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Abstract

nsuring the safety of vulnerable road users (VRUs)

such as pedestrians, users of micro-mobility
»ehicles, and cyclists is imperative for the commer-
cialization of automated vehicles (AVs) in urban traffic
scenarios. City traffic intersections are of particular
concern due to the precarious situations VRUs often
encounter when navigating these locations, primarily
because of the unpredictable nature of urban traffic.
Earlier work from the Institute of Automated Vehicles
(IAM) has developed and evaluated Driving Assessment
(DA) metrics for analyzing car following scenarios. In this
work, we extend those evaluations to an urban traffic
intersection testbed located in downtown Tempe, Arizona.
A multimodal infrastructure sensor setup, comprising a
high-density, 128-channel LiDAR and a 720p RGB camera,
was employed to collect data during the dusk period, with

Introduction

mart infrastructure technology is indispensable for
the advancement of automated mobility, playing a
vital role in ensuring the safety of vulnerable road
users ( VRUs) and human-driven vehicles (HDVs).
Infrastructure-based sensors, when combined with
vehicle-to-infrastructure (V2I) connectivity, could poten-
tially offer crucial situational awareness to Automated
Driving Systems (ADS)-controlled vehicles (AVs), espe-
cially in complex urban driving scenarios, such as at
traffic intersections.
Conventionally, cameras have been used as the
primary infrastructure sensors for real-time traffic moni-
toring and surveillance [1]. These sensors aid safety and

Accepted: 08 Jan 2024

the objective of capturing data during the transition from
daylight to night. In this study, we present and empirically
assess the benefits of high-density LiDAR in low-light and
dark conditions—a persistent challenge in VRU detection
when compared to traditional RGB traffic cameras. Robust
detection and tracking algorithms were utilized for
analyzing VRU-to-vehicle and vehicle-to-vehicle interac-
tions using the LIDAR data. The analysis explores the
effectiveness of two DA metrics based on the i.e. Post
Encroachment Time (PET) and Minimum Distance Safety
Envelope (MDSE) formulations in identifying potentially
unsafe scenarios for VRUs at the Tempe intersection. The
codebase for the data pipeline, along with the high-
density LIDAR dataset, has been open-sourced with the
goal of benefiting the AV research community in the
development of new methods for ensuring safety at
urban traffic intersections.

security in smart cities; however, the quality of data
obtained from these sensors is insufficient for monitoring
AV-related safety metrics. Prior work from IAM by Wishart
et al. [2] introduced DA metrics for quantifying the safety
performance of AVs. Reliability of these metrics hinges
on precise estimation of object odometry within the infra-
structure’s reference frame [3]. While image data from
calibrated infrastructure cameras can be used for detec-
tion and tracking at traffic intersections [4], it is important
to note that such data are susceptible to environmental
factors, with detection being critically affected by varying
lighting and weather conditions [5, 6].

Many of the limitations of infrastructure-based
cameras can be mitigated with the use of LiDAR units.
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These time-of-flight sensors remain unaffected to changes
in lighting conditions, generating consistent data during
both day and night time scenarios. In an earlier work at
IAM, Anshuman et al.[7] showed the efficacy of infrastruc-
ture-based LiDAR units in measurement of DA metrics
for vehicles. A follow-on work from Siddarth et al. [8]
compared odometry fidelity between infrastructure-
based and vehicle-top-based LiDAR setups. While previous
studies have established LiDAR units as being reliable for
calculating AV metrics, these analyses have primarily
focused on vehicles at freeway intersections. In this work,
we expand the analysis to encompass urban city intersec-
tions, with a particular emphasis on VRUs. We intend to
begin answering the following key questions: (1) Are
infrastructure-based LiDARs suitable for analyzing urban
traffic scenarios? (2) How effective are AV safety metrics
in analyzing interactions between vehicles and VRUs?

