability, one would then consult decision trees for the
second and third parties to 昀椀ll in the remaining values.

We claim (9) yields a valid joint probability distribution for each choice of x1, . . .,xn.
Nonnegativity is immediate: the right side of (9) is a product of nonnegative terms. Showing
that the sum over all values of a⃗1, . . ., a⃗m is equal to 1 is more involved, and depends critically
on the fact that the Rk resources are nonsignaling.

To further motivate our derivations below, let us discuss the potential failure of normal-
ization if the resources are signaling. Figure 1 in [15] leads to such a failure: here, there
are two parties sharing two signaling resources that they access in opposite order resulting
in a sort of ‘grandfather paradox’ inconsistency as described in further detail in that paper.
Mathematically, if we try to apply our formula (9) to this example, the right hand side will
always take the form R1(a1,´|¶,b2)R2(³,b2|a1,µ) with the multiple appearances of a1 and b2
resulting from Alice consulting R1 昀椀rst and using her output as input to R2, while Bob consults
R2 昀椀rst and uses his output as input to R1. Then with the signaling properties of the R1 and R2

distributions as described in [15], at least one of the resources R1 and R2 assigns zero probab-
ility for all choices of a1 and b2 independently of the other entries ³,´,µ,¶, so all probabilities
assigned by (9) are zero and thus cannot sum to one. We do not encounter such problems when
the nonsignaling condition (2) is satis昀椀ed by the resources.

The proof of normalization, while not immediate, is also not exceedingly involved.
However, applying it directly to the general equation (9) requires some unwieldy notation
that can obfuscate what is going on. Hence we 昀椀rst illustrate the key idea with the three-party,
two-resource example of 昀椀gure 2. Summing (9) over all outputs will yield

∑

a⃗1 ,⃗a2

P (⃗a1, a⃗2|x1,x2,x3) =
∑

a(1)1 ,a(1)2 ,a(1)3 ,a(2)1 ,a(2)3

R1 (a1,a2,a3|x1,x2,x3)R2 (a1,a3|x1,x3) , (11)

where we can re-write the right side above in a little more readable fashion, using a standard
Alice-Bob-Charlie renaming, as

∑

a(1),b(1),c(1),a(2),c(2)

R1 (abc|xyz)R2 (ac|xz) . (12)

Now, certain x(k), y(k) and z(k) values can depend on a⃗1 and a⃗2 and thus can vary as the sum
is performed. However, the input to a party’s 昀椀rst used resource depends only on their setting
xp. Let us suppose that for the given choices of x1,x2,x3, Alice’s and Bob’s 昀椀rst steps in their
decision trees are to consult resource R1, whereas Charlie consults the other resource R2. Then
it is only z(1) and x(2) that can vary in (12). In particular, z(2) is constant in the sum which will
allow us to pull a term out as follows. First, re-write (12) as

∑

c(2)

∑

a(1),b(1),c(1),a(2)

R1 (abc|xyz)R2 (ac|xz)

=
∑

c(2):R2(c|z)>0

∑

a(1),b(1),c(1),a(2)

R1 (abc|xyz)R2 (ac|xz) ,

12
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where the restriction of the outer sum is valid because given any choice of c(2) for which
R2(c|z) = 0 holds, R2(ac|xz) will equal zero as well, and hence the corresponding term in the
summand is zero. Then, by (7) we can make the substitution

R2 (ac|xz) = R2 (c|z)R2 (a|xz,c) (13)

and pull out R2(c|z) to write

=
∑

c(2):R2(c|z)>0

R2 (c|z)
∑

a(1),b(1),c(1),a(2)

R1 (abc|xyz)R2 (a|xz,c) . (14)

We remark that this step may fail in the absence of the no-signaling assumption; one would
be attempting to pull out R2(c|xz) instead of just R2(c|z), and Alice’s input x(2) to R2 might
not be independent of her output a(1) from R1 (which she consulted 昀椀rst). Continuing on, we
can enlist the fact that x(1) and y(1) similarly do not vary in the sum, so that the process can be
repeated on the inner sum to rewrite (14) as

∑

c(2):R2(c|z)>0

R2 (c|z)
∑

a(1),b(1):R1(ab|xy)>0

R1 (ab|xy)
∑

c(1),a(2)

R1 (c|xyz,ab)R2 (a|xz,c) . (15)

We have pulled out the probabilities corresponding to the 昀椀rst resource each party consults.
Now looking at R1(c|xyz,ab) in the innermost sum, the inputs x(1) and y(1) are 昀椀xed, but

Charlie’s input z(1) can depend on his output c(2) from R2 which he consulted earlier on his
decision tree. However, for each choice of c(2) in the outermost sum, z(1) is 昀椀xed; and for
each 昀椀xed choice of a(1) and b(1) in the middle sums, R1(c|xyz,ab) will be a single probability
distribution for which we are summing over all outputs c(1) in the innermost sum. We can
make a parallel argument for R2(a|xz,c). So for each 昀椀xed choice of a(1),b(1),c(2) the inner
sum is

∑

c(1),a(2)

R1 (c|xyz,ab)R2 (a|xz,c) =
∑

c(1)

R1 (c|xyz,ab)
∑

a(2)

R2 (a|xz,c) = 1.

Then (15) reduces to just the outer sums, for which we have

∑

c(2):R2(c|z)>0

R2 (c|z)
∑

a(1)b(1):R1(ab|xy)>0

R1 (ab|xy) = 1.

The above example contains the essence of the proof of normalization. For scenarios
involving decision trees of depth 3 or more the process of replacing (12) with (15) must
be applied iteratively to the inner sum in (15): pulling out probabilities corresponding to the
second consulted resource on a decision tree, then the third, etc. There is a slight notational
complication because the choice of which resource is consulted next may change depending
on the values 昀椀xed by outer sums (i.e. the outputs of the previously consulted resource). For
completeness we present the proof of the general case in appendix B.
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3. Properties of the induced distribution

The distribution de昀椀ned by (9) satis昀椀es a number of important properties that we describe here.

