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Abstract 

Natural selection leaves detectable patterns of altered spatial diversity within genomes, and identifying affected regions is crucial for 
understanding species evolution. Recently, machine learning approaches applied to raw population genomic data have been developed to 
uncover these adaptive signatures. Convolutional neural networks (CNNs) are particularly effective for this task, as they handle large data 
arrays while maintaining element correlations. However, shallow CNNs may miss complex patterns due to their limited capacity, while deep 
CNNs can capture these patterns but require extensive data and computational power. Transfer learning addresses these challenges by 
utilizing a deep CNN pretrained on a large dataset as a feature extraction tool for downstream classification and evolutionary parameter 
prediction. This approach reduces extensive training data generation requirements and computational needs while maintaining high 
performance. In this study, we developed TrIdent, a tool that uses transfer learning to enhance detection of adaptive genomic regions from 
image representations of multilocus variation. We evaluated TrIdent across various genetic, demographic, and adaptive settings, in addition to 
unphased data and other confounding factors. TrIdent demonstrated improved detection of adaptive regions compared to recent methods 
using similar data representations. We further explored model interpretability through class activation maps and adapted TrIdent to infer 
selection parameters for identified adaptive candidates. Using whole-genome haplotype data from European and African populations, TrIdent 
effectively recapitulated known sweep candidates and identified novel cancer, and other disease-associated genes as potential sweeps.
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Introduction

The study of biological diversity and adaptation relies on the 
identi�cation and understanding of past evolutionary events. 
These events shed light on the processes that have shaped 
the genetics of organisms throughout history and those that 
are ongoing. Identifying genomic regions that are subject to 
the pressures of natural selection enables the discovery and 
isolation of genetic variants that may have contributed to 
adaptive traits in past environments. Understanding the genet-
ic basis of vital characteristics like disease resistance, repro-
ductive success, and physiological adaptations to changing 
environmental conditions illuminates the evolutionary history 
of a species. Predicting how species will respond to shifting 
weather patterns (Hoffmann and Sgrò 2011), altered habitats 
(Grant and Grant 2002), and the emergence of new diseases 
(Allison 1954) is enhanced by these �ndings. A window into 
the complex dynamics of evolution and adaptation can be 
found in the discovery of evolutionary events in genomes, 
which has implications for both theoretical and applied 
research.

A number of approaches have been taken to uncover traces 
of natural selection from polymorphisms within a population 
in light of neutral evolutionary processes, such as mutation, 

recombination, migration, and genetic drift, which can both 
bolster and erode past adaptive signals (Kimura 1979; 
Slatkin 1987; Barton and Charlesworth 1998; Lynch 2010). 
Initial efforts for detecting such nonneutral regions involved 
summary statistics based on alterations of the distribution of 
allele frequencies, such as Tajima’s D (Tajima 1989) and 
Fay and Wu’s H (Fay and Wu 2003). These summary statistic 
approaches have been enhanced in contemporary studies to 
evaluate distortions in haplotype frequency distributions, 
such as H12 (Garud et al. 2015), and to assess the footprint 
of reduced genomic diversity through extended haplotype 
homozygosity methods, such as expected haplotype homozy-
gosity (EHH) (Sabeti et al. 2002), integrated haplotype score 
(Voight et al. 2006), and nSL (Ferrer-Admetlla et al. 2014). 
Further, more model-based approaches founded in population 
genetic theory or sensible probability distributions have re-
vealed improved power, ability to isolate loci at which selec-
tion has likely acted, and effectiveness at estimating 
underlying parameters of the adaptive process (Nielsen et al. 
2005; Stephens and Balding 2009; Chen et al. 2010; 
Pasaniuc et al. 2014; Vy and Kim 2015; Racimo 2016; Lee 
and Coop 2017; Lloyd-Jones et al. 2019; Harris and 
DeGiorgio 2020; Setter et al. 2020; DeGiorgio and Szpiech 
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2022). However, more recently, there has been a focus on a 
promising branch of selection detection methods based on ma-
chine learning or arti�cial intelligence that consider evidence 
from multiple input statistics or that operate on raw haplotype 
alignments or genotype calls (Schrider and Kern 2018; 
Korfmann et al. 2023).

Supervised machine learning represents an important 
branch of such methods, where models are trained on a set 
of observations often composed of a multidimensional input 
and a paired output value (Hastie et al. 2009). Training algo-
rithms learn patterns and the functional relationship between 
the input and output data from these example observations 
(termed the training set) to hopefully make accurate output 
predictions on unseen future input data. Classi�cation and re-
gression tasks both make use of supervised learning algo-
rithms to achieve their respective goals of organizing inputs 
into prede�ned categories (termed classes) and making con-
tinuous outcome predictions. There exist numerous super-
vised learning algorithms for classi�cation and regression 
tasks, each with its own assumptions about data distributions 
and functional relationships (e.g. degree of nonlinearity) be-
tween the input and output values. Of course, no one ap-
proach is best, and the prediction abilities of the trained 
models highly depend on the correctness of the assumed 
data distribution and true underlying function relating the in-
put and output. Arti�cial neural networks (ANNs) are univer-
sal approximators (Hornik 1991), having the capacity to 
represent any underlying function with enough model param-
eters, and can thus learn complicated patterns in a manner 
reminiscent of how the human brain works. One recent type 
of neural network that has enjoyed extensive success in image 
classi�cation and recognition tasks is the convolutional neural 
network (CNN; Krizhevsky 2012), which is optimized for 
handling structured grid-like data.

Deployment of advanced machine learning and arti�cial in-
telligence tools has brought about a revolution in the realm of 
natural selection pattern recognition. Some of the applications 
of machine learning includes the extraction of features from 
one or many statistics computed in contiguous genomic win-
dows, signi�cantly increasing power to detect patterns com-
pared to the classical usage of such statistics. Many of the 
state-of-the-art applications in this paradigm make use of 
powerful contemporary feature extraction tools on summary 
statistic arrays, ranging from simple linear to complex non-
linear models. Nevertheless, massive volumes of training 
data are typically necessary for nonlinear models, such as 
neural networks, to learn their parameters due to high model 
complexity. Such models are prone to over�tting and under-
performance in the absence of large training sets, or through 
the use of automated frameworks to reduce the capacity or re-
presentation ability of the learned models (Hastie et al. 2009).

While data availability can be a limiting factor in some 
�elds, population genetics bene�ts from the ability to generate 
effectively unlimited training data via simulation, particularly 
with simulation-on-the-Jy techniques that provide new data 
with each iteration (Chan et al. 2018; Flagel et al. 2019; 
Torada et al. 2019; Battey et al. 2020), thus mitigating over�t-
ting. However, minimizing the need for extensive training data 
remains bene�cial to reduce computational demands and en-
vironmental impact, as highlighted by recent studies on the 
carbon footprint of bioinformatics tools (Grealey et al. 
2022). Ef�cient and adaptable methods are crucial for analyz-
ing genomic patterns shaped by natural selection. A 

framework that can swiftly summarize and capture these pat-
terns without relying on application-speci�c summary statis-
tics offers signi�cant advantages. Utilizing a robust feature 
extractor capable of handling generalized genomic summaries 
ensures both adaptability and effectiveness, particularly in 
contexts with limited computational resources. This approach 
enhances the ability to detect and analyze complex genomic 
patterns, balancing the need for ef�ciency with sophisticated 
analysis.

This challenge can be addressed by applying transfer learn-
ing, a method of pretraining a neural network on unrelated 
data (Bozinovski 2020). Pretrained models are used in image 
classi�cation to speed up convergence and improve outcomes 
(Hendrycks et al. 2019). The �eld of computer vision has been 
signi�cantly enhanced by models trained on the ImageNet da-
taset (Deng et al. 2009). ImageNet is a massive collection of 
approximately 14 million annotated images organized into 
1,000 categories that provide adequate diversity for develop-
ing powerful image categorization applications. Harnessing 
the diverse spectrum of images in this dataset and by lever-
aging high-performance computing resources, deep learning 
has made several prominent architectures the gold standard 
for image classi�cation (Russakovsky et al. 2015; Beyer 
et al. 2020). A transfer learning model trained on a massive 
set of labeled images can be used as a feature extraction 
tool, thus eliminating the need to train complex models to suc-
cinctly represent input genomic data in a transformed space 
that is usable for downstream prediction tasks. Various trans-
fer learning architectures have been successfully deployed in 
nonnatural image categorization tasks, such as medical im-
aging or industrial defect detection (Ming et al. 2021; 
Sha�que et al. 2022; Suganyadevi et al. 2022), which contrasts 
with natural images that typically capture scenes from the nat-
ural world (i.e. landscapes or wildlife). This distinction under-
scores the robustness of these architectures, alleviating 
concerns about substandard performance when classifying 
images that capture patterns left by evolutionary events.

Instead of constructing a shallow CNN that operates on in-
put images (Zhao et al. 2023) from a dataset with limited 
numbers of samples, it may be better to use pretrained deep 
CNN architectures. Unlike shallow CNNs, which are unable 
to capture the complex relationship between input images 
and the category they belong to, these pretrained deep 
CNNs are able to signi�cantly improve the ability to model 
such complex relationships. Another advantage of pretrained 
CNNs is their capacity to generalize learning from one domain 
to another (Sharif Razavian et al. 2014; Yosinski et al. 2014). 
This ability helps pretrained CNNs perform better than shal-
low custom-made CNNs constructed and trained using small-
er datasets (Azizpour et al. 2015; Tajbakhsh et al. 2016). 
Feature extraction from small datasets is enhanced by pre-
trained CNN architectures, leading to better generalization 
performance and resilience in tasks that have few data sam-
ples. Because training deep CNNs from scratch requires sub-
stantial computational resources, making use of pretrained 
models becomes a more feasible and ef�cient option.

