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Abstract 

nsuring the safety of vulnerable road users (VRUs) 
such as pedestrians, users of micro-mobility 

vehicles, and cyclists is imperative for the commer- 
cialization of automated vehicles (AVs) in urban traffic 
scenarios. City traffic intersections are of particular 

concern due to the precarious situations VRUs often 
encounter when navigating these locations, primarily 
because of the unpredictable nature of urban traffic. 

Earlier work from the Institute of Automated Vehicles 
(IAM) has developed and evaluated Driving Assessment 
(DA) metrics for analyzing car following scenarios. In this 
work, we extend those evaluations to an urban traffic 

intersection testbed located in downtown Tempe, Arizona. 
A multimodal infrastructure sensor setup, comprising a 
high-density, 128-channel LiDAR and a 720p RGB camera, 
was employed to collect data during the dusk period, with 

the objective of capturing data during the transition from 
daylight to night. In this study, we present and empirically 
assess the benefits of high-density LiDAR in low-light and 
dark conditions—a persistent challenge in VRU detection 
when compared to traditional RGB traffic cameras. Robust 
detection and tracking algorithms were utilized for 
analyzing VRU-to-vehicle and vehicle-to-vehicle interac- 
tions using the LiDAR data. The analysis explores the 
effectiveness of two DA metrics based on the i.e. Post 
Encroachment Time (PET) and Minimum Distance Safety 
Envelope (MDSE) formulations in identifying potentially 
unsafe scenarios for VRUs at the Tempe intersection. The 
codebase for the data pipeline, along with the high- 
density LiDAR dataset, has been open-sourced with the 
goal of benefiting the AV research community in the 
development of new methods for ensuring safety at 
urban traffic intersections. 

 
 

 

Introduction 

mart infrastructure technology is indispensable for 
the advancement of automated mobility, playing a 
vital role in ensuring the safety of vulnerable road 

users ( VRUs) and human-driven vehicles (HDVs). 
Infrastructure-based sensors, when combined with 
vehicle-to-infrastructure (V2I) connectivity, could poten- 
tially offer crucial situational awareness to Automated 
Driving Systems (ADS)-controlled vehicles (AVs), espe- 
cially in complex urban driving scenarios, such as at 
traffic intersections. 

Conventionally, cameras have been used as the 
primary infrastructure sensors for real-time traffic moni- 
toring and surveillance [1]. These sensors aid safety and 

 

 
security in smart cities; however, the quality of data 
obtained from these sensors is insufficient for monitoring 
AV-related safety metrics. Prior work from IAM by Wishart 
et al. [2] introduced DA metrics for quantifying the safety 
performance of AVs. Reliability of these metrics hinges 
on precise estimation of object odometry within the infra- 
structure’s reference frame [3]. While image data from 
calibrated infrastructure cameras can be used for detec- 
tion and tracking at traffic intersections [4], it is important 
to note that such data are susceptible to environmental 
factors, with detection being critically affected by varying 
lighting and weather conditions [5, 6]. 

Many of the limitations of infrastructure-based 
cameras can be mitigated with the use of LiDAR units. 

E 
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These time-of-flight sensors remain unaffected to changes 
in lighting conditions, generating consistent data during 
both day and night time scenarios. In an earlier work at 
IAM, Anshuman et al.[7] showed the efficacy of infrastruc- 
ture-based LiDAR units in measurement of DA metrics 
for vehicles. A follow-on work from Siddarth et al. [8] 
compared odometry fidelity between infrastructure- 
based and vehicle-top-based LiDAR setups. While previous 
studies have established LiDAR units as being reliable for 
calculating AV metrics, these analyses have primarily 
focused on vehicles at freeway intersections. In this work, 
we expand the analysis to encompass urban city intersec- 
tions, with a particular emphasis on VRUs. We intend to 
begin answering the following key questions: (1) Are 
infrastructure-based LiDARs suitable for analyzing urban 
traffic scenarios? (2) How effective are AV safety metrics 
in analyzing interactions between vehicles and VRUs? 

