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Abstract

Machine learning potentials (MLPs) have revolutionized molecular simulation by providing
efficient and accurate models for predicting atomic interactions. MLPs continue to advance
and have had profound impact in applications that include drug discovery, enzyme catalysis
and materials design. The current landscape of MLP software presents challenges due to
the limited interoperability between packages, which can lead to inconsistent benchmarking
practices and necessitates separate interfaces with molecular dynamics (MD) software. To
address these issues, we present DeePMD-GNN, a plugin for the DeePMD-kit framework
that extends its capabilities to support external graph neural network (GNN) potentials.
DeePMD-GNN enables the seamless integration of popular GNN-based models, such as
NequlP and MACE, within the DeePMD-kit ecosystem. Furthermore, the new software in-
frastructure allows GNN models to be used within combined quantum mechanical /molecular
mechanical (QM/MM) applications using the range corrected AMLP formalism. We demon-
strate the application of DeePMD-GNN by performing benchmark calculations of NequlP,
MACE, and DPA-2 models developed under consistent training conditions to ensure fair

comparison.



Introduction

In recent years, many machine learning potentials (MLP) have been developed to model
the potential energy of atomistic systems.'® These developments have resulted in numerous
software packages that implement each new MLP;” ! however, the software is often lim-
ited to support only those MLPs developed within a particular research team. Some of the
popular packages include: DeePMD-kit"?%?! (used to develop Deep Potential models?*21),
SchNetPack®!6 (used to develop for SchNet?®), TorchANI*? (used to develop various ANI

models?5:27)

. and the NequlP,?® and MACE packages.? The emergence of separate software
ecosystems has several disadvantages. First, it is inconvenient and inefficient to have users
learn new software with the release of each new MLP. This has led to the release of support
software, such as MLatom,?° that creates workflows which try to run MLP packages in a
unified way. Second, it is inconvenient and inefficient to have developers interface each MLP
package with molecular dynamics (MD) software to enable their use in simulation. #3132 Fi-
nally, the different infrastructures make it difficult to train the various models in a consistent
manner due to differences in the optimization algorithms, the definition of the loss function,
the treatment of learning rates and training steps,* and the availability of active learning
strategies.

The present work introduces the DeePMD-GNN package, a DeePMD-kit plugin for ex-
ternal graph neural network potentials. The location of DeePMD-GNN within the broader
DeePMD-kit software ecosystem is illustrated in Figure 1. To demonstrate its capabili-
ties, we created plugin interfaces for two popular GNN potentials, NequIlP?® and MACE.%
With the aid of DeePMD-GNN, these models can be trained and used in the DeePMD-kit
package in the same way as other Deep Potential models to enable a wealth of applica-
tions in chemistry, biology and materials science. Furthermore, the plugin interface allows
the GNN potentials to be used within range corrected QM/MM-AMLP applications. 3334
Semiempirical or approximate density-functional tight-binding methods are computation-

ally efficient, but have inherent limitations®* 37 that prevent them from achieving the accu-
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Figure 1: The location of DeePMD-GNN in the DeePMD-kit software ecosystem. The
arrows indicate dependency flow, and red color indicates new software and interfaces de-
veloped in the current work. Software packages shown in the figure include: (1) DeePMD-
kit?® and DeePMD-GNN; (2) External GNN software: MACE,? NequlP,* and so on; (3)
Deep learning framework: TensorFlow,*” PyTorch,*® and JAX;%® (4) Molecular dynamics
packages: LAMMPS,%° i-PI,>! Amber,* OpenMM,%? CP2K,? GROMACS,** ASE,* and
ABACUS;% (5) Workflow packages: DP-GEN®7 and its next generation, MLatom,?° and
DP-TI; (6) Program language API: Python, C, C++, and Node.js.