In this article, we aim to develop powerful and robust nat-
ural selection detection and characterization tools by exploit-
ing the feature extraction ef�cacy afforded by pretrained CNN 
models. Speci�cally, we apply �ve neural networks architec-
tures pretrained on the large ImageNet database, which we 
use to extract transformed feature sets for input to classi�ers 
to detect adaptive events and to regressors to predict 
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parameters of such events. By training models with a small 
number of simulated replicates and then testing their predic-
tions with an array of confounding factors, we demonstrate 
that transfer learning can be a reliable tool for building pre-
dictive population genomic models that take images of haplo-
type variation as input without requiring extensive training 
data. Moreover, we introduce an ef�cient approach for con-
structing input images of haplotype variation that organizes 
diversity in a way that is easier for downstream image-based 
sweep classi�ers to extract key patterns, ultimately improving 
their accuracies and powers. Here, we present TrIdent 
(Transfer learning for Identi�cation of adaptation), which is 
implemented as open-source software available at https:// 
www.github.com/sandipanpaul06/TrIdent. As an empirical 
case study, we apply TrIdent to haplotype variation from a 
well-studied European human population (CEU; Utah resi-
dents with Northern and Western European ancestry) from 
the 1000 Genomes Project dataset, and are able to recapitulate 
established selective sweep candidates, such as LCT and 
OCA2, and discover candidate sweep signals in novel cancer- 
associated genes, such as MTOR, LAMC2, RBMS3, and 
NKAIN2, with high support. Similarly, when applied to a 
well-studied African human population (YRI; Yoruba in 
Ibadan) from the same dataset, TrIdent successfully identi�es 
established sweep candidates, such as HEMGN, SYT1, 
GRIK5, FOXP2, and APOL1, while also uncovering novel 
candidate sweep signals in ROBO2, with strong support.

Results

Modeling Description

We used the coalescent simulator discoal (Kern and 
Schrider 2016) under two nonequilibrium demographic his-
tories estimated for European (CEU) and sub-Saharan 
African (YRI) humans (Tennessen et al. 2012), which respect-
ively include a recent severe population bottleneck and a re-
cent population expansion, to simulate neutral and sweep 
replicates to train and evaluate TrIdent. We simulated sweeps 
with per-generation selection strengths (s) ranging from 0.005 
to 0.1, bene�cial allele frequencies (f) from 1/(2Ne) to 0.2, and 
�xation times of bene�cial alleles (τ) from 0 to 2,000 genera-
tions prior to sampling. Moreover, sweep and neutral repli-
cates were generated with per-site per-generation mutation 
rates (μ) from 2.21 × 10−9 to 2.21 × 10−8, and per-site per- 
generation recombination rates (r) from 0 to 3 × 10−8 with a 
mean rate of 10−8 (see Simulation protocol subsection of the 
Materials and Methods). Together, these settings and param-
eters allowed for the examination of a broad range of genetic 
and adaptive conditions, while focusing on two distinct demo-
graphic histories. Given the wide range of selection strengths 
and bene�cial allele frequencies, along with varying mutation 
and recombination rates and �xation events that may have oc-
curred far in the past, and further complicated by Juctuations 
in population size, substantial overlap in the distribution of 
genetic variation between neutral and selection settings is ex-
pected. This overlap creates signi�cant challenges in distin-
guishing the sometimes subtle genetic patterns driven by 
positive selection from those that emerge under neutrality.

For the purpose of producing inputs to feed TrIdent, we 
formed the CEU and YRI training datasets by using 1,000 neu-
tral and 1,000 sweep replicates that were simulated using their 
respective demographic histories. In addition, we generated 
two sets of test and validation datasets to complement the 

CEU and YRI training datasets, each consisting of 1,000 neu-
tral and 1,000 sweep replicates. We detail the processing of in-
put images from these simulated replicates in the Image 
Generation subsection of the Methods. The image generation 
process (Fig. 1; top panel) transforms these replicates into 
grayscale images representing sorted minor allele counts 
across shifting small and overlapping windows, and then re-
sized to match the input expectations of the pretrained models.

Heatmaps depicting mean images for the sweep and neutral 
classes for the CEU and YRI datasets show that, in contrast to 
the neutral image, the sweep image features a dark vertical seg-
ment in the central columns representing a loss of diversity in 
the central columns due to high-frequency haplotypes 
(supplementary �g. S1, Supplementary Material online). 
That is, these regions contain a string of major alleles that 
are at high frequency near the center of the sweep replicates. 
Once these input images have been resized, each pixel is stand-
ardized according to its value at that particular position across 
all training images, so that each pixel has a mean of zero and a 
standard deviation of one. Heatmaps depicting mean standar-
dized neutral and sweep images show that the neutral image 
has a red segment of positive values in the central columns 
to complement the blue segment of negative values in the 
sweep image (Fig. 2). Thus, standardization reveals a clear dis-
tinction between the two classes, and serves as a proof of con-
cept that the applied image generation technique presents a 
pattern that can be employed to discriminate between positive 
selection and neutrality.

These standardized images are fed to pretrained models, 
after which we retain the output vector, representing trans-
formed features or embeddings, from the global average pool-
ing (GAP) layer that we attach to the pretrained model (Fig. 1; 
bottom panel). The GAP layer computes the mean value of 
each feature map, effectively reducing the spatial dimensions 
and summarizing the most salient features of the image. By 
averaging each feature map into a single node, GAP reduces 
the number of parameters in the model and makes the model 
more robust to spatial translations, offering advantages over 
traditional fully connected layers (Szegedy et al. 2015). A pe-
nalized logistic regression classi�er is then trained using the 
GAP layer outputs from 1,000 neutral and 1,000 sweep simu-
lations, along with an elastic-net regularization penalty to sim-
ultaneously modulate model complexity and sparsity (Zou 
and Hastie 2005; Hastie et al. 2009). In particular, the magni-
tudes of model parameters associated with each transformed 
input feature are controlled by an L2-norm penalty, and fea-
ture selection is carried out to control sparsity by setting 
some model parameters to zero through an L1-norm penalty. 
The hyperparameter α ∈ {0.0, 0.1, . . . , 1.0} speci�es the pro-
portion of model regularization that derives from the 
L2-norm penalty, whereas the hyperparameter λ ∈ 

{10−6, 10−5, . . . , 105} designates the amount of total regular-
ization. We utilized the LogisticRegression module from the 
Scikit-learn (Pedregosa et al. 2011) package in Python to train 
the classi�er. The best pair of hyperparameters to train the 
classi�er was determined based on binary cross-entropy loss 
across the validation set.

Choosing an Appropriate Pretrained Model

Numerous pretrained models are available for transfer learn-
ing, including VGGNets, GoogleNets, ResNets, and 
Ef.cientNets that each have their own architectures and dis-
tinguishing features. A minimalist architecture and a modest 
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number of convolutional �lters distinguish the Visual 
Geometry Group (VGG)Net from other models pretrained 
on the ImageNet dataset (Simonyan and Zisserman 2015). 
Szegedy et al. (2015) found that the Inception modules of 
GoogleNet improved performance and allowed it to capture 
features at multiple scales, whereas ResNet mitigated the van-
ishing gradient problem, a hurdle in training extremely deep 
networks consisting of multiple layers designed to learn com-
plex hierarchical representations of the input data by focusing 
on residual learning, which helps information Jow more 
smoothly through the layers via skipped connections between 
layers (He et al. 2016). Recent developments like Ef.cientNet 
and MobileNet employ a compound scaling parameter, 

through which the numbers of layers and nodes in a layer 
are controlled. Capacity to modulate the depths of layers 
and width of nodes allows these models to offer a tradeoff be-
tween ef�ciency and complexity (Tan and Le 2019). The 
InceptionResNet architecture is an augmentation of the 
Inception architecture by incorporation of residual learning 
(Szegedy et al. 2017), and represents a robust image recogni-
tion system with high accuracy in numerous tasks. By adding 
residual connections to its Inception blocks, Inception 
ResNetV2 improves network information Jow and gradient 
propagation during training (Wang et al. 2021). We �rst study 
the ef�cacy of �ve pretrained models (InceptionResNetV2, 
VGG16, Ef.cientNetB0, Ef.cientNetB7, and MobileNetV2) 

Fig. 1. Depiction of the TrIdent[IRV2] model (bottom panel), including the native TrIdent image generation method (top panel). As described in Image 

generation subsection of the Methods, for a haplotype alignment with haplotypes on rows and SNPs on columns, the major allele is represented by zero 

and the minor allele by one at each SNP. From this processed alignment, the number of minor alleles for each haplotype is counted in a window and 

window locations are shifted by a specific stride, which is chosen as window size of three SNPs and a stride of one SNP in this schematic. The minor allele 

counts for each window are then sorted, such that the top row with have smallest value and the bottom row the largest value for a given window. A matrix 

based on a certain number of consecutive windows (here five windows) is created, this matrix is copied over two more channels to create a tensor, 

resulting in a three-channel grayscale image. This image is fed as input to the “Feature Extraction” block consisting of a pretrained deep CNN model that 

may incorporate various combinations (indicated by blocks of different colors) of a subset of the following layers: convolutional, maxpooling, dense, 

dropout, squeeze-and-excitation, depth-wise separable convolutional, and residual connections. A GAP layer is attached to the pretrained model to 

generate a feature vector, which is then used to train a classifier. The TrIdent[IRV2] model, which is focused on this article, combines the use of 

InceptionResNetV2 as the pretrained model and penalized logistic regression as the binary classifier.
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as complex feature extraction methods to develop adaptive 
event classi�cation tools. We accessed these models with 
TensorFlow (Abadi et al. 2015), as their APIs make communi-
cation with these pretrained models as well as their integration 
into workJows easier.