In the following sections, we delve into the literature 
on 3D detection-tracking and AV metric calculation. 
We provide details on the pre-processing techniques, 
deep learning model, and tracking algorithm that facilitate 
real-time processing of high-density LiDAR data frames. 
Finally, we outline the experimental setup used for data 
collection and present both qualitative and quantitative 
results obtained from our analysis. 

 

Related Work 

LiDAR-based object detection and tracking has been 
researched extensively in recent years, primarily to 
address the failure modes encountered with cameras. 
With the advent of deep learning, there has been a shift 
from clustering-based approaches [9, 10] to end-to-end 
learning-based pipelines. Today, the state-of-the-art is 
based on representation learning on perception datasets 
such as KITTI [11], Waymo [12], and nuScenes [13] along 
with many others that have been made publicly available 
by the AV industry. Although deep learning allows for 
multi-modal fusion to incorporate data from multiple 
sensors such as LiDAR units and cameras, LiDAR-only 
methods are more attractive options due to their data 
consistency and invariance properties [14]. 

Most of the approaches for deep learning on LiDAR 
point clouds fall into two categories: point-based and 
voxel-based methods. Point-based methods treat point 
clouds as a permutation-invariant set of points and learn 
spatial features for each point using a point-encoder such 
as PointNet [15]. In contrast, voxel-based methods 
discretize 3D space into a finite grid of small cubes known 
as voxels. Points within each voxel are averaged, and the 
model learns the spatial relations within the voxels using 
Convolutional Neural Networks (CNNs). Both methodolo- 
gies involve a trade-off between precision and time 
complexity. Point-based methods are typically more 
precise but slower, while voxel-based methods are faster 
but less precise due to data loss during the discretization 
process [14]. More recent methods utilize a hybrid point- 
voxel approach where points within the discrete voxels 
are processed using a point encoder and the learned voxel 

representations are further passed to CNNs, thus incor- 
porating the best of both worlds [16]. Another popular 
methodology involves using Bird’s Eye View (BEV) data 
for detection, in which the point cloud is flattened along 
the z-axis to produce a 2D set of points. While these 
methods often deliver excellent runtime performance, 
they are prone to substantial data loss, which can 
constrain detection accuracy [17]. 

Our work focuses on the detection of VRUs, such as 
pedestrians, cyclists, and individuals using micro-mobility 
vehicles, which presents a unique set of challenges. LiDAR 
point clouds exhibit an inherent property of increasing 
sparsity as the radial distance increases. VRUs are rela- 
tively small entities for LiDAR, resulting in extremely 
sparse point returns, which lack the necessary features 
for object detection. Voxel-based and BEV-based 
approaches perform poorly in VRU detection as they 
compromise on information to reduce runtime complexity, 
whereas, point-based methods are too slow and do not 
meet the minimum real-time requirements for AV appli- 
cations [16]. Hence, point-voxel based hybrid approach 
are an ideal choice for our task. One research group [7] 
used PointPillars [18] as it stands out to be one of the 
fastest hybrid algorithms, which discretizes 3D space into 
pillars along the z-axis. Each pillar is encoded using 
PointNet to generate a pseudo image, which is further 
processed by a 2D CNN to extract multi-scale features. 
These features are then stacked and fed into an SSD [19] 
head for getting the detection results. Another research 
group [8] utilized Complex-YOLO [20] which is an exten- 
sion of the single-stage YOLO object detection algorithm 
to 3D point clouds. It uses Eular Region Proposal Network 
(E-RPN) for accurate heading prediction. In this work, 
we utilize PV-RCNN [21], an abbreviation for Point-Voxel 
RCNN, which employs voxel set abstraction and keypoint 
sampling for precise object detection. We found that 
PV-RCNN is robust to point cloud sparsity, and the ROI 
grid pooling algorithm enables successful identification 
of VRU features even with 15-20 point sparse returns. 