In the following sections, we delve into the literature
on 3D detection-tracking and AV metric calculation.
We provide details on the pre-processing techniques,
deep learning model, and tracking algorithm that facilitate
real-time processing of high-density LiDAR data frames.
Finally, we outline the experimental setup used for data
collection and present both qualitative and quantitative
results obtained from our analysis.

LiDAR-based object detection and tracking has been
researched extensively in recent years, primarily to
address the failure modes encountered with cameras.
With the advent of deep learning, there has been a shift
from clustering-based approaches [9, 10] to end-to-end
learning-based pipelines. Today, the state-of-the-art is
based on representation learning on perception datasets
such as KITTI [11], Waymo [12], and nuScenes [13] along
with many others that have been made publicly available
by the AV industry. Although deep learning allows for
multi-modal fusion to incorporate data from multiple
sensors such as LiDAR units and cameras, LiDAR-only
methods are more attractive options due to their data
consistency and invariance properties [14].

Most of the approaches for deep learning on LiDAR
point clouds fall into two categories: point-based and
voxel-based methods. Point-based methods treat point
clouds as a permutation-invariant set of points and learn
spatial features for each point using a point-encoder such
as PointNet [15]. In contrast, voxel-based methods
discretize 3D space into a finite grid of small cubes known
as voxels. Points within each voxel are averaged, and the
model learns the spatial relations within the voxels using
Convolutional Neural Networks (CNNs). Both methodolo-
gies involve a trade-off between precision and time
complexity. Point-based methods are typically more
precise but slower, while voxel-based methods are faster
but less precise due to data loss during the discretization
process [14]. More recent methods utilize a hybrid point-
voxel approach where points within the discrete voxels
are processed using a point encoder and the learned voxel

representations are further passed to CNNs, thus incor-
porating the best of both worlds [16]. Another popular
methodology involves using Bird’s Eye View (BEV) data
for detection, in which the point cloud is flattened along
the z-axis to produce a 2D set of points. While these
methods often deliver excellent runtime performance,
they are prone to substantial data loss, which can
constrain detection accuracy [17].

Our work focuses on the detection of VRUSs, such as
pedestrians, cyclists, and individuals using micro-mobility
vehicles, which presents a unique set of challenges. LIDAR
point clouds exhibit an inherent property of increasing
sparsity as the radial distance increases. VRUs are rela-
tively small entities for LiDAR, resulting in extremely
sparse point returns, which lack the necessary features
for object detection. Voxel-based and BEV-based
approaches perform poorly in VRU detection as they
compromise on information to reduce runtime complexity,
whereas, point-based methods are too slow and do not
meet the minimum real-time requirements for AV appli-
cations [16]. Hence, point-voxel based hybrid approach
are an ideal choice for our task. One research group [7]
used PointPillars [18] as it stands out to be one of the
fastest hybrid algorithms, which discretizes 3D space into
pillars along the z-axis. Each pillar is encoded using
PointNet to generate a pseudo image, which is further
processed by a 2D CNN to extract multi-scale features.
These features are then stacked and fed into an SSD [19]
head for getting the detection results. Another research
group [8] utilized Complex-YOLO [20] which is an exten-
sion of the single-stage YOLO object detection algorithm
to 3D point clouds. It uses Eular Region Proposal Network
(E-RPN) for accurate heading prediction. In this work,
we utilize PV-RCNN [21], an abbreviation for Point-Voxel
RCNN, which employs voxel set abstraction and keypoint
sampling for precise object detection. We found that
PV-RCNN is robust to point cloud sparsity, and the ROI
grid pooling algorithm enables successful identification
of VRU features even with 15-20 point sparse returns.