3.1. Nonsignaling of the induced distribution

We can demonstrate that the distribution P de昀椀ned in (9) is nonsignaling, in the following
sense illustrated for our 3-party example. Recall that for this example P is given by

P (⃗a1, a⃗2|x1,x2,x3) = R1 (a1,a2,a3|x1,x2,x3)R2 (a1,a3|x1,x3) .

Now re-ordering the outputs in the front of P(· · · | · · ·) so that they are grouped by party instead
of by resource, we can re-write the probability as

P



a(1)1 ,a(2)1
︸ ︷︷ ︸

a1

, a(1)2
︸︷︷︸
a2

,a(1)3 ,a(2)3
︸ ︷︷ ︸

a3

|x1,x2,x3



 .

Then, the assertion is that P(A1,A2,A3|X1,X2,X3) satis昀椀es the no-signaling condition (2):
∑

a1 P(a1,a2,a3|x1,x2,x3) =
∑

a1 P(a1,a2,a3|x
′

1,x2,x3) for all 昀椀xed choices of the non-
summed over variables, and the corresponding equalities hold for the parallel expressions with
∑

a2 and
∑

a3 . Here, we are taking the ‘昀椀nal outcome’ of party p—discussed after the de昀椀nition
of decision trees in section 2.2—to be the complete transcript of all resource outputs recorded
by that party. If party p instead bins together some of these transcripts to report a 昀椀nal outcome
as some non-injective function of the complete transcript of resource outputs, the nonsignaling
property of the distribution of these binned 昀椀nal outcomes will follow from the nonsignaling
property of the distribution of complete transcripts.

To prove the nonsignaling property in the general n-party, m-resource setting, recall Rp ⊆
{1, . . .,m} denotes the subset of k indices that correspond to resources Rk that are shared by
party p; these correspond to rows in the output legend of 昀椀gure 2. Then we want to show that
for each 昀椀xed choice of p,

∑

a(k)p :k∈Rp

P (⃗a1, ...., a⃗m|x1, . . .,xp, . . .,xn) =
∑

a(k)p :k∈Rp

P (⃗a1, ...., a⃗m|x1, . . .,x ′

p, . . .,xn) (16)

for all 昀椀xed choices of the non-summed-over variables and settings. We prove this as fol-
lows for p= 1 (the proof applies without loss of generality to the other parties). First, let
us deal with a trivial case: suppose that for some resource k shared by party 1, we have
Rk(ak2 , . . .,aknk |xk2 , . . .,xknk ) = 0; that is, the marginal probability of the other parties’ outputs
is zero. Enlisting (5), this implies that for any choice of x1,

0= Rk
(

ak2 , . . .,aknk |x1,xk2 , . . .,xknk

)

=
∑

a1

Rk
(

a1,ak2 , . . .,aknk |x1,xk2 , . . .,xknk

)

and so Rk(a1,ak2 , . . .,aknk |x1,xk2 , . . .,xknk ) must equal zero for all choices of a1. This implies
both sides of the equality in (16) are zero, after re-expressing P(· · · | · · ·) terms as products of
R(· · · | · · ·) terms according to (9). So let us now assume that all Rk(ak2 , . . .,aknk |xk2 , . . .,xknk ) are

14
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positive. Now using (9) to write the left side of (16) as a product of R(· · · | · · ·) terms, factoring
out those not shared by party 1, and applying (7), we can write

∑

a(k)1 :k∈R1

P (⃗a1, ...., a⃗m|x1, . . .,xn)

=
∑

a(k)1 :k∈R1

m∏

k=1

Rk
(
ak1 , . . .,aknk |xk1 , . . .,xknk

)

=
∏

k/∈R1

Rk (· · · | · · ·)
∑

a(k)1 :k∈R1

∏

k∈R1

Rk






ak1
︸︷︷︸

a(k)1

,ak2 , . . .,aknk | xk1︸︷︷︸

x(k)1

,xk2 , . . .,xknk







=
∏

k/∈R1

Rk (· · · | · · ·)
∑

a(k)1 :k∈R1

∏

k∈R1

Rk
(
ak2 , . . .,aknk |xk2 , . . .,xknk

)
Rk

(
a1|x1,xk2 , . . .,xknk ,ak2 , . . .,aknk

)

=
∏

k/∈R1

Rk (· · · | · · ·)
∏

k∈R1

Rk
(
ak2 , . . .,aknk |xk2 , . . .,xknk

) ∑

a(k)1 :k∈R1

∏

k∈R1

Rk
(
a1|x1,xk2 , . . .,xknk ,ak2 , . . .,aknk

)

=
∏

k/∈R1

Rk (· · · | · · ·)
∏

k∈R1

Rk
(
ak2 , . . .,aknk |xk2 , . . .,xknk

)
(17)

where the last equality holds because the sum in the penultimate line evaluates to one—a result
that can be obtained by noting that this sum is a quantity of the form (B.4) in appendix B,
and thus equals 1 by the arguments presented there1. Now the 昀椀nal expression in (17) has
no variables belonging to party 1; all Rk(ak2 , . . .,aknk |xk2 , . . .,xknk ) terms depend solely on the
settings xi and decision trees of the other parties. Since the same expression can be reached if
we apply these manipulations to the right side of (16), the equality holds.

3.2. Shared local randomness and local deterministic distributions

Consider an n-party paradigm in which arbitrary shared local randomness is allowed: the
parties are allowed to consult n-party no-input resources R(a1, . . .,an) of arbitrary distribu-
tion. However, restrictions are imposed on the type of nonlocal resources with inputs that can
be consulted. An important motivator for this paradigm is the LOSR-GMNL de昀椀nition of
[12], where global local shared randomness is considered a free resource always available to
all n parties, and it is the networks where nonlocal nonsignaling resources (with inputs) are
restricted to subsets of two parties that are considered (only) bipartite nonlocal—or for a more
generalized hierarchical notion of LOSR-GMNL [16], networks allowing nonlocal nonsignal-
ing resources shared among subsets of at most n− 1 parties are classi昀椀ed as not genuinely
n-partite nonlocal.