We evaluated the accuracy and power of the TrIdent logistic 
regression classi�ers developed based on GAP layer 
outputs attached to the pretrained InceptionResNetV2, 
VGG16, Ef.cientNetB0, Ef.cientNetB7, and MobileNetV2 
on both the CEU and YRI datasets. For convenience of 
presentation, we respectively refer to these models as 
TrIdent[IRV2], TrIdent[VGG16], TrIdent[ENB0], TrIdent 
[ENB7], and TrIdent[MNV2]. On the CEU dataset, we found 
that TrIdent[IRV2], with its high number of parameters and 
computational demand, achieves the highest classi�cation 
accuracy of 86.2% along with the highest sweep detection 
accuracy among all �ve classi�ers (supplementary �g. S2, 
Supplementary Material online). In contrast, the most light-
weight and computationally ef�cient TrIdent[VGG16] 
as well as the moderately accurate and moderately ef�cient 
architecture of MobileNetV2 achieve identical accuracies of 
85.1% (supplementary �g. S2, Supplementary Material on-
line). The two Ef.cientNet classi�ers, TrIdent[ENB0] and 
TrIdent[ENB7], are the worst performers out of the �ve 
TrIdent models. However, TrIdent[ENB0], with an accuracy 
of 84.95%, outperforms ENB7, which achieves an accuracy of 
83.8%. This �nding suggests that the shallower architecture of 
ENB0 performs better in this case, contrary to the expectation 

that deeper architectures typically yield higher accuracy. 
These results are mirrored by the powers of these methods 
to detect sweeps based on receiver operating characteristic 
(ROC) curves, with TrIdent[IRV2], TrIdent[MNV2], 
and TrIdent[VGG16] exhibiting similar ROC curves and 
TrIdent[IRV2] slightly edging out TrIdent[MNV2] and 
TrIdent[VGG16] (supplementary �g. S2, Supplementary 
Material online). On the other hand, TrIdent[ENB7] show-
cases the lowest power to detect sweeps among the �ve classi-
�ers (supplementary �g. S2, Supplementary Material online).

Our results also show that the classi�cation behavior of 
TrIdent on the YRI dataset relative to CEU depends on net-
work architecture (compare supplementary �gs. S2 and S3, 
Supplementary Material online). Speci�cally, TrIdent[IRV2] 
and TrIdent[MNV2] lead the set of classi�ers with overall 
accuracies of 87.55% and 87.50%, respectively, with 
TrIdent[IRV2] marginally edging out TrIdent[MNV2] 
(supplementary �g. S3, Supplementary Material online), simi-
larly to the application on the CEU dataset (supplementary �g. 
S2, Supplementary Material online), with slightly higher ac-
curacies than on the CEU dataset, which may be expected as 
the YRI dataset has higher mean neutral haplotype diversity. 
The ROC curves of this pair of classi�ers also indicate their 
proximity in performance metrics, while clearly distancing 
themselves from the other three classi�ers. Moreover, 
TrIdent[ENB0] and TrIdent[ENB7] again prove to be 
the weakest of the set of classi�ers with accuracies of 
74.35% and 77.30%, respectively (supplementary �g. S3, 

Fig. 2. Heatmaps depicting standardized input images of size 224 × 224, averaged across the 1,000 training replicates for either the neutral or sweep 

class simulated under either the European (CEU) or Sub-Saharan African (YRI) human demographic history (Tennessen et al. 2012). Standardized input 

images are processed as in the Image generation subsection of the Materials and Methods, with standardization occurring across the 2,000 neutral and 

sweep training replicates for each pixel. Rows of the images represent haplotypes, whereas columns represent genomic window of 25 contiguous SNPs 

within a haplotype, with an equal number of windows flanking the center of a simulated genomic region. The colorbar indicates a measure proportional to 

the number of minor alleles within the haplotype window relative to the mean number (scaled by the standard deviation of minor allele counts) for that 

window across the neutral and sweep training observations. Darker blue shading represents a higher number of major alleles than average and darker red 

shading represents a higher number of minor alleles than average.
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Supplementary Material online). However, unexpectedly, 
their accuracies are signi�cantly lower than on the CEU data-
set. TrIdent[VGG16], similar to the CEU test case, stations it-
self in the middle of these pairs of classi�ers with an overall 
accuracy of 84.55% (supplementary �g. S3, Supplementary 
Material online). Following the superior classi�cation per-
formance of TrIdent[IRV2] compared to the other TrIdent 
models in both the CEU and YRI test cases, we elected to pur-
sue TrIdent[IRV2] for future analyses. Given our simulation 
setup and the two classes analyzed, TrIdent[IRV2] proved to 
be the most effective and consistent model. However, it may 
not be the best choice for all applications. Other pretrained 
models, including but not limited to the ones we tested, could 
perform better depending on the speci�c context and 
requirements.

Viability of Alternate Architectures and Methods

Though TrIdent[IRV2] uses a linear model (logistic regression 
classi�er) with features extracted from the InceptionResNetV2 
architecture, we also evaluated nonlinear models based on 
ANNs for classi�cation using the same extracted features. We 
refer to this approach as TrIdent[IRV2, ANN]. We optimized 
the TrIdent[IRV2, ANN] architecture by varying the number 
of hidden layers L ∈ {1, 2, 3, 4, 5}, the number of nodes n3 ∈ 

{100, 200, . . . , 1,000} in each hidden layer 3 ∈ {1, 2, . . . , L}, 
and the activation function for nodes in each hidden layer 
ϕ3 ∈ {ReLU, sigmoid, tanh}. The node in the output layer has 
a sigmoid activation function, and the input layer has 1,536 no-
des, which is identical to the number of features generated by 
the GAP layer attached to the InceptionResNetV2 architecture. 
Like our linear TrIdent[IRV2] model, TrIdent[IRV2, ANN] 
also employs L1—and L2-norm regularization penalties for 
each hidden and output layer, with regularization hyperpara-
meters chosen from the same ranges as those for the linear mod-
el (see Modeling description subsection). Each model is trained 
to minimize binary cross-entropy loss using the Adam opti-
mizer (Kingma and Ba 2015). The optimal architecture and hy-
perparameters were selected based on the smallest binary 
cross-entropy validation loss on the CEU dataset, which re-
sulted in a model of L = 3 hidden layers with n1 = 1,000, 
n2 = 500, and n3 = 500 nodes in the �rst, second, and third hid-
den layers, respectively, sigmoid activations for nodes in the 
�rst and second hidden layers, and a tanh activation for nodes 
in the third hidden layer. We obtained a near identical optimal 
architecture for the YRI dataset, with the exception of an add-
itional hidden layer (L = 4) with n4 = 500 nodes and a tanh ac-
tivation. However, when applied to the same test data used for 
the linear model, TrIdent[IRV2, ANN] classi�cation perform-
ance was virtually unchanged relative to TrIdent[IRV2] 
(supplementary �g. S4, Supplementary Material online). This 
result was consistent even with various training set sizes 
(1,000, 3,000, and 5,000 observations per class), suggesting 
that the nonlinearity introduced by the ANN did not lend add-
itional bene�t beyond that of the InceptionResNetV2 feature 
extractor. We therefore decided to continue with the linear 
TrIdent model for classi�cation tasks, as the simpler logistic re-
gression model has fewer parameters and is faster to train than 
the ANN.

We also tested the classi�cation performance of 
TrIdent[IRV2] against T-REx (Amin et al. 2023), which is a 
high-performing tensor decomposition-based sweep classi�er 
that operates on a windowed aggregation of genetic diversity 
as its input, similar to our image generation method, and that 

uses an L1—and L2-norm penalized logistic regression classi�er 
for prediction, which is identical to TrIdent. To provide a fair 
comparison of performance, we tested TrIdent[IRV2] and 
T-REx with both image generation techniques. That is, 
TrIdent[IRV2] and T-REx were trained and evaluated based 
on their own native image generation approaches, as well as 
the image generation approaches of the competing model. For 
clarity, we denote the TrIdent[IRV2] model trained and tested 
on the alternate image generation style of T-REx as 
TrIdent[IRV2, alt], and the T-REx model trained and tested 
on the alternate image generation style of TrIdent as 
T-REx[alt]. We �nd that on the CEU dataset, the 
TrIdent[IRV2, alt] alternate implementation loses 2% accuracy 
compared to the stock TrIdent[IRV2] model (Fig. 3). 
Moreover, T-REx trained on its native image generation style 
exhibits lower classi�cation accuracy (79.6%) compared to 
both the TrIdent[IRV2] models (Fig. 3). However, the 
T-REx[alt] alternate implementation reports a higher classi�ca-
tion accuracy (81.75%) compared to the stock T-REx model, 
but falls short of TrIdent[IRV2] by 4.45% (Fig. 3). The powers 
of each of these models to detect sweeps at a 5% false positive 
rate (FPR), lend further support that TrIdent models signi�-
cantly outperform the T-REx models, regardless of the input 
image representation used by T-REx (Fig. 3). Speci�cally, 
TrIdent[IRV2] marginally surpasses TrIdent[IRV2, alt] as the 
most powerful model of the four at a 5% FPR.

A parallel illustration is observed when the performances of 
the stock and alternate models of TrIdent[IRV2] and T-REx 
are evaluated on the YRI dataset (Fig. 4). The stock 
TrIdent[IRV2] model leads the four models with an accuracy 
of 87.55%, followed by TrIdent[IRV2, alt] (85.30%), 
T-REx[alt] (83.85%), and T-REx (82.80%). The detection cap-
ability of TrIdent[IRV2] for identifying sweeps at a 5% FPR 
provides additional evidence that TrIdent[IRV2] is the superior 
model of the four in this test case (Fig. 4). Though a deeper in-
spection of model performances shows that the performance dif-
ference seen among the models in the CEU test case (Fig. 3) is 
noticeably reduced in the YRI test case (Fig. 4), with the absence 
of a population bottleneck in the YRI dataset apparently bridg-
ing the performance gap among models.