racy of much more computationally intensive ab initio QM methods. The range corrected
QM/MM-AMLP strategy uses neural network to introduce short-range nonelectrostatic cor-
rections to an inexpensive (semiempirical) QM /MM base model to reproduce target ab initio
QM /MM energies and forces. The DeePMD-GNN plugin greatly extends the capability of

38,39

recently developed interoperable software infrastructure within Amber“® for design of

next-generation QM/MM-AMLP models and their application to biochemical reactions?!?
and drug discovery.4* > The new software interfaces are demonstrated by comparing bench-

mark calculations of NequlP,?® MACE,? and DPA-22?* models developed with a consistent

training strategy. The errors are compared using structures from the QD dataset.46
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Figure 2: The software architecture of the DeePMD-GNN package. The boxes represent
software components, and the arrows indicate dependency flow.

Software Description

The DeePMD-GNN package is an open-source project hosted on GitHub and licensed under
LGPL-3.0. It is a Python/C++ mixed source project that is packaged with CMake®® and
scikit-build-core.?® The software dependencies include DeePMD-kit,?° NequlP,?® MACE,?"
and PyTorch.*8

Software Infrastructure: The software infrastructure used to train and apply MLPs is
illustrated in Figure 2 to highlight the components provided by the DeePMD-GNN package.
The diagram depicts two use cases: model generation by concurrent learning and model
inference within molecular simulation applications. The DP-GEN software®” provides an in-
terface to the DeePMD-kit Python package? to train a model; that is, optimize the network
parameters. The DeePMD-kit Python package is interfaced to the external GNN PyTorch
software via a generic model wrapper, and the graph edges are prepared by a custom C-++
operator library provided by DeePMD-GNN. When the DeePMD-kit Python package has
finished the parametrization, it saves the GNN and its parameters to a serialized Torch-
Script model file. To use the trained model in a molecular simulation, one must run a
version of the MD software that has been interfaced to the DeePMD-kit C/C++ library.

The DeePMD-kit C/C++ interface can load and evaluate the saved TorchScript model file



with the aid of the C-++ operator library provided by DeePMD-GNN. Consequently, it is
not necessary to implement the C/C-+-+ interface for each Python-implemented GNN model,
thus simplifying the integration process. The DP-GEN software can also train models us-
ing a query—by—committee active learning strategy that involves parametrization of several
network parameter sets. DP-GEN will then conduct exploration for additional training data
by using the current model parameters within MD simulations. If a simulation encounters
a sample that produces significant disagreement between the models, then it is saved. A
subset of the saved samples are selected at random for labeling and used to parametrize the
network in the next active learning iteration.

Software Features: The DeePMD-GNN package adapts the Deep Potential - Range Cor-
rection (DPRc) method?? for use with GNN potentials for the development of range-corrected
GNN models. This method is used to create AMLP corrections for semiempirical quantum
models in QM /MM applications.?+%® A range-corrected AMLP potential corrects both the
QM and the nearby QM /MM interactions in a manner that produces a smooth potential
energy surface as MM atoms enter and exit the vicinity of the QM region. To use GNN
potentials with this approach, the MM atom energy bias is set to zero and the GNN topol-
ogy excludes edges connecting pairs of MM atoms. The application and comparison of GNN
and Deep Potentials range-corrected AMLP QM /MM applications using the DeePMD-GNN

infrastructure will be the subject of forthcoming work.

Benchmark Comparison of Graph Neural Network Models

A key usage of the DeePMD-GNN package is to train and benchmark different GNN poten-
tials in a consistent manner. As a brief demonstration, we present benchmark calculations
using the DPA-2,%4 MACE,? and NequlP? potentials. These GNNs are trained for use
as pure MLPs and QM/MM-AMLPs, where the AMLP is a correction to the GFN2-xTB

semiempirical method.%%%? Each model is trained consistently against the QD7 dataset.*6



This dataset includes energies and forces calculated with wB97M-D3(BJ)/def2-TZVPPD®%
for over 1.5 million structures that were collected from subsets of the SPICE®* and ANTI, 6%66
datasets, in addition to smaller datasets that include neutral and charged compounds cov-
ering the chemical space of 15 elements: H, Li, C, N, O, F, Na, P, S, CI, K, Br, and 1. The
QD7 dataset is split into training and test sets with a 19:1 ratio.