If we study the class of behaviors satisfying such a paradigm, this class is equivalent to
the following: convex mixtures of behaviors induced by networks comprising only extremal
nonlocal nonsignaling resources satisfying whatever restrictions were previously imposed on

1 We can alternatively obtain equality to 1 as a consequence of the normalization of joint probability distribu-
tions de昀椀ned by (9): for a 昀椀xed choice of (xk2 , . . .,xknk ) and (ak2 , . . .,aknk ), Rk(a1|x1,xk2 , . . .,xknk ,ak2 , . . .,aknk ) =

R
ak2 ,...,aknk ,xk2 ,...,xknk
k (a1|x1) can be viewed as a one-party nonsignaling resource; then, the product of these reduced

R
ak2 ,...,aknk ,xk2 ,...,xknk
k resources appearing in the penultimate line of (17) is the expression for the probability distribu-

tion of a one-party network of nonsignaling resources accessed according to party 1’s decision tree; summing over all
outputs then yields one as a consequence of normalization as proved in section 2.3.
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the nonlocal resources. Here, extremal resources refers to resources that are extremal in the
polytope of nonsignaling resources as de昀椀ned and discussed in for example [10, 30]; by say-
ing nonlocalwe specify that these extremal behaviors are not the local deterministic (classical)
ones. The equivalence is useful because it means a linear constraint on behaviors induced by
networks of extremal nonlocal nonsignaling resources will automatically translate to a lin-
ear constraint on the whole class of behaviors by convexity; this technique was used in for
example [11].

Let us prove the equivalence. The 昀椀rst key property is that shared local randomness
resources like R(a1,a3) or R(a1, . . .,an) can always be factored out of the distribution entirely,
in the following sense: if R1 is such a resource, we can write

P (⃗a1, a⃗2, . . ., a⃗m|x1, . . .,xn) = R1 (⃗a1)
m∏

k=2

Rk (⃗ak|, x⃗k)

= R (⃗a1)Pa⃗1 (⃗a2, . . ., a⃗m|x1, . . .,xn) (18)

where Pa⃗1 is the distribution that obtains if all parties modify their decision trees as follows:
remove all consultations of the resource R1; where such consultations previously occurred,
instead proceed directly to the subsequent subtree that followed in the original tree when the
output corresponding to a⃗1 was observed. Figure 4 provides an illustration of this excision/by-
passing procedure. Observe that the inputs x⃗k of the other resources will be the same whether
P and Pa⃗1 are expanded according to (9), which is why (18) holds.

A key aspect of (18) is the following operational interpretation: that of a scenario where
the random process R1 is sampled prior to the experiment and the output a⃗1 is distributed to
all parties; then when the experiment is run, they proceed with the a⃗1-indexed decision tree.
Indeed, if there are multiple local random resources R1 through Rt, they can all be pulled out
front as

P

(

A⃗|X⃗
)

=
t∏

k=1

Rk (a1, . . .,an)
m∏

k=t+1

Rk (⃗ak|, x⃗k)

=
t∏

k=1

Rk (⃗ak)Pa⃗1,...,⃗at (⃗at+1, . . ., a⃗m) ,

and
∏t

k=1Rk(⃗ak) can be interpreted as a single combined shared resource R⃗k with the distri-

bution R⃗t(⃗a1, . . ., a⃗t) =
∏t

k=1Rk(⃗ak). Hence any behavior in the class P(A⃗|X⃗) is equivalent to
a convex mixture of behaviors induced by networks of only resources R with inputs.

A further reduction can be performed. As mentioned earlier, the set of all nonsignaling
resource R(a1, . . .,an|x1, . . .,xn) for a 昀椀xed number of parties, inputs, and outputs, comprises
a polytope, as it is the set of behaviors satisfying linear equalities (2) along with the linear
equalities and inequalities that de昀椀ne valid probability distributions. As such, this polytope
will have a certain number N of extreme points Rext

i (a1, . . .,an|x1, . . .,xn), i ∈ {1, . . .,N}, for
which a general R(a1, . . .,an|x1, . . .,xn) can be written as a convex combination:

R(a1, . . .,an|x1, . . .,xn) =
∑

i

p(i)Rext
i (a1, . . .,an|x1, . . .,xn) , (19)
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Figure 4. Removing local randomness from decision trees. If R1 is a no-input resource,
it can be thought of as shared local randomness. Such resources can be removed from
decision trees as follows: for party p’s original decision tree (top), locate every appear-
ance of the resource (nodeswith ci = 1), then create a new decision tree for each possible
choice of output of the resource (here, there are two outputs) by excising the step where
R1 is consulted, bypassing it as though the given choice of output had been observed.
Above, we create a new ‘H’ decision tree by replacing every instance of the top subtree
with the shortened below-left subtree, or a new ‘T’ decision tree by replacing with the
shortened below-right subtree.

where p(i) is a probability distribution over the values of i. Employing such an expression for
R1(⃗a1 |⃗x1), we can write

P(⃗a1, a⃗2, . . ., a⃗m|x1, . . .,xn) = R1(⃗a1 |⃗x1)
m∏

k=2

Rk(⃗ak|, x⃗k)

=

[
∑

i

p(i)Rext
i (⃗a1 |⃗x1)

]
m∏

k=2

Rk(⃗ak|, x⃗k)

=
∑

i

p(i)

[

Rext
i (⃗a1 |⃗x1)

m∏

k=2

Rk(⃗ak|, x⃗k

]

(20)

and the term in brackets in (20) is equal to Pi(⃗a1, a⃗2, . . ., a⃗m|x1, . . .,xn), which we de昀椀ne to be
the distribution induced when each party uses their original decision with the single change
of replacing consultations of R1 with consultations of Rext

i . Hence P is equal to the convex
mixture

∑

i p(i)Pi. This process can be repeated for all Rk so that P is a convex mixture of
distributions each induced by extremal-only resources.