Tracking algorithms consume the detection results 
and fill in any missing detections by maintaining a belief 
state on individual objects in the scene. Bayesian algo- 
rithms, such as the Kalman filter [22] and its variants, are 
the most widely used methods for such multi-object 
tracking. Typically, the 7-DOF bounding box state is tracked 
over a short time horizon, and objects are removed from 
the tracking list if no associations can be found for a 
certain threshold number of data frames. Recently, deep- 
representational features from object-centric models have 
also been used as state vectors in Kalman filters [23]. 
Tracking algorithms assign a consistent and unique track 
identifier to individual entities, preventing identity switches 
during partial occlusion [24]. An inherent advantage in 3D 
tracking compared to 2D is that, since two entities cannot 
occupy the same 3D space, it is easier for tracking algo- 
rithms to associate bounding boxes over time. 

The position, velocity, and acceleration information 
obtained from tracking algorithms can be used to evaluate 
safety metrics between pairs of entities within a traffic 
intersection [25]. Elli et al. [26] utilized the CARLA simulator 
[27] to extract this information and validated the DA 
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metrics proposed in [2], thereby demonstrating their 
robustness and relevance over conventional counterparts. 
Jammula et al. [4] collected camera videos mounted on 
the infrastructure to track vehicles from a BEV perspective 
and calculated real-world DA metrics. Similarly, researchers 
in [7, 8] utilized LiDAR units to perform the DA metrics 
calculations. However, earlier research has not explored 
scalability aspects for metrics calculation. Previous work 
[28, 7, 29] either assume the availability of vehicle pairs or 
brute-force evaluation on all possible pairs with O(N2) 
complexity. In this study, we address such run-time scal- 
ability issues and assess the effectiveness of the conven- 
tional PET and the MDSE DA metric for VRU safety analysis. 

 

Data Collection Setup 

Our multi-modal sensor setup included a Hesai Pander 
128 LiDAR unit along with a Hikvision HD surveillance 
camera as shown in Figure 1 and Figure 6. The Hesai 
LiDAR provided 128 rings with a 200m range at the Tempe 
intersection where the diagonally opposite corner was at 
a distance of 65m from the sensor setup. The high range 
allowed us to capture dense point clouds, thus alleviating 
the sparsity problem with the LiDAR. Both the LiDAR unit 
and camera were tilted at 45 degrees, facing towards the 
center of the intersection. Data were collected at four 
different intervals on a single day Sept 11, 2022, MST 

between 6:20 pm and 7:30 pm, with each interval lasting 
from 30 seconds to 10 minutes. Duration details of our 
dataset are shown in Table 1. The variation in interval 
lengths is due to some scenarios being specific to 
VRU-vehicle interactions, while others are standard 
vehicle-vehicle scenarios. Figure 2 shows the transition 
from daylight to night. An important feature to observe 

 
 FIGURE 2  Sample data from the Tempe intersection. VRUs 

(pedestrians and e-scooter riders) are highlighted for 

visualization. Point clouds shown here are the raw data 

obtained from the LiDAR without any pre-processing.  

 
 FIGURE 1  Data collection setup at downtown Tempe 

intersection. 
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TABLE 1 Time intervals for the dataset collected on Sept 11, 

2022 MST at Downtown Tempe. In total, our dataset 
comprised 18 minutes of data collection. 

 

Interval # Start Time End Time 

1 6:28 pm 6:30 pm 

2 6:38 pm 6:41 pm 

3 7:08 pm 7:11 pm 

4 7:13 pm 7:23 pm 

 

here is the consistency in the LiDAR data across the two 
figures, in contrast to the significant change in lighting 
conditions observed in the camera data. Our dataset 
consists solely of data from vehicles driven by humans. 
However, if we assume that future autonomous vehicles 
(AVs) will mimic human driving patterns, the methods 
described in this study should be effective for integrating 
and adapting AVs, treating them as ego vehicles 
for analysis. 

 

Methodology 

The high-density point cloud data obtained from the 
infrastructure-based LiDAR unit is processed in three 
steps to get robust odometry estimates of intersection 
entities. These estimations are then used to evaluate 
metrics formulations for real-time traffic safety analysis. 

