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Abstract

Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for
understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to
uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data
arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep
CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by
utilizing a deep CNN pretrained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter
prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high
performance. In this study, we developed Trldent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from
image representations of multilocus variation. We evaluated Trldent across various genetic, demographic, and adaptive settings, in addition to
unphased data and other confounding factors. Trldent demonstrated improved detection of adaptive regions compared to recent methods
using similar data representations. We further explored model interpretability through class activation maps and adapted Trident to infer
selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, Trldent
effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.

Keywords: transfer learning, convolutional neural networks, logistic regression, population genomics, natural selection

Introduction recombination, migration, and genetic drift, which can both
bolster and erode past adaptive signals (Kimura 1979;
Slatkin 1987; Barton and Charlesworth 1998; Lynch 2010).
Initial efforts for detecting such nonneutral regions involved
summary statistics based on alterations of the distribution of
allele frequencies, such as Tajima’s D (Tajima 1989) and
Fay and Wu’s H (Fay and Wu 2003). These summary statistic
approaches have been enhanced in contemporary studies to
evaluate distortions in haplotype frequency distributions,
such as H12 (Garud et al. 20135), and to assess the footprint
of reduced genomic diversity through extended haplotype
homozygosity methods, such as expected haplotype homozy-
gosity (EHH) (Sabeti et al. 2002), integrated haplotype score

The study of biological diversity and adaptation relies on the
identification and understanding of past evolutionary events.
These events shed light on the processes that have shaped
the genetics of organisms throughout history and those that
are ongoing. Identifying genomic regions that are subject to
the pressures of natural selection enables the discovery and
isolation of genetic variants that may have contributed to
adaptive traits in past environments. Understanding the genet-
ic basis of vital characteristics like disease resistance, repro-
ductive success, and physiological adaptations to changing
environmental conditions illuminates the evolutionary history
of a species. Predicting how species will respond to shifting

weather patterns (Hoffmann and Sgro 2011), altered habitats
(Grant and Grant 2002), and the emergence of new diseases
(Allison 1954) is enhanced by these findings. A window into
the complex dynamics of evolution and adaptation can be
found in the discovery of evolutionary events in genomes,
which has implications for both theoretical and applied
research.

A number of approaches have been taken to uncover traces
of natural selection from polymorphisms within a population
in light of neutral evolutionary processes, such as mutation,

(Voight et al. 2006), and nS;, (Ferrer-Admetlla et al. 2014).
Further, more model-based approaches founded in population
genetic theory or sensible probability distributions have re-
vealed improved power, ability to isolate loci at which selec-
tion has likely acted, and effectiveness at estimating
underlying parameters of the adaptive process (Nielsen et al.
2005; Stephens and Balding 2009; Chen et al. 2010;
Pasaniuc et al. 2014; Vy and Kim 2015; Racimo 2016; Lee
and Coop 2017; Lloyd-Jones et al. 2019; Harris and
DeGiorgio 2020; Setter et al. 2020; DeGiorgio and Szpiech

Received: November 4, 2024. Revised: April 16, 2025. Accepted: April 17, 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our
RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

G20z aunr Lz uo Jasn Ajisianun ojuey epuold Aq v/ /218/7605eSW/S/Z/a1o1e/aqu/wod dno-oiwapese//:sdjy woij papeojumoq


https://orcid.org/0000-0003-0827-5327
https://orcid.org/0000-0002-5577-1967
https://orcid.org/0000-0002-4084-2953
https://orcid.org/0000-0003-4908-7234
mailto:mdegiorg@fau.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/molbev/msaf094

2022). However, more recently, there has been a focus on a
promising branch of selection detection methods based on ma-
chine learning or artificial intelligence that consider evidence
from multiple input statistics or that operate on raw haplotype
alignments or genotype calls (Schrider and Kern 2018;
Korfmann et al. 2023).

Supervised machine learning represents an important
branch of such methods, where models are trained on a set
of observations often composed of a multidimensional input
and a paired output value (Hastie et al. 2009). Training algo-
rithms learn patterns and the functional relationship between
the input and output data from these example observations
(termed the training set) to hopefully make accurate output
predictions on unseen future input data. Classification and re-
gression tasks both make use of supervised learning algo-
rithms to achieve their respective goals of organizing inputs
into predefined categories (termed classes) and making con-
tinuous outcome predictions. There exist numerous super-
vised learning algorithms for classification and regression
tasks, each with its own assumptions about data distributions
and functional relationships (e.g. degree of nonlinearity) be-
tween the input and output values. Of course, no one ap-
proach is best, and the prediction abilities of the trained
models highly depend on the correctness of the assumed
data distribution and true underlying function relating the in-
put and output. Artificial neural networks (ANNs) are univer-
sal approximators (Hornik 1991), having the capacity to
represent any underlying function with enough model param-
eters, and can thus learn complicated patterns in a manner
reminiscent of how the human brain works. One recent type
of neural network that has enjoyed extensive success in image
classification and recognition tasks is the convolutional neural
network (CNNj Krizhevsky 2012), which is optimized for
handling structured grid-like data.

Deployment of advanced machine learning and artificial in-
telligence tools has brought about a revolution in the realm of
natural selection pattern recognition. Some of the applications
of machine learning includes the extraction of features from
one or many statistics computed in contiguous genomic win-
dows, significantly increasing power to detect patterns com-
pared to the classical usage of such statistics. Many of the
state-of-the-art applications in this paradigm make use of
powerful contemporary feature extraction tools on summary
statistic arrays, ranging from simple linear to complex non-
linear models. Nevertheless, massive volumes of training
data are typically necessary for nonlinear models, such as
neural networks, to learn their parameters due to high model
complexity. Such models are prone to overfitting and under-
performance in the absence of large training sets, or through
the use of automated frameworks to reduce the capacity or re-
presentation ability of the learned models (Hastie et al. 2009).

While data availability can be a limiting factor in some
fields, population genetics benefits from the ability to generate
effectively unlimited training data via simulation, particularly
with simulation-on-the-fly techniques that provide new data
with each iteration (Chan et al. 2018; Flagel et al. 2019;
Torada et al. 2019; Battey et al. 2020), thus mitigating overfit-
ting. However, minimizing the need for extensive training data
remains beneficial to reduce computational demands and en-
vironmental impact, as highlighted by recent studies on the
carbon footprint of bioinformatics tools (Grealey et al.
2022). Efficient and adaptable methods are crucial for analyz-
ing genomic patterns shaped by natural selection. A

Arnab et al. - https://doi.org/10.1093/molbev/msaf094

framework that can swiftly summarize and capture these pat-
terns without relying on application-specific summary statis-
tics offers significant advantages. Utilizing a robust feature
extractor capable of handling generalized genomic summaries
ensures both adaptability and effectiveness, particularly in
contexts with limited computational resources. This approach
enhances the ability to detect and analyze complex genomic
patterns, balancing the need for efficiency with sophisticated
analysis.

This challenge can be addressed by applying transfer learn-
ing, a method of pretraining a neural network on unrelated
data (Bozinovski 2020). Pretrained models are used in image
classification to speed up convergence and improve outcomes
(Hendrycks et al. 2019). The field of computer vision has been
significantly enhanced by models trained on the ImageNet da-
taset (Deng et al. 2009). ImageNet is a massive collection of
approximately 14 million annotated images organized into
1,000 categories that provide adequate diversity for develop-
ing powerful image categorization applications. Harnessing
the diverse spectrum of images in this dataset and by lever-
aging high-performance computing resources, deep learning
has made several prominent architectures the gold standard
for image classification (Russakovsky et al. 2015; Beyer
et al. 2020). A transfer learning model trained on a massive
set of labeled images can be used as a feature extraction
tool, thus eliminating the need to train complex models to suc-
cinctly represent input genomic data in a transformed space
that is usable for downstream prediction tasks. Various trans-
fer learning architectures have been successfully deployed in
nonnatural image categorization tasks, such as medical im-
aging or industrial defect detection (Ming et al. 2021;
Shafique et al. 2022; Suganyadevi et al. 2022), which contrasts
with natural images that typically capture scenes from the nat-
ural world (i.e. landscapes or wildlife). This distinction under-
scores the robustness of these architectures, alleviating
concerns about substandard performance when classifying
images that capture patterns left by evolutionary events.

Instead of constructing a shallow CNN that operates on in-
put images (Zhao et al. 2023) from a dataset with limited
numbers of samples, it may be better to use pretrained deep
CNN architectures. Unlike shallow CNNs, which are unable
to capture the complex relationship between input images
and the category they belong to, these pretrained deep
CNN s are able to significantly improve the ability to model
such complex relationships. Another advantage of pretrained
CNNis is their capacity to generalize learning from one domain
to another (Sharif Razavian et al. 2014; Yosinski et al. 2014).
This ability helps pretrained CNNs perform better than shal-
low custom-made CNNs constructed and trained using small-
er datasets (Azizpour et al. 2015; Tajbakhsh et al. 2016).
Feature extraction from small datasets is enhanced by pre-
trained CNN architectures, leading to better generalization
performance and resilience in tasks that have few data sam-
ples. Because training deep CNNs from scratch requires sub-
stantial computational resources, making use of pretrained
models becomes a more feasible and efficient option.

In this article, we aim to develop powerful and robust nat-
ural selection detection and characterization tools by exploit-
ing the feature extraction efficacy afforded by pretrained CNN
models. Specifically, we apply five neural networks architec-
tures pretrained on the large ImageNet database, which we
use to extract transformed feature sets for input to classifiers
to detect adaptive events and to regressors to predict
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parameters of such events. By training models with a small
number of simulated replicates and then testing their predic-
tions with an array of confounding factors, we demonstrate
that transfer learning can be a reliable tool for building pre-
dictive population genomic models that take images of haplo-
type variation as input without requiring extensive training
data. Moreover, we introduce an efficient approach for con-
structing input images of haplotype variation that organizes
diversity in a way that is easier for downstream image-based
sweep classifiers to extract key patterns, ultimately improving
their accuracies and powers. Here, we present Trldent
(Transfer learning for Identification of adaptation), which is
implemented as open-source software available at https:/
www.github.com/sandipanpaul06/Trldent. As an empirical
case study, we apply Trldent to haplotype variation from a
well-studied European human population (CEU; Utah resi-
dents with Northern and Western European ancestry) from
the 1000 Genomes Project dataset, and are able to recapitulate
established selective sweep candidates, such as LCT and
OCA2, and discover candidate sweep signals in novel cancer-
associated genes, such as MTOR, LAMC2, RBMS3, and
NKAIN2, with high support. Similarly, when applied to a
well-studied African human population (YRI; Yoruba in
Ibadan) from the same dataset, TrIdent successfully identifies
established sweep candidates, such as HEMGN, SYTI,
GRIKS, FOXP2, and APOL1, while also uncovering novel
candidate sweep signals in ROBO2, with strong support.

Results

Modeling Description

We used the coalescent simulator discoal (Kern and
Schrider 2016) under two nonequilibrium demographic his-
tories estimated for European (CEU) and sub-Saharan
African (YRI) humans (Tennessen et al. 2012), which respect-
ively include a recent severe population bottleneck and a re-
cent population expansion, to simulate neutral and sweep
replicates to train and evaluate Trldent. We simulated sweeps
with per-generation selection strengths (s) ranging from 0.005
to 0.1, beneficial allele frequencies (f) from 1/(2N,) to 0.2, and
fixation times of beneficial alleles (z) from 0 to 2,000 genera-
tions prior to sampling. Moreover, sweep and neutral repli-
cates were generated with per-site per-generation mutation
rates (u) from 2.21x 107 to 2.21 x 1078, and per-site per-
generation recombination rates (r) from 0 to 3 x 1078 with a
mean rate of 1078 (see Simulation protocol subsection of the
Materials and Methods). Together, these settings and param-
eters allowed for the examination of a broad range of genetic
and adaptive conditions, while focusing on two distinct demo-
graphic histories. Given the wide range of selection strengths
and beneficial allele frequencies, along with varying mutation
and recombination rates and fixation events that may have oc-
curred far in the past, and further complicated by fluctuations
in population size, substantial overlap in the distribution of
genetic variation between neutral and selection settings is ex-
pected. This overlap creates significant challenges in distin-
guishing the sometimes subtle genetic patterns driven by
positive selection from those that emerge under neutrality.
For the purpose of producing inputs to feed Trldent, we
formed the CEU and YRI training datasets by using 1,000 neu-
tral and 1,000 sweep replicates that were simulated using their
respective demographic histories. In addition, we generated
two sets of test and validation datasets to complement the

CEU and YRI training datasets, each consisting of 1,000 neu-
tral and 1,000 sweep replicates. We detail the processing of in-
put images from these simulated replicates in the Image
Generation subsection of the Methods. The image generation
process (Fig. 1; top panel) transforms these replicates into
grayscale images representing sorted minor allele counts
across shifting small and overlapping windows, and then re-
sized to match the input expectations of the pretrained models.

Heatmaps depicting mean images for the sweep and neutral
classes for the CEU and YRI datasets show that, in contrast to
the neutral image, the sweep image features a dark vertical seg-
ment in the central columns representing a loss of diversity in
the central columns due to high-frequency haplotypes
(supplementary fig. S1, Supplementary Material online).
That is, these regions contain a string of major alleles that
are at high frequency near the center of the sweep replicates.
Once these input images have been resized, each pixel is stand-
ardized according to its value at that particular position across
all training images, so that each pixel has a mean of zero and a
standard deviation of one. Heatmaps depicting mean standar-
dized neutral and sweep images show that the neutral image
has a red segment of positive values in the central columns
to complement the blue segment of negative values in the
sweep image (Fig. 2). Thus, standardization reveals a clear dis-
tinction between the two classes, and serves as a proof of con-
cept that the applied image generation technique presents a
pattern that can be employed to discriminate between positive
selection and neutrality.