The DPA-2 model is benchmarked at three different sizes: small (S), medium (M), and
large (L). The DPA-2 (S), DPA-2 (M), and DPA-2 (L) models use 3, 6, and 12 representation-
transformer (reperformer) layers, respectively. The DPA-2 (M) and DPA-2 (L) model’s
reperformer pair-atom representation is updated with a gated self-attention layer, whereas
the DPA-2 (S) model is not. The remaining hyperparameters are the same in the model
sizes. Specifically, the representation-initializer layer is encoded from the local environment
within a 6 A cutoff radius and 1 A of smoothing; the reperformer layers are calculated with a
4 A cutoff and 1 A of smoothing; three-body embedding is included within a 4 A cutoff; the
embedding network consists of 3 hidden layers with 25, 50, and 100 neurons; the embedding
submatrix size is 12; the fitting network consists of 3 hidden layers with 240 neurons; and
the dimensions of the invariant single-atom and pair-atom representations are set to 120 and
32, respectively. Furthermore, the localized single-atom representation update mechanism
excludes the self-attention layer.

The MACE model is benchmarked at two different sizes that differ only in the maximum
rotational order used to communicate equivariant messages. The MACE (S) model’s message
passing mechanism uses a symmetry order of 0 with 256 embedding channels, and and the
MACE (M) model uses a symmetry order of 1 with 128 embedding channels. The remaining
hyperparameters are the same between the two models. The radial features are calculated
from a 6 A cutoff, 8 Bessel functions, and a order 5 polynomial envelope. The features were
fed to a 3-layer perceptron consisting of 64 neurons/layer. The angular description of the
environment is expanded in spherical harmonics to order 3. The MLP is calculated from 2

message passing layers with a correlation order of 3.



A single NequlP model is trained. The radial features are calculated from a 6 A cutoff,
8 Bessel functions, and embedded with a 1-layer perceptron consisting of 64 neurons/layer.
The MLP consists of 4 message passing layers using a maximum irreducible representation
order of 2, and the hidden features were configured to use a maximum order of 1 using 32
channels and both even and odd parity.

All models are trained with the same loss function, learning rate, training steps, and
floating point precision (FP32) using the Adam stochastic gradient descent method.5” The
number of training steps is set to 1 million. The learning rate exponentially decays from
1 x 1073 to 3.51 x 107%. The weighted contribution of the energy errors to the loss function
increases from 1 V=2 and 20 eV~2 during the training, whereas the contributions from the
force errors decrease from 100 eV —2A2 to 1 eV~2A2. The batch size is set to [256/N], where

N is the number of atoms in a conformation.

Table 1: Energy (E, in unit kcal/mol) and force (F, in unit kcal/(mol-A)) mean absolute
errors (MAE) and root mean square errors (RMSE) of several GNN models against the
QD7 dataset. QM-AMLP models prefixed by A use GFN2-xTB as a base QM model that
are supplemented by a AMLP correction. Also shown are uncorrected QM models at the
semiempirical GFN2-xTB level. t(infer) is the inference time (seconds) for the whole training
set. The MLPs were evaluated on a single NVIDIA V100 GPU card, and the GFN2-xTB
semiempirical energy was calculated on 32 AMD EPYC 7742 CPU cores.