 

Preprocessing 
The 128-channel LiDAR captures data at a rate of 20 
frames per second, with each frame containing approxi- 
mately 690,000 points. To cover the intersection 
adequately, only 110 degrees of the horizontal field of view 
are needed, accounting for approximately 250,000 points. 
Many of these points are redundant data from the surfaces 
of nearby objects, which do not significantly contribute to 
detection accuracy. Therefore, we down-sample the point 
cloud using a high-resolution voxel grid with a leaf size of 
10cm. This down-sampling process leads to a more 
uniform density distribution compared to the original 
dense point cloud, with minimal data loss. The resulting 
point cloud consists of around 30,000 points, making it 
suitable for real-time 3D object detection. 

 

Object Detection 
We employ the PV-RCNN [21] model from the open- 
source MMDetection3D [30] library as it provides a simple 
API with efficient CUDA implementations. We specifically 
selected the model pre-trained on the KITTI [11] dataset 
as we empirically observed that the scan patterns of 
Hesai LiDAR closely resemble those of Velodyne LiDARs. 
The KITTI point cloud data is collected from a vehicle top 
perspective; therefore, we transform the point cloud by 
aligning the ground parallel to the XY plane while posi- 
tioning the LiDAR unit 2 meters above the ground plane. 

This step is essential because deep-learning models do 
not perform well on out-of-distribution data. Nonetheless, 
it’s worth noting that infrastructure-based LiDAR units 
capture data from an isometric viewpoint. As a result, the 
infrastructure-based LiDAR units collect a relatively higher 
amount of information compared to a vehicle-top setting. 
For instance, infrastructure-based LiDAR units can 
observe not only the vehicle’s sides but also the roofs, 
even for large-scale vehicles like trucks, buses, etc. The 
down-sampling and perspective transformation steps 
bring the point cloud closer to the KITTI data distribution, 
thereby assisting the model in producing high-quality 
detection results. 

 

Tracking and Data Association 
Tracking is accomplished by applying a 7-DOF Kalman 
filter to the bounding box results obtained from the 
object detection model. We utilize the implementation 
from [31] as it has an intuitive interface for parameter 
tuning and readily fits into our detection framework. The 
detection model provides confidence scores for the 
bounding box predictions, which are used to tune the 
sensitivity [10] of the tracking algorithm. We set a confi- 
dence threshold of 0.4 for vehicles and 0.0 for VRUs. In 
safety systems, emphasizing recall is essential to 
minimize false negatives. Our threshold parameters 
achieve a higher recall in VRU detection while maintaining 
the number of false negatives within acceptable limits. 
In general, we found that the PV-RCNN model exhibits 
impressive recall in VRU detection, and it retains high 
precision even at low confidence thresholds [21], thereby 
enabling accurate tracking of traffic entities. The associa- 
tion is done using the Hungarian algorithm on Generalized 
Intersection Over Union (GIOU) scores between pairs of 
bounding boxes from consecutive detection frames. 
We start tracking as soon as we associate an object in 
ζ number of consecutive frames and remove the track 
if we fail to associate for β frames. We use ζ = 3 and 
β = 4 for vehicles, whereas for VRUs we use a more 
relaxed set of parameters with ζ = 1 and β = 5. In both 
cases, we set the GIOU association threshold at 1.5. 

 

Safety Metrics 
The evaluation of safety metrics traditionally involves the 
examination of pairs of entities in a scene that meet 
specific preconditions. For instance, metrics like PET and 
MDSE are designed to assess interactions between 
entities that have overlapping trajectories. Detecting such 
interactions with vehicles is straightforward because 
conflict points are predetermined based on lane design 
[32] or pre-specified at road intersections. However, in 
urban intersections involving VRUs, the situation is more 
complex. Pedestrians may follow erratic trajectories, 
sometimes crossing without a walk signal or deviating 
from designated crosswalk zones. In such scenarios, it 
becomes crucial to identify potentially unsafe situations 
and determine conflict points on the fly for online metrics 
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scaled 

 

(v +  a ) 