As a 昀椀nal simpli昀椀cation, consider local deterministic distributions. These distributions are
extremal in the nonsignaling polytope, but they do not exhibit nonlocal behavior: they are
classical where each party’s output is a deterministic function of their local input. That is,
there is a function f mapping each input xi to a 昀椀xed value in the range of Ai for which

R(a1, . . .,an|x1, . . .,xn) =
n∏

i=1

¶ai,f(xi)
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where the Kronecker delta function ¶ai,f(xi) maps to one if ai = f(xi) and zero otherwise. Such a
resource can be removed from decision trees with no meaningful consequences for the induced
distribution P by merely bypassing all steps where it is consulted: there is only one relev-
ant edge descending from a consultation of R, the one labeled with the probability-one out-
put f(xi). Speci昀椀cally, for a local deterministic R1 we can write P(⃗a1, a⃗2, . . ., a⃗m|x1, . . .,xn) =
P

′(⃗a2, . . ., a⃗m|x1, . . .,xn)
∏n

i=1 ¶ai,f(xi) where P
′ is the distribution resulting from the shortened

decision trees; P has no meaningful characteristics not already possessed by P
′.

3.3. A discussion of causality

The in昀氀ation technique [25] is an important tool for deriving constraints on behaviors that can
arise in multiparty networks. It applies to all theories that are causal, which includes quantum
mechanics, the scenario of wired nonsignaling boxes studied in this paper, and even more
general probabilistic theories that would allow generalized analogs of entangledmeasurements
on the nonsignaling resources. It is accepted in [12, 16] that the theory of wired nonsignaling
boxes is causal. However, as discussed in the introduction, some references cited regarding this
question [22–24] are somewhat abstract/general and focused on other questions, not explicitly
addressing the matter in regards to wired nonsignaling boxes. It is thus useful to spend a few
paragraphs discussing how the results derived in earlier sections imply the causality of wired
nonsignaling boxes.

A de昀椀nition of a causal theory amenable to the in昀氀ation technique can be found in section
IIB of [16]: a theory is causal if it satis昀椀es the conditions of De昀椀nition 1 therein along with
‘device replicability.’ We paraphrase the proffered de昀椀nition of causality loosely as follows:
consider a theory with multipartite resources (for us, the Rk resources), parties who measure
them (Alice 1, Alice 2,. . .), and rules that determine the probabilities observed by the parties
given the resources they measure (for us, the decision trees of section 2 and the induced prob-
ability rule (9)). Then the theory is causal if it satis昀椀es the following conditions: 昀椀rst, given
a subset of parties along with all the resources they share—some of which may be addition-
ally shared with parties outside the subset—the subset parties’ marginal distribution will be
the same regardless of how the measured resources are connected to (or disconnected from,
or re-connected to) parties outside the subset: for example, in 昀椀gure 2, if we look at just the
two parties Alice and Bob, their marginal distribution should be the same even if resource R1

is connected to one Charlie-type party while resource R2 is measured by a different Charlie-
type party (where the different Charlies, in turn, are perhaps measuring different R1 and R2

resources connected to other Alice and Bob-type parties, etc). A ‘Charlie-type’ party is a meas-
uring party with the same decision tree.

The second condition, somewhat implicit in the wording of the 昀椀rst given above, is that it
makes sense to speak of multiple copies of R1 and R2 resources: the theory should allow the
devices to be replicated, and if a network is sound in the sense that each resource is always
connected to an appropriate party and vice versa (for example, a resource like R2 in 昀椀gure 2 is
always connected to a party like Alice and a party like Charlie; Charlie is always connected to
a resource of form R1 and R2), then the theory provides a sound probability distribution for the
parties of the network. (This is key for the mechanics of the in昀氀ation technique: a network of
interest is ‘in昀氀ated’ to a larger network locally isomorphic to the original one; straightforward
constraints on the probability distribution of the larger network reveal subtler insights about
the smaller network—for this to work, it is necessary that the larger network have a probability
distribution.)

The third condition is independence of distributions among parties with no common
resources: if two parties measure no common resources, then their joint distribution should
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factor: P(AB|XY) = P(A|X)P(B|Y) if there is no resource R measured by both Alice and
Bob. This condition is also required to hold more generally for two disjoint subsets of parties.

We now discuss how the theory of wired nonsignaling resources satis昀椀es the conditions
of causality described above. First, the nonsignaling condition derived in section 3.1 ensures
that the marginal distribution of a subset of parties does not depend on how the resources
they share are connected to parties outside the subset. Speci昀椀cally, looking back to (17), we
see that if we remove Alice 1 from consideration, the marginal distribution of the remaining
parties is the product of the resource distributions R(· · · | · · ·)with Alice 1’s variables removed.
Thus if we have a set of n ′ < n parties of interest, we can remove the non-n′ parties one by
one until only the n′ parties remain, at which point their marginal distribution is (uniquely)
determined as the product of the resources they share, now treated as the marginal resources
R(a1, . . .,an′ |x1, . . .,xn′) that remain when the other parties’ ai and xi variables have been
removed. This will be the same expression regardless of how the removed parties were con-
nected or not connected to resources, with the resulting marginal distribution only depending
on the decision trees of the n′ parties.

The second condition (device replication) follows from the soundness of the probability
formula (9) for always producing a consistent probability distribution from cascaded meas-
urements of nonsignaling resources Rk, as discussed at length and proved in section 2.3 and
appendix A. Finally, the third condition (independence) follows from (9) when we consider
that

m∏

k=1

Rk
(

ak1 , . . .,aknk |xk1 , . . .,xknk

)

=
∏

k∈S

Rk
(

ak1 , . . .,aknk |xk1 , . . .,xknk

) ∏

k∈SC

Rk
(

ak1 , . . .,aknk |xk1 , . . .,xknk

)

and if each party either shares resources only from S , or only from SC, then the factors above
will correspond to respective distributions PS and PSC that would obtain individually from
two disjoint networks treated separately, so that P factors into the product of PS and PSC .

4. An application: deriving the Chao–Reichardt inequality [18] and others from
that of Mao et al [19]

We now turn to inequalities witnessing LOSR-GMNL in the three-party setting. Chao and
Reichardt [18] give an early example of a constraint on three-party behaviors induced by wired
networks of 2-party-only nonlocal nonsignaling resources, with access to global shared (local)
randomness; a linear version of this constraint is given in [11] where it is derived rigorously.
The arguments in [11, 18] directly work with the nonsignaling resources and do not invoke
the in昀氀ation technique. Later constraints introduced by [12, 16] and improved upon in [19, 20]
employed the in昀氀ation technique and so constrain a more general class of behaviors (allow-
ing for additional features in the bipartite-only networks such as entangled measurements of
quantum resources).

