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Abstract

Machine learning potentials (MLPs) have revolutionized molecular simulation by providing

efficient and accurate models for predicting atomic interactions. MLPs continue to advance

and have had profound impact in applications that include drug discovery, enzyme catalysis

and materials design. The current landscape of MLP software presents challenges due to

the limited interoperability between packages, which can lead to inconsistent benchmarking

practices and necessitates separate interfaces with molecular dynamics (MD) software. To

address these issues, we present DeePMD-GNN, a plugin for the DeePMD-kit framework

that extends its capabilities to support external graph neural network (GNN) potentials.

DeePMD-GNN enables the seamless integration of popular GNN-based models, such as

NequIP and MACE, within the DeePMD-kit ecosystem. Furthermore, the new software in-

frastructure allows GNN models to be used within combined quantum mechanical/molecular

mechanical (QM/MM) applications using the range corrected ∆MLP formalism. We demon-

strate the application of DeePMD-GNN by performing benchmark calculations of NequIP,

MACE, and DPA-2 models developed under consistent training conditions to ensure fair

comparison.
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Introduction

In recent years, many machine learning potentials (MLP) have been developed to model

the potential energy of atomistic systems.1–6 These developments have resulted in numerous

software packages that implement each new MLP;7–19 however, the software is often lim-

ited to support only those MLPs developed within a particular research team. Some of the

popular packages include: DeePMD-kit7,20,21 (used to develop Deep Potential models22–24),

SchNetPack8,16 (used to develop for SchNet25), TorchANI12 (used to develop various ANI

models26,27), and the NequIP,28 and MACE packages.29 The emergence of separate software

ecosystems has several disadvantages. First, it is inconvenient and inefficient to have users

learn new software with the release of each new MLP. This has led to the release of support

software, such as MLatom,30 that creates workflows which try to run MLP packages in a

unified way. Second, it is inconvenient and inefficient to have developers interface each MLP

package with molecular dynamics (MD) software to enable their use in simulation.14,31,32 Fi-

nally, the different infrastructures make it difficult to train the various models in a consistent

manner due to differences in the optimization algorithms, the definition of the loss function,

the treatment of learning rates and training steps,4 and the availability of active learning

strategies.

The present work introduces the DeePMD-GNN package, a DeePMD-kit plugin for ex-

ternal graph neural network potentials. The location of DeePMD-GNN within the broader

DeePMD-kit software ecosystem is illustrated in Figure 1. To demonstrate its capabili-

ties, we created plugin interfaces for two popular GNN potentials, NequIP28 and MACE.29

With the aid of DeePMD-GNN, these models can be trained and used in the DeePMD-kit

package in the same way as other Deep Potential models to enable a wealth of applica-

tions in chemistry, biology and materials science. Furthermore, the plugin interface allows

the GNN potentials to be used within range corrected QM/MM-∆MLP applications.33,34

Semiempirical or approximate density-functional tight-binding methods are computation-

ally efficient, but have inherent limitations35–37 that prevent them from achieving the accu-
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Figure 1: The location of DeePMD-GNN in the DeePMD-kit software ecosystem. The
arrows indicate dependency flow, and red color indicates new software and interfaces de-
veloped in the current work. Software packages shown in the figure include: (1) DeePMD-
kit20 and DeePMD-GNN; (2) External GNN software: MACE,29 NequIP,28 and so on; (3)
Deep learning framework: TensorFlow,47 PyTorch,48 and JAX;49 (4) Molecular dynamics
packages: LAMMPS,50 i-PI,51 Amber,40 OpenMM,52 CP2K,53 GROMACS,54 ASE,55 and
ABACUS;56 (5) Workflow packages: DP-GEN57 and its next generation, MLatom,30 and
DP-TI; (6) Program language API: Python, C, C++, and Node.js.

racy of much more computationally intensive ab initio QM methods. The range corrected

QM/MM-∆MLP strategy uses neural network to introduce short-range nonelectrostatic cor-

rections to an inexpensive (semiempirical) QM/MM base model to reproduce target ab initio