 

calculations. Arguably any pair of entities that could run 
into an accident while moving in different directions must 
have a common intersection point before the crash. This 
intuition motivates us to define real-time conflict points 
by checking for intersections between scaled velocity 

where 

dlong,intersect: Instantaneous distance of the leader from 
the conflict point 

v long : Norm of the instantaneous velocity of the 
leader ρl: Reaction time of the leader 

vectors of the traffic entities. Specifically, we utilize the along , along : Responsibility-Sensitive Safety 

following three-step algorithm to identify potentially 
unsafe entity pairs: 

1. For every entity i in the scene, we find the 
instantaneous velocity vector vi(t) and scale it 
along the vector direction τ = 5 seconds into the 

l,max ,accel l,min,deccel 

(RSS) parameters for MDSE formulation 
The MDSE Infringement (MDSEI) [2] is a binary value 

that indicates the MDSE metric violation. It occurs when 
the conflict point lies within the safety envelope of the leader. 

The parameter values for our metric calculations are 

future to obtain v i (t ). derived from the analysis presented by Elli et al. in [26]. 
2. Using the Bentley–Ottmann algorithm [33] 

we find all the intersecting scaled vector pairs in 
For both vehicle-to-vehicle and VRU-to-vehicle interac- 
tions, we assume Naturalistic Driving Study 

the XY plane and consider the corresponding (NDS) parameters: l = 0.2s, along = 1.8m / s2, and 
entity pairs to be in an unsafe situation. 

3. Aligning with the terminology from [4], we assign 
 

long 
l,min,deccel = 3.6m / s2. 

l,max ,accel 

It must be noted that these param- 

leader-follower relationships such that VRUs are 
always designated as leaders in VRU-vehicle pairs, 
while in vehicle-vehicle pairs, any vehicle can 
assume the role of the leader. 

Safety metrics calculations are computationally inex- 
pensive, typically involving simple arithmetic operations. 
However, computing them for every possible entity pair 
is sub-optimal, as many pairs will not interact due to 
differences in their locations and directions. Our work 
introduces a novel method to identify potentially unsafe 
pairs with a definable conflict point. The time complexity 
for our algorithm is O(Nlog(N)) thus rendering it suitable 
for real-time application. The scaling parameter τ can 
be viewed as a horizon for assessing potential unsafe 
interactions. Setting τ = 5 implies checking for possible 
interactions within a 5-second window into the future. 
Once the potentially unsafe pairs are determined, 
we calculate PET (Eqn 1) and MDSE (Eqn 2) metrics with 
respect to the instantaneous conflict points detected by 
our algorithm. Illustrations of two such unsafe situations 
are shown in Figure 3. 

eters were originally presented for the analysis of vehicle- 
to-vehicle interactions. We retain these parameters 
unchanged and evaluate their behavior and performance 
in the context of VRU-to-vehicle interactions. The results 
of our experiments are discussed in the following section. 

 

Results 

A comprehensive set of results from the detection model 
is available in the Appendix Figure 7 and Figure 8 where 
vehicles and VRUs are highlighted with green and red 
bounding boxes respectively. We found that density 
uniformization using down-sampling improves the detec- 
tion quality with pre-trained models while allowing an 
average 10Hz real-time loop frequency. Table 2 presents 
a comparative analysis of object detection performance 
between camera and LiDAR technology. For the camera- 
based detection, we employed a pre-trained YOLOv8 
model. This comparison was conducted without applying 
any threshold on the Intersection Over Union (IOU) of 
bounding boxes, ensuring that the results are unbiased 

 

 
where 

PET = t2 − t1 (1) estimates of the detection performance. Consistent with 
our initial expectations about the superiority of LiDAR in 
night time detection, the data reveals that LiDAR outper- 

t1: Arrival time of the leader to conflict point 
t2: Arrival time of the follower to conflict point 

A PET metric violation (PETV) occurs when the value 
drops below a pre-determined threshold. For our analysis, 
we set this threshold at 1.5s. 