These standardized images are fed to pretrained models,
after which we retain the output vector, representing trans-
formed features or embeddings, from the global average pool-
ing (GAP) layer that we attach to the pretrained model (Fig. 1;
bottom panel). The GAP layer computes the mean value of
each feature map, effectively reducing the spatial dimensions
and summarizing the most salient features of the image. By
averaging each feature map into a single node, GAP reduces
the number of parameters in the model and makes the model
more robust to spatial translations, offering advantages over
traditional fully connected layers (Szegedy et al. 2015). A pe-
nalized logistic regression classifier is then trained using the
GAP layer outputs from 1,000 neutral and 1,000 sweep simu-
lations, along with an elastic-net regularization penalty to sim-
ultaneously modulate model complexity and sparsity (Zou
and Hastie 2005; Hastie et al. 2009). In particular, the magni-
tudes of model parameters associated with each transformed
input feature are controlled by an L,-norm penalty, and fea-
ture selection is carried out to control sparsity by setting
some model parameters to zero through an L;-norm penalty.
The hyperparameter o € {0.0, 0.1, ..., 1.0} specifies the pro-
portion of model regularization that derives from the
Ly-norm penalty, whereas the hyperparameter 1€
{107%, 1075, ..., 10°} designates the amount of total regular-
ization. We utilized the LogisticRegression module from the
Scikit-learn (Pedregosa et al. 2011) package in Python to train
the classifier. The best pair of hyperparameters to train the
classifier was determined based on binary cross-entropy loss
across the validation set.

Choosing an Appropriate Pretrained Model

Numerous pretrained models are available for transfer learn-
ing, including VGGNets, GoogleNets, ResNets, and
EfficientNets that each have their own architectures and dis-
tinguishing features. A minimalist architecture and a modest
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Fig. 1. Depiction of the Trldent{/RVZ2] model (bottom panel), including the native Tridentimage generation method (top panel). As described in /Image
generation subsection of the Methods, for a haplotype alignment with haplotypes on rows and SNPs on columns, the major allele is represented by zero
and the minor allele by one at each SNP. From this processed alignment, the number of minor alleles for each haplotype is counted in a window and
window locations are shifted by a specific stride, which is chosen as window size of three SNPs and a stride of one SNP in this schematic. The minor allele
counts for each window are then sorted, such that the top row with have smallest value and the bottom row the largest value for a given window. A matrix
based on a certain number of consecutive windows (here five windows) is created, this matrix is copied over two more channels to create a tensor,
resulting in a three-channel grayscale image. This image is fed as input to the “Feature Extraction” block consisting of a pretrained deep CNN model that
may incorporate various combinations (indicated by blocks of different colors) of a subset of the following layers: convolutional, maxpooling, dense,
dropout, squeeze-and-excitation, depth-wise separable convolutional, and residual connections. A GAP layer is attached to the pretrained model to
generate a feature vector, which is then used to train a classifier. The Trldent[/RV2] model, which is focused on this article, combines the use of
InceptionResNetV2 as the pretrained model and penalized logistic regression as the binary classifier.

number of convolutional filters distinguish the Visual
Geometry Group (VGG)Net from other models pretrained
on the ImageNet dataset (Simonyan and Zisserman 2015).
Szegedy et al. (2015) found that the Inception modules of
GoogleNet improved performance and allowed it to capture
features at multiple scales, whereas ResNet mitigated the van-
ishing gradient problem, a hurdle in training extremely deep
networks consisting of multiple layers designed to learn com-
plex hierarchical representations of the input data by focusing
on residual learning, which helps information flow more
smoothly through the layers via skipped connections between
layers (He et al. 2016). Recent developments like EfficientNet
and MobileNet employ a compound scaling parameter,

through which the numbers of layers and nodes in a layer
are controlled. Capacity to modulate the depths of layers
and width of nodes allows these models to offer a tradeoff be-
tween efficiency and complexity (Tan and Le 2019). The
InceptionResNet architecture is an augmentation of the
Inception architecture by incorporation of residual learning
(Szegedy et al. 2017), and represents a robust image recogni-
tion system with high accuracy in numerous tasks. By adding
residual connections to its Inception blocks, Inception
ResNetV2 improves network information flow and gradient
propagation during training (Wang et al. 2021). We first study
the efficacy of five pretrained models (InceptionResNetV2,
VGGI16, EfficientNetB0, EfficientNetB7, and MobileNetV2)
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Fig. 2. Heatmaps depicting standardized input images of size 224 x 224, averaged across the 1,000 training replicates for either the neutral or sweep
class simulated under either the European (CEU) or Sub-Saharan African (YRI) human demographic history (Tennessen et al. 2012). Standardized input
images are processed as in the Image generation subsection of the Materials and Methods, with standardization occurring across the 2,000 neutral and
sweep training replicates for each pixel. Rows of the images represent haplotypes, whereas columns represent genomic window of 25 contiguous SNPs
within a haplotype, with an equal number of windows flanking the center of a simulated genomic region. The colorbar indicates a measure proportional to
the number of minor alleles within the haplotype window relative to the mean number (scaled by the standard deviation of minor allele counts) for that
window across the neutral and sweep training observations. Darker blue shading represents a higher number of major alleles than average and darker red

shading represents a higher number of minor alleles than average.

as complex feature extraction methods to develop adaptive
event classification tools. We accessed these models with
TensorFlow (Abadi et al. 2015), as their APIs make communi-
cation with these pretrained models as well as their integration
into workflows easier.

We evaluated the accuracy and power of the Trldent logistic
regression classifiers developed based on GAP layer
outputs attached to the pretrained InceptionResNetV2,
VGGI16, EfficientNetBO0, EfficientNetB7, and MobileNetV2
on both the CEU and YRI datasets. For convenience of
presentation, we respectively refer to these models as
Trldent[IRV2], Trldent[VGG16], Trident[ENBO], Trldent
[ENB7], and Trldentf MNV2]. On the CEU dataset, we found
that Trldent[IRV2], with its high number of parameters and
computational demand, achieves the highest classification
accuracy of 86.2% along with the highest sweep detection
accuracy among all five classifiers (supplementary fig. S2,
Supplementary Material online). In contrast, the most light-
weight and computationally efficient Trldent|VGG16]
as well as the moderately accurate and moderately efficient
architecture of MobileNetV2 achieve identical accuracies of
85.1% (supplementary fig. S2, Supplementary Material on-
line). The two EfficientNet classifiers, Trldent{ENBO] and
Trldent{ENB7], are the worst performers out of the five
Trldent models. However, Trldent{ENBO], with an accuracy
of 84.95%, outperforms ENB7, which achieves an accuracy of
83.8%. This finding suggests that the shallower architecture of
ENBO performs better in this case, contrary to the expectation

that deeper architectures typically yield higher accuracy.
These results are mirrored by the powers of these methods
to detect sweeps based on receiver operating characteristic
(ROC) curves, with Trldent[IRV2], Trldent{MNV2],
and Trldent[VGG16] exhibiting similar ROC curves and
Trident[IRV2] slightly edging out Trldent[MNV2] and
Trldent|[VGG16] (supplementary fig. S2, Supplementary
Material online). On the other hand, TrIdent[ENB7] show-
cases the lowest power to detect sweeps among the five classi-
fiers (supplementary fig. S2, Supplementary Material online).
Our results also show that the classification behavior of
Trldent on the YRI dataset relative to CEU depends on net-
work architecture (compare supplementary figs. S2 and S3,
Supplementary Material online). Specifically, Trldent[IRV2]
and Trldent[MNV2] lead the set of classifiers with overall
accuracies of 87.55% and 87.50%, respectively, with
Trldent[IRV2] marginally edging out TrldentiMNV2]
(supplementary fig. S3, Supplementary Material online), simi-
larly to the application on the CEU dataset (supplementary fig.
S2, Supplementary Material online), with slightly higher ac-
curacies than on the CEU dataset, which may be expected as
the YRI dataset has higher mean neutral haplotype diversity.
The ROC curves of this pair of classifiers also indicate their
proximity in performance metrics, while clearly distancing
themselves from the other three classifiers. Moreover,
Trldent[ENBO] and Trldent{[ENB7]| again prove to be
the weakest of the set of classifiers with accuracies of
74.35% and 77.30%, respectively (supplementary fig. S3,
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Supplementary Material online). However, unexpectedly,
their accuracies are significantly lower than on the CEU data-
set. Trldent| VGG16], similar to the CEU test case, stations it-
self in the middle of these pairs of classifiers with an overall
accuracy of 84.55% (supplementary fig. S3, Supplementary
Material online). Following the superior classification per-
formance of Trldent|IRV2] compared to the other Trldent
models in both the CEU and YRI test cases, we elected to pur-
sue Trldent[IRV2] for future analyses. Given our simulation
setup and the two classes analyzed, Trldent[IRV2] proved to
be the most effective and consistent model. However, it may
not be the best choice for all applications. Other pretrained
models, including but not limited to the ones we tested, could
perform better depending on the specific context and
requirements.

Viability of Alternate Architectures and Methods

Though Trldent[IRV2] uses a linear model (logistic regression
classifier) with features extracted from the InceptionResNetV2
architecture, we also evaluated nonlinear models based on
ANN:s for classification using the same extracted features. We
refer to this approach as Trldent[IRV2, ANN]. We optimized
the Trldent[IRV2, ANN] architecture by varying the number
of hidden layers L € {1, 2, 3, 4, 5}, the number of nodes n, €
{100, 200, ..., 1,000} in each hidden layer ¢ € {1, 2, ..., L},
and the activation function for nodes in each hidden layer
#, € {ReLU, sigmoid, tanh}. The node in the output layer has
a sigmoid activation function, and the input layer has 1,536 no-
des, which is identical to the number of features generated by
the GAP layer attached to the InceptionResNet V2 architecture.
Like our linear Trldent[IRV2] model, Trldent[IRV2, ANN)]
also employs Li—and L,-norm regularization penalties for
each hidden and output layer, with regularization hyperpara-
meters chosen from the same ranges as those for the linear mod-
el (see Modeling description subsection). Each model is trained
to minimize binary cross-entropy loss using the Adam opti-
mizer (Kingma and Ba 20135). The optimal architecture and hy-
perparameters were selected based on the smallest binary
cross-entropy validation loss on the CEU dataset, which re-
sulted in a model of L =3 hidden layers with 7, = 1,000,
1y = 500, and 73 = 500 nodes in the first, second, and third hid-
den layers, respectively, sigmoid activations for nodes in the
first and second hidden layers, and a tanh activation for nodes
in the third hidden layer. We obtained a near identical optimal
architecture for the YRI dataset, with the exception of an add-
itional hidden layer (L = 4) with 74 = 500 nodes and a tanh ac-
tivation. However, when applied to the same test data used for
the linear model, Trldent[IRV2, ANN] classification perform-
ance was virtually unchanged relative to Trldent[IRV2]
(supplementary fig. S4, Supplementary Material online). This
result was consistent even with various training set sizes
(1,000, 3,000, and 5,000 observations per class), suggesting
that the nonlinearity introduced by the ANN did not lend add-
itional benefit beyond that of the InceptionResNetV2 feature
extractor. We therefore decided to continue with the linear
Trldent model for classification tasks, as the simpler logistic re-
gression model has fewer parameters and is faster to train than
the ANN.

We also tested the classification performance of
Trldent[IRV2] against T-REx (Amin et al. 2023), which is a
high-performing tensor decomposition-based sweep classifier
that operates on a windowed aggregation of genetic diversity
as its input, similar to our image generation method, and that
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uses an Lj—and L,-norm penalized logistic regression classifier
for prediction, which is identical to Trldent. To provide a fair
comparison of performance, we tested Trldent[IRV2] and
T-REx with both image generation techniques. That is,
TrIdent[IRV2] and T-REx were trained and evaluated based
on their own native image generation approaches, as well as
the image generation approaches of the competing model. For
clarity, we denote the Trldent[IRV2] model trained and tested
on the alternate image generation style of T-REx as
Trldent[IRV2, alt], and the T-REx model trained and tested
on the alternate image generation style of Trident as
T-REx[alt]. We find that on the CEU dataset, the
Trldent[IR V2, alt] alternate implementation loses 2% accuracy
compared to the stock Trldent[IRV2] model (Fig. 3).
Moreover, T-REx trained on its native image generation style
exhibits lower classification accuracy (79.6%) compared to
both the Trldent[IRV2] models (Fig. 3). However, the
T-REx]alt] alternate implementation reports a higher classifica-
tion accuracy (81.75%) compared to the stock T-REx model,
but falls short of Trldent[IR V2] by 4.45% (Fig. 3). The powers
of each of these models to detect sweeps at a 5% false positive
rate (FPR), lend further support that Trldent models signifi-
cantly outperform the T-REx models, regardless of the input
image representation used by T-REx (Fig. 3). Specifically,
Trldent[IR V2] marginally surpasses Trldent[IRV2, alt] as the
most powerful model of the four at a 5% FPR.