In addition to comparing TrIdent[IRV2] with T-REx, 
we conducted a comprehensive evaluation by also comparing 
it against diploS/HIC (Kern and Schrider 2018), a state- 
of-the-art selective sweep detector that integrates summary 
statistics with comparatively shallow CNNs. We trained and 
tested diploS/HIC in its native setting, with one modi�cation 
as we calculated the summary statistics in 101 windows in-
stead of 11. While diploS/HIC typically uses 11 windows (re-
sulting in 11 features for the downstream CNN model for each 
summary statistic), we chose to use 101 windows (resulting in 
101 features for the downstream CNN model for each sum-
mary statistic), which retains the focal window but within 
an increased number of Janking windows. This adjustment re-
sulted in a �ner representation, and enhanced the prediction 
performance of diploS/HIC in our initial investigation. 
We also extended our analysis to evaluate a variant of the 
TrIdent[IRV2] architecture to better understand its perform-
ance when operating on summary statistic data, which we 
denote as TrIdent[IRV2, SS]. Speci�cally, we employed the 
12 diploS/HIC summary statistics—ÿπ (Tajima 1983), ÿθW 

(Watterson 1975), Tajima’s D (Tajima 1989), the variance, 
the skewness, and the kurtosis of multilocus genotype distan-
ces between pairs of sampled individuals, the multilocus 
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Fig. 3. Classification rates and accuracies as depicted by confusion matrices, powers (true positive rates) to detect sweeps as depicted by ROC curves to 

differentiate sweeps from neutrality, and powers at a 5% FPR to detect sweeps on the CEU dataset for the best performing TrIdent model (TrIdent[IRV2]) 

compared to T-REx. The comparison also includes TrIdent[IRV2, alt] and T-REx[alt], which are trained and tested using their alternate image generation 

styles (see Viability of alternate architectures and methods subsection of the Results for details).

Fig. 4. Classification rates and accuracies as depicted by confusion matrices, powers (true positive rates) to detect sweeps as depicted by ROC curves to 

differentiate sweeps from neutrality, and powers at a 5% FPR to detect sweeps on the YRI dataset for the best performing TrIdent model (TrIdent[IRV2]) 

compared to T-REx. The comparison also includes TrIdent[IRV2, alt] and T-REx[alt], which are trained and tested using their alternate image generation 

styles (see Viability of alternate architectures and methods subsection of the Results for details).
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genotype equivalents of EHH H1, H12 (Garud et al. 2015; 
Harris et al. 2018), and H2/H1 (Garud et al. 2015; Harris 
et al. 2018), unphased Zns (Kelly 1997; Rogers and Huff 
2009), and the maximum value of ω (Kim and Nielsen 
2004; Rogers and Huff 2009)—which provide insights into 
multiple aspects of genetic diversity affected by selective 
sweeps, including the structure of haplotype variation, nucleo-
tide diversity, and linkage disequilibrium. Together, these 
components offer a comprehensive view of the effects of select-
ive sweeps on genomic regions (Schrider and Kern 2016; Kern 
and Schrider 2018). We computed these summary statistics in 
101 contiguous and nonoverlapping windows (each of length 
11 kb) across simulated sequences of length 1.1 Mb, resulting 
in input matrices of dimension 12 × 101, with summary statis-
tics on the rows and computed values across windows along 
the columns. We then resized these matrices to dimension 
299 × 299 to match the expected input image size of 
InceptionResNetV2. Moreover, though diploS/HIC was ori-
ginally designed to differentiate among �ve classes, we re-
tooled it to differentiate between two classes, as in other 
studies (Mughal et al. 2020; Arnab et al. 2023).

Next, we evaluated an alternate version of diploS/HIC by 
training a shallow CNN using the images produced by the na-
tive image generation method of TrIdent, which we refer to as 
smbCNN (shallow multibranch CNN). We employed the 
identical CNN architecture used in diploS/HIC (Kern and 
Schrider 2018) to extract features from input images. This 
shallow architecture is comprised of three branches, each con-
taining two convolution layers with ReLU activation (Nair 
and Hinton 2010) as well as max pooling (LeCun et al. 

1998), dropout (Srivastava et al. 2014), and Jatten layers, 
with the kernel sizes and dilation rates (Yu and Koltun 
2015) utilized in the convolution layers determining the differ-
ences among these three branches. These branches are then 
concatenated prior to adding two pairs of dropout and dense 
layers to form the �nal model.

By examining TrIdent[IRV2, SS] and smbCNN, we aim to 
understand the potential impact of incorporating summary 
statistics into the TrIdent[IRV2] architecture, as well as the ef-
fect of using shallow CNNs trained on TrIdent native images. 
Comparing TrIdent[IRV2], TrIdent[IRV2, SS], diploS/HIC, 
and smbCNN across the CEU (Fig. 5) and YRI (Fig. 6) data-
sets, we can assess the impact of different architectural choices 
on model performance. In both demographic test cases, 
smbCNN was the poorest performing model among the 
four, with accuracies of 80.1% and 83.7% on the CEU and 
YRI datasets, respectively (Figs. 5 and 6). However, the two 
models employing summary statistics, TrIdent[IRV2, SS] (ac-
curacy of 90.05% on CEU and 94.95% on YRI) and diploS/ 
HIC (accuracy of 88.30% on CEU and 94.15% on YRI), con-
sistently demonstrate higher classi�cation accuracy compared 
to TrIdent[IRV2] (Figs. 5 and 6). TrIdent[IRV2, SS] outper-
formed diploS/HIC in both cases. Prior to resizing, summary 
statistic-based images are signi�cantly smaller than native 
TrIdent images (12 × 101 compared to 198 × 499 for CEU 
or 216 × 499 for YRI). Because different summary statistics 
computed within a given window are arranged along a column 
in consecutive rows, some correlation among values is antici-
pated. Moreover, values along rows, which are individual 
summary statistics computed across consecutive windows, 

Fig. 5. Classification rates and accuracies as depicted by confusion matrices, powers (true positive rates) to detect sweeps as depicted by ROC curves to 

differentiate sweeps from neutrality, and powers at a 5% FPR to detect sweeps on the CEU dataset for the best performing TrIdent model (TrIdent[IRV2]) 

compared to diploS/HIC and smbCNN. The smbCNN model represents a custom-built shallow CNN trained using TrIdent’s native images, and 

TrIdent[IRV2, SS] represents an alternate TrIdent[IRV2] architecture trained using summary statistics based images (see Viability of alternate 

architectures and methods for details).
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are also expected to be correlated. For methods that utilize 
summary statistics as input, the arrangement of haplotypes 
within a window does not affect the computation, as the sta-
tistics are derived from the aggregated properties of the win-
dow rather than the speci�c ordering of haplotypes.

Fine-Tuning vs. Feature Extraction

Building upon our comparison of �ve pretrained architectures 
in the previous subsection, we conducted an additional 
experiment to explore whether the strong performance of 
TrIdent is attributable to the model itself or to the pretrained 
feature extraction capabilities of the InceptionResNetV2 
backbone. We developed a modi�ed model, termed IRV2 
(InceptionResNetV2 architecture trained on TrIdent images), 
which extends the InceptionResNetV2 architecture by incorp-
orating a GAP layer and an output layer consisting of a single 
node with a sigmoid activation function but does not include 
an elastic-net style penalty for parameter �tting. The model 
was trained directly on the TrIdent input images, with starting 
weights obtained from pretrained weights of ImageNet.

The training dataset size for IRV2 was the same as that uti-
lized for the TrIdent[IRV2] model in one experiment (1,000 
samples per class) and was increased to 10,000 samples per 
class in a second experiment. Following the training of IRV2 
on 1,000 samples per class, a slight enhancement in perform-
ance was noted in comparison to TrIdent[IRV2]. The accur-
acy improved by 1.7% on the CEU dataset (87.9% 
compared to 86.2%) and by 3.3% on the YRI dataset 
(90.85% compared to 87.55%; supplementary �g. S5, 

Supplementary Material online). When trained on 10,000 
samples per class, IRV2 achieved even higher accuracies: 
90.85% on CEU and 92.45% on YRI. These results illustrate 
the capacity of InceptionResNetV2 to achieve superior per-
formance with an increased number of training samples, con-
sistent with observations in other domains where large-scale 
training datasets unlock additional classi�cation accuracy 
and power (Yu et al. 2015; Alzubaidi et al. 2021).

The resource demands of training IRV2 (see the 
Computational resources and requirements subsection of the 
Methods) underscore the computational challenges inherent 
in training deep neural networks from scratch using simulated 
data, rather than utilizing pretrained architectures. These �nd-
ings highlight the balance between accuracy and computation-
al ef�ciency. While IRV2 outperformed TrIdent[IRV2], such 
gains come at the expense of signi�cantly greater computa-
tional resources and training time. TrIdent[IRV2] demon-
strates that by employing pretrained feature extraction, 
strong performance can be achieved with substantially fewer 
training samples and lower computational overhead. This 
balance positions TrIdent[IRV2] as a practical and effective 
solution for natural selection detection, especially where com-
putational resources are constrained.

Performance in the Presence of Missing Genomic 
Regions

Due to undiscovered polymorphisms, haplotypic diversity can 
be reduced when segments of the genome are missing as a re-
sult of poor mappability, alignability, sequencing, or variant 

Fig. 6. Classification rates and accuracies as depicted by confusion matrices, powers (true positive rates) to detect sweeps as depicted by ROC curves to 

differentiate sweeps from neutrality, and powers at a 5% FPR to detect sweeps on the YRI dataset for the best performing TrIdent model (TrIdent[IRV2]) 

compared to diploS/HIC and smbCNN. The smbCNN model represents a custom-built shallow CNN trained using TrIdent’s native images, and 

TrIdent[IRV2, SS] represents an alternate TrIdent[IRV2] architecture trained using summary statistics based images (see Viability of alternate 

architectures and methods for details).
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calling (Alkan et al. 2011; Talkowski et al. 2011). As a conse-
quence, this decline in local genomic variation can resemble a 
footprint of a selective sweep, misleading sweep detection ap-
proaches to mistakenly attribute such diversity as a positive se-
lection in neutrally evolving genomic regions (Vitti et al. 2013; 
Mughal et al. 2020). Hence, we aim to evaluate whether 
TrIdent[IRV2] and T-REx, both with native and alternate 
ways of generating images, mistakenly identify neutrally 
evolving regions harboring missing genomic segments as se-
lective sweeps as well as lose capacity to differentiate sweeps 
from neutrality under such settings. We removed polymor-
phisms from test replicates according to the human empirical 
distribution of CRG (Centre for Genomic Regulation) mapp-
ability and alignability scores (see Filtration of empirical data 
subsection of the Materials and Methods), which past studies 
have shown to negatively affect machine learning sweep clas-
si�ers (Mughal and DeGiorgio 2019; Mughal et al. 2020; 
Amin et al. 2023; Arnab et al. 2023).