In the context of the previous section, which solidi昀椀es the applicability of the in昀氀ation tech-
nique to wired nonsignaling boxes, it is notable to show how the early inequality of [11, 18] can
be obtained from that of [19]: this exercise provides an alternate proof of the Chao–Reichardt
inequality, and shows it constrains a more general class of theories (i.e. all causal theories as
opposed to just wired nonsignaling boxes). Let us stipulate that each of the parties have two
settings and outcomes, where the settings X,Y,Z take a value in {0,1} and the outcomes A,B,C
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take a value in {−1,+1}. (Note in previous sections we denoted A,B,C,X,Y,Z with boldface;
we do not do so here to align with the notation of [19].) De昀椀ne

⟨AxBy⟩= P(A= B|xy)−P(A ̸= B|xy)

so that the above is equal to the expected value E(AB|xy) of the product of the outcomes of A
and B. Similarly, we can de昀椀ne a three-way expectation

⟨AxByCz⟩= P(ABC=+1|xyz)−P(ABC=−1|xyz) .

Now the inequality of Mao et al [19] is

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0C1⟩− ⟨A1B1C1⟩+ 2⟨A0C0⟩⩽ 4 (21)

(see expression (3) in this reference), where the above must hold of networks of bipartite-only
nonlocal resources but can be violated if the three-way entangled GHZ resource is measured.
The 3-party inequality of Chao and Reichardt [18] is formulated in [11] (see expressions (14)
and (15) therein) as

4P(A ̸= C|X= 0,Z= 0)+P(A ̸= B|X= 0,Y= 0)+P(A ̸= B|X= 0,Y= 1)

+P(ABC=−1|X= 1,Y= 0,Z= 1)+P(ABC=+1|X= 1,Y= 1,Z= 1)⩾ 1 (22)

which if we re-write in terms of ⟨AB⟩ type expressions using conversions of the form P(A=
B|xy) = (1+ ⟨AxBy⟩)/2 and P(A ̸= B|xy) = (1−⟨AxBy⟩)/2 along with their three-party ana-
logs, and perform some algebra, we get

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0C1⟩− ⟨A1B1C1⟩+ 4⟨A0C0⟩⩽ 6

which can be obtained from (21) by adding the trivial algebraic inequality ⟨A0C0⟩⩽ 1 twice.
Equation (21) is evidently the stronger constraint.

Interestingly, the inequality of Cao et al [20] can be derived from (21) as well: If we re-label
Bob’s outcomes when his setting is 1 by interchanging +1 and −1, (21) becomes

⟨A0B0⟩− ⟨A0B1⟩+ ⟨A1B0C1⟩+ ⟨A1B1C1⟩+ 2⟨A0C0⟩⩽ 4. (23)

Switching the roles of Alice and Charlie in (23) yields

⟨C0B0⟩− ⟨C0B1⟩+ ⟨A1B0C1⟩+ ⟨A1B1C1⟩+ 2⟨A0C0⟩⩽ 4, (24)

and adding (23) and (24) together yields

⟨A0B0⟩+ ⟨B0C0⟩− ⟨A0B1⟩− ⟨B1C0⟩+ 4⟨A0C0⟩+ 2⟨A1B0C1⟩+ 2⟨A1B1C1⟩⩽ 8 (25)

which is the 3-party inequality (1) in [20]. Thus all known (3,2,2) inequalities (3-party, 2-
outcome, 2-setting) can be derived from that of Mao et al [19]. Note that since both (23)
and (24) require genuine tripartite nonlocality to violate, their sum (25) should not necessarily
be considered a weaker witness of LOSR-GMNL when compared to (21).

Cao et al [20] contains another inequality (S14) in the supplementary material which in
the 3-party case is not a (3,2,2) inequality (Bob has a third setting) but it can be obtained
from (21) nonetheless. The three party version of (S14) is
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1−⟨C1⟩

2
(⟨A0B0⟩C=−1,Z=1 −⟨A0B1⟩C=−1,Z=1 + ⟨A1B0⟩C=−1,Z=1 + ⟨A1B1⟩C=−1,Z=1)

+
1+ ⟨C1⟩

2
(⟨A0B0⟩C=+1,Z=1 + ⟨A0B1⟩C=+1,Z=1 + ⟨A1B0⟩C=+1,Z=1 −⟨A1B1⟩C=+1,Z=1)

+ ⟨A0B2⟩+ ⟨B2C0⟩⩽ 6, (26)

where ⟨AxBy⟩C=c,Z=1 is the expectation conditioned on C= c,Z= 1. It turns out that the 昀椀rst
two lines of (26) are equivalent to the 昀椀rst four terms of (21), and the 昀椀fth term of (21) can
be replaced using the algebraic inequality ⟨A0C0⟩⩾ ⟨A0B2⟩+ ⟨B2C0⟩− 1 (this inequality is
used in [16, 20, 25] and can be con昀椀rmed by writing out all the probabilities), leading to (26).
Details of the derivation are given in appendix C.

The only other three party inequality currently known to witness LOSR-GMNL is (1) in
[16], which was tested in [21]. Like (26), this inequality has a third setting for Bob, and while
(1) of [16] admits a linear form [31] it does not appear to be directly derivable from (21).