A parallel illustration is observed when the performances of
the stock and alternate models of Trldent[IRV2] and T-REx
are evaluated on the YRI dataset (Fig. 4). The stock
Trldent[IRV2] model leads the four models with an accuracy
of 87.55%, followed by Trldent[IRV2, alt] (85.30%),
T-REx[alt] (83.85%),and T-REx (82.80%). The detection cap-
ability of Trldent[IRV2] for identifying sweeps at a 5% FPR
provides additional evidence that TrIdent[IR V2] is the superior
model of the four in this test case (Fig. 4). Though a deeper in-
spection of model performances shows that the performance dif-
ference seen among the models in the CEU test case (Fig. 3) is
noticeably reduced in the YRI test case (Fig. 4), with the absence
of a population bottleneck in the YRI dataset apparently bridg-
ing the performance gap among models.

In addition to comparing Trldent[IRV2] with T-REx,
we conducted a comprehensive evaluation by also comparing
it against diploS/HIC (Kern and Schrider 2018), a state-
of-the-art selective sweep detector that integrates summary
statistics with comparatively shallow CNNs. We trained and
tested diploS/HIC in its native setting, with one modification
as we calculated the summary statistics in 101 windows in-
stead of 11. While diploS/HIC typically uses 11 windows (re-
sulting in 11 features for the downstream CNN model for each
summary statistic), we chose to use 101 windows (resulting in
101 features for the downstream CNN model for each sum-
mary statistic), which retains the focal window but within
an increased number of flanking windows. This adjustment re-
sulted in a finer representation, and enhanced the prediction
performance of diploS/HIC in our initial investigation.
We also extended our analysis to evaluate a variant of the
Trldent|IR V2] architecture to better understand its perform-
ance when operating on summary statistic data, which we
denote as Trldent[IRV2, SS]. Specifically, we employed the
12 diploS/HIC summary statistics—z (Tajima 1983), Oy
(Watterson 19735), Tajima’s D (Tajima 1989), the variance,
the skewness, and the kurtosis of multilocus genotype distan-
ces between pairs of sampled individuals, the multilocus
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genotype equivalents of EHH Hy, Hy; (Garud et al. 20135;
Harris et al. 2018), and H,/H; (Garud et al. 2015; Harris
et al. 2018), unphased Z,; (Kelly 1997; Rogers and Huff
2009), and the maximum value of o (Kim and Nielsen
2004; Rogers and Huff 2009)—which provide insights into
multiple aspects of genetic diversity affected by selective
sweeps, including the structure of haplotype variation, nucleo-
tide diversity, and linkage disequilibrium. Together, these
components offer a comprehensive view of the effects of select-
ive sweeps on genomic regions (Schrider and Kern 2016; Kern
and Schrider 2018). We computed these summary statistics in
101 contiguous and nonoverlapping windows (each of length
11 kb) across simulated sequences of length 1.1 Mb, resulting
in input matrices of dimension 12 x 101, with summary statis-
tics on the rows and computed values across windows along
the columns. We then resized these matrices to dimension
299 %299 to match the expected input image size of
InceptionResNet V2. Moreover, though diploS/HIC was ori-
ginally designed to differentiate among five classes, we re-
tooled it to differentiate between two classes, as in other
studies (Mughal et al. 2020; Arnab et al. 2023).

Next, we evaluated an alternate version of diploS/HIC by
training a shallow CNN using the images produced by the na-
tive image generation method of Trldent, which we refer to as
smbCNN (shallow multibranch CNN). We employed the
identical CNN architecture used in diploS/HIC (Kern and
Schrider 2018) to extract features from input images. This
shallow architecture is comprised of three branches, each con-
taining two convolution layers with ReLU activation (Nair
and Hinton 2010) as well as max pooling (LeCun et al.

1998), dropout (Srivastava et al. 2014), and flatten layers,
with the kernel sizes and dilation rates (Yu and Koltun
2015) utilized in the convolution layers determining the differ-
ences among these three branches. These branches are then
concatenated prior to adding two pairs of dropout and dense
layers to form the final model.

By examining Trldent[IRV2, SS] and smbCNN, we aim to
understand the potential impact of incorporating summary
statistics into the TrIdent[IR V2] architecture, as well as the ef-
fect of using shallow CNNs trained on Trldent native images.
Comparing Trldent[IRV2], Trldent[IRV2, SS], diploS/HIC,
and smbCNN across the CEU (Fig. 5) and YRI (Fig. 6) data-
sets, we can assess the impact of different architectural choices
on model performance. In both demographic test cases,
smbCNN was the poorest performing model among the
four, with accuracies of 80.1% and 83.7% on the CEU and
YRI datasets, respectively (Figs. 5 and 6). However, the two
models employing summary statistics, Trldent[IRV2, SS] (ac-
curacy of 90.05% on CEU and 94.95% on YRI) and diploS/
HIC (accuracy of 88.30% on CEU and 94.15% on YRI), con-
sistently demonstrate higher classification accuracy compared
to Trldent[IRV2] (Figs. 5 and 6). Trldent[IRV2, SS] outper-
formed diploS/HIC in both cases. Prior to resizing, summary
statistic-based images are significantly smaller than native
Trldent images (12 x 101 compared to 198 x 499 for CEU
or 216 x 499 for YRI). Because different summary statistics
computed within a given window are arranged along a column
in consecutive rows, some correlation among values is antici-
pated. Moreover, values along rows, which are individual
summary statistics computed across consecutive windows,
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are also expected to be correlated. For methods that utilize
summary statistics as input, the arrangement of haplotypes
within a window does not affect the computation, as the sta-
tistics are derived from the aggregated properties of the win-
dow rather than the specific ordering of haplotypes.

Fine-Tuning vs. Feature Extraction

Building upon our comparison of five pretrained architectures
in the previous subsection, we conducted an additional
experiment to explore whether the strong performance of
Trldent is attributable to the model itself or to the pretrained
feature extraction capabilities of the InceptionResNetV2
backbone. We developed a modified model, termed IRV2
(InceptionResNet V2 architecture trained on Trldent images),
which extends the InceptionResNetV2 architecture by incorp-
orating a GAP layer and an output layer consisting of a single
node with a sigmoid activation function but does not include
an elastic-net style penalty for parameter fitting. The model
was trained directly on the Trldent input images, with starting
weights obtained from pretrained weights of ImageNet.

The training dataset size for IRV2 was the same as that uti-
lized for the Trldent[IRV2] model in one experiment (1,000
samples per class) and was increased to 10,000 samples per
class in a second experiment. Following the training of IRV2
on 1,000 samples per class, a slight enhancement in perform-
ance was noted in comparison to Trldent[IRV2]. The accur-
acy improved by 1.7% on the CEU dataset (87.9%
compared to 86.2%) and by 3.3% on the YRI dataset
(90.85% compared to 87.55%; supplementary fig. S5,

Supplementary Material online). When trained on 10,000
samples per class, IRV2 achieved even higher accuracies:
90.85% on CEU and 92.45% on YRI. These results illustrate
the capacity of InceptionResNetV2 to achieve superior per-
formance with an increased number of training samples, con-
sistent with observations in other domains where large-scale
training datasets unlock additional classification accuracy
and power (Yu et al. 2015; Alzubaidi et al. 2021).

The resource demands of training IRV2 (see the
Computational resources and requirements subsection of the
Methods) underscore the computational challenges inherent
in training deep neural networks from scratch using simulated
data, rather than utilizing pretrained architectures. These find-
ings highlight the balance between accuracy and computation-
al efficiency. While IRV2 outperformed Trldent[IR V2], such
gains come at the expense of significantly greater computa-
tional resources and training time. Trldent[IRV2] demon-
strates that by employing pretrained feature extraction,
strong performance can be achieved with substantially fewer
training samples and lower computational overhead. This
balance positions Trldent[IRV2] as a practical and effective
solution for natural selection detection, especially where com-
putational resources are constrained.

Performance in the Presence of Missing Genomic
Regions

Due to undiscovered polymorphisms, haplotypic diversity can
be reduced when segments of the genome are missing as a re-
sult of poor mappability, alignability, sequencing, or variant
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calling (Alkan et al. 2011; Talkowski et al. 2011). As a conse-
quence, this decline in local genomic variation can resemble a
footprint of a selective sweep, misleading sweep detection ap-
proaches to mistakenly attribute such diversity as a positive se-
lection in neutrally evolving genomic regions (Vitti et al. 2013;
Mughal et al. 2020). Hence, we aim to evaluate whether
Trldent[IRV2] and T-REx, both with native and alternate
ways of generating images, mistakenly identify neutrally
evolving regions harboring missing genomic segments as se-
lective sweeps as well as lose capacity to differentiate sweeps
from neutrality under such settings. We removed polymor-
phisms from test replicates according to the human empirical
distribution of CRG (Centre for Genomic Regulation) mapp-
ability and alignability scores (see Filtration of empirical data
subsection of the Materials and Methods), which past studies
have shown to negatively affect machine learning sweep clas-
sifiers (Mughal and DeGiorgio 2019; Mughal et al. 2020;
Amin et al. 2023; Arnab et al. 2023).

We simulated additional sets of neutral and sweep test rep-
licates under both CEU and YRI demographic histories using
discoal, and introduced missing regions using the identical
protocol as Arnab et al. (2023) based on the empirical human
distribution. Specifically, we randomly chose one of the 22 hu-
man autosomes with probability proportion to the length of
each autosome. From this autosome, we selected a starting
genomic location uniformly at random for a 1.1 Mb segment.
We removed single nucleotide polymorphisms (SNPs) that in-
tersected with human genomic regions of low mappability and
alignability (see Filtration of empirical data and empirical im-
age generation subsection of the Materials and Methods).
Because Trldent only considers the central 499 SNPs when
generating images from simulated replicates, we ensured that
missing data blocks removed at least one of the central 499
SNPs, repeating the procedure until this criterion was satisfied.
We found that this procedure removed on average approxi-
mately 23.1% of the original set of central 499 SNPs across
all test replicates.

On the CEU test case, when Trldent[IRV2] trained with its
stock image generation technique is applied to replicates with
missing polymorphisms, the overall accuracy drops by 4.45%
(supplementary fig. S6, Supplementary Material online) com-
pared to no missing segments (Fig. 3), whereas missing data
causes Trldent[IRV2, alt] trained on the alternate image gener-
ation technique to experience a drop in overall accuracy by
6.1% (supplementary fig. S6, Supplementary Material online)
compared to no missing data (Fig. 3). In particular, while neu-
tral detection rate was increased by roughly 1% with either
style of input image, sweep detection rate was drastically de-
creased with missing segments regardless of image generation
style (Fig. 3 and supplementary fig. S6, Supplementary
Material online). While Trldent[IRV2] saw a sweep detection
rate drop of 10.5%, Trldent[IRV2, alt] trained on the alternate
image generation style saw an even higher drop of 13%.
Conversely, when T-REx trained with its stock image gener-
ation technique is applied to test replicates with missing seg-
ments, its overall accuracy dropped by 3.65% (supplementary
fig. S6, Supplementary Material online) compared to no missing
polymorphisms (Fig. 3). On the other hand, T-REx[alt] trained
on the alternate image generation style undergoes an 11.3% de-
crease in accuracy (supplementary fig. S6, Supplementary
Material online) compared to no missing segments (Fig. 3).
The neutral detection rate is preserved for both image gener-
ation styles, though the sweep detection rate forT-REx|[alt]
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showcases a significantly greater drop of 22.7% compared to
the 7.1% decrease in classification accuracy for T-REx when
both are applied to missing polymorphisms (Fig. 3 and
supplementary fig. S6, Supplementary Material online).

On the YRI test case, however, the drop in test accuracies of
all four models when presented with replicates containing
missing genomic regions (supplementary fig. S7,
Supplementary Material online) appears to be less severe
than in the CEU test case (supplementary fig. S6,
Supplementary Material online). Our results show a loss of
4.05% by Trldent{IRV2], 2.65% by Trldent[IRV2, alt,
2.80% by T-REx, and 7.50% by T-REx[alt] (supplementary
fig. S7, Supplementary Material online) compared to test set
with no missing data (Fig. 4). All four models present compar-
able neutral classification rates (from 84.3% to 88.5%). On
the other hand, with a sweep detection rate of 81.7%,
Trldent|IRV2] again establishes itself as the most robust
against missing genomic regions. The overall test accuracies
lend further support to our observation that the TrIdent mod-
els, with accuracies of 83.50% and 82.65 %, comfortably out-
perform the T-REx models, with accuracies of 80.0% and
76.35% (supplementary fig. S7, Supplementary Material on-
line). Our findings demonstrate that the drops in accuracies
for the Trldent and T-REx model variants under missing gen-
omic segments is generally driven by misclassification of sweep
replicates as neutral, rather than the false attribution of selec-
tion for neutral settings.

Robustness Against Background Selection

Background selection poses a potential challenge for
TrIdent[IR V2], as it has the potential to mislead sweep classi-
fiers into falsely detecting signatures of positive selection. The
occurrence of this phenomenon is caused by the elimination of
harmful genetic variations through negative selection, result-
ing in distortions in the distribution of allele frequencies that
may resemble positive selection (Charlesworth et al. 1993;
Hudson and Kaplan 1995; Charlesworth 2012). Specifically,
background selection can produce patterns in allele frequency
distributions that resemble those caused by selective sweeps
(Charlesworth et al. 1993, 1995, 1997; Keinan and Reich
2010; Seger et al. 2010; Nicolaisen and Desai 2013), which
can result in misclassification of evolutionary events (Huber
et al. 2016). However, recent studies suggest that selective
sweeps and background selection leave distinct genetic foot-
prints, particularly in haplotype distributions indicating that
background selection is unlikely to pose a significant issue
when analyzing haplotype data (Fagny et al. 2014; Schrider
2020; Lauterbur et al. 2023). Nevertheless, it is imperative
to evaluate the resilience of Trldent[IRV2] to the pervasive
force of background selection that shapes patterns of genomic
variation (McVicker et al. 2009; Comeron 2014).