We simulated additional sets of neutral and sweep test rep-
licates under both CEU and YRI demographic histories using 
discoal, and introduced missing regions using the identical 
protocol as Arnab et al. (2023) based on the empirical human 
distribution. Speci�cally, we randomly chose one of the 22 hu-
man autosomes with probability proportion to the length of 
each autosome. From this autosome, we selected a starting 
genomic location uniformly at random for a 1.1 Mb segment. 
We removed single nucleotide polymorphisms (SNPs) that in-
tersected with human genomic regions of low mappability and 
alignability (see Filtration of empirical data and empirical im-
age generation subsection of the Materials and Methods). 
Because TrIdent only considers the central 499 SNPs when 
generating images from simulated replicates, we ensured that 
missing data blocks removed at least one of the central 499 
SNPs, repeating the procedure until this criterion was satis�ed. 
We found that this procedure removed on average approxi-
mately 23.1% of the original set of central 499 SNPs across 
all test replicates.

On the CEU test case, when TrIdent[IRV2] trained with its 
stock image generation technique is applied to replicates with 
missing polymorphisms, the overall accuracy drops by 4.45% 
(supplementary �g. S6, Supplementary Material online) com-
pared to no missing segments (Fig. 3), whereas missing data 
causes TrIdent[IRV2, alt] trained on the alternate image gener-
ation technique to experience a drop in overall accuracy by 
6.1% (supplementary �g. S6, Supplementary Material online) 
compared to no missing data (Fig. 3). In particular, while neu-
tral detection rate was increased by roughly 1% with either 
style of input image, sweep detection rate was drastically de-
creased with missing segments regardless of image generation 
style (Fig. 3 and supplementary �g. S6, Supplementary 
Material online). While TrIdent[IRV2] saw a sweep detection 
rate drop of 10.5%, TrIdent[IRV2, alt] trained on the alternate 
image generation style saw an even higher drop of 13%. 
Conversely, when T-REx trained with its stock image gener-
ation technique is applied to test replicates with missing seg-
ments, its overall accuracy dropped by 3.65% (supplementary 
�g. S6, Supplementary Material online) compared to no missing 
polymorphisms (Fig. 3). On the other hand, T-REx[alt] trained 
on the alternate image generation style undergoes an 11.3% de-
crease in accuracy (supplementary �g. S6, Supplementary 
Material online) compared to no missing segments (Fig. 3). 
The neutral detection rate is preserved for both image gener-
ation styles, though the sweep detection rate forT-REx[alt] 

showcases a signi�cantly greater drop of 22.7% compared to 
the 7.1% decrease in classi�cation accuracy for T-REx when 
both are applied to missing polymorphisms (Fig. 3 and 
supplementary �g. S6, Supplementary Material online).

On the YRI test case, however, the drop in test accuracies of 
all four models when presented with replicates containing 
missing genomic regions (supplementary �g. S7, 
Supplementary Material online) appears to be less severe 
than in the CEU test case (supplementary �g. S6, 
Supplementary Material online). Our results show a loss of 
4.05% by TrIdent[IRV2], 2.65% by TrIdent[IRV2, alt], 
2.80% by T-REx, and 7.50% by T-REx[alt] (supplementary 
�g. S7, Supplementary Material online) compared to test set 
with no missing data (Fig. 4). All four models present compar-
able neutral classi�cation rates (from 84.3% to 88.5%). On 
the other hand, with a sweep detection rate of 81.7%, 
TrIdent[IRV2] again establishes itself as the most robust 
against missing genomic regions. The overall test accuracies 
lend further support to our observation that the TrIdent mod-
els, with accuracies of 83.50% and 82.65%, comfortably out-
perform the T-REx models, with accuracies of 80.0% and 
76.35% (supplementary �g. S7, Supplementary Material on-
line). Our �ndings demonstrate that the drops in accuracies 
for the TrIdent and T-REx model variants under missing gen-
omic segments is generally driven by misclassi�cation of sweep 
replicates as neutral, rather than the false attribution of selec-
tion for neutral settings.

Robustness Against Background Selection

Background selection poses a potential challenge for 
TrIdent[IRV2], as it has the potential to mislead sweep classi-
�ers into falsely detecting signatures of positive selection. The 
occurrence of this phenomenon is caused by the elimination of 
harmful genetic variations through negative selection, result-
ing in distortions in the distribution of allele frequencies that 
may resemble positive selection (Charlesworth et al. 1993; 
Hudson and Kaplan 1995; Charlesworth 2012). Speci�cally, 
background selection can produce patterns in allele frequency 
distributions that resemble those caused by selective sweeps 
(Charlesworth et al. 1993, 1995, 1997; Keinan and Reich 
2010; Seger et al. 2010; Nicolaisen and Desai 2013), which 
can result in misclassi�cation of evolutionary events (Huber 
et al. 2016). However, recent studies suggest that selective 
sweeps and background selection leave distinct genetic foot-
prints, particularly in haplotype distributions indicating that 
background selection is unlikely to pose a signi�cant issue 
when analyzing haplotype data (Fagny et al. 2014; Schrider 
2020; Lauterbur et al. 2023). Nevertheless, it is imperative 
to evaluate the resilience of TrIdent[IRV2] to the pervasive 
force of background selection that shapes patterns of genomic 
variation (McVicker et al. 2009; Comeron 2014).

We generated 1,000 test replicates using the forward-time 
simulator SLiM (Haller and Messer 2019) under the same gen-
etic and demographic parameters of the CEU and YRI simula-
tions used to train TrIdent, with the addition of background 
selection (Tennessen et al. 2012; Adrion et al. 2020). 
Speci�cally, in a simulated 1.1 Mb region, a 55 kb protein- 
coding gene was subjected to negative selection according to 
the methodology described by Cheng et al. (2017). This gene 
was composed of 50 exons each of length 100 bases, 49 
introns each of length 1 kb, a 5′ untranslated region (UTR) 
of length 200 bases, and a 3′ UTR of length 800 bases, 
which are fairly close to mean lengths for these elements in 
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human genomes (Mignone et al. 2002; Sakharkar et al. 2004). 
Recessive (h = 0.1) deleterious mutations with selection coef�-
cients (s) drawn from a gamma distribution with mean of 
−0.0294 and shape parameter of 0.184 (Boyko et al. 2008; 
Schrider and Kern 2017) arose within this gene, where 75%, 
10%, and 50% of mutations in exons, introns, and UTRs, re-
spectively, were deleterious. Consequently, we used the pro-
cedure outlined in the Image Generation subsection of the 
Materials and Methods to create input images, which we sub-
sequently fed into trained TrIdent[IRV2] models as test 
observations.

Our �ndings suggest that the TrIdent[IRV2] models 
trained on the CEU and YRI datasets are resilient to back-
ground selection (supplementary �g. S8, Supplementary 
Material online), with the incidence of false sweep signals 
attributed to background selection closely paralleling the 
FPR obtained from neutral test observations (supplementary 
�g. S8, Supplementary Material online), particularly at accept-
able FPRs (supplementary �g. S8, Supplementary Material on-
line; bottom panels). This robustness to background selection 
is not only observed for settings in which recombination rates 
are drawn from the same distribution as the training sets 
(supplementary �g. S8, Supplementary Material online, left 
panels), but also for the challenging setting in which mean re-
combination rates are an order of magnitude smaller than 
what was used in the training sets (supplementary �g. S8, 
Supplementary Material online, right panels). Furthermore, 
for a mean recombination rate of 10−8, TrIdent[IRV2] models 
identi�ed 92.15% and 94% of background selection simula-
tions as neutral for the CEU and YRI datasets, respectively. 
These rates are higher than the neutral detection rates of 
87.1% and 87.7% for respective CEU and YRI neutral simu-
lations (Figs. 3 and 4), indicating that TrIdent[IRV2] is even 
less likely to falsely attribute background selection as a sweep 
than it is for neutrally evolving regions.

Performance with Unphased Multilocus Genotypes

Sweep classi�ers can face challenges when applied to un-
phased multilocus genotype data, which harbor less informa-
tion than phased haplotypes, as selection acts to alter 
frequencies of nearby neutral haplotypic variation and only in-
directly on multilocus genotype variation. Using unphased 
genotypes also decreases statistical power and introduces 
complexity in interpreting genetic signals, potentially omitting 
subtle yet signi�cant signatures of selection within popula-
tions. However, TrIdent models are trained with phased hap-
lotypic data, which is often dif�cult or impossible to reliably 
generate for many study systems, especially for most nonmo-
del organisms. Thus, to enhance the versatility of these mod-
els, it is crucial that they can accommodate unphased data. 
Given the demonstrated capability to detect sweeps using un-
phased multilocus genotypes in prior studies (Kern and 
Schrider 2018; Mughal and DeGiorgio 2019; Harris and 
DeGiorgio 2020; Gower et al. 2021; Arnab et al. 2023), we ex-
pect that TrIdent will continue to achieve excellent classi�ca-
tion accuracy and power when applied to unphased data.

To generate TrIdent input images from unphased data, we 
�rst merge pairs of rows (haplotypes) into a single multilocus 
genotype to create values of zero, one, and two representing 
the number of copies of the minor allele at a diploid genotype. 
We then followed the same procedure described in the Image 
generation subsection of the Materials and Methods to create 
images for the TrIdent[IRV2] model. We refer to the 

TrIdent[IRV2] model using images from unphased multilocus 
genotype data as TrIdent[IRV2, MLG]. We �nd that for both 
the CEU and YRI (supplementary �g. S9, Supplementary 
Material online) test cases, TrIdent[IRV2, MLG] achieves 
comparable, though marginally lower, accuracies and powers 
to TrIdent[IRV2], with a 1.95% drop in classi�cation accur-
acy on the CEU test case and a more narrow drop of 0.15% 
in accuracy on the YRI test case. Moreover, under both 
scenarios, TrIdent[IRV2, MLG] is more conservative than 
TrIdent[IRV2], with a slight bias toward predicting observations 
as neutral (supplementary �g. S9, Supplementary Material
online). Overall, these results indicate that while TrIdent[IRV2, 
MLG] is slightly less accurate than TrIdent[IRV2], it remains a 
robust method for analyzing unphased multilocus genotype 
data, demonstrating the Jexibility of the TrIdent approach.