5. Conclusion

We have shown the consistency of probability distributions induced by wired nonsignaling
resources, shown that such distributions are themselves nonsignaling, and discussed other
properties such as causality and the ability to factor out classical random resources and ignore
local deterministic distributions while restricting attention to extremal nonsignaling resources.
This study was motivated in part by new de昀椀nitions of Genuine Multipartite Nonlocality (the
‘LOSR-GMNL’ de昀椀nition of [12]), and we closed with an example showing howmost inequal-
ities witnessing tripartite GMNL can be derived from that of [19]. Going forward, the frame-
work developed in this paper will provide a useful foundation for rigorously proving future
results about wired nonsignaling resources; this will be useful in studying the gap between
this scenario and more general scenarios permitting entangled measurements—notably, the
in昀氀ation technique constrains all causal theories and so cannot directly target this gap. The
results here are also relevant to other paradigms, such as for example networks of quantum-
achievable nonsignaling resources measured in cascaded fashion as studied in the proposed
de昀椀nition of genuine network nonlocality given in [28]. Future work may also explore general-
izations to encompass resources that admit some restricted form of signaling, such as inmodels
that utilize underlying one-way signaling resources to replicate quantum nonlocal behaviors
[15, 32], to see under what weaker conditions a consistent joint distribution as in (9) may still
be guaranteed.
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Appendix A. Proofs of nonsignaling properties

Here we write out a couple of the longer equation sequences proving claims in section 2.1.
First, we write out how (3) is a consequence of (2). The three party version of this argument
appears in section IIIA of [10] which we merely iterate more times to obtain the following:

∑

a⃗q

R (⃗ap, a⃗q |⃗xp, x⃗q)

=
∑

ap+1,...,an

R (⃗ap,ap+1, . . .,an |⃗xp,xp+1, . . .,xn)

=
∑

ap+1,...,an−1

(
∑

an

R (⃗ap,ap+1, . . .,an−1,an |⃗xp,xp+1,xp+2, . . .,xn−1,xn)

)

=
∑

ap+1,...,an−1

(
∑

an

R (⃗ap,ap+1, . . .,an−1,an |⃗xp,xp+1,xp+2, . . .,xn−1,x
′
n)

)

=
∑

ap+1,...,an−2,an




∑

an−1

R (⃗ap,ap+1, . . .,an−1,an |⃗xp,xp+1,xp+2, . . .,xn−1,x
′
n)





=
∑

ap+1,...,an−2,an




∑

an−1

R
(
a⃗p,ap+1, . . .,an−1,an |⃗xp,xp+1,xp+2, . . .,x

′
n−1,x

′
n

)





...

=
∑

ap+2,...,an




∑

ap+1

R
(
a⃗p,ap+1, . . .,an−1,an |⃗xp,xp+1,x

′
p+2, . . .,x

′
n−1,x

′
n

)





=
∑

ap+2,...,an




∑

ap+1

R
(
a⃗p,ap+1, . . .,an−1,an |⃗xp,x

′
p+1,x

′
p+2, . . .,x

′
n−1,x

′
n

)





=
∑

a⃗q

R
(
a⃗p, a⃗q |⃗xp, x⃗

′
q

)
.

The steps above alternate between re-arranging order of summation, and then applying (2)
to the inner sum within parentheses. The above proof does not depend on the ordering of the
parties; choosing x⃗p as an initial string just makes it easier to notate. The condition thus applies
to any two complementary sets of parties.

We now show that our de昀椀nition of R(⃗ap |⃗xp) in (5) is consistent with what we would 昀椀nd
for this quantity from a direct manipulating conditional probabilities, if we model the inputs
Xi as random variables with a probability distribution (which along with the speci昀椀cation of
R(A⃗n|X⃗n) induces a full joint distribution of A⃗n and X⃗n). Assuming R(⃗xp)> 0—if not, R(⃗ap |⃗xp)
is unde昀椀ned—we can write, for any choice a⃗p,
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R (⃗ap |⃗xp) = R (⃗ap, x⃗p)/R (⃗xp)

=




∑

x⃗q:R(⃗xp ,⃗xq)>0

R (⃗ap, x⃗p, x⃗q)



/R (⃗xp)

=




∑

x⃗q:R(⃗xp ,⃗xq)>0

R (⃗ap |⃗xp, x⃗q)R (⃗xp, x⃗q)



/R (⃗xp)

=




∑

x⃗q:R(⃗xp ,⃗xq)>0

R
(
a⃗p |⃗xp, x⃗

∗
q

)
R (⃗xp, x⃗q)



/R (⃗xp)

=



R
(
a⃗p |⃗xp, x⃗

∗
q

) ∑

x⃗q:R(⃗xp ,⃗xq)>0

R (⃗xp, x⃗q)



/R (⃗xp)

=
[
R
(
a⃗p |⃗xp, x⃗

∗
q

)
R (⃗xp)

]
/R (⃗xp)

= R
(
a⃗p |⃗xp, x⃗

∗
q

)
,

where x⃗∗q is a 昀椀xed choice of values for X⃗q, which allows for pulling the term R(⃗ap |⃗xp, x⃗∗q ) out
of the sum over x⃗q after previously replacing each (varying) choice of x⃗q in R(⃗ap |⃗xp, x⃗q) with
this 昀椀xed x⃗∗q by invoking (4). Since x⃗∗q above can be any value of x⃗q for which R(⃗xp, x⃗q)> 0,
de昀椀ning R(⃗ap |⃗xp) in (5) as R(⃗ap |⃗xp, x⃗q) for any 昀椀xed choice of x⃗q is sensible.

Appendix B. Normalization in the general setting

To prove normalization of (9) in the general case, we rely on the following arithmetic con-
struction. Suppose a quantity Q can be written as

Q=
∑

i

ξi f(i) , with
∑

i

ξi = 1 (B.1)

where each f (i) is a number which may vary with i. If f (i) happens to equal 1 for all choices
of i, then Q= 1, but we do not initially assume this is the case. We assume instead that each
f (i) can be written in a form parallel to (B.1):

f(i) =
∑

j

ηijg
i ( j) , with

∑

j

ηij = 1

where gi( j) is a number that may vary with j, and then we say thatQ satis昀椀es the recursive sum-
to-1 property if the process can always be repeated such that each new nested functional term
can be written in the form of (B.1), while assuming that this process eventually terminates in a
昀椀nal expression of the form (B.1) where the functional term does equal one uniformly (i.e. not
varying with the summed index). Then with a little thought, we see that the original quantityQ
must equal one as follows: each bottom-level sum, for which the functional term is uniformly
one, will itself equal one; then move back up one level where the functional terms are now
known to be 1, and the next-higher-level sum will equal one as well; continuing to recursively
work back up to the original quantity Q level by level, we 昀椀nd Q= 1.
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For our problem, we show that for a 昀椀xed setting choice x1, . . .,xn, the sum of all
P(⃗a1, . . ., a⃗m|x1, . . .,xn) terms, which is the quantity

∑

a⃗1,...,⃗am

m∏

k=1

Rk
(

a(k)k1 , . . .,a
(k)
knk
|x(k)k1 , . . .,x

(k)
knk

)

, (B.2)

satis昀椀es this recursive sum-to-1 property, and thus equals 1. The idea is to successively perform
themanipulation that took us from (12) to (14) as wework down a decision tree until eventually
what is left in the inner sum is a sum over a single variable that is equal to one.