We generated 1,000 test replicates using the forward-time
simulator SLiM (Haller and Messer 2019) under the same gen-
etic and demographic parameters of the CEU and YRI simula-
tions used to train Trldent, with the addition of background
selection (Tennessen et al. 2012; Adrion et al. 2020).
Specifically, in a simulated 1.1 Mb region, a 55 kb protein-
coding gene was subjected to negative selection according to
the methodology described by Cheng et al. (2017). This gene
was composed of 50exons each of length 100 bases, 49
introns each of length 1kb, a 5 untranslated region (UTR)
of length 200 bases, and a 3’ UTR of length 800 bases,
which are fairly close to mean lengths for these elements in
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human genomes (Mignone et al. 2002; Sakharkar et al. 2004).
Recessive (b = 0.1) deleterious mutations with selection coeffi-
cients (s) drawn from a gamma distribution with mean of
—0.0294 and shape parameter of 0.184 (Boyko et al. 2008;
Schrider and Kern 2017) arose within this gene, where 75%,
10%, and 50% of mutations in exons, introns, and UTRs, re-
spectively, were deleterious. Consequently, we used the pro-
cedure outlined in the Image Generation subsection of the
Materials and Methods to create input images, which we sub-
sequently fed into trained Trldent[IRV2] models as test
observations.

Our findings suggest that the Trldent[IRV2] models
trained on the CEU and YRI datasets are resilient to back-
ground selection (supplementary fig. S8, Supplementary
Material online), with the incidence of false sweep signals
attributed to background selection closely paralleling the
FPR obtained from neutral test observations (supplementary
fig. S8, Supplementary Material online), particularly at accept-
able FPRs (supplementary fig. S8, Supplementary Material on-
line; bottom panels). This robustness to background selection
is not only observed for settings in which recombination rates
are drawn from the same distribution as the training sets
(supplementary fig. S8, Supplementary Material online, left
panels), but also for the challenging setting in which mean re-
combination rates are an order of magnitude smaller than
what was used in the training sets (supplementary fig. S8,
Supplementary Material online, right panels). Furthermore,
for a mean recombination rate of 10~8, TrIdent[IR V2] models
identified 92.15% and 94% of background selection simula-
tions as neutral for the CEU and YRI datasets, respectively.
These rates are higher than the neutral detection rates of
87.1% and 87.7% for respective CEU and YRI neutral simu-
lations (Figs. 3 and 4), indicating that TrIdent[IRV2] is even
less likely to falsely attribute background selection as a sweep
than it is for neutrally evolving regions.

Performance with Unphased Multilocus Genotypes

Sweep classifiers can face challenges when applied to un-
phased multilocus genotype data, which harbor less informa-
tion than phased haplotypes, as selection acts to alter
frequencies of nearby neutral haplotypic variation and only in-
directly on multilocus genotype variation. Using unphased
genotypes also decreases statistical power and introduces
complexity in interpreting genetic signals, potentially omitting
subtle yet significant signatures of selection within popula-
tions. However, Trldent models are trained with phased hap-
lotypic data, which is often difficult or impossible to reliably
generate for many study systems, especially for most nonmo-
del organisms. Thus, to enhance the versatility of these mod-
els, it is crucial that they can accommodate unphased data.
Given the demonstrated capability to detect sweeps using un-
phased multilocus genotypes in prior studies (Kern and
Schrider 2018; Mughal and DeGiorgio 2019; Harris and
DeGiorgio 2020; Gower etal. 2021; Arnab et al. 2023), we ex-
pect that TrIdent will continue to achieve excellent classifica-
tion accuracy and power when applied to unphased data.

To generate Trldent input images from unphased data, we
first merge pairs of rows (haplotypes) into a single multilocus
genotype to create values of zero, one, and two representing
the number of copies of the minor allele at a diploid genotype.
We then followed the same procedure described in the Image
generation subsection of the Materials and Methods to create
images for the Trldent[IRV2] model. We refer to the

Trldent[IR V2] model using images from unphased multilocus
genotype data as Trldent[IRV2, MLG]. We find that for both
the CEU and YRI (supplementary fig. S9, Supplementary
Material online) test cases, Trldent[IRV2, MLG] achieves
comparable, though marginally lower, accuracies and powers
to Trldent[IRV2], with a 1.95% drop in classification accur-
acy on the CEU test case and a more narrow drop of 0.15%
in accuracy on the YRI test case. Moreover, under both
scenarios, Trldent[IRV2, MLG] is more conservative than
Trldent[IR V2], with a slight bias toward predicting observations
as neutral (supplementary fig. S9, Supplementary Material
online). Overall, these results indicate that while TrIdent[IRV2,
MLG] is slightly less accurate than Trldent[IRV2], it remains a
robust method for analyzing unphased multilocus genotype
data, demonstrating the flexibility of the Trldent approach.

Capacity to Uncover Incomplete Sweeps

The less pronounced genomic footprints of incomplete or par-
tial sweeps may increase false negative rates of sweep classi-
fiers by misleadingly assigning such patterns as neutral
(Schrider et al. 2015; Xue et al. 2021). Specifically, these gen-
omic signals are less pronounced than what is expected by re-
cent complete sweeps, including localized and weaker linkage
disequilibrium, shorter and less frequent haplotypes, a more
mildly distorted site frequency spectrum, and a comparatively
more marginal decrease in genetic variation (Vy and Kim
2015). As a result, it is important to evaluate the power of
Trldent to detect incomplete sweeps relative to other sweep
classifiers. To evaluate power under this setting, we used
discoal (Kern and Schrider 2016) to generate sweep test
replicates for both the CEU and YRI demographic histories
for which an advantageous allele does not reach fixation.
Specifically, we simulated 1,000 replicates for each incomplete
sweep scenario, considered situations for which the beneficial
allele stopped being advantageous at a frequency of f.,q4 €
{0.5,0.6, 0.7, 0.8, 0.9} while fixing all other genetic, demo-
graphic, and selection parameters as detailed within the
Simulation protocol subsection of the Methods. We then ap-
plied Trldent[IRV2] and T-REx originally trained on com-
plete sweeps to these incomplete sweep test sets.

We evaluated both accuracy and power (true positive rate)
at a 5% FPR to detect incomplete sweeps (supplementary
fig. S10, Supplementary Material online). Under the CEU
demographic history, accuracy for both Trldent[IRV2] and
T-REx climbed with increasing final frequency of the bene-
ficial allele f,.q, with values as low as 31.06% and 21.7%
at fenq = 0.5 for Trldent[IRV2] and T-REx, respectively,
and achieving values of 83.15% and 70.1% at f.,q=0.9
for Trldent[IRV2] and T-REx, respectively. Notably,
TrIdent[IRV2] achieves an accuracy close to 80% for incom-
plete sweeps to a frequency of f.,q = 0.8, whereas T-REx never
reaches 80% sweep detection rate even for complete sweeps
for which f.,q = 1.0 (supplementary fig. S10, Supplementary
Material online). A similar increasing trend in power as a func-
tion of the degree of sweep completeness can be observed
(supplementary fig. S10, Supplementary Material online),
with values as low as 0.201 and 0.11 at f.,q=0.5 for
Trldent[IRV2] and T-REx, respectively, and achieving values
of 0.73 and 0.56 at f.,q = 0.9 for Trldent[IRV2] and T-REx,
respectively. Moreover, Trldent[IRV2] achieves a power
slightly above 0.7 at f.,q = 0.8 (which is virtually identical
to the power for a complete sweep), whereas T-REx never
even achieves a power of 0.6 for complete sweeps.
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Fig. 7. Heatmaps of mean GradCAM from InceptionResNetV2 applied to CEU (left panel) and YRI (right panel) training data, with the mean taken across
2,000 training observations with 1,000 observations from each of the neutral and sweep classes.

Thus, Trldent[IR V2] consistently and significantly outclassed
T-REx in terms of accuracy and power to detect incomplete
sweeps.

For the YRI test case, we observed an overall higher accur-
acy and power for detecting incomplete sweeps compared to
the CEU test case. Specifically, the accuracy for both
Trldent[IRV2] and T-REx increased with f 4. At feng = 0.5,
the accuracy values for Trldent[IRV2] and T-REx were
44.11% and 38.6%, respectively, and climbed to 87.03%
for Trldent[IRV2] and 78.99% for T-REx at f.,q=0.9. A
similar trend was seen in power, with values starting from
0.307 and 0.212 at f.,q = 0.5 for Trldent[IRV2] and T-REx,
respectively, and respectively rising to 0.7404 and 0.607 at
fend = 0.9. These results show that Trldent[IR V2] consistently
and significantly outperformed T-REx in both accuracy and
power for the YRI test case, expectedly surpassing the per-
formance levels observed in the CEU test case that includes a
recent, severe population bottleneck. In general, the results
highlight the ability of Trldent in recognizing even modest
adaptive signals in genomes.

Interpretability of the Sweep Classifier

In nonnatural image classification tasks, class activation maps
can reveal the decision-making process of a trained model
(Zhai and Shah 2006; Zhou et al. 2016). In particular, these
maps are able to highlight regions of pixels in nonnatural im-
ages, like those generated here to discriminate sweeps from
neutrality, where patterns may not be immediately discernible
to humans that explain or validate what features the model
places emphasis when classifying observations. In addition,
class activation maps can aid in model selection based on per-
formance and robustness in image classification tasks by act-
ing as a diagnostic tool to identify errors in the learning
process of a model by visualizing key regions of input images,
allowing for targeted adjustments to improve accuracy and
generalization and thereby creating more transparent and reli-
able classification systems (Zhou et al. 2016).

For pretrained CNN models, gradient-weighted class acti-
vation mapping (GradCAM) provides a mechanism for creat-
ing class activation maps that are easy to understand and work
with (Selvaraju et al. 2017). To accomplish this task,
GradCAM makes use of the gradient information that flows
into the last convolutional layer of the CNN during its

backward pass. It computes the importance of each feature
map by taking the gradients of the target class score with re-
spect to these feature maps and weighting them accordingly.
By highlighting the relative importance of each pixel, this ap-
proach successfully pinpoints the regions within an image that
help discriminate among classes (Selvaraju et al. 2017).

We employed GradCAM to generate class activation maps
from each of the training set images based on their output val-
ues from the last convolution layer of Trldent[IRV2]. The re-
sulting maps for both the CEU and YRI test cases revealed a
concentrated focus in the lower-middle region of the images
(Fig. 7), coinciding with regions of input images that might
distinguish sweeps from neutrality on average (Fig. 2).
Moreover, this consistent regional focus across both CEU
and YRI test cases suggests that Trldent[IR V2] effectively cap-
tures the critical haplotype features driving the divergence be-
tween sweep and neutrality in these populations.

Ability to Predict Sweep Parameters

So far, we have assessed the sweep detection accuracy and
power of Trldent[IRV2] in relation to the sweep classifiers
T-REx, diploS/HIC and many architectural variations of the
the Trldent model. We next consider how features obtained
from transfer learning architectures fare on regression tasks
for predicting evolutionary parameters of sweeps. We trained
three distinct models, each tasked with inferring one of the
three selection parameters used to generate sweep replicates
for training the Trldent[IRV2] classifier. These parameters
are: the number of generations in the past when the beneficial
allele reached fixation (z), the selection strength acting on the
beneficial allele (s), and the frequency of the beneficial allele at
the onset of selection (f). As with the Trldent classifiers, we
first extracted GAP layer outputs of InceptionResNetV2
from the 1,000 sweep replicates to represent the set of features
in the training dataset. As the output for each regression mod-
el, we performed a logarithmic transformation of the parame-
ters so that they take both positive and negative values, rather
than only nonnegative values, as well as to better highlight pa-
rameters that were drawn across different orders of magnitude
(see Modeling description subsection).

Our initial evaluation of a linear model to predict the selec-
tion parameters showed that such a model was not accurate
enough based solely on the InceptionResNetV2 extracted
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Fig. 8. Summaries of distributions for true and predicted values of selection parameters (f, s, and 7) using the nonlinear Trldent{/RV2, ANN] regression
model. Distributions are summarized using violin plots with embedded box plots for the CEU (top) and YRI (bottom) datasets.

features. We therefore chose to employ nonlinear models
based on ANNs for predicting sweep parameters, and we
term this nonlinear regression model Trldent[IRV2, ANN],
similar to the nonlinear classification model of the Viability
of alternate architectures and methods subsection. To deter-
mine the architecture of each sweep parameter predictor mod-
el (f, s, and ), we use a model selection scheme identical to that
of the nonlinear Trldent[IRV2, ANN] classifier, with the ex-
ception of assessing model fit with MSE loss instead of binary
cross entropy along with the usage of linear activation in the
output layer compared to sigmoid activation. Here, we choose
the best number of hidden layers, number of nodes in each
layer, and activation function used in each layer for each of
the three regression models based on smallest validation MSE.