QM/MM energies and forces. The DeePMD-GNN plugin greatly extends the capability of

recently developed interoperable software infrastructure38,39 within Amber40 for design of

next-generation QM/MM-∆MLP models and their application to biochemical reactions41,42

and drug discovery.43–45 The new software interfaces are demonstrated by comparing bench-

mark calculations of NequIP,28 MACE,29 and DPA-224 models developed with a consistent

training strategy. The errors are compared using structures from the QDπ dataset.46
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Figure 2: The software architecture of the DeePMD-GNN package. The boxes represent
software components, and the arrows indicate dependency flow.

Software Description

The DeePMD-GNN package is an open-source project hosted on GitHub and licensed under

LGPL-3.0. It is a Python/C++ mixed source project that is packaged with CMake58 and

scikit-build-core.59 The software dependencies include DeePMD-kit,20 NequIP,28 MACE,29

and PyTorch.48

Software Infrastructure: The software infrastructure used to train and apply MLPs is

illustrated in Figure 2 to highlight the components provided by the DeePMD-GNN package.

The diagram depicts two use cases: model generation by concurrent learning and model

inference within molecular simulation applications. The DP-GEN software57 provides an in-

terface to the DeePMD-kit Python package20 to train a model; that is, optimize the network

parameters. The DeePMD-kit Python package is interfaced to the external GNN PyTorch

software via a generic model wrapper, and the graph edges are prepared by a custom C++

operator library provided by DeePMD-GNN. When the DeePMD-kit Python package has

finished the parametrization, it saves the GNN and its parameters to a serialized Torch-

Script model file. To use the trained model in a molecular simulation, one must run a

version of the MD software that has been interfaced to the DeePMD-kit C/C++ library.

The DeePMD-kit C/C++ interface can load and evaluate the saved TorchScript model file
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with the aid of the C++ operator library provided by DeePMD-GNN. Consequently, it is

not necessary to implement the C/C++ interface for each Python-implemented GNN model,

thus simplifying the integration process. The DP-GEN software can also train models us-

ing a query–by–committee active learning strategy that involves parametrization of several

network parameter sets. DP-GEN will then conduct exploration for additional training data

by using the current model parameters within MD simulations. If a simulation encounters

a sample that produces significant disagreement between the models, then it is saved. A

subset of the saved samples are selected at random for labeling and used to parametrize the

network in the next active learning iteration.

Software Features: The DeePMD-GNN package adapts the Deep Potential - Range Cor-

rection (DPRc) method33 for use with GNN potentials for the development of range-corrected

GNN models. This method is used to create ∆MLP corrections for semiempirical quantum

models in QM/MM applications.34,60 A range-corrected ∆MLP potential corrects both the

QM and the nearby QM/MM interactions in a manner that produces a smooth potential

energy surface as MM atoms enter and exit the vicinity of the QM region. To use GNN

potentials with this approach, the MM atom energy bias is set to zero and the GNN topol-

ogy excludes edges connecting pairs of MM atoms. The application and comparison of GNN

and Deep Potentials range-corrected ∆MLP QM/MM applications using the DeePMD-GNN

infrastructure will be the subject of forthcoming work.

Benchmark Comparison of Graph Neural Network Models

A key usage of the DeePMD-GNN package is to train and benchmark different GNN poten-

tials in a consistent manner. As a brief demonstration, we present benchmark calculations

using the DPA-2,24 MACE,29 and NequIP28 potentials. These GNNs are trained for use

as pure MLPs and QM/MM-∆MLPs, where the ∆MLP is a correction to the GFN2-xTB

semiempirical method.61,62 Each model is trained consistently against the QDπ dataset.46
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This dataset includes energies and forces calculated with ωB97M-D3(BJ)/def2-TZVPPD63

for over 1.5 million structures that were collected from subsets of the SPICE64 and ANI,65,66

datasets, in addition to smaller datasets that include neutral and charged compounds cov-

ering the chemical space of 15 elements: H, Li, C, N, O, F, Na, P, S, Cl, K, Br, and I. The

QDπ dataset is split into training and test sets with a 19:1 ratio.