Tracking algorithms consume the detection results
and fill in any missing detections by maintaining a belief
state on individual objects in the scene. Bayesian algo-
rithms, such as the Kalman filter [22] and its variants, are
the most widely used methods for such multi-object
tracking. Typically, the 7-DOF bounding box state is tracked
over a short time horizon, and objects are removed from
the tracking list if no associations can be found for a
certain threshold number of data frames. Recently, deep-
representational features from object-centric models have
also been used as state vectors in Kalman filters [23].
Tracking algorithms assign a consistent and unique track
identifier to individual entities, preventing identity switches
during partial occlusion [24]. An inherent advantage in 3D
tracking compared to 2D is that, since two entities cannot
occupy the same 3D space, it is easier for tracking algo-
rithms to associate bounding boxes over time.

The position, velocity, and acceleration information
obtained from tracking algorithms can be used to evaluate
safety metrics between pairs of entities within a traffic
intersection [25]. Elli et al. [26] utilized the CARLA simulator
[27] to extract this information and validated the DA
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metrics proposed in [2], thereby demonstrating their
robustness and relevance over conventional counterparts.
Jammula et al. [4] collected camera videos mounted on
the infrastructure to track vehicles from a BEV perspective
and calculated real-world DA metrics. Similarly, researchers
in [7, 8] utilized LiDAR units to perform the DA metrics
calculations. However, earlier research has not explored
scalability aspects for metrics calculation. Previous work
[28, 7, 29] either assume the availability of vehicle pairs or
brute-force evaluation on all possible pairs with 0(N?)
complexity. In this study, we address such run-time scal-
ability issues and assess the effectiveness of the conven-
tional PET and the MDSE DA metric for VRU safety analysis.

Data Collection Setup

Our multi-modal sensor setup included a Hesai Pander
128 LiDAR unit along with a Hikvision HD surveillance
camera as shown in Figure 1 and Figure 6. The Hesai
LiDAR provided 128 rings with a 200m range at the Tempe
intersection where the diagonally opposite corner was at
a distance of 65m from the sensor setup. The high range
allowed us to capture dense point clouds, thus alleviating
the sparsity problem with the LiDAR. Both the LiDAR unit
and camera were tilted at 45 degrees, facing towards the
center of the intersection. Data were collected at four
different intervals on a single day Sept 11, 2022, MST

ISR Data collection setup at downtown Tempe
intersection.

between 6:20 pm and 7:30 pm, with each interval lasting
from 30 seconds to 10 minutes. Duration details of our
dataset are shown in Table 1. The variation in interval
lengths is due to some scenarios being specific to
VRU-vehicle interactions, while others are standard
vehicle-vehicle scenarios. Figure 2 shows the transition
from daylight to night. An important feature to observe

TN sample data from the Tempe intersection. VRUs
(pedestrians and e-scooter riders) are highlighted for
visualization. Point clouds shown here are the raw data
obtained from the LiDAR without any pre-processing.

& 0

L

() Night time data
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TABLE 1 Time intervals for the dataset collected on Sept 11,
2022 MST at Downtown Tempe. In total, our dataset
comprised 18 minutes of data collection.

Interval # Start Time End Time
1 6:28 pm 6:30 pm

2 6:38 pm 6:41 pm

3 7:08 pm 7:11 pm

4 7:13 pm 7:23 pm

here is the consistency in the LIDAR data across the two
figures, in contrast to the significant change in lighting
conditions observed in the camera data. Our dataset
consists solely of data from vehicles driven by humans.
However, if we assume that future autonomous vehicles
(AVs) will mimic human driving patterns, the methods
described in this study should be effective for integrating
and adapting AVs, treating them as ego vehicles
for analysis.

The high-density point cloud data obtained from the
infrastructure-based LiDAR unit is processed in three
steps to get robust odometry estimates of intersection
entities. These estimations are then used to evaluate
metrics formulations for real-time traffic safety analysis.