As a 昀椀rst step, pick a party p—for ease of notation, let us say it is Alice 1—and consult
this party’s decision tree to 昀椀nd the 昀椀rst resource they consult after being provided setting x1;
denote this Rt and let x

(t)
t1 = x(t)1 denote the input speci昀椀ed by inp1. Now in (B.2), limit the sum

over a(t)1 to precisely those values for which Rt(a1|x1)> 0, which does not change the value of
the sum as Rt(a1|x1) = 0 implies that the term Rt(at1 ,at2 , . . .,atnt |xt1 ,xt2 , . . .,xtnt ) appearing in
the summand will be zero as well. (Recall that t1, t2, . . ., tnt denotes the indices of the subset of

parties sharing resource Rt, so for this resource a
(t)
t1 = a(t)1 and x(t)t1 = x(t)1 .) Now for each value

of a(t)1 for which Rt(a1|x1)> 0 we can write

Rt
(
a1,at2 , . . .,atnt |x1,xt2 , . . .,xtnt

)
= Rt

(
at2 , . . .,atnt |x1,xt2 , . . .,xtnt ,a1

)
Rt (a1|x1)

via the samemanipulation that was performed in (13). Then since x1 is determined by x1 alone,
we can pull Rt(a1|x1) out of the sum and re-write (B.2) as follows:

∑

a(t)1 :Rt(a1|x1)>0

Rt (a1|x1)

︸ ︷︷ ︸
∑

i ξi

∑

{⃗a1,...,⃗am}\a
(t)
1

R1 (· · · | · · ·)R2 (· · · | · · ·) · · ·Rk (· · · | · · ·)

︸ ︷︷ ︸

f(i)

, (B.3)

where the R(· · · | · · ·) terms of the inner sum are as in (B.2) except for Rt(· · · | · · ·) which now
equals Rt(at2 , . . .,atnt |x1,xt2 , . . .,xtnt ,a1). Now, following (5) the terms Rt(a1|x1) constitute a
probability distribution and so will sum to one, justifying the labeling with

∑

i ξi above, so the
above expression is a Q-type quantity as in (B.1). The value of the inner sum can vary with
the choice of index of the outer sum, as is allowed for the f (i) terms in (B.1).

To perform the inductive step of the argument, we show that that the terms labeled f (i)
in (B.3) satisfy certain general conditions, and that these conditions (alone) ensure that each
f (i) term can always be re-written in a form

∑

j ηjg( j) with
∑

j ηj = 1 such that that the same
general conditions will hold for each g(j); thus the process will always be repeatable, and as a
昀椀nal step we will see that it terminates in an expression uniformly equaling one. The general
conditions are motivated by the idea that we will pull out terms from the inner sum one by
one, with each pull-out corresponding to taking a single step down a party’s decision tree to
the next consulted resource.

Now we lay out the conditions: each term labeled f (i) in (B.3) (which vary with the outer
sum) is an expression of the form

∑

M⊆{⃗a1,...,⃗am}

R1 (· · · | · · ·) · · ·Rm (· · · | · · ·) (B.4)

where summing overM⊆ {⃗a1, . . ., a⃗m} is to be understood that that a subcollection of variables
of the form a(k)j are being summed over. If we think of ourselves as working down decision
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trees, M corresponds to parties’ ‘pending outputs’ from resources that have not yet been con-
sulted. The following properties are satis昀椀ed by expression (B.4):

(i) For each a(k)p ∈MC—that is, an a(k)p that is not being summed over—a 昀椀xed choice a(k)p
appears in the conditioner of Rk(· · · | · · ·), along with a 昀椀xed choice of x(k)p , and these do
not vary. (These correspond to resources that have already been consulted, having worked
part way down a path on a decision tree.)

(ii) For each party p, if we collect all the 昀椀xed values a(k)p fromMC for this choice of p, these
determine an initial path in party p’s decision tree descending from the overall setting
choice xp. The 昀椀xed x(k)p appearing inside the summand are consistent with the inpi on
this initial path.

(iii) For each a(k)j inM, a(k)j appears (varying) in the front of the appropriate Rk(· · · | · · ·) term,

and the corresponding x(k)j will appear in the conditioner. These x(k)j are not necessarily
昀椀xed and may change as the sum overM is performed—they are determined by the 昀椀xed
choice of a values fromMC along with the varying-with-the-sum choices of a values from
M.

(iv) We adopt a convention that any term of the form Rk(∅| · · ·)—that is, with no terms in the
front—equals one. This corresponds to a resource that all parties have already consulted
and so the corresponding a(k)j are all in MC. (Operationally, this should be understood
to indicate a resource Rk that has been pulled out of the inner sum completely; however
we leave a rump term behind with this notational oddity to help maintain the inductive
form (B.4) through all steps.)