The DPA-2 model is benchmarked at three different sizes: small (S), medium (M), and

large (L). The DPA-2 (S), DPA-2 (M), and DPA-2 (L) models use 3, 6, and 12 representation-

transformer (reperformer) layers, respectively. The DPA-2 (M) and DPA-2 (L) model’s

reperformer pair-atom representation is updated with a gated self-attention layer, whereas

the DPA-2 (S) model is not. The remaining hyperparameters are the same in the model

sizes. Specifically, the representation-initializer layer is encoded from the local environment

within a 6 Å cutoff radius and 1 Å of smoothing; the reperformer layers are calculated with a

4 Å cutoff and 1 Å of smoothing; three-body embedding is included within a 4 Å cutoff; the

embedding network consists of 3 hidden layers with 25, 50, and 100 neurons; the embedding

submatrix size is 12; the fitting network consists of 3 hidden layers with 240 neurons; and

the dimensions of the invariant single-atom and pair-atom representations are set to 120 and

32, respectively. Furthermore, the localized single-atom representation update mechanism

excludes the self-attention layer.

The MACE model is benchmarked at two different sizes that differ only in the maximum

rotational order used to communicate equivariant messages. The MACE (S) model’s message

passing mechanism uses a symmetry order of 0 with 256 embedding channels, and and the

MACE (M) model uses a symmetry order of 1 with 128 embedding channels. The remaining

hyperparameters are the same between the two models. The radial features are calculated

from a 6 Å cutoff, 8 Bessel functions, and a order 5 polynomial envelope. The features were

fed to a 3-layer perceptron consisting of 64 neurons/layer. The angular description of the

environment is expanded in spherical harmonics to order 3. The MLP is calculated from 2

message passing layers with a correlation order of 3.
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A single NequIP model is trained. The radial features are calculated from a 6 Å cutoff,

8 Bessel functions, and embedded with a 1-layer perceptron consisting of 64 neurons/layer.

The MLP consists of 4 message passing layers using a maximum irreducible representation

order of 2, and the hidden features were configured to use a maximum order of 1 using 32

channels and both even and odd parity.

All models are trained with the same loss function, learning rate, training steps, and

floating point precision (FP32) using the Adam stochastic gradient descent method.67 The

number of training steps is set to 1 million. The learning rate exponentially decays from

1× 10−3 to 3.51× 10−8. The weighted contribution of the energy errors to the loss function

increases from 1 eV−2 and 20 eV−2 during the training, whereas the contributions from the

force errors decrease from 100 eV−2Å2 to 1 eV−2Å2. The batch size is set to ⌈256/N⌉, where

N is the number of atoms in a conformation.

Table 1: Energy (E, in unit kcal/mol) and force (F, in unit kcal/(mol·Å)) mean absolute
errors (MAE) and root mean square errors (RMSE) of several GNN models against the
QDπ dataset. QM-∆MLP models prefixed by ∆ use GFN2-xTB as a base QM model that
are supplemented by a ∆MLP correction. Also shown are uncorrected QM models at the
semiempirical GFN2-xTB level. t(infer) is the inference time (seconds) for the whole training
set. The MLPs were evaluated on a single NVIDIA V100 GPU card, and the GFN2-xTB
semiempirical energy was calculated on 32 AMD EPYC 7742 CPU cores.