To compare distributions between true and predicted par-
ameter values, we summarize the distributions using violin
plots to capture distribution shapes with embedded box plots
to depict distribution locations and spreads (Fig. 8). For z, the
medians for true and predicted distributions are comparable in
both CEU and YRI populations. The MSE is 0.0198 for CEU
and 0.0243 for YRI, and the distributions are left skewed,
with the difference between the second and first quartiles of
the predicted distribution smaller in the YRI than in CEU.
For s, the MSE is 0.0383 for CEU and 0.0114 for YRI, with
the predicted distributions preserving the characteristic “lip”
shape observed in the true distribution, though with predicted
distributions tighter than the true distributions. The medians
of the true and predicted distributions are comparable in
both datasets, but the inter-quartile range (IQR) is narrower

in the predicted distributions. For f, the predicted distributions
display skewed “lip” shapes—right-skewed for CEU and left-
skewed for YRI—though the true distributions show a more
symmetrical “lip” shape. Moreover, the predicted median is
shifted slightly downward relative to the true median in the
CEU, whereas it is shifted upward in the YRI. However,
whereas the IQR is smaller for the predicted distribution in
the CEU dataset than for the true distribution, the IQR for
the predicted distribution in the YRI dataset is comparable
to that of the true distribution, with MSE values of 0.2001
and 0.1665 for CEU and YRI, respectively. While the MSE
values may appear high, it is important to note that the param-
eters were logarithmically scaled, which stretches their
bounds, inherently inflating the apparent magnitude of the
MSE compared to unscaled values. Overall, in terms of
MSE, Trldent[IRV2, ANN] seems to perform better on pre-
dicting s and f on the YRI dataset compared to on the CEU da-
taset, and 7 on the CEU dataset compared to on the YRI
dataset.

To benchmark against a comparative baseline for selection
parameter estimates, we employed the selection coefficient in-
ference tool CLUES2 (Vaughn and Nielsen 2024). While
CLUES?2 is limited to estimating the selection coefficient, one
of the three parameter estimates by the Trldent[IRV2,
ANN] regression model, it serves as a useful reference point.
Details of our CLUES2 pipeline are presented in the
Application of CLUES2 subsection of the Materials and
Methods. We generated ancestral recombination graphs
(ARGs) using the entire 1.1 Mb simulated replicates with
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SINGER (Deng et al. 2024), as it is one of the two software
supported by CLUES2. We implemented CLUES2 as closely
to the recommended settings as possible, given the constraints
imposed by our simulated replicates. In both CEU and YRI test
cases, CLUES2 lagged considerably behind the accuracy and
precision of Trldent[IRV2, ANN] (supplementary fig. S11,
Supplementary Material online). To maintain consistency
with Trldent[IRV2, ANN], we applied a logarithmic trans-
formation to the selection coefficient estimates from
CLUES2, which resulted in MSEs on this transformed scale
of 0.454 for CEU and 0.402 for YRIL

Application to Human Genomic Data

Given the excellent performance of Trldent[IRV2], we next
applied it to variant calls and phased haplotypes of 99 individ-
uals in the CEU population and 108 individuals in the YRI
population from the 1000 Genomes Project (The 1000
Genomes Project Consortium 2015). This application served
as a proof-of-concept, where we evaluate the ability of
Trldent to recapitulate sweep candidates established in the lit-
erature from European and African humans, as well as to po-
tentially discover novel candidates.

Before scanning the CEU and YRI genomes, we eliminated
SNPs in specific regions using the procedure detailed in the
Filtration of Empirical Data subsection of the Materials and
Methods. Following the elimination of these SNPs, we selected
the initial 499 SNPs of a chromosome and created a 299 x 299
input image of haplotype variation (see Modeling description
subsection of the Results). From this starting image, we cre-
ated new empirical input images by advancing the 499-SNP
window by a stride of 10 SNPs along the chromosome, repeat-
ing the process for all 22 autosomes. These images are then fed
through the Trldent[IRV2] pretrained model, and the GAP
layer outputs are used as input to the trained logistic regres-
sion classifier (see Modeling description subsection of the
Results).

Table 1 Percentage of windows classified as a sweep by Trident under
sweep probability threshold of 0.9 for each of the autosomes within the
CEU and YRI 1000 Genomes Project populations

Chromosome CEU YRI
1 5.48 4.84
2 4.68 3.78
3 4.02 2.16
4 4.65 6.11
5 4.22 4.64
6 4.47 5.06
7 4.38 4.40
8 5.92 1.92
9 5.15 4.51
10 3.96 3.77
11 3.75 4.40
12 4.76 3.86
13 3.89 3.66
14 5.32 3.78
15 5.10 3.52
16 5.53 5.14
17 6.67 3.32
18 4.34 2.01
19 7.08 6.69
20 6.17 3.06
21 4.97 4.07
22 7.17 2.65
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In the CEU scan, we found that the majority of genomic
windows are classified as neutral with a probability threshold
of 0.9 for calling sweeps (approximately 95.18%; Table 1).
The threshold of 0.9 for individual windows is strategically
chosen to reduce the risk of false positives, thus prioritizing
the most significant candidate sweeps and improving the reli-
ability of the detection process. We evaluated the false positive
and true positive rates at this threshold of 0.9 using the CEU
and YRI simulated test sets (supplementary fig. S12,
Supplementary Material online). This stringent threshold
demonstrated its effectiveness in minimizing false positives,
achieving high detection rates for neutral replicates (97.5%
for CEU and 97.7% for YRI, compared to 87.1% for CEU
and 87.7% for YRI with a threshold of 0.5). While the detec-
tion rates for sweep replicates were notably lower (69.9% for
CEU and 72.2% for YRI, compared to 85.3% for CEU and
87.4% for YRI with a threshold of 0.5), this reflects a more
conservative approach to identifying true adaptive signals.

Additionally, we require a minimum mean prediction prob-
ability of 0.9 across 10 consecutive prediction windows for
sweep footprint detection. This stringent threshold is designed
to filter out potentially spurious observations with high sweep
probability, ensuring that only the most robust signals are
identified (Arnab et al. 2023). This approach resulted in
1,206 candidate sweep peaks, which intersected 575 genes.
Out of these genes, LCT shows a clear peak with a 10-window
mean peak probability score of 0.93 (Fig. 9a). The detection of
LCT serves as a positive control, because it has been identified
as a recent sweep candidate in numerous studies (Tishkoff
et al. 2007; Field et al. 2016; Ségurel and Bon 2017) with
strong estimates of selection pressure (Bersaglieri et al. 2004;
Gerbault et al. 2009). The LCT gene codes for the lactase en-
zyme that hydrolyzes lactose, a disaccharide in milk and dairy
products. Early agriculture and dairy farming in Europe pro-
foundly influenced lactase persistence. Domesticating animals
for milk grew more common when hunter-gatherer societies
became sedentary agricultural groups. We also applied the
Trldent regression model to predict selection parameters at
LCT (Table 2), with estimates that a sweep on a standing gen-
etic variant at frequency f = 0.01 became beneficial with
strength s ~ 0.06 and completed t ~ 46 generations ago (ap-
proximately 1,300 years ago assuming a generation time of
29 years). For comparison, Bersaglieri et al. (2004) estimated
that the persistence-associated haplotype began to increase
rapidly in frequency between 2,188 and 20,650 years ago
from selection with coefficients ranging from 0.09 to 0.19
across different European populations at this locus. Thus,
the estimates produced by Trldent seem to generally agree
well with the findings of Bersaglieri et al. (2004).

Moreover, the MCM6 gene located upstream of LCT not
only exceeds the mean prediction probability threshold of
0.9 but also has a higher probability compared to LCT
(Fig. 9a). Selection parameter predictions at this gene
(Table 2) support a sweep on a standing genetic variant at fre-
quency f = 0.1 became beneficial with strength s ~ 0.04 and
completed 7 ~ 48 generations or approximately 1,400 years
ago. Previous studies also detected strong selection signals at
MCMG6 within Europeans, though their selection coefficient
estimates were generally lower (0.0161 in Stern et al. 2019
and 0.018 in Mathieson and Mathieson 2018). The time frame
that selection ended is similar to that of LCT, but with a softer
sweep of lower strength. Due to its regulatory control of the
expression of LCT (Labrie et al. 2016; Anguita-Ruiz et al.
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Fig. 9. Identified candidate sweep regions from the genome-wide scan produced using the trained Trldent{/RV2] model on the central European humans
(CEU) population in the 1000 Genomes Project dataset. Regions were classified as being under positive selection if they had 10 consecutive windows
with a sweep probability higher than 0.9. A total of 575 genes across 22 autosomes exhibit qualifying signs of selective sweeps, of which a few of the
most interesting candidates are reported here (a—k). supplementary Figure S21, Supplementary Material online provides a visual representation of the

haplotype diversity surrounding the candidate genes in the plotted panels.

Table 2 Trldentregression model inferences for the frequency at which a
selected allele became beneficial (f), selection strength (s), and time at
which the beneficial allele reached fixation (z) for genes reported in Fig. 9
or the CEU scan

Chromosome f s T (generations) Genes

1 0.0884  0.0700 1295.7883 MTOR
1 0.0601  0.0814 156.0666 SERINC2
1 0.0252  0.0505 228.1717 LAMC2
2 0.0122  0.0623 46.1186 LCT

2 0.0962  0.0373 48.2734 MCMe6
3 0.0016  0.0133 1340.9021 RBMS3
3 0.0107  0.0321 842.0184 KLHL24
5 0.0490  0.0257 753.2627 MGATI
6 0.0399  0.1051 982.6476 HLA-DRB6
9 0.0550 0.0191 274.6670 BNC2
9 0.0068 0.0163 1141.4152 NKAIN2
15 0.0229  0.0598 15.0190 OCA2

2020), MCM6 also serves a positive control. An enhancer
within one of the introns of the MCM6 gene has been discov-
ered to impact the production of the lactase enzyme
(Anguita-Ruiz et al. 2020), and has been found to show sweep

signals by other studies (Oleksyk et al. 2010; Cheng et al.
2017; Amin et al. 2023).

One of the most pronounced sweep candidates identified by
Trldent is OCA2, with a 10-window mean sweep probability
of 0.97 (Fig. 9d), estimated to have completed 7 ~ 15 genera-
tions ago (Table 2), indicating that a putative sweep at OCA2
completed more recently compared to that of LCT or MCMG6.
Previous studies have found OCA2 as a target of positive se-
lection in Europeans (Voight et al. 2006; Sulem et al. 2007;
Wilde et al. 2014; Mughal et al. 2020), and therefore this
gene also serves as an additional positive control. We estimate
a selection coefficient of s=0.059 for OCA2, indicating
strong selection at this locus. For comparison, Stern et al.
(2019) also identified evidence of selection at OCA2, estimat-
ing the strength at s = 0.04, whereas (Mughal et al. 2020) re-
ported s=0.06 for the same locus. Hence, our selection
strength estimates are consistent with prior estimates at this
gene. Eye color is associated with variants within the OCA2
gene, which plays a crucial role in the production and disper-
sion of melanin, the pigment that gives color to hair, skin, and
eyes (Duffy et al. 2007). The amount and type of iris melanin,
which determines eye color, can vary due to structural varia-
tions in OCA2 (Sturm and Larsson 2009).

G20z aunr Lz uo Jasn Ajisianun ojuey epuold Aq v/ /218/7605eSW/S/Z/a1o1e/aqu/wod dno-oiwapese//:sdjy woij papeojumoq


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf094#supplementary-data

16

The human leukocyte antigen (HLA) system serves as a
compelling example of how natural selection has operated to
preserve genetic diversity. HLA genes, particularly those in
class T and class I, play a crucial role in presenting antigens
to T cells, which are responsible for initiating cell-mediated
immune responses (Shankarkumar 2004). The extensive range
of alleles and notable polymorphisms observed in HLA class I
and class II genes (Hedrick and Thomson 1983) serves as evi-
dence of the ongoing selection that promotes genetic diversity
at these immune-related locations. Trldent follows the recent
trend of sweep detectors (Goeury et al. 2018; Kern and
Schrider 2018; Harris and DeGiorgio 2020; Amin et al.
2023; Arnab et al. 2023) in uncovering genes within the
HLA region. Notably, we found that the class Il HLA gene
HLA-DRB6 shows a clear signal consistent with positive se-
lection, attaining a 10-window mean sweep probability of
0.92 (Fig. 9b). Other studies have identified sweep signals at
this gene in Europeans (DeGiorgio and Szpiech 2022; Arnab
et al. 2023), as well as other class I and class II genes within
the region (Albrechtsen et al. 2010; Goeury et al. 2018;
Harris and DeGiorgio 2020; DeGiorgio and Szpiech 2022),
lending credence to this finding. Furthermore, Trldent pre-
dicts a notably high selection coefficient of s=0.1051 for
HLA-DRB6. Mughal et al. (2020) have also reported high se-
lection coefficients for an HLA gene, finding s=0.14 at
HLA-DRBI1, further supporting the notion that genes in the
HLA region have been subject to intense selective pressures.

BNC2 is another well-supported sweep candidate with a
peak mean sweep probability of 0.99 (Fig. 9¢). This gene enc-
odes a protein that plays a vital role in various essential cellu-
lar processes. These processes include controlling the
expression of genes that code for proteins responsible for bind-
ing and regulating collagen, as well as for facilitating the
growth of new tissues (Orang et al. 2023). Its involvement in
key developmental pathways is supported by its association
with skin cell differentiation (Jacobs et al. 2013). A structural
variant in the first intron of BNC2 causes lighter skin color by
reducing BNC2 expression in human melanocytes (Visser
et al. 2014; Szpak et al. 2019). In addition, some haplotypes
at BNC2 have been hypothesized to be introgressed from
Neanderthals with high frequency that influences skin pig-
mentation levels (Visser et al. 2014; Szpak et al. 2019;
McArthur et al. 2021). Prior selection scans suggest that this
variation at this gene represents a mode of positive selection
termed adaptive introgression (Racimo et al. 2015, 2017;
Mughal et al. 2020; Gower et al. 2021), by which selection
acts on variants residing on haplotypes that were donated
from another species through introgression. Furthermore,
the likely importance of BNC2 in tumor growth has made it
a focal point in cancer research (Cesaratto et al. 2016; Wu
etal. 2016; Orang et al. 2023), with some cancers linked to al-
terations in BNC2 expression and function (Wu et al. 2016;
Orang et al. 2023).