 
0, ifdlong,intersect  dlong,intersect 

forms cameras in both day time and night time scenarios. 
Figure 6 shows the tracklets obtained from a 

10-minute dataset (Interval 4) captured at the Tempe 

 
TABLE 2 Camera vs LiDAR quantitative comparison for object 

detection. P (Precision) and R (Recall) [34] were estimated from 

our dataset at 0% IOU threshold. The third sub-column (All) is 
the mean over both classes. min 

MDSEI = 


1, otherwise 

 

dlong,intersect = v long  + 
 1 

along  2 
min l l 

2 
l,max ,accel  l 

 

long long 
2 

l l l,max ,accel 

long 
l,min,deccel 

(2) 

a 

2a 
+ 

Day Time - Camera Day Time - LiDAR 

 Ped Veh All  Ped Veh All 

P 0.434 0.656 0.545 P 0.876 0.991 0.933 

R 0.380 0.698 0.539 R 0.532 0.798 0.665 

Night Time - Camera Night Time - LiDAR 

 Ped Veh All  Ped Veh All 

P 0.143 0.494 0.377 P 0.827 0.944 0.885 

R 0.384 0.756 0.632 R 0.761 0.791 0.776 
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TABLE 3 Safety metrics violations for VRU-vehicle interactions. Column descriptions from left to right: interval number, number of 

tracked VRUs, count of unsafe situations identified, columns three to five delineate metrics violations within the identified unsafe 
situations, while the sixth column indicates the number of situations where both PET and MDSE metrics were violated. The 
number of vehicle tracklets is shown in Table 4 second column. 

 

Interval # VRU track-lets Unsafe situations PETV MDSEV Common violations 

1 23 5 2 0 0 

2 12 5 1 0 0 

3 27 12 8 4 3 

4 147 37 27 15 10 

Total 232 59 38 19 13 

 
TABLE 4 Safety metrics violations for vehicle-vehicle interactions. Column descriptions from left to right: interval number, number 

of tracked vehicles, count of unsafe situations identified, columns three to five delineate metrics violations within the identified 
unsafe situations, while the sixth column indicates the number of situations where both PET and MDSE metrics were violated. 

 

Interval # Vehicle track-lets Unsafe situations PETV MDSEV Common violations 

1 29 19 6 7 3 

2 42 28 10 14 4 

3 66 42 14 29 11 

4 193 148 73 80 32 

Total 330 237 103 130 50 

 

intersection. The patterns observed in the tracked trajec- 
tory plots offer insights into the areas at the intersection 
where the density of VRUs is notably high, particularly at 
the corners where pedestrians typically wait for the 
walk signal. 

The quantitative results derived from our collected 
dataset are showcased in Table 3 for VRU-to-vehicle inter- 
actions and in Table 4 for vehicle-to-vehicle interactions. 
In unsafe situations where no metric violations occur, 
we observed that only the tips of the scaled vectors 
intersect. As the entities are distant from each other in 
these cases, there are no metric violations for such inter- 
actions. We evaluated both the conventional PET and the 
more recent MDSE metrics for numerous identified 
unsafe situations in our dataset, illustrating two such 
examples in Figure 3. The MDSE metric in Figure 4 effec- 
tively identifies an unsafe VRU-to-vehicle interaction, 
particularly when a vehicle makes a sharp turn close to 
a pedestrian crossing the road. On the other hand, 
Figure 5 illustrates the PET metric violation for an unsafe 
interaction between two vehicles at the intersection, 
when one of the vehicles makes a near-miss turn. Both 
situations were labeled as unsafe due to the close prox- 
imity between the two entities while moving through the 
intersection. These observations were consistent across 
various analyses, reaffirming the robustness of our 
proposed system in handling intersection dynamics. 
Table 5 demonstrates the impact of the velocity scaling 
parameter τ on safety metrics calculations, revealing that 
higher scaling leads to a more conservative analysis of 
the intersection. While both metrics proved effective in 
our analysis, we empirically found MDSE to be more 
versatile for practical applications due to its customizable 
parameters, which allow for fine-tuning the metric to 
meet traffic-specific requirements. For example, using 
conservative parameters [26] for MDSE calculations 

identified both situations shown in Figure 3 as unsafe, 
whereas setting an appropriate PET threshold to classify 
both situations as unsafe was challenging. 