Capacity to Uncover Incomplete Sweeps

The less pronounced genomic footprints of incomplete or par-
tial sweeps may increase false negative rates of sweep classi-
�ers by misleadingly assigning such patterns as neutral 
(Schrider et al. 2015; Xue et al. 2021). Speci�cally, these gen-
omic signals are less pronounced than what is expected by re-
cent complete sweeps, including localized and weaker linkage 
disequilibrium, shorter and less frequent haplotypes, a more 
mildly distorted site frequency spectrum, and a comparatively 
more marginal decrease in genetic variation (Vy and Kim 
2015). As a result, it is important to evaluate the power of 
TrIdent to detect incomplete sweeps relative to other sweep 
classi�ers. To evaluate power under this setting, we used 
discoal (Kern and Schrider 2016) to generate sweep test 
replicates for both the CEU and YRI demographic histories 
for which an advantageous allele does not reach �xation. 
Speci�cally, we simulated 1,000 replicates for each incomplete 
sweep scenario, considered situations for which the bene�cial 
allele stopped being advantageous at a frequency of fend ∈ 

{0.5, 0.6, 0.7, 0.8, 0.9} while �xing all other genetic, demo-
graphic, and selection parameters as detailed within the 
Simulation protocol subsection of the Methods. We then ap-
plied TrIdent[IRV2] and T-REx originally trained on com-
plete sweeps to these incomplete sweep test sets.

We evaluated both accuracy and power (true positive rate) 
at a 5% FPR to detect incomplete sweeps (supplementary 
�g. S10, Supplementary Material online). Under the CEU 
demographic history, accuracy for both TrIdent[IRV2] and 
T-REx climbed with increasing �nal frequency of the bene-
�cial allele fend, with values as low as 31.06% and 21.7% 
at fend = 0.5 for TrIdent[IRV2] and T-REx, respectively, 
and achieving values of 83.15% and 70.1% at fend = 0.9 
for TrIdent[IRV2] and T-REx, respectively. Notably, 
TrIdent[IRV2] achieves an accuracy close to 80% for incom-
plete sweeps to a frequency of fend = 0.8, whereas T-REx never 
reaches 80% sweep detection rate even for complete sweeps 
for which fend = 1.0 (supplementary �g. S10, Supplementary 
Material online). A similar increasing trend in power as a func-
tion of the degree of sweep completeness can be observed 
(supplementary �g. S10, Supplementary Material online), 
with values as low as 0.201 and 0.11 at fend = 0.5 for 
TrIdent[IRV2] and T-REx, respectively, and achieving values 
of 0.73 and 0.56 at fend = 0.9 for TrIdent[IRV2] and T-REx, 
respectively. Moreover, TrIdent[IRV2] achieves a power 
slightly above 0.7 at fend = 0.8 (which is virtually identical 
to the power for a complete sweep), whereas T-REx never 
even achieves a power of 0.6 for complete sweeps. 
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Thus, TrIdent[IRV2] consistently and signi�cantly outclassed 
T-REx in terms of accuracy and power to detect incomplete 
sweeps.

For the YRI test case, we observed an overall higher accur-
acy and power for detecting incomplete sweeps compared to 
the CEU test case. Speci�cally, the accuracy for both 
TrIdent[IRV2] and T-REx increased with fend. At fend = 0.5, 
the accuracy values for TrIdent[IRV2] and T-REx were 
44.11% and 38.6%, respectively, and climbed to 87.03% 
for TrIdent[IRV2] and 78.99% for T-REx at fend = 0.9. A 
similar trend was seen in power, with values starting from 
0.307 and 0.212 at fend = 0.5 for TrIdent[IRV2] and T-REx, 
respectively, and respectively rising to 0.7404 and 0.607 at 
fend = 0.9. These results show that TrIdent[IRV2] consistently 
and signi�cantly outperformed T-REx in both accuracy and 
power for the YRI test case, expectedly surpassing the per-
formance levels observed in the CEU test case that includes a 
recent, severe population bottleneck. In general, the results 
highlight the ability of TrIdent in recognizing even modest 
adaptive signals in genomes.

Interpretability of the Sweep Classifier

In nonnatural image classi�cation tasks, class activation maps 
can reveal the decision-making process of a trained model 
(Zhai and Shah 2006; Zhou et al. 2016). In particular, these 
maps are able to highlight regions of pixels in nonnatural im-
ages, like those generated here to discriminate sweeps from 
neutrality, where patterns may not be immediately discernible 
to humans that explain or validate what features the model 
places emphasis when classifying observations. In addition, 
class activation maps can aid in model selection based on per-
formance and robustness in image classi�cation tasks by act-
ing as a diagnostic tool to identify errors in the learning 
process of a model by visualizing key regions of input images, 
allowing for targeted adjustments to improve accuracy and 
generalization and thereby creating more transparent and reli-
able classi�cation systems (Zhou et al. 2016).

For pretrained CNN models, gradient-weighted class acti-
vation mapping (GradCAM) provides a mechanism for creat-
ing class activation maps that are easy to understand and work 
with (Selvaraju et al. 2017). To accomplish this task, 
GradCAM makes use of the gradient information that Jows 
into the last convolutional layer of the CNN during its 

backward pass. It computes the importance of each feature 
map by taking the gradients of the target class score with re-
spect to these feature maps and weighting them accordingly. 
By highlighting the relative importance of each pixel, this ap-
proach successfully pinpoints the regions within an image that 
help discriminate among classes (Selvaraju et al. 2017).

We employed GradCAM to generate class activation maps 
from each of the training set images based on their output val-
ues from the last convolution layer of TrIdent[IRV2]. The re-
sulting maps for both the CEU and YRI test cases revealed a 
concentrated focus in the lower-middle region of the images 
(Fig. 7), coinciding with regions of input images that might 
distinguish sweeps from neutrality on average (Fig. 2). 
Moreover, this consistent regional focus across both CEU 
and YRI test cases suggests that TrIdent[IRV2] effectively cap-
tures the critical haplotype features driving the divergence be-
tween sweep and neutrality in these populations.

Ability to Predict Sweep Parameters

So far, we have assessed the sweep detection accuracy and 
power of TrIdent[IRV2] in relation to the sweep classi�ers 
T-REx, diploS/HIC and many architectural variations of the 
the TrIdent model. We next consider how features obtained 
from transfer learning architectures fare on regression tasks 
for predicting evolutionary parameters of sweeps. We trained 
three distinct models, each tasked with inferring one of the 
three selection parameters used to generate sweep replicates 
for training the TrIdent[IRV2] classi�er. These parameters 
are: the number of generations in the past when the bene�cial 
allele reached �xation (τ), the selection strength acting on the 
bene�cial allele (s), and the frequency of the bene�cial allele at 
the onset of selection (f). As with the TrIdent classi�ers, we 
�rst extracted GAP layer outputs of InceptionResNetV2 
from the 1,000 sweep replicates to represent the set of features 
in the training dataset. As the output for each regression mod-
el, we performed a logarithmic transformation of the parame-
ters so that they take both positive and negative values, rather 
than only nonnegative values, as well as to better highlight pa-
rameters that were drawn across different orders of magnitude 
(see Modeling description subsection).

Our initial evaluation of a linear model to predict the selec-
tion parameters showed that such a model was not accurate 
enough based solely on the InceptionResNetV2 extracted 

Fig. 7. Heatmaps of mean GradCAM from InceptionResNetV2 applied to CEU (left panel) and YRI (right panel) training data, with the mean taken across 

2,000 training observations with 1,000 observations from each of the neutral and sweep classes.
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features. We therefore chose to employ nonlinear models 
based on ANNs for predicting sweep parameters, and we 
term this nonlinear regression model TrIdent[IRV2, ANN], 
similar to the nonlinear classi�cation model of the Viability 
of alternate architectures and methods subsection. To deter-
mine the architecture of each sweep parameter predictor mod-
el (f, s, and τ), we use a model selection scheme identical to that 
of the nonlinear TrIdent[IRV2, ANN] classi�er, with the ex-
ception of assessing model �t with MSE loss instead of binary 
cross entropy along with the usage of linear activation in the 
output layer compared to sigmoid activation. Here, we choose 
the best number of hidden layers, number of nodes in each 
layer, and activation function used in each layer for each of 
the three regression models based on smallest validation MSE.

To compare distributions between true and predicted par-
ameter values, we summarize the distributions using violin 
plots to capture distribution shapes with embedded box plots 
to depict distribution locations and spreads (Fig. 8). For τ, the 
medians for true and predicted distributions are comparable in 
both CEU and YRI populations. The MSE is 0.0198 for CEU 
and 0.0243 for YRI, and the distributions are left skewed, 
with the difference between the second and �rst quartiles of 
the predicted distribution smaller in the YRI than in CEU. 
For s, the MSE is 0.0383 for CEU and 0.0114 for YRI, with 
the predicted distributions preserving the characteristic “lip” 
shape observed in the true distribution, though with predicted 
distributions tighter than the true distributions. The medians 
of the true and predicted distributions are comparable in 
both datasets, but the inter-quartile range (IQR) is narrower 

in the predicted distributions. For f, the predicted distributions 
display skewed “lip” shapes—right-skewed for CEU and left- 
skewed for YRI—though the true distributions show a more 
symmetrical “lip” shape. Moreover, the predicted median is 
shifted slightly downward relative to the true median in the 
CEU, whereas it is shifted upward in the YRI. However, 
whereas the IQR is smaller for the predicted distribution in 
the CEU dataset than for the true distribution, the IQR for 
the predicted distribution in the YRI dataset is comparable 
to that of the true distribution, with MSE values of 0.2001 
and 0.1665 for CEU and YRI, respectively. While the MSE 
values may appear high, it is important to note that the param-
eters were logarithmically scaled, which stretches their 
bounds, inherently inJating the apparent magnitude of the 
MSE compared to unscaled values. Overall, in terms of 
MSE, TrIdent[IRV2, ANN] seems to perform better on pre-
dicting s and f on the YRI dataset compared to on the CEU da-
taset, and τ on the CEU dataset compared to on the YRI 
dataset.