Training set Test set
Model E MAE ERMSE F MAE F RMSE EMAE ERMSE F MAE F RMSE t(infer)
Pure MLPs
DPA-2 (S) 3.19 7.26 3.12 8.11 3.19 5.18 3.11 5.94 2728
DPA-2 (M) 2.02 6.28 2.04 7.27 2.02 3.65 2.03 4.70 6996
DPA-2 (L) 1.73 6.07 1.77 7.08 1.75 3.32 1.77 443 13713
MACE (S) 2.56 7.03 2.25 7.54 2.55 4.73 2.24 5.09 2585
MACE (M) 1.98 6.62 1.74 7.17 1.97 4.09 1.74 4.54 4723
NequlP 4.49 8.88 3.65 8.79 4.46 7.12 3.64 6.80 1622
QM
GFN2-xTB e e 4.36 9.58 e 4.38 7.84 4048
QM-AMLPs
ADPA-2 (S) 1.27 5.70 1.25 6.64 1.27 2.58 1.25 3.82 6776
ADPA-2 (M) 0.98 5.57 0.99 6.53 0.98 2.31 0.99 3.63 11044
ADPA-2 (L) 0.89 5.54 0.92 6.50 0.89 2.23 0.92 3.58 17761
AMACE (S) 1.19 5.71 1.08 6.60 1.19 2.60 1.07 3.73 6633
AMACE (M) 0.95 5.61 0.85 6.51 0.95 2.38 0.85 3.57 8771
ANequlP 1.75 6.02 1.46 6.79 1.74 3.22 1.45 4.06 5670

Table 1 shows the energy and force mean absolute errors (MAE) and root mean square

8



errors (RMSE) of the DPA-2, MACE, and NequlP models against the QDm dataset. The
GFN2-xTB+AMLP models are consistently better than the pure MLP models. This ob-
servation is consistent with previous comparisons that used Deep Potential models.??24
Among the pure MLPs, DPA-2 (L) yields the lowest errors, and the NequlP model produces
the largest errors. Among the GFN2-xTB+AMLP models, the ADPA-2 (L) and ANequlP
models similarly produce the lowest and largest errors, respectively.

Table 1 also shows the inference time needed to calculate the whole training set with a
single NVIDIA V100 GPU card and 32 AMD EPYC 7742 CPU cores, where the MLP is
evaluated on the GPU and GFN2-xTB is calculated on the CPUs. The pure MLP models
can be ordered from most to least expensive to evaluate: DPA-2 (L) > DPA-2 (M) > MACE
(M) > DPA-2 (S) > MACE (S) > NequlP. The GFN2-xTB+AMLP models are about 1.5

times more expensive than the pure MLP models.

Conclusions

The DeePMD-GNN package makes a significant step forward in addressing key limitations in
the current MLP software ecosystem and advancing the state-of-the-art enabling technology
for molecular simulations using MLPs. By enabling the integration of external GNN poten-
tials, such as NequlP and MACE, within the DeePMD-kit framework, it reduces the need for
users to learn multiple software packages and ensures consistency in benchmarking practices.
Furthermore, the DeePMD-GNN package includes infrastructure allowing the DeePMD-kit
C/C++ library to read and use GNN models saved as TorchScript files. In this manner,
PyTorch implementations of GNN models become immediately available in MD software
that is interfaced to DeePMD-kit. The incorporation of the range-corrected AMLP strategy
within DeePMD-GNN further allows GNN models to be used as corrections for semiem-
pirical QM /MM calculations. We benchmarked several GNNs against the QD7 dataset to

highlight the utility of DeePMD-GNN in providing a unified platform for fair and efficient



evaluation of advanced MLP methods. DeePMD-GNN is also the first plugin developed
for the DeePMD-kit package, and thereby serves as an example for future development of
plugins. Of particular note is the interface of DeePMD-kit with new software infrastructure
in the Amber software package that enables simulations next-generation QM/MM-AMLP
models together with a wide range of advanced alchemical free energy and free energy surface
methods. We anticipate that DeePMD-GNN will facilitate a wide range of new applications
that leverage GNNs to gain predictive insight into drug discovery, biocatalysis and materials

design.

Data Availability

Source code for the project can be found at https://gitlab.com/RutgersLBSR/

deepmd—-gnn or https://github.com/deepmodeling/deepmd—-gnn.
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