 

 

Conclusion and Future 
Work 

In this paper, a high-density, infrastructure-based LiDAR 
unit was utilized to collect traffic data at a city intersec- 
tion. We discussed pre-processing techniques and the 
data pipeline in-depth, providing detailed explanations for 
design choices and parameters. We introduced an online 
methodology for identifying unsafe situations at traffic 
intersections and evaluated metrics for real-time safety 
analysis. The results confirmed the viability of LiDARs for 
analyzing urban traffic scenarios. Our experiments also 
showed that DA safety metrics are effective for analyzing 
vehicle-to-vehicle and VRU-to-vehicle interactions at inter- 
sections. While our results are promising, there remains 
significant room for improvement. For instance, the 
Hungarian association algorithm for tracking exhibits a 
complexity of O(N3), potentially becoming a bottleneck 

when analyzing larger intersections. Therefore, more effi- 
cient algorithms are necessary for tracking. Our selection 
of parameters for safety metrics was guided by previous 
literature. Nevertheless, more suitable parameters can 
be established by considering the unique characteristics 
of the intersection. Moreover, the run-time loop frequency 
of 10Hz may not suffice for analyzing fast-moving vehicles. 
Although such scenarios are infrequent in urban traffic 
intersections, having a higher observation frequency for 
more detailed safety analysis could be advantageous. 
Lastly, our metric formulations did not take the 
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 FIGURE 3  Unsafe situation identification followed by real-time 

PET metrics evaluation. The blue arrow indicates the velocity 

vector, the dotted lines represent the 5s scaled projection, and 

the pink dot shows the instantaneous conflict point calculated 

by our system. The tailing lines represent the tracked trajectory 

of the entities over time. Note: Only the unsafe entities are 

emphasized in the images to direct the reader’s attention. 

Other detected entities are not considered in this visualization. 

 FIGURE 4  VRU-to-vehicle metrics evaluation for the 

scenario shown in Figure 3(a). Here the MDSEI infringement 

occurs at 0.325s when the distance to the conflict point (CP) 

becomes less than the distance to the safety envelope (SE). 

Time step 0 in these plots is relative to the time when the 

situation was identified as unsafe by our system.  
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 FIGURE 5  Vehicle-to-vehicle metrics evaluation for the 

scenario shown in Figure 3(b). Here PET violation occurs 

multiple times after 0.5s. Time step 0 in these plots is relative 

to the time when the situation was identified as unsafe by our 

system. 

TABLE 5 Effect of projection scaling parameter τ on the 

results. Results for τ = 5s are shown in the last rows of Table 3 
and Table 4. 

 

3s scaling 

 Unsafe 

situations 

PETV MDSEV Common 

violations 

VRU-to- 
vehicle 

18 11 5 2 

Vehicle-to- 
vehicle 

107 56 57 26 

7s scaling 

 Unsafe 

situations 

PETV MDSEV Common 

violations 

VRU-to- 
vehicle 

105 62 34 19 

Vehicle-to- 
vehicle 

306 131 154 64 

 
 FIGURE 6  Trajectory of tracked objects (Sept 11, 2022 MST, 

7.13 pm to 7.23 pm) superimposed on a satellite image of the 

Tempe intersection. The sensor setup is located at the star 

shown in the images. The range of the LiDAR sensor has been 

represented using white-dotted lines. Each color represents a 

different object tracklet. 
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dimensions of entities into consideration, which can have 
a significant impact, especially when dealing with vehicles 
of different sizes. Future research might incorporate novel 
formulations that consider entity dimensions. The scripts 
for metrics analysis, LiDAR data, tracking results, and 
video demonstrations are available at this repository. 
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Appendix 

 FIGURE 7  Pedestrian detection results (best viewed when 

zoomed in). Note that distant pedestrians are almost 

indistinguishable in the camera data; however, they have been 

consistently and accurately detected in the LiDAR data. 

 

 
 FIGURE 8  Cyclist and micro-mobility vehicle detection 

results (best viewed when zoomed in).  
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