To benchmark against a comparative baseline for selection 
parameter estimates, we employed the selection coef�cient in-
ference tool CLUES2 (Vaughn and Nielsen 2024). While 
CLUES2 is limited to estimating the selection coef�cient, one 
of the three parameter estimates by the TrIdent[IRV2, 
ANN] regression model, it serves as a useful reference point. 
Details of our CLUES2 pipeline are presented in the 
Application of CLUES2 subsection of the Materials and 
Methods. We generated ancestral recombination graphs 
(ARGs) using the entire 1.1 Mb simulated replicates with 

Fig. 8. Summaries of distributions for true and predicted values of selection parameters (f, s, and τ) using the nonlinear TrIdent[IRV2, ANN] regression 

model. Distributions are summarized using violin plots with embedded box plots for the CEU (top) and YRI (bottom) datasets.
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SINGER (Deng et al. 2024), as it is one of the two software 
supported by CLUES2. We implemented CLUES2 as closely 
to the recommended settings as possible, given the constraints 
imposed by our simulated replicates. In both CEU and YRI test 
cases, CLUES2 lagged considerably behind the accuracy and 
precision of TrIdent[IRV2, ANN] (supplementary �g. S11, 
Supplementary Material online). To maintain consistency 
with TrIdent[IRV2, ANN], we applied a logarithmic trans-
formation to the selection coef�cient estimates from 
CLUES2, which resulted in MSEs on this transformed scale 
of 0.454 for CEU and 0.402 for YRI.

Application to Human Genomic Data

Given the excellent performance of TrIdent[IRV2], we next 
applied it to variant calls and phased haplotypes of 99 individ-
uals in the CEU population and 108 individuals in the YRI 
population from the 1000 Genomes Project (The 1000 
Genomes Project Consortium 2015). This application served 
as a proof-of-concept, where we evaluate the ability of 
TrIdent to recapitulate sweep candidates established in the lit-
erature from European and African humans, as well as to po-
tentially discover novel candidates.

Before scanning the CEU and YRI genomes, we eliminated 
SNPs in speci�c regions using the procedure detailed in the 
Filtration of Empirical Data subsection of the Materials and 
Methods. Following the elimination of these SNPs, we selected 
the initial 499 SNPs of a chromosome and created a 299 × 299 
input image of haplotype variation (see Modeling description 
subsection of the Results). From this starting image, we cre-
ated new empirical input images by advancing the 499-SNP 
window by a stride of 10 SNPs along the chromosome, repeat-
ing the process for all 22 autosomes. These images are then fed 
through the TrIdent[IRV2] pretrained model, and the GAP 
layer outputs are used as input to the trained logistic regres-
sion classi�er (see Modeling description subsection of the 
Results).

In the CEU scan, we found that the majority of genomic 
windows are classi�ed as neutral with a probability threshold 
of 0.9 for calling sweeps (approximately 95.18%; Table 1). 
The threshold of 0.9 for individual windows is strategically 
chosen to reduce the risk of false positives, thus prioritizing 
the most signi�cant candidate sweeps and improving the reli-
ability of the detection process. We evaluated the false positive 
and true positive rates at this threshold of 0.9 using the CEU 
and YRI simulated test sets (supplementary �g. S12, 
Supplementary Material online). This stringent threshold 
demonstrated its effectiveness in minimizing false positives, 
achieving high detection rates for neutral replicates (97.5% 
for CEU and 97.7% for YRI, compared to 87.1% for CEU 
and 87.7% for YRI with a threshold of 0.5). While the detec-
tion rates for sweep replicates were notably lower (69.9% for 
CEU and 72.2% for YRI, compared to 85.3% for CEU and 
87.4% for YRI with a threshold of 0.5), this reJects a more 
conservative approach to identifying true adaptive signals.

Additionally, we require a minimum mean prediction prob-
ability of 0.9 across 10 consecutive prediction windows for 
sweep footprint detection. This stringent threshold is designed 
to �lter out potentially spurious observations with high sweep 
probability, ensuring that only the most robust signals are 
identi�ed (Arnab et al. 2023). This approach resulted in 
1,206 candidate sweep peaks, which intersected 575 genes. 
Out of these genes, LCT shows a clear peak with a 10-window 
mean peak probability score of 0.93 (Fig. 9a). The detection of 
LCT serves as a positive control, because it has been identi�ed 
as a recent sweep candidate in numerous studies (Tishkoff 
et al. 2007; Field et al. 2016; Ségurel and Bon 2017) with 
strong estimates of selection pressure (Bersaglieri et al. 2004; 
Gerbault et al. 2009). The LCT gene codes for the lactase en-
zyme that hydrolyzes lactose, a disaccharide in milk and dairy 
products. Early agriculture and dairy farming in Europe pro-
foundly inJuenced lactase persistence. Domesticating animals 
for milk grew more common when hunter-gatherer societies 
became sedentary agricultural groups. We also applied the 
TrIdent regression model to predict selection parameters at 
LCT (Table 2), with estimates that a sweep on a standing gen-
etic variant at frequency f ≈ 0.01 became bene�cial with 
strength s ≈ 0.06 and completed τ ≈ 46 generations ago (ap-
proximately 1,300 years ago assuming a generation time of 
29 years). For comparison, Bersaglieri et al. (2004) estimated 
that the persistence-associated haplotype began to increase 
rapidly in frequency between 2,188 and 20,650 years ago 
from selection with coef�cients ranging from 0.09 to 0.19 
across different European populations at this locus. Thus, 
the estimates produced by TrIdent seem to generally agree 
well with the �ndings of Bersaglieri et al. (2004).

Moreover, the MCM6 gene located upstream of LCT not 
only exceeds the mean prediction probability threshold of 
0.9 but also has a higher probability compared to LCT 
(Fig. 9a). Selection parameter predictions at this gene 
(Table 2) support a sweep on a standing genetic variant at fre-
quency f ≈ 0.1 became bene�cial with strength s ≈ 0.04 and 
completed τ ≈ 48 generations or approximately 1,400 years 
ago. Previous studies also detected strong selection signals at 
MCM6 within Europeans, though their selection coef�cient 
estimates were generally lower (0.0161 in Stern et al. 2019
and 0.018 in Mathieson and Mathieson 2018). The time frame 
that selection ended is similar to that of LCT, but with a softer 
sweep of lower strength. Due to its regulatory control of the 
expression of LCT (Labrie et al. 2016; Anguita-Ruiz et al. 

Table 1 Percentage of windows classified as a sweep by TrIdent under 

sweep probability threshold of 0.9 for each of the autosomes within the 

CEU and YRI 1000 Genomes Project populations

Chromosome CEU YRI

1 5.48 4.84
2 4.68 3.78
3 4.02 2.16
4 4.65 6.11
5 4.22 4.64
6 4.47 5.06
7 4.38 4.40
8 5.92 1.92
9 5.15 4.51
10 3.96 3.77
11 3.75 4.40
12 4.76 3.86
13 3.89 3.66
14 5.32 3.78
15 5.10 3.52
16 5.53 5.14
17 6.67 3.32
18 4.34 2.01
19 7.08 6.69
20 6.17 3.06
21 4.97 4.07
22 7.17 2.65
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2020), MCM6 also serves a positive control. An enhancer 
within one of the introns of the MCM6 gene has been discov-
ered to impact the production of the lactase enzyme 
(Anguita-Ruiz et al. 2020), and has been found to show sweep 

signals by other studies (Oleksyk et al. 2010; Cheng et al. 
2017; Amin et al. 2023).

One of the most pronounced sweep candidates identi�ed by 
TrIdent is OCA2, with a 10-window mean sweep probability 
of 0.97 (Fig. 9d), estimated to have completed τ ≈ 15 genera-
tions ago (Table 2), indicating that a putative sweep at OCA2 
completed more recently compared to that of LCT or MCM6. 
Previous studies have found OCA2 as a target of positive se-
lection in Europeans (Voight et al. 2006; Sulem et al. 2007; 
Wilde et al. 2014; Mughal et al. 2020), and therefore this 
gene also serves as an additional positive control. We estimate 
a selection coef�cient of s = 0.059 for OCA2, indicating 
strong selection at this locus. For comparison, Stern et al. 
(2019) also identi�ed evidence of selection at OCA2, estimat-
ing the strength at s = 0.04, whereas (Mughal et al. 2020) re-
ported s = 0.06 for the same locus. Hence, our selection 
strength estimates are consistent with prior estimates at this 
gene. Eye color is associated with variants within the OCA2 
gene, which plays a crucial role in the production and disper-
sion of melanin, the pigment that gives color to hair, skin, and 
eyes (Duffy et al. 2007). The amount and type of iris melanin, 
which determines eye color, can vary due to structural varia-
tions in OCA2 (Sturm and Larsson 2009).

Fig. 9. Identified candidate sweep regions from the genome-wide scan produced using the trained TrIdent[IRV2] model on the central European humans 

(CEU) population in the 1000 Genomes Project dataset. Regions were classified as being under positive selection if they had 10 consecutive windows 

with a sweep probability higher than 0.9. A total of 575 genes across 22 autosomes exhibit qualifying signs of selective sweeps, of which a few of the 

most interesting candidates are reported here (a–k). supplementary Figure S21, Supplementary Material online provides a visual representation of the 

haplotype diversity surrounding the candidate genes in the plotted panels.