Preprocessing

The 128-channel LiDAR captures data at a rate of 20
frames per second, with each frame containing approxi-
mately 690,000 points. To cover the intersection
adequately, only 110 degrees of the horizontal field of view
are needed, accounting for approximately 250,000 points.
Many of these points are redundant data from the surfaces
of nearby objects, which do not significantly contribute to
detection accuracy. Therefore, we down-sample the point
cloud using a high-resolution voxel grid with a leaf size of
10cm. This down-sampling process leads to a more
uniform density distribution compared to the original
dense point cloud, with minimal data loss. The resulting
point cloud consists of around 30,000 points, making it
suitable for real-time 3D object detection.

Object Detection

We employ the PV-RCNN [21] model from the open-
source MMDetection3D [30] library as it provides a simple
API with efficient CUDA implementations. We specifically
selected the model pre-trained on the KITTI [11] dataset
as we empirically observed that the scan patterns of
Hesai LiDAR closely resemble those of Velodyne LiDARs.
The KITTI point cloud data is collected from a vehicle top
perspective; therefore, we transform the point cloud by
aligning the ground parallel to the XY plane while posi-
tioning the LiDAR unit 2 meters above the ground plane.

This step is essential because deep-learning models do
not perform well on out-of-distribution data. Nonetheless,
it's worth noting that infrastructure-based LiDAR units
capture data from an isometric viewpoint. As a result, the
infrastructure-based LiDAR units collect a relatively higher
amount of information compared to a vehicle-top setting.
For instance, infrastructure-based LiDAR units can
observe not only the vehicle’s sides but also the roofs,
even for large-scale vehicles like trucks, buses, etc. The
down-sampling and perspective transformation steps
bring the point cloud closer to the KITTI data distribution,
thereby assisting the model in producing high-quality
detection results.

Tracking and Data Association

Tracking is accomplished by applying a 7-DOF Kalman
filter to the bounding box results obtained from the
object detection model. We utilize the implementation
from [31] as it has an intuitive interface for parameter
tuning and readily fits into our detection framework. The
detection model provides confidence scores for the
bounding box predictions, which are used to tune the
sensitivity [10] of the tracking algorithm. We set a confi-
dence threshold of 0.4 for vehicles and 0.0 for VRUs. In
safety systems, emphasizing recall is essential to
minimize false negatives. Our threshold parameters
achieve a higher recall in VRU detection while maintaining
the number of false negatives within acceptable limits.
In general, we found that the PV-RCNN model exhibits
impressive recall in VRU detection, and it retains high
precision even at low confidence thresholds [21], thereby
enabling accurate tracking of traffic entities. The associa-
tion is done using the Hungarian algorithm on Generalized
Intersection Over Union (GIOU) scores between pairs of
bounding boxes from consecutive detection frames.
We start tracking as soon as we associate an object in
¢ number of consecutive frames and remove the track
if we fail to associate for 8 frames. We use ¢ = 3 and
B = 4 for vehicles, whereas for VRUs we use a more
relaxed set of parameters with { = 1 and 8 = 5. In both
cases, we set the GIOU association threshold at 1.5.

Safety Metrics

The evaluation of safety metrics traditionally involves the
examination of pairs of entities in a scene that meet
specific preconditions. For instance, metrics like PET and
MDSE are designed to assess interactions between
entities that have overlapping trajectories. Detecting such
interactions with vehicles is straightforward because
conflict points are predetermined based on lane design
[32] or pre-specified at road intersections. However, in
urban intersections involving VRUs, the situation is more
complex. Pedestrians may follow erratic trajectories,
sometimes crossing without a walk signal or deviating
from designated crosswalk zones. In such scenarios, it
becomes crucial to identify potentially unsafe situations
and determine conflict points on the fly for online metrics
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calculations. Arguably any pair of entities that could run
into an accident while moving in different directions must
have a common intersection point before the crash. This
intuition motivates us to define real-time conflict points
by checkin% for intersections_between scaled velocity
vectors of the traffic entities. Specifically, we utilize the
following three-step algorithm to identify potentially
unsafe entity pairs:

1. For every entity i in the scene, we find the
instantaneous velocity vector v/(t) and scale it
along the vector direction r = 5 seconds into the
future to obtain v, (t).