Along with the established candidate BNC2, Trldent also
detected several other cancer-related genes as sweep candi-
dates. Specifically, with a 10-window mean sweep probability
of 0.996, we identified the MTOR gene (Fig. 9e¢), which pro-
duces the protein mTOR that is a critical regulator of cellular
growth and survival and that is frequently dysregulated in
breast cancer (Miricescu et al. 2020). Cancer progression
and uncontrolled growth of cells are caused by abnormal
mTOR activation (Takei and Nawa 2014; Costa et al.
2015). RBMS3 is another detected sweep candidate
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(10-window mean sweep probability of 0.9969; Fig. 9g) that
is linked to tumor suppression in breast cancer (Yang et al.
2018). Another candidate gene LAMC2 (10-window mean
sweep probability of 0.9999; Fig. 9f), which encodes the
gamma-2 subunit of the protein laminin, is commonly upregu-
lated in oral cancer (Nguyen et al. 2017). Furthermore, the
gene NKAIN2 may inhibit tumors in some cancers (Zhao
et al. 2015), which is another candidate identified by our
scan with a 10-window mean sweep probability of 0.98
(Fig. 9h). A few other intriguing sweep candidates revealed
by our scan are SERINC2 (10-window mean sweep probabil-
ity of 0.997; Fig. 9i), KLHL.24 (10-window mean sweep prob-
ability of 0.995; Fig. 9j), and MGAT1 (10-window mean
sweep probability of 0.92; Fig. 9k), with association studies
linking variants in SERINC2 with alcohol dependence in
European women (Zuo et al. 2013, 2014, 2015), mutations
in KLHL24 associated with loss of keratin 14, which provides
structural support to epithelial cells (Lin et al. 2016), and a
role of MGAT1 in the development of type 1 diabetes in
Europeans (Rudman et al. 2023). There appears to be a trend
in recent machine learning studies where genes associated with
deleterious phenotypes, including cancer, are identified as can-
didate targets of positive selection (Schrider and Kern 2017
Mughal and DeGiorgio 2019; Amin et al. 2023; Arnab et al.
2023). Schrider and Kern (2017) suggested that weakly dele-
terious alleles may have hitchhiked to high frequency along-
side beneficial variants, resulting in the present-day
manifestation of problematic traits. This phenomenon could
also be explained by the historical advantages conferred by
these genes in past environments, which outweighed their
negative impacts under contemporary conditions (Di Rienzo
and Hudson 2005; Di Rienzo 2006). Such hitchhiking events
illustrate the complexity of evolutionary processes and the
tradeoffs between short-term benefits and long-term conse-
quences in gene selection, with further work needed to fully
understand these dynamics and their implications for modern
human health.

In the YRI scan, we found that most genomic windows are
classified as neutral with a probability threshold of 0.9 for call-
ing sweeps (approximately 95.41%; Table 1). Using a
10-window mean sweep probability of 0.9, we identified
2,145 candidate sweep peaks, which intersected 666 genes.
This scan revealed several prominent candidate selection sig-
nals at genes supporting some findings from the CEU scan
and exposing distinct selection patterns particular to the YRI
population. Several genes highlighted as possible adaptive tar-
gets in previous studies of the YRI that were also recovered by
our scan include NNT, HEMGN, SYT1, GRIKS,and APOL1
(Fig. 10) (Voight et al. 2006; Pickrell et al. 2009; Fagny et al.
2014; Pierron et al. 2014; Harris et al. 2018; Harris and
DeGiorgio 2020; Mughal et al. 2020). We also applied the
Trldent regression model to predict selection parameters at re-
ported sweep candidates found in the YRI scan (Table 3).

The NNT gene, located on chromosome 5, exhibits a clear
signal with a 10-window mean sweep probability score of
0.989 (Fig. 10a). This gene codes for a protein named nico-
tinamide nucleotide transhydrogenase, which is vital for cellu-
lar energy metabolism (Yin et al. 2012; Xiao et al. 2018) and
therefore may have possible connection to metabolic adapta-
tions in the YRI population. The HEMGN gene on chromo-
some 9 is another noteworthy candidate, with a mean sweep
probability score of 0.974 (Fig. 10c¢) that is involved in hem-
atopoiesis by which the body forms blood cells (Li et al.
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Fig. 10. Identified candidate sweep regions from the genome-wide produced using the trained Trident{/RV2] model on the sub-Saharan African (YRI)

population in the 1000 Genomes Project dataset. Regions were classified as being under positive selection if they had ten consecutive windows with a
sweep probability higher than 0.9. A total of 666 genes across 22 autosomes exhibit qualifying signs of selective sweeps, of which a few of the most
interesting candidates are reported here (a—j). supplementary fig. S22, Supplementary Material online provides a visual representation of the haplotype

diversity surrounding the candidate genes in the plotted panels.

Table 3 Trldentregression model inferences for the frequency at which a
selected allele became beneficial (f), selection strength (s), and time at
which the beneficial allele reached fixation (z) for genes reported in Fig. 9

or the YRI scan

Chromosome f s 7 (generations) Genes

1 0.0418  0.0678 1049.3189 MTOR

3 0.0097  0.0879 89.8202 RBMS3

3 0.0387  0.1033 2710.1717 ROBO2
N 0.0290  0.0579 1546.6411 NNT

6 0.0832  0.0322 37.2414 HLA-DRBI1
6 0.0133  0.0323 61.7333 HLA-DRBS
6 0.0063  0.0731 69.3420 HLA-DRB6
7 0.0011 0.0900 2901.9021 FOXP2

9 0.0200  0.0354 1883.3812 HEMGN
12 0.0222  0.0452 2024.0176 SYT1

19 0.0368  0.0478 675.6476 GRIKS
22 0.0880  0.0438 2000.9901 APOL1

2004; Jiang et al. 2010). Possible responses to environmental
variables or pathogenic pressures may have prompted changes
in blood cell formation and function. Another strong

candidate highlighted by our scan with mean sweep probabil-
ity of 0.987 is the SYT1 gene on chromosome 12 (Fig. 10d).
SYT1 encodes Synaptotagmin 1, an essential regulator of
neurotransmitter release in the nervous system (Xu et al.
2009; Park and Ryu 2018), and the adaptive relevance of
this gene may be connected to cognitive and neurological proc-
esses in the YRI population. The GRIKS gene on chromosome
19, which encodes a subunit of kainate receptors involved in
synaptic transmission and plasticity (Shibata et al. 2006),
also shows a prominent signal with a mean sweep probability
of 0.991 (Fig. 10e). Schrider and Kern (2017) also identified
sweep signals at several glutamate receptor genes, highlighting
the potential role of neurotransmitter receptors as targets of
recent selection in humans. Furthermore, the gene APOL1
on chromosome 22, which is associated with kidney diseases
in individuals of African ancestry (Kruzel-Davila et al.
2017), has been detected with a relaxed qualification criteria
by Trldent with a mean sweep probability of 0.801 (Fig. 10f).

Within the HLA region of chromosome 6, the HLA-DRB1,
HLA-DRBS, and HLA-DRB6 genes show strong signals con-
sistent with positive selection (Fig. 10b). In particular, the
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HLA-DRBG6 gene, also identified in our CEU scan, attains a
10-window mean sweep probability of 0.9989. Together
with the discovery of noteworthy signals in two neighboring
candidate genes (HLA-DRB1 with a mean sweep probability
of 0.963 and HLA-DRBS with a mean sweep probability of
0.988), these findings emphasize the ongoing selection pres-
sures to maintain genetic diversity in this chromosomal region.
Though Trldent was primarily trained to detect selective
sweeps that reduce haplotypic diversity, regions subject to re-
cent balancing selection can sometimes exhibit signatures re-
sembling those of soft or incomplete sweeps (Hermisson and
Pennings 2005; Fijarczyk and Babik 2015). This similarity is
because balancing selection, particularly when recent or
strong, may lead to localized increases in linkage disequilib-
rium and allele frequency patterns that mimic the sweep-like
signals captured by the model.

The signals found by Trldent at RBMS3 on chromosome 3
and MTOR on chromosome 1, identified in both YRI and
CEU scans, underscore their broad adaptive significance.
The relatively lower mean sweep probabilities in the YRI
scan (0.911 for RBMS3 and 0.906 for MTOR; Figs. 10g
and 10h) compared to CEU may reflect differences in sweep
completion status at these genes between the populations.
Additionally, two particularly interesting candidates in the
YRI genome are ROBO2 (mean sweep probability score of
0.9975) on chromosome 3 (Fig. 10i) and FOXP2 (mean sweep
probability score of 0.916) on chromosome 7 (Fig. 10j).
Though FOXP2 is a classical candidate for selection related
to language traits, both ROBO2 and FOXP2 are associated
with brain development and cognitive processes (Enard et al.
2002; Lopez-Bendito et al. 2007). Previous studies have hy-
pothesized that these genes might reside in introgression de-
serts, potentially indicating selective pressure to preserve
specific brain functions against introgressed variants from ar-
chaic humans that could disrupt these traits (Kuhlwilm 2018;
Buisan et al. 2022). However, Atkinson et al. (2018) found no
evidence of recent adaptation at FOXP2, attributing previous
signals to sample composition in which an intronic region en-
riched for sites that are conserved in nonhuman primates but
are polymorphic among humans may be connected to a loss
of function in humans. While Atkinson et al. (2018) attributed
earlier findings of selection at this locus to sample compos-
ition, their methodology may have been underpowered to de-
tect older or subtler sweeps. Flex-sweep (Lauterbur et al.
2023), a modern and sensitive method, also identifies
FOXP2 as a high-confidence candidate for positive selection.
Despite the detection of sweep signals at FOXP2 using
Trldent, further investigation may be warranted to reconcile
these results and to better understand the evolutionary history
of this gene.

To explore whether high-scoring sweep candidates were en-
riched for specific biological processes, molecular functions,
or cellular components, we performed Gene Ontology (GO)
analysis using GOrilla (Eden et al. 2009) applied to a single
ranked list, where genes were ranked in decreasing order based
on their highest 10-window mean sweep probabilities.
Significant GO term enrichment was selected based on false
discovery rate adjusted g-values of <0.05. The GO analysis
of our CEU scan (supplementary tables S3 and $4,
Supplementary Material online) identified several significant
biological process terms, including regulation of cell migra-
tion, regulation of cell motility, and positive and negative
regulation of locomotion, consistently involving key genes
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MTOR and LAMC?2 that we highlighted earlier. Both genes
are critical in pathways associated with cell movement and lo-
calization, and their dysregulation may contribute to cancer
progression through mechanisms like abnormal cellular mi-
gration, localization, and growth (Kariya and Miyazaki
2004; Stipp 2010; Zoncu et al. 2011; Masuda et al. 2012;
Saxton and Sabatini 2017). Additionally, the GO analysis
highlighted an enrichment of genes involved in essential cellu-
lar components, especially those associated with the plasma
membrane and cytoskeleton, which are central to cellular
structure and movement (Alberts et al. 2002; Fletcher and
Mullins 2010; Keren 2011; Jacobson et al. 2019).
Alterations in these components can facilitate uncontrolled
cell motility and invasion seen in metastatic cancer
(Condeelis and Pollard 2006; Yilmaz and Christofori 2009).
The identified cellular component GO terms also include lam-
inin complex and cell projection part that are associated with
LAMC2. LAMC2 helps encode the laminin complex protein
that supports cell growth, motility, and adhesion, essential
processes that are often disrupted in cancer progression. In
contrast, the YRI GO analysis did not yield significantly en-
riched terms, indicating that, unlike the CEU population, the
sweep candidate genes in the YRI population do not appear
to center on specific molecular functions, cellular components,
or biological processes to the same extent.

Discussion

Our results show that the TrIdent[IR V2] model demonstrates
strong performance in detecting selective sweeps, outperform-
ing T-REx, a technique that also uses images of haplotype
variation as input, in both accuracy and power.
TrIdent[IR V2] effectively captured the complex genetic pat-
terns suggestive of selective sweeps through the utilization of
the pretrained InceptionResNetV2 architecture, which is
known for its sophisticated deep feature extraction prowess.
Due to overall higher accuracy and power, we adopted the
Trident[IRV2] model over four alternative Trldent models.
The complex architecture of InceptionResNetV2 allows
Trldent[IRV2] to effectively identify signals of selection
from relatively small amounts of data that may be missed by
simpler models. Moreover, the use of a pretrained deep learn-
ing model as an upstream feature extractor in Trldent[IR V2]
offers practical benefits beyond just performance, including
reduction in time and resources required for model training.