Training set Test set
Model E MAE E RMSE F MAE F RMSE E MAE E RMSE F MAE F RMSE t(infer)

Pure MLPs
DPA-2 (S) 3.19 7.26 3.12 8.11 3.19 5.18 3.11 5.94 2728
DPA-2 (M) 2.02 6.28 2.04 7.27 2.02 3.65 2.03 4.70 6996
DPA-2 (L) 1.73 6.07 1.77 7.08 1.75 3.32 1.77 4.43 13713
MACE (S) 2.56 7.03 2.25 7.54 2.55 4.73 2.24 5.09 2585
MACE (M) 1.98 6.62 1.74 7.17 1.97 4.09 1.74 4.54 4723
NequIP 4.49 8.88 3.65 8.79 4.46 7.12 3.64 6.80 1622

QM
GFN2-xTB · · · · · · 4.36 9.58 · · · · · · 4.38 7.84 4048

QM-∆MLPs
∆DPA-2 (S) 1.27 5.70 1.25 6.64 1.27 2.58 1.25 3.82 6776
∆DPA-2 (M) 0.98 5.57 0.99 6.53 0.98 2.31 0.99 3.63 11044
∆DPA-2 (L) 0.89 5.54 0.92 6.50 0.89 2.23 0.92 3.58 17761
∆MACE (S) 1.19 5.71 1.08 6.60 1.19 2.60 1.07 3.73 6633
∆MACE (M) 0.95 5.61 0.85 6.51 0.95 2.38 0.85 3.57 8771
∆NequIP 1.75 6.02 1.46 6.79 1.74 3.22 1.45 4.06 5670

Table 1 shows the energy and force mean absolute errors (MAE) and root mean square
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errors (RMSE) of the DPA-2, MACE, and NequIP models against the QDπ dataset. The

GFN2-xTB+∆MLP models are consistently better than the pure MLP models. This ob-

servation is consistent with previous comparisons that used Deep Potential models.22–24

Among the pure MLPs, DPA-2 (L) yields the lowest errors, and the NequIP model produces

the largest errors. Among the GFN2-xTB+∆MLP models, the ∆DPA-2 (L) and ∆NequIP

models similarly produce the lowest and largest errors, respectively.

Table 1 also shows the inference time needed to calculate the whole training set with a

single NVIDIA V100 GPU card and 32 AMD EPYC 7742 CPU cores, where the MLP is

evaluated on the GPU and GFN2-xTB is calculated on the CPUs. The pure MLP models

can be ordered from most to least expensive to evaluate: DPA-2 (L) > DPA-2 (M) > MACE

(M) > DPA-2 (S) > MACE (S) > NequIP. The GFN2-xTB+∆MLP models are about 1.5

times more expensive than the pure MLP models.

Conclusions

The DeePMD-GNN package makes a significant step forward in addressing key limitations in

the current MLP software ecosystem and advancing the state-of-the-art enabling technology

for molecular simulations using MLPs. By enabling the integration of external GNN poten-

tials, such as NequIP and MACE, within the DeePMD-kit framework, it reduces the need for

users to learn multiple software packages and ensures consistency in benchmarking practices.

Furthermore, the DeePMD-GNN package includes infrastructure allowing the DeePMD-kit

C/C++ library to read and use GNN models saved as TorchScript files. In this manner,

PyTorch implementations of GNN models become immediately available in MD software

that is interfaced to DeePMD-kit. The incorporation of the range-corrected ∆MLP strategy

within DeePMD-GNN further allows GNN models to be used as corrections for semiem-

pirical QM/MM calculations. We benchmarked several GNNs against the QDπ dataset to

highlight the utility of DeePMD-GNN in providing a unified platform for fair and efficient
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evaluation of advanced MLP methods. DeePMD-GNN is also the first plugin developed

for the DeePMD-kit package, and thereby serves as an example for future development of

plugins. Of particular note is the interface of DeePMD-kit with new software infrastructure

in the Amber software package that enables simulations next-generation QM/MM-∆MLP

models together with a wide range of advanced alchemical free energy and free energy surface

methods. We anticipate that DeePMD-GNN will facilitate a wide range of new applications

that leverage GNNs to gain predictive insight into drug discovery, biocatalysis and materials

design.

Data Availability

Source code for the project can be found at https://gitlab.com/RutgersLBSR/

deepmd-gnn or https://github.com/deepmodeling/deepmd-gnn.
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