2. Using the Bentley—Ottmann algorithm [33]
we find all the intersecting scaled vector pairs in
the XY plane and consider the corresponding
entity pairs to be in an unsafe situation. .

3. Aligning with the terminology from [4], we assign
leader-follower relationships such that VRUs are
always designated as leaders in VRU-vehicle pairs,
while in vehicle-vehicle pairs, any vehicle can
assume the role of the leader.

Safety metrics calculations are computationally inex-
pensive, typically involving simple arithmetic operations.
However, computing them for every possible entity pair
is sub-optimal, as many pairs will not interact due to
differences in their locations and directions. Our work
introduces a novel method to identify potentially unsafe
pairs with a definable conflict point. The time complexity
for our algorithm is O(Nlog(N)) thus rendering it suitable
for real-time application. The scaling parameter 1 can
be viewed as a horizon for assessing potential unsafe
interactions. Setting r = 5 implies checking for possible
interactions within a 5-second window into the future.
Once the potentially unsafe pairs are determined,
we calculate PET (Egn 1) and MDSE (Egn 2) metrics with
respect to the instantaneous conflict points detected by
our algorithm. Illustrations of two such unsafe situations
are shown in Figure 3.

PET = 2~ ti (1)

where

t1: Arrival time of the leader to conflict point
t2: Arrival time of the follower to conflict point

A PET metric violation (PETV) occurs when the value
drops below a pre-determined threshold. For our analysis,
we set this threshold at 1.5s.

iF Jlong,intersect long,intersect
0, ifd <d

MDSEI = 4 ]
L 1, otherwise

d/ong,intersect long _1 long 2

=v +
min ! 'OI 2 I,max,accel * |

long long 2 (2)
(W + ,0/ al,max,accel

2 a long

I,min,deccel

+

where

dreneintersect: Tnstantaneous distance of the leader from
the conflict point

vers : Norm of the instantaneous velocity of the

leader p;: Reaction time of the leader
/of;/ long : esponsﬂﬂﬁty-Sensitive Safety

I,max,accel ! " I,min,deccel
(RSS) parameters for MDSE formulation
The MDSE Infringement (MDSEI) [2] is a binary value
that indicates the MDSE metric violation. It occurs when

the conflict point lies within the safety envelope of the leader.
The parameter values for our metric calculations are

derived from the analysis presented by Elli et al. in [26].
For both vehicle-to-vehicle and VRU-to-vehicle interac-

H\(l)lggj p\évrea meters: ep/ N ) sr,ag)‘;gt lc Dr V8 / s§,t ua%%
I,max ,accel
a8, secces = 3.6m [ s%. It must be noted that these param-
eters were originally presented for the analysis of vehicle-
to-vehicle interactions. We retain these parameters
unchanged and evaluate their behavior and performance
in the context of VRU-to-vehicle interactions. The results
of our experiments are discussed in the following section.

A comprehensive set of results from the detection model
is available in the Appendix Figure 7 and Figure 8 where
vehicles and VRUs are highlighted with green and red
bounding boxes respectively. We found that density
uniformization using down-sampling improves the detec-
tion quality with pre-trained models while allowing an
average 10Hz real-time loop frequency. Table 2 presents
a comparative analysis of object detection performance
between camera and LiDAR technology. For the camera-
based detection, we employed a pre-trained YOLOvVS8
model. This comparison was conducted without applying
any threshold on the Intersection Over Union (IOU) of
bounding boxes, ensuring that the results are unbiased
estimates of the detection performance. Consistent with
our initial expectations about the superiority of LiDAR in
night time detection, the data reveals that LiDAR outper-
forms cameras in both day time and night time scenarios.