A key strength of Trldent is its ability to achieve strong clas-
sification performance even when trained with a relatively
small dataset, with the original implementation requiring
only 1,000 samples per class. Notably, increasing the training
data size does not yield substantial improvements in per-
formance, suggesting that Trldent effectively captures the
relevant patterns with limited data. For the CEU test case,
increasing the training set to 5,000 samples per class results
in only a marginal 0.4 % improvement in classification accur-
acy, with a further increase to 10,000 samples per class yield-
ing just an additional 0.2% gain (supplementary fig. S13,
Supplementary Material online). Similarly, for the YRI test
case, increasing the training set to 5,000 samples per class im-
proves accuracy by only 0.2%, and expanding it to 10,000
samples per class provides no further improvement in classifica-
tion accuracy. These findings indicate that Trldent reaches
near-optimal performance with relatively small training
datasets, making it a highly data-efficient approach for sweep
detection.
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The differences between the image generation strategies of
Trldent and T-REx lie in several key aspects. First, T-REx
processes an entire 1.1 Mb region by sorting haplotypes in
windows of 100SNPs with a stride of 10SNPs, whereas
Trldent focuses on a more fine-grained approach, using win-
dows of 25 SNPs with a stride of two SNPs across a region
of 499 SNPs. Second, at the SNPs where different windows
overlap, T-REx averages the minor allele count at these
SNPs after performing an Lji-norm-based haplotype re-
arrangement. To accomplish this task, T-REx first stores the
windows, rearranges them, and then calculates the intersec-
tions between windows to average the minor allele counts at
these intersections. This process is meant to smooth transi-
tions between windows and retain information, especially use-
ful for detecting weak or old sweeps. In contrast, Trldent
follows a more streamlined approach, which sequentially fills
the input image matrix by calculating minor allele counts and
sorting these counts directly within windows, avoiding the
need to store windows or recalculate quantities at window in-
tersections. This procedure not only allows TrIdent to bypass
the additional space overhead required by T-REx, it also al-
lows for faster processing times and based on the presented re-
sults, is a more computationally efficient set of operations that
does not compromise the detection of selection signals. Our
image generation approach therefore prevents the need for ex-
tra manipulation of genomic images, which can lead to the
emergence of summary statistics and poor generalization
(Cecil and Sugden 2023).

In contrast, when comparing Trldent to shallow
CNN-based methods that use images of summary statistic
variation as input (e.g. diploS/HIC), we found that Trldent
trained with native images underperformed relative to these
competitors. However, the nature of input data explains this
disparity. In particular, diploS/HIC benefits from the usage
of relatively shallow CNNs specifically trained on structured
matrices of summary statistics, yet Trldent outperforms
diploS/HIC when trained on images of the same summary sta-
tistics. This performance boost highlights the advantage
Trldent gains from utilizing the InceptionResNetV2 architec-
ture, which excels in extracting complex patterns from images.
Unlike the shallower CNNs in diploS/HIC, InceptionResNet V2
combines both deep and wide feature extraction pathways, en-
abling Trldent to capture genomic variation patterns in a richer
and more nuanced manner.

While diploS/HIC is a widely recognized strong performer in
detecting sweeps, newer and more powerful summary statistic-
based tools like Flex-sweep (Lauterbur et al. 2023) have dem-
onstrated further improvement in detection accuracy.
Flex-sweep not only employs a broader set of advanced sum-
mary statistics than diploS/HIC but also incorporates custom-
designed statistics that have been shown to be highly effective.
A key advantage of Flex-sweep lies in its unique approach to
summary statistic computation as it computes nine out of its
11 summary statistics within each window at five different
nested scales. This multiscale approach allows Flex-sweep to
capture genomic variation patterns more comprehensively,
leading to superior performance. Despite both methods
utilizing similar CNN-based architectures, the enhanced
information content within the summary statistic images used
by Flex-sweep likely explains its improved accuracy.
Furthermore, our results with Trldent[IRV2, SS] reinforce the
idea that summary statistic-based images, when carefully de-
signed for pretrained models, can significantly boost

performance. Though Trldent integrates both image generation
and feature extraction-prediction methodologies, users can se-
lectively deploy either component depending on their analytical
goals, offering flexibility in genomic sweep detection tasks.

In analyzing the GradCAM-based class activation maps
generated from Trldent[IRV2], we observed a consistent fo-
cus on the lower-middle regions of the images, which corre-
sponds to the difference of high minor allele count pattern
between sweep and neutral replicates. Interestingly, a slight
asymmetry in the gradient patterns was noted, with the right-
hand side of the lower-center region appearing more empha-
sized than the left. We hypothesize that this asymmetry may
arise from redundancy in the pixel patterns across the two
halves of the center pattern. Specifically, the pattern on the
right-hand side could render the left-hand side redundant
due to the regularization penalty applied during the training
of the logistic regression model. To investigate this hypothesis,
we horizontally flipped the input images from the original
training datasets and recomputed the GradCAM maps to gen-
erate the mean heatmaps. Despite this transformation, the re-
sulting maps continued to emphasize the right-hand side of the
lower-center pattern (supplementary fig. S14, Supplementary
Material online). This consistent focus, irrespective of flip-
ping, suggests that the model identifies key features in these re-
gions that are central to distinguishing sweeps from neutrality,
even if one-half of the central change in gradient renders the
other half marginally redundant.

To evaluate the robustness of Trldent in detecting sweeps
across different selection strengths, we analyzed its perform-
ance across varying selection coefficient ranges. Because the
original implementation of Trldent[IRV2] was trained on
sweeps with selection coefficients within the interval
[0.005, 0.1], it predictably struggled to detect sweeps in the
weaker selection range of [0.001, 0.005], as these values fell
outside the training distribution. Specifically, sweep classifica-
tion accuracy in this range was 59.15% for the CEU test case
and 63.3% for the YRI test case (supplementary fig. S15,
Supplementary Material online). To explore whether we can
improve generalizability, we trained new Trldent[IR V2] mod-
els on datasets where selection coefficients were drawn from
the broader range of [0.001, 0.1], sampled uniformly on a
logarithmic scale. This adjustment caused a slight decrease
in performance on the original test dataset. Detection of
sweeps in the weaker selection range of [0.001, 0.005] for
the CEU test case was increased by only around 3%, yet the
YRI test case improved by almost 7% (supplementary fig.
S16, Supplementary Material online; right panels). While
this analysis demonstrates that the performance of Trident
in detecting weaker sweeps is contingent upon the selection re-
gime used during training, we hypothesize that we may need to
substantially increase training samples to further improve gen-
eralizability of Trldent in regard to detecting both stronger
and weaker sweeps.

Low-coverage data presents significant challenges for gen-
omic analysis due to the uncertainty in determining genotypes
(Nielsen et al. 2011; Fumagalli 2013; Korneliussen et al.
2014). This uncertainty stems from various sources, including
mapping errors, sequencing errors, and the random sampling
of haploid reads from a diploid genotype, making it difficult to
accurately infer the underlying genetic variation. In genomic
regions of low coverage, the detection of selective sweeps is
particularly problematic, as the likelihood of missing key gen-
etic variants increases, leading to incomplete or inaccurate
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genomic signals that may masquerade as sweeps. Trldent may
be well-suited for applications to low-coverage data, as it relies
on windows of minor allele counts and works with unphased
multilocus genotype data. These minor allele counts could be
approximated with expected allele counts from genotype like-
lihoods (Fumagalli et al. 2014; Fox et al. 2019), which would
permit Trldent to account for the uncertainties in calling gen-
otypes from low-coverage sequencing and has been shown to
be a suitable approach for similar settings (Gower et al. 2021).
Finally, using minor allele counts within TrIdent input images
is advantageous as it does not require a reliable outgroup se-
quence to polarize alleles as derived or ancestral. This charac-
teristic is important, as erroneous allele polarization can alter
the distribution of allele frequencies to be skewed toward
high-frequency derived alleles, much like that of a selective
sweep (Hernandez et al. 2007).

To expand upon how our local sorting of haplotypes influ-
ences model performance, we explored its benefits compared
to a global sorting approach, which we denote as
Trldent[IRV2, global]. The image generation process of
Trldent, as described in the Image Generation subsection of
the Materials and Methods, arranges haplotypes based on mi-
nor allele counts independently within small sub-windows,
preserving localized structural patterns critical for classifica-
tion. In contrast, global sorting organizes the entire 499-SNP
window at once based on total minor allele counts. While glo-
bal sorting guarantees that every pixel value in a row of the re-
sulting image corresponds to the same haplotype, this uniform
arrangement may obscure subtle, localized patterns essential
for distinguishing sweeps from neutrality. Our results demon-
strate that local sorting significantly improves predictive ac-
curacy, with global sorting resulting in accuracy losses of
9.25% in the CEU dataset and 6.1% in the YRI dataset
(supplementary fig. S17, Supplementary Material online).
The larger effect in the CEU population, which has experi-
enced a bottlenecked demographic history, highlights the crit-
ical role of local patterns that are more susceptible to being
blurred by global sorting. By preserving the fine-grained
haplotype structures within sub-windows, local sorting
enables Trldent to capture nuanced signals associated with
selective sweeps, especially in populations with complex evo-
lutionary histories.

In our efforts to bridge the gap between the highly complex
deep CNN architecture of InceptionResNetV2 and compara-
tively shallower sequential CNN architecture used in
smbCNN (which is identical to the diploS/HIC architecture),
we examined a custom designed residual (He et al. 2016)
and multipath (Szegedy et al. 2017) CNN architecture that
we term scCNN (shallow complex CNN) for ease of reference.
By incorporating advanced architectural features, scCNN en-
hances complex feature extraction and maintains training effi-
ciency, making it well-suited for complex tasks without the
need for excessively deep networks like InceptionResNetV2.
The architecture of scCNN is detailed in Constructing the
scCNN architecture in Methods. Despite the structural com-
plexities introduced in scCNN compared to smbCNN,
scCNN achieved accuracies of 84.10% on the CEU dataset
and 86.75% on the YRI dataset (supplementary fig. S18,
Supplementary Material online). The scCNN model still falls
short of the performance levels achieved by Trldent[IRV2]
with its pretrained InceptionResNetV2 backbone. The reason
lies in the inherent strengths of the InceptionResNetV2 archi-
tecture, which benefits from extensive pretraining on large-scale
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datasets and a more sophisticated multipath design that can
capture a broader range of features across different scales.
While this scCNN model represents a marginal improvement
over the simpler smbCNN architecture, it underscores the su-
perior capability of the InceptionResNetV2 architecture em-
ployed by Trldent[IRV2] in detecting subtle patterns of
selection in our haplotype rearrangement-based images.

Though Trldent achieved good performance on demo-
graphic settings with fluctuating populations, it is also import-
ant to consider other, more complex, demographic factors
that could impact method performance, such as significant
population substructure and admixture. These factors, par-
ticularly the timing and scale of migration events, can strongly
influence the observed spatial haplotypic diversity and may re-
sult in misleading indicators of selection (Harris et al. 2018).
The mean of the sweep images used by Trldent
(supplementary fig. S1, Supplementary Material online) re-
veals a funnel-shaped dark region at the selected locus (center
columns of the image), indicating low pixel intensity values
that are absent in the mean of the neutral images. Class activa-
tion maps (Fig. 7) also show that Trldent focuses on the lower-
middle input image pixels for classification. Now, the image
generation process (Fig. 1) illustrates that pixels at the top of
the images represent haplotypes with low minor allele counts
resulting in zero or near-zero values, whereas pixels toward
the bottom of the images reflect haplotypes with higher minor
allele counts resulting in higher values that can reach values up
to 25 (Modeling Description). This observation suggests that
the loss of haplotype diversity near sweep loci leads to more
near-zero values in the middle-to-lower parts of the image,
which Trldent uses for classification. Therefore, any form of
migration or population structure introducing near-zero mi-
nor allele counts in this region could be misclassified as a
sweep, whereas higher values could obscure sweep signals.
Migration from a population with a smaller effective size
can introduce haplotypes with limited diversity to the recipient
population. As a consequence, high migration rate settings
may replace much of the haplotypic variation in the recipient
with this low haplotype diversity from the donor, leading
many polymorphic sites with low minor allele counts, thereby
increasing the occurrence of near-zero values in the
middle-to-lower sections of image matrices and potentially
causing false inferences of sweeps. On the other hand, such mi-
gration from a population with a moderate to large effective
size after the beneficial allele has swept can mask sweep foot-
prints by replacing the low haplotypic diversity with moderate
to high levels from the donor population, resulting in higher
pixel values in the middle-to-lower image regions. Therefore,
if it is expected that the study population may have received
significant gene flow from other populations, then accounting
for such processes when generating training datasets is likely
important to guard against both false positive and false nega-
tive results when detecting sweeps.

Furthermore, we conducted additional analyses to assess the
impact of sweep shoulders on the classification performance of
Trldent. Specifically, we evaluated the ability of TrIdent to de-
tect sweeps when the beneficial mutation was positioned at dif-
ferent locations within a 1.1 Mb sequence. By centering sweeps
at 500, 375, 250, 125, and Okb away from the center, we
found that Trldent gradually loses detection ability when the
sweep moves farther off-center for both CEU and YRI test
cases (supplementary fig. S19, Supplementary Material online;
left panel). For example, when the sweep is positioned 125 kb
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away from the image center, sweep detection accuracy is ap-
proximately 78 %, but performance predictably drops substan-
tially at greater distances. To further investigate how sweep
probability signals diffuse across the genomic region, we con-
ducted a scan across the simulated sweep sequences, protocol
of which is detailed in the Assessing sweep shoulders subsection
of the Methods. This analysis enabled us to systematically as-
sess how predicted sweep probabilities change with distance
from the beneficial mutation (supplementary fig. S19,
Supplementary Material online; right panel), demonstrating
that while TrIdent can detect selective sweeps beyond a perfect-
ly centered mutation, its accuracy declines as the focal muta-
tion shifts further from the image center, emphasizing the
importance of generating images in small genomic distances
when analyzing empirical data.