Now we show that the conditions ensure that (B.4) can be re-written as
∑

j ηjg( j) with
∑

j ηj = 1 and each g(j) also satisfying the conditions. To do so, consult the part of a party p’s
decision tree that is determined by that party’s initial setting xp along with the 昀椀xed choices
of that party’s a values from the collection MC (if any), which by conditions (i) and (ii) does
determine a unique (initial) path for party p. Let i be the length of this initial path. Then it
will determine a choice of resource ci and input inpi to be used at the next step; thus for the
resource Rt(· · · | · · ·) with t= ci, the value of x

(t)
p in the conditioner will be 昀椀xed as inpi for all

terms of the sum in (B.4) (even as the corresponding a(t)p ∈M varies as it is summed over). For
ease of notation let us assume that p= 1, so Rt(· · · | · · ·) will appear in (B.4) as

Rt (a1, a⃗q|x1, x⃗q, x⃗r, a⃗r) = Rx⃗r ,⃗art (a1, a⃗q|x1, x⃗q) (B.5)

where a⃗q are among the M indices and a⃗r are among the MC indices. For values of a1 for
whichRt(a1|x1, x⃗r, a⃗r) = Rx⃗r ,⃗art (a1|x1) is nonzero, we can apply (7) toR

x⃗r ,⃗ar
t to re-write the above

expression as

Rt (a1, a⃗q|x1, x⃗q, x⃗r, a⃗r) = Rt (⃗aq|x1, x⃗q, x⃗r,a1, a⃗r)Rt (a1|x1, x⃗r, a⃗r)

where the equality follows from the fact that this sort of conditioning can be performed iterat-
ively as discussed following (8). Now pull out Rt(a1|x1, x⃗r, a⃗r) to re-write (B.4) as follows:

∑

a(t)1 :Rt(a1|x1 ,⃗xr ,⃗ar)>0

Rt (a1|x1, x⃗r, a⃗r)
∑

M′=M\a(t)1

R1 (· · · | · · ·) · · ·Rm (· · · | · · ·) (B.6)
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where the inner summand above differs from the summand in (B.4) by replacing
Rt(a1, a⃗q|x1, x⃗q, x⃗r, a⃗r) with Rt(⃗aq|x1, x⃗q, x⃗r,a1, a⃗r). Now, the 昀椀rst sum in (B.6) is the

∑

i ξi por-
tion of (B.1), where

∑

i ξi = 1 as Rt(a1|x1, x⃗r, a⃗r) is a probability distribution over a1. And we

now can argue that for each 昀椀xed choice of a(t)1 ,

∑

M′=M\a(t)1

R1 (· · · | · · ·) · · ·Rm (· · · | · · ·) (B.7)

is an expression of the form (B.1) satisfying the general conditions (i)–(iv), where we have
effectively moved a(t)1 from M to MC. To elaborate: as required by (i) for M ′C, a 昀椀xed choice

of a(t)1 now appears in the conditioner of Rt(· · · | · · ·), and as noted preceding (B.5) the choice

of x(k)1 will be 昀椀xed as well. The initial path for Alice 1 referred to in (ii) is now one level
longer in (B.7) compared to (B.4), while still satisfying the condition. For all other parties,
satisfaction of (i) and (ii) in (B.4) carries over immediately to (B.7). Finally, satisfaction of
(iii) carries over directly from (B.4) to (B.7) as M ′ ⊂M.

Regarding the eventual termination of this process, each round of induction moves an a
variable from the front of an Rk(· · · | · · ·) term to the conditioner; there is a 昀椀nite number of
times this will occur before all terms remaining in (B.7) are of the form described in condition
(iv)—and so M′ is the empty set—at which point (B.7) equals 1, completing the argument.

Appendix C. Obtaining (S14) in [20] from (1) in [19]

In this appendix we explain how the 昀椀rst two lines of (26) are equivalent to the 昀椀rst four terms
of (21). Thus the expression (26) is a consequence of (21) when 2⟨A0C0⟩ is replaced according
to an algebraic inequality described in the main text.

Substituting (1+ ⟨C1⟩)/2= P(C=+1|Z= 1) and (1−⟨C1⟩)/2= P(C=−1|Z= 1), we
rewrite (26) as

P(C=−1|Z= 1)(⟨A0B0⟩C=−1,Z=1 + ⟨A0B1⟩C=−1,Z=1 −⟨A1B0⟩C=−1,Z=1 + ⟨A1B1⟩C=−1,Z=1)

+P(C=+1|Z= 1)(⟨A0B0⟩C=+1,Z=1 + ⟨A0B1⟩C=+1,Z=1 + ⟨A1B0⟩C=+1,Z=1 −⟨A1B1⟩C=+1,Z=1)

+ ⟨A0B2⟩+ ⟨B2C0⟩⩽ 6. (C.1)

Writing out expectations in a more explicit form

⟨AxBy⟩C=c,Z=1 = E(AB|X= x,Y= y,Z= 1;C= c)

and noting that by no-signaling

P(C= c|Z= 1) = P(C= c|X= x,Y= y,Z= 1) ,

we can rewrite the sum of two terms P(C=−1|Z= 1)⟨A0B0⟩C=−1,Z=1 and
P(C=+1|Z= 1)⟨A0B0⟩C=+1,Z=1 that appear in (C.1) after multiplying out as

E(AB|X= 0,Y= 0,Z= 1;C=−1)P(C=−1|X= 0,Y= 0,Z= 1)

+E(AB|X= 0,Y= 0,Z= 1;C=+1)P(C=+1|X= 0,Y= 0,Z= 1)

= E(AB|X= 0,Y= 0,Z= 1)
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by the law of iterated expectation;E(AB|X= 0,Y= 0,Z= 1) is equal toE(AB|X= 0,Y= 0) =
⟨A0B0⟩ in turn by nonsignaling. A similar argument yields ⟨A0B1⟩ from two other terms of (C.1)
after multiplying out. On the other hand, we can write −⟨A1B0⟩C=−1,Z=1 as

− [P(A= B|X= 1,Y= 0,Z= 1;C=−1)−P(A ̸= B|X= 1,Y= 0,Z= 1;C=−1)]

which when we multiply by P(C=−1|Z= 1) = P(C=−1|X= 1,Y= 0,Z= 1) becomes

−P(A= B,C=−1|X= 1,Y= 0,Z= 1)+P(A ̸= B,C=−1|X= 1,Y= 0,Z= 1) ;

performing a similar calculation on ⟨A1B0⟩C=+1,Z=1P(C=+1|Z= 1) and adding the result to
the expression above, the resulting sum can be equivalently re-written as

P(ABC=+1|X= 1,Y= 0,Z= 1)−P(ABC=−1|X= 1,Y= 0,Z= 1) = ⟨A1B0C1⟩.

Similarly, the 昀椀nal remaining two ⟨AxBy⟩ type terms in (C.1) are equivalent to −⟨A1B1C1⟩.
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