Figure 6 shows the tracklets obtained from a
10-minute dataset (Interval 4) captured at the Tempe

TABLE 2 Camera vs LiDAR quantitative comparison for object
detection. P (Precision) and R (Recall) [34] were estimated from
our dataset at 0% IOU threshold. The third sub-column (All) is
the mean over both classes.

Day Time - Camera Day Time - LiDAR
Ped Veh Al Ped Veh Al

P 0.434 0.656 0.545 P 0.876 0.991 0.933
R 0.380 0.698 0.539 R 0.532 0.798 0.665
Night Time - Camera Night Time - LiDAR
Ped Veh Al Ped Veh Al
P 0.143 0.494 0377 P 0.827 0.944 0.885
R 0.384 0.756 0.632 R 0.761 0.791 0.776
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TABLE 3 Safety metrics violations for VRU-vehicle interactions. Column descriptions from left to right: interval number, number of
tracked VRUs, count of unsafe situations identified, columns three to five delineate metrics violations within the identified unsafe
situations, while the sixth column indicates the number of situations where both PET and MDSE metrics were violated. The
number of vehicle tracklets is shown in Table 4 second column.

VRU track-lets Unsafe situations Common violations

Interval #

4 147 37 27 15 10
Total 232 59 38 19 13

TABLE 4 Safety metrics violations for vehicle-vehicle interactions. Column descriptions from left to right: interval number, number
of tracked vehicles, count of unsafe situations identified, columns three to five delineate metrics violations within the identified
unsafe situations, while the sixth column indicates the number of situations where both PET and MDSE metrics were violated.

Interval # Vehicle track-lets Unsafe situations Common violations
1 29 19 6 7 3

2 42 28 10 14 4

3 66 42 14 29 11

4 193 148 73 80 32

Total 330 237 103 130 50

intersection. The patterns observed in the tracked trajec-
tory plots offer insights into the areas at the intersection
where the density of VRUs is notably high, particularly at
the corners where pedestrians typically wait for the
walk signal.

The quantitative results derived from our collected
dataset are showcased in Table 3 for VRU-to-vehicle inter-
actions and in Table 4 for vehicle-to-vehicle interactions.
In unsafe situations where no metric violations occur,
we observed that only the tips of the scaled vectors
intersect. As the entities are distant from each other in
these cases, there are no metric violations for such inter-
actions. We evaluated both the conventional PET and the
more recent MDSE metrics for numerous identified
unsafe situations in our dataset, illustrating two such
examples in Figure 3. The MDSE metric in Figure 4 effec-
tively identifies an unsafe VRU-to-vehicle interaction,
particularly when a vehicle makes a sharp turn close to
a pedestrian crossing the road. On the other hand,
Figure 5 illustrates the PET metric violation for an unsafe
interaction between two vehicles at the intersection,
when one of the vehicles makes a near-miss turn. Both
situations were labeled as unsafe due to the close prox-
imity between the two entities while moving through the
intersection. These observations were consistent across
various analyses, reaffirming the robustness of our
proposed system in handling intersection dynamics.
Table 5 demonstrates the impact of the velocity scaling
parameter 7 on safety metrics calculations, revealing that
higher scaling leads to a more conservative analysis of
the intersection. While both metrics proved effective in
our analysis, we empirically found MDSE to be more
versatile for practical applications due to its customizable
parameters, which allow for fine-tuning the metric to
meet traffic-specific requirements. For example, using
conservative parameters [26] for MDSE calculations

identified both situations shown in Figure 3 as unsafe,
whereas setting an appropriate PET threshold to classify
both situations as unsafe was challenging.