The pretrained InceptionResNet V2 model is especially suit-
able for assessing the image of multilocus variation used by
Trldent because of its hybrid architecture, which effectively
integrates the advantageous qualities of both Inception and
Residual networks. Inception modules facilitate the extraction
of features at several scales, enabling the detection of patterns
of different sizes and complexities in the input images. The
added residual connections enhance the feature extraction
process by utilizing network depth, as model layers have the
ability to capture diverse sets of features, which allows for ac-
curate identification of small changes in genomic variation
with multilevel inspection and concatenation of information
from input images without the need for further training. The
promising performance of Trldent on detecting sweeps when
confronted with common empirical hurdles while also having
the capacity to predict evolutionary parameters underlying
sweeps makes it a versatile tool for population genetic studies.
This versatility is underscored by consistently good perform-
ance of Trldent across two demographic histories, showing
marginally higher accuracy in the YRI dataset due to greater
genetic diversity, whereas on the CEU dataset, affected by a re-
cent severe bottleneck, exhibited reduced background vari-
ation that slightly diminished sweep detection accuracy. The
robust performance of Trldent when faced with nonsweep
patterns that can masquerade as sweeps, such as technical is-
sues that lead to large missing genomic segments and the pro-
cess of background selection further underscores its ability to
handle challenging genomic scenarios effectively. Missing
data, such as undiscovered polymorphism due to poor mapp-
ability, can mimic selective sweeps by reducing local haplo-
typic diversity. Despite this challenge, Trldent maintains
high and only marginally-decreased accuracy under such set-
tings. Additionally, TrIdent shows resilience against mislead-
ing patterns of lost diversity due to background selection. By
analyzing haplotype distributions, the model can effectively
guard against false classification of background selection as
a selective sweep while maintaining a low FPR.

Though our empirical filtration method, as detailed in the
Filtration of empirical data and empirical image generation
subsection of the Materials and Methods, is effective in redu-
cing false discoveries, it can also inadvertently exclude some
true signals from the analysis. A notable case study of this phe-
nomenon is the ACKR1 gene (Atypical Chemokine Receptor
1), also known as the DARC gene (Duffy Antigen Receptor
for Chemokines), which has been widely recognized as a target
of positive selection due to its role in conferring resistance to
malaria caused by Plasmodium vivax infection (Horuk
2015; Yin et al. 2018). This highly recombining locus poses

a particular challenge for detecting selection signals due to
its complex genetic landscape (McManus et al. 2017;
Lauterbur et al. 2023). In our analysis, ACKR1 was excluded
during the filtration process because it exhibited a low mean
CRG score. To assess whether this exclusion impacted the de-
tection of a true signal at this locus, we reanalyzed SNPs with-
in and around ACKR1. This reanalysis revealed evidence of a
sweep in the YRI scan, with a mean peak probability of 0.858
(supplementary fig. S20, Supplementary Material online).
However, no similar signal was detected in the CEU scan.
This example illustrates the tradeoffs inherent in applying
stringent filtration criteria and highlights the importance of
carefully balancing false discovery control with the retention
of biologically meaningful signals.

Finally, we scanned two human populations (CEU and YRI)
for sweeps using Trldent, and reported candidate genes
with previous literature support, as well as some novel
candidate loci. However, it is also important to highlight those
candidates that Trldent identified with highest confidence. We
therefore considered the 10 sweep candidates (supplementary
tables S1 and S2, Supplementary Material online) with highest
10-window mean sweep probabilities within each population
to better compare and contrast the genomic regions strongly
favored by Trldent. Two genes (LAMC2 and MTOR) in our
CEU analysis and two genes (HLA-DRB6 and ROBO2) in
our YRI analysis are among the top 10 candidates in their
respective scans. By focusing on these top 10 candidates,
which have no overlap between the pair of sweep scans,
we may gain insights into the key genetic adaptations and
distinct evolutionary pressures that have shaped these popula-
tions. Whereas the CEU candidates reflect adaptations
potentially linked to metabolism, neurodevelopment, and
cancer-related pathways, those from the YRI focus more on
immune function and pathogen resistance. This potential
functional divergence highlights how different environments
and historical pressures may have shaped the genetic land-
scape of these populations in unique ways. However, the
exclusivity of candidates may also suggest a limitation of
the trained Trldent model, in which it may have reduced cap-
acity for detecting more ancient sweeps that would have oc-
curred prior to the split of CEU and YRI, thus missing
shared sweep signals across these populations. Future studies
could train Trldent models on variation across multiple pop-
ulations to detect shared sweeps and discriminate them from
population-specific events.

Materials and Methods

Simulation Protocol

To simulate replicates under both the European and
sub-Saharan African human demographic histories, we drew
the per-site per-generation mutation rate x uniformly at ran-
dom within the interval [2.21x107%,2.21 x 1078] with a
mean of 1.21 x 1078 (Scally and Durbin 2012; Schrider and
Kern 2017) and the per-site per-generation recombination
rate r at random from an exponential distribution with
mean 10~% (Payseur and Nachman 2000; Schrider and Kern
2017) and truncated at three times the mean (Schrider and
Kern 2017). For each replicate simulated under the inferred
demographic history (Tennessen et al. 2012), we sampled
198 haplotypes for CEU and 216 haplotypes for YRI of length
1.1 Mb to match the number of sampled haplotypes in our em-
pirical experiments.
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We generated sweep simulations with per-generation selection
strength s acting on a beneficial allele at frequency f that arose at
a locus at the center of a simulated genomic region, with s drawn
uniformly at random within the interval [0.005, 0.1] and f
drawn uniformly at random on a logarithmic scale within the
interval [1/(2N,), 0.2] (Schrider and Kern 2017), where N, is
the present-day effective population size. Moreover, we also
drew the number of generations 7 in the past at which the bene-
ficial allele reached fixation uniformly at random within the
interval [0, 2,000] (Schrider and Kern 2017). This simulation
protocol guarantees that both training and test sets reflect an ar-
ray of sweep settings, including weaker (small s) and stronger
(large s) selection scenarios, harder (small /) and softer (large f)
sweeps, and time 7 in which mutation, recombination, and gen-
etic drift can erode signals of sweeps, all of which affect the size
and prominence of the genomic footprint left by a sweep after
fixation. These modeled genetic, demographic, and selection pa-
rameters are expected to lead to significant overlap in the distri-
butions of genetic variation between sweeps and neutrality.

Image Generation

For each simulated replicate, we retain only bi-allelic SNPs with
a minor allele count of at least three (i.e. removed singletons and
doubletons). We then generate a matrix M of dimension
n x 499, where n denotes the number of haplotypes in a repli-
cate, with each row representing one of the sampled haplotypes
and each column representing one of 499 SNPs, where these
SNPs were chosen as the central position, 249 closest SNPs up-
stream of the central position, and 249 closest SNPs down-
stream of the central position of the simulated genomic
region, which is where the selected mutation is introduced in
sweep simulations. The element M;; takes a value of zero if
the haplotype within the ith row has the major allele at the
SNP in the jth column, and otherwise has the value of one for
the minor allele. From this matrix, we sought to create a re-
presentation of genome variation that might make pattern rec-
ognition easier by generating a matrix X of dimension 7 x 237
computed using windows of 25 SNPs with a stride of two be-
tween each window, with element values X;; € {0, 1, ..., 25}.
That is, for j € {1, 2, ..., 237}, we computed the minor allele
counts for each of the 7 rows of a genomic window of length
25 SNPs starting at column 2j — 1 of M, arranged these minor
allele counts values in increasing order, and set the values in col-
umn j of X as this sorted list of minor allele counts. This proced-
ure summarizes the number of minor alleles within a given
25-SNP window for each haplotype, and thus rows toward
the top of X summarize haplotypes with a greater number of
major alleles, whereas rows toward the bottom have a greater
number of minor alleles. We then perform the same computa-
tion of each 25-SNP window by taking a stride of two SNPs.
This matrix is subsequently resized using linear interpolation,
depending on the input image size requirements of the pre-
trained neural network architectures. For example, pretrained
models like InceptionResNetV2 require input image sizes of
299 x 299, whereas for some pretrained models, such as
VGG16 or MobileNetV2, the required input image size is
224 x 224. An example illustrating this image generation pro-
cedure is presented in Fig. 1 (top panel).

Constructing the scCNN Architecture

The scCNN architecture begins with an initial convolutional
layer that applies a set of filters to the input image.
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Following this layer, the model incorporates a residual block
that contains two convolutional layers, each followed by
batch normalization (Bjorck et al. 2018) and ReLU activation
(Krizhevsky 2012). A skip connection within the residual
block bypasses these two convolution layers, directly adding
the input to the next convolution layer, which maintains gra-
dient flow during training and enables deeper feature learning
(He et al. 2016). There is an additional skip connection before
the fifth convolution layer that allows the concatenation of
fourth and fifth convolution layer outputs that are then fed
into the dense layer. The model is optimized using the Adam
optimizer and binary cross-entropy loss, ensuring efficient
training and robust performance.

Computational Resources and Requirements

Our analysis was conducted on a system equipped with an
AMD EPYC 7,702 64-core CPU with 100 GB of RAM. The
Trldent image generation method requires a mean of 6.83s
to generate an image from a simulated replicate. Loading the
InceptionResNet V2 architecture with its pretrained weights
uses approximately 513 MB of RAM. The mean time to com-
pute the GAP layer output using InceptionResNetV2is 0.018 s
for a single input image. Training the penalized logistic regres-
sion model on 2,000 images with hyperparameter tuning, if
run parallelly, requires approximately 6 min and 30 s and con-
sumes 56 MB of memory.

Conversely, training the entire InceptionResNetV2 archi-
tecture, as executed in the training of the IR V2 model, neces-
sitates additional resources beyond those previously
mentioned. Specifically, training IRV2 on 2,000 images, in-
corporating early stopping to prevent overfitting, attained
convergence in 37 epochs for the CEU dataset and 26 epochs
for the YRI dataset. Each epoch required approximately 4
min to complete and utilized around 26 GB of RAM in total
for both test cases. We anticipate that as more training images
are used, the RAM utilization and the training time would in-
crease substantially for the full IRV2 model.

For comparison, we also assessed the computational resour-
ces required by diploS/HIC. Extracting 101 summary statistics
from each simulated replicate takes on average 17.17s.
Training the CNN model with early stopping, using a dataset
consisting of summary statistics from 1,000 replicates per
class, allows diploS/HIC to converge in 13 epochs, requiring
approximately 42 min and consuming 7.5 GB of RAM.

Application of CLUES2

To benchmark the accuracy and precision of the
Trldent[IRV2, ANN] nonlinear regression model in estimat-
ing selection coefficients, we compared its results against
CLUES2 (Vaughn and Nielsen 2024). First, we used the
ms2vcf tool of the coatli (Klassmann 2013) package to
convert discoal output ms formatted files to VCF format,
as SINGER (Deng et al. 2024), one of the two software sup-
ported by CLUES2 to compute ARGs, accepts VCF files as in-
put. Because the exact mutation rate applied in each simulated
replicate is unavailable, we used a mean mutation rate of
1.21 x 1078, consistent with our simulations. Additionally,
as we could not extract the recombination to mutation rate ra-
tio for each replicate, we set this parameter to the default value
of one in SINGER. We also retained the default number of
posterior samples of 100. After generating ARGs, we used
the SingerToCLUES pipeline of CLUES2 to convert the
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output from SINGER to the required CLUES2 input format.
For the genomic position of the beneficial mutation, we se-
lected the SNP closest to the simulation center. Finally, to
run the CLUES2 inference script, we used the sample-derived
allele frequency of this central SNP. For the maximum time (in
generations) to be considered in the analysis, we chose 2,000
generations in the past. We also tested 1,000 and 4,000 gener-
ations, but the results remained largely unchanged.

Assessing Sweep Shoulders

To analyze classification performance of Trldent on sweep
shoulders, for both CEU and YRI datasets, we computed the
mean sweep probability across 1,000 test images within over-
lapping 20kb bins spanning the 1.1 Mb simulated region.
Using a stride of 10 kb, we created 48 bins with the first bin
spanning 300 to 320kb to last bin spanning 780 to 800 kb.
We exclude the first and last 300 kb of the region because
the image generation process requires at least 499 SNPs with
the center SNP falling within a bin. When a bin is positioned
too far from the simulation center (550kb), the number of
qualifying images meeting these criteria becomes insufficient
for reliable analysis. To generate images for this experiment,
we scanned the entire 1.1 Mb sweep replicates in an identical
manner to how images were generated from chromosomes
in our empirical analysis, as described in the Filtration of em-
pirical data and empirical image generation subsection. Once
generated, images were assigned to bins based on their center
SNP positions. Any image with a center SNP falling outside
these predefined bins was excluded from further analysis.

Filtration of Empirical Data and Empirical Image
Generation

To apply Trldent to the phased genotype data from the 99 CEU
and 108 YRI individuals of the 1000 Genomes Project dataset
(1000 Genomes Project Consortium 2015), we retained only
bi-allelic SNPs with a minor allele count of at least three (i.e. re-
moved singletons and doubletons). Following the protocol of
Mughal et al. (2020), we further filtered this dataset by exclud-
ing genomic segments of length 100kb with mean CRG
(Consensus Reference Genomes) mappability and alignability
scores (Talkowski et al. 2011) below 0.9 to reduce the possibil-
ity of misleading signals due to technical concerns. CRG mapp-
ability scores reflect the probability of accurately mapping short
sequencing reads to a specific genomic region. We then created
images for input to Trldent by considering the first 499 contigu-
ous SNPs on an autosome, converting the haplotype variation
across these SNPs into an image according to the procedure out-
lined in the Image generation subsection, processing subsequent
images by moving the SNP window by a stride of two SNPs
along the autosome, and repeating this procedure for all auto-
somes. The chromosomal location of each observation was
set as mean position of the 249th and 250th SNP.

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online.
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