In this paper, a high-density, infrastructure-based LiDAR
unit was utilized to collect traffic data at a city intersec-
tion. We discussed pre-processing techniques and the
data pipeline in-depth, providing detailed explanations for
design choices and parameters. We introduced an online
methodology for identifying unsafe situations at traffic
intersections and evaluated metrics for real-time safety
analysis. The results confirmed the viability of LiDARs for
analyzing urban traffic scenarios. Our experiments also
showed that DA safety metrics are effective for analyzing
vehicle-to-vehicle and VRU-to-vehicle interactions at inter-
sections. While our results are promising, there remains
significant room for improvement. For instance, the
Hungarian association algorithm for tracking exhibits a
complexity of O(N?), potentially becoming a bottleneck
when analyzing larger intersections. Therefore, more effi-
cient algorithms are necessary for tracking. Our selection
of parameters for safety metrics was guided by previous
literature. Nevertheless, more suitable parameters can
be established by considering the unique characteristics
of the intersection. Moreover, the run-time loop frequency
of 10Hz may not suffice for analyzing fast-moving vehicles.
Although such scenarios are infrequent in urban traffic
intersections, having a higher observation frequency for
more detailed safety analysis could be advantageous.
Lastly, our metric formulations did not take the
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EIETLEE] Unsafe situation identification followed by real-time
PET metrics evaluation. The blue arrow indicates the velocity
vector, the dotted lines represent the 5s scaled projection, and
the pink dot shows the instantaneous conflict point calculated
by our system. The tailing lines represent the tracked trajectory
of the entities over time. Note: Only the unsafe entities are

I VRU-to-vehicle metrics evaluation for the
scenario shown in Figure 3(a). Here the MDSEI infringement
occurs at 0.325s when the distance to the conflict point (CP)
becomes less than the distance to the safety envelope (SE).
Time step 0 in these plots is relative to the time when the
situation was identified as unsafe by our system.

emphasized in the images to direct the reader’s attention.

Other detected entities are not considered in this visualization. Post Encroachment Tirne (PET)
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IR Vehicle-to-vehicle metrics evaluation for the
scenario shown in Figure 3(b). Here PET violation occurs

multiple times after 0.5s. Time step 0 in these plots is relative
to the time when the situation was identified as unsafe by our

system.

Post Encroachment Time (PET)

2.50
2,25
2.004
1.75 -

(s)

1.50

Time

1.254
1.004

0.75 -

0.50+

0.0 0.5 10 15 20 25
Time step (0.055)

—s— PET --- Threshold

Minimum Distance Safety Envelope (MDSE)

124

104

Distance {m)

0.0 0.5 1.0 15 2.0 2.5
Time step {0.05s)

—a— Distance to CP  —s— Distance to SE

Minimum Distance Safety Envelope Infringement (MDSEI)

0.04 -

0.0 0.5 10 15 2.0 2.5
Time step (0.05s)

TABLE 5 Effect of projection scaling parameter r on the
results. Results for r = 5s are shown in the last rows of Table 3
and Table 4.

3s scaling
Unsafe PETV MDSEV Common
situations violations
VRU-to- 18 11 5 2
vehicle
Vehicle-to- 107 56 57 26
vehicle
7s scaling
Unsafe PETV MDSEV Common
situations violations
VRU-to- 105 62 34 19
vehicle
Vehicle-to- 306 131 154 64
vehicle

T Trajectory of tracked objects (Sept 11, 2022 MST,
7.13 pmto 7.23 pm) superimposed on a satellite image of the
Tempe intersection. The sensor setup is located at the star
shown in the images. The range of the LiDAR sensor has been
represented using white-dotted lines. Each color represents a
different object tracklet.

e 3 ‘
(b) VRU TracKlets
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dimensions of entities into consideration, which can have
a significant impact, especially when dealing with vehicles
of different sizes. Future research might incorporate novel
formulations that consider entity dimensions. The scripts
for metrics analysis, LiDAR data, tracking results, and
video demonstrations are available at this repository.
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I Cyclist and micro-mobility vehicle detection
Pedestrian detection results (best viewed when results (best viewed when zoomed in).

zoomed in). Note that distant pedestrians are almost
indistinguishable in the camera data; however, they have been
consistently and accurately detected in the LiDAR data.
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