Table 2 TrIdent regression model inferences for the frequency at which a 

selected allele became beneficial (f ), selection strength (s), and time at 

which the beneficial allele reached fixation (τ) for genes reported in Fig. 9

or the CEU scan

Chromosome f s τ (generations) Genes

1 0.0884 0.0700 1295.7883 MTOR
1 0.0601 0.0814 156.0666 SERINC2
1 0.0252 0.0505 228.1717 LAMC2
2 0.0122 0.0623 46.1186 LCT
2 0.0962 0.0373 48.2734 MCM6
3 0.0016 0.0133 1340.9021 RBMS3
3 0.0107 0.0321 842.0184 KLHL24
5 0.0490 0.0257 753.2627 MGAT1
6 0.0399 0.1051 982.6476 HLA-DRB6
9 0.0550 0.0191 274.6670 BNC2
9 0.0068 0.0163 1141.4152 NKAIN2
15 0.0229 0.0598 15.0190 OCA2
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The human leukocyte antigen (HLA) system serves as a 
compelling example of how natural selection has operated to 
preserve genetic diversity. HLA genes, particularly those in 
class I and class II, play a crucial role in presenting antigens 
to T cells, which are responsible for initiating cell-mediated 
immune responses (Shankarkumar 2004). The extensive range 
of alleles and notable polymorphisms observed in HLA class I 
and class II genes (Hedrick and Thomson 1983) serves as evi-
dence of the ongoing selection that promotes genetic diversity 
at these immune-related locations. TrIdent follows the recent 
trend of sweep detectors (Goeury et al. 2018; Kern and 
Schrider 2018; Harris and DeGiorgio 2020; Amin et al. 
2023; Arnab et al. 2023) in uncovering genes within the 
HLA region. Notably, we found that the class II HLA gene 
HLA-DRB6 shows a clear signal consistent with positive se-
lection, attaining a 10-window mean sweep probability of 
0.92 (Fig. 9b). Other studies have identi�ed sweep signals at 
this gene in Europeans (DeGiorgio and Szpiech 2022; Arnab 
et al. 2023), as well as other class I and class II genes within 
the region (Albrechtsen et al. 2010; Goeury et al. 2018; 
Harris and DeGiorgio 2020; DeGiorgio and Szpiech 2022), 
lending credence to this �nding. Furthermore, TrIdent pre-
dicts a notably high selection coef�cient of s = 0.1051 for 
HLA-DRB6. Mughal et al. (2020) have also reported high se-
lection coef�cients for an HLA gene, �nding s = 0.14 at 
HLA-DRB1, further supporting the notion that genes in the 
HLA region have been subject to intense selective pressures.

BNC2 is another well-supported sweep candidate with a 
peak mean sweep probability of 0.99 (Fig. 9c). This gene enc-
odes a protein that plays a vital role in various essential cellu-
lar processes. These processes include controlling the 
expression of genes that code for proteins responsible for bind-
ing and regulating collagen, as well as for facilitating the 
growth of new tissues (Orang et al. 2023). Its involvement in 
key developmental pathways is supported by its association 
with skin cell differentiation (Jacobs et al. 2013). A structural 
variant in the �rst intron of BNC2 causes lighter skin color by 
reducing BNC2 expression in human melanocytes (Visser 
et al. 2014; Szpak et al. 2019). In addition, some haplotypes 
at BNC2 have been hypothesized to be introgressed from 
Neanderthals with high frequency that inJuences skin pig-
mentation levels (Visser et al. 2014; Szpak et al. 2019; 
McArthur et al. 2021). Prior selection scans suggest that this 
variation at this gene represents a mode of positive selection 
termed adaptive introgression (Racimo et al. 2015, 2017; 
Mughal et al. 2020; Gower et al. 2021), by which selection 
acts on variants residing on haplotypes that were donated 
from another species through introgression. Furthermore, 
the likely importance of BNC2 in tumor growth has made it 
a focal point in cancer research (Cesaratto et al. 2016; Wu 
et al. 2016; Orang et al. 2023), with some cancers linked to al-
terations in BNC2 expression and function (Wu et al. 2016; 
Orang et al. 2023).

Along with the established candidate BNC2, TrIdent also 
detected several other cancer-related genes as sweep candi-
dates. Speci�cally, with a 10-window mean sweep probability 
of 0.996, we identi�ed the MTOR gene (Fig. 9e), which pro-
duces the protein mTOR that is a critical regulator of cellular 
growth and survival and that is frequently dysregulated in 
breast cancer (Miricescu et al. 2020). Cancer progression 
and uncontrolled growth of cells are caused by abnormal 
mTOR activation (Takei and Nawa 2014; Costa et al. 
2015). RBMS3 is another detected sweep candidate 

(10-window mean sweep probability of 0.9969; Fig. 9g) that 
is linked to tumor suppression in breast cancer (Yang et al. 
2018). Another candidate gene LAMC2 (10-window mean 
sweep probability of 0.9999; Fig. 9f), which encodes the 
gamma-2 subunit of the protein laminin, is commonly upregu-
lated in oral cancer (Nguyen et al. 2017). Furthermore, the 
gene NKAIN2 may inhibit tumors in some cancers (Zhao 
et al. 2015), which is another candidate identi�ed by our 
scan with a 10-window mean sweep probability of 0.98 
(Fig. 9h). A few other intriguing sweep candidates revealed 
by our scan are SERINC2 (10-window mean sweep probabil-
ity of 0.997; Fig. 9i), KLHL24 (10-window mean sweep prob-
ability of 0.995; Fig. 9j), and MGAT1 (10-window mean 
sweep probability of 0.92; Fig. 9k), with association studies 
linking variants in SERINC2 with alcohol dependence in 
European women (Zuo et al. 2013, 2014, 2015), mutations 
in KLHL24 associated with loss of keratin 14, which provides 
structural support to epithelial cells (Lin et al. 2016), and a 
role of MGAT1 in the development of type 1 diabetes in 
Europeans (Rudman et al. 2023). There appears to be a trend 
in recent machine learning studies where genes associated with 
deleterious phenotypes, including cancer, are identi�ed as can-
didate targets of positive selection (Schrider and Kern 2017; 
Mughal and DeGiorgio 2019; Amin et al. 2023; Arnab et al. 
2023). Schrider and Kern (2017) suggested that weakly dele-
terious alleles may have hitchhiked to high frequency along-
side bene�cial variants, resulting in the present-day 
manifestation of problematic traits. This phenomenon could 
also be explained by the historical advantages conferred by 
these genes in past environments, which outweighed their 
negative impacts under contemporary conditions (Di Rienzo 
and Hudson 2005; Di Rienzo 2006). Such hitchhiking events 
illustrate the complexity of evolutionary processes and the 
tradeoffs between short-term bene�ts and long-term conse-
quences in gene selection, with further work needed to fully 
understand these dynamics and their implications for modern 
human health.

In the YRI scan, we found that most genomic windows are 
classi�ed as neutral with a probability threshold of 0.9 for call-
ing sweeps (approximately 95.41%; Table 1). Using a 
10-window mean sweep probability of 0.9, we identi�ed 
2,145 candidate sweep peaks, which intersected 666 genes. 
This scan revealed several prominent candidate selection sig-
nals at genes supporting some �ndings from the CEU scan 
and exposing distinct selection patterns particular to the YRI 
population. Several genes highlighted as possible adaptive tar-
gets in previous studies of the YRI that were also recovered by 
our scan include NNT, HEMGN, SYT1, GRIK5, and APOL1 
(Fig. 10) (Voight et al. 2006; Pickrell et al. 2009; Fagny et al. 
2014; Pierron et al. 2014; Harris et al. 2018; Harris and 
DeGiorgio 2020; Mughal et al. 2020). We also applied the 
TrIdent regression model to predict selection parameters at re-
ported sweep candidates found in the YRI scan (Table 3).

The NNT gene, located on chromosome 5, exhibits a clear 
signal with a 10-window mean sweep probability score of 
0.989 (Fig. 10a). This gene codes for a protein named nico-
tinamide nucleotide transhydrogenase, which is vital for cellu-
lar energy metabolism (Yin et al. 2012; Xiao et al. 2018) and 
therefore may have possible connection to metabolic adapta-
tions in the YRI population. The HEMGN gene on chromo-
some 9 is another noteworthy candidate, with a mean sweep 
probability score of 0.974 (Fig. 10c) that is involved in hem-
atopoiesis by which the body forms blood cells (Li et al. 
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2004; Jiang et al. 2010). Possible responses to environmental 
variables or pathogenic pressures may have prompted changes 
in blood cell formation and function. Another strong 

candidate highlighted by our scan with mean sweep probabil-
ity of 0.987 is the SYT1 gene on chromosome 12 (Fig. 10d). 
SYT1 encodes Synaptotagmin 1, an essential regulator of 
neurotransmitter release in the nervous system (Xu et al. 
2009; Park and Ryu 2018), and the adaptive relevance of 
this gene may be connected to cognitive and neurological proc-
esses in the YRI population. The GRIK5 gene on chromosome 
19, which encodes a subunit of kainate receptors involved in 
synaptic transmission and plasticity (Shibata et al. 2006), 
also shows a prominent signal with a mean sweep probability 
of 0.991 (Fig. 10e). Schrider and Kern (2017) also identi�ed 
sweep signals at several glutamate receptor genes, highlighting 
the potential role of neurotransmitter receptors as targets of 
recent selection in humans. Furthermore, the gene APOL1 
on chromosome 22, which is associated with kidney diseases 
in individuals of African ancestry (Kruzel-Davila et al. 
2017), has been detected with a relaxed quali�cation criteria 
by TrIdent with a mean sweep probability of 0.801 (Fig. 10f).

Within the HLA region of chromosome 6, the HLA-DRB1, 
HLA-DRB5, and HLA-DRB6 genes show strong signals con-
sistent with positive selection (Fig. 10b). In particular, the 

Fig. 10. Identified candidate sweep regions from the genome-wide produced using the trained TrIdent[IRV2] model on the sub-Saharan African (YRI) 

population in the 1000 Genomes Project dataset. Regions were classified as being under positive selection if they had ten consecutive windows with a 

sweep probability higher than 0.9. A total of 666 genes across 22 autosomes exhibit qualifying signs of selective sweeps, of which a few of the most 

interesting candidates are reported here (a–j). supplementary fig. S22, Supplementary Material online provides a visual representation of the haplotype 

diversity surrounding the candidate genes in the plotted panels.

Table 3 TrIdent regression model inferences for the frequency at which a 

selected allele became beneficial (f ), selection strength (s), and time at 

which the beneficial allele reached fixation (τ) for genes reported in Fig. 9

or the YRI scan

Chromosome f s τ (generations) Genes

1 0.0418 0.0678 1049.3189 MTOR
3 0.0097 0.0879 89.8202 RBMS3
3 0.0387 0.1033 2710.1717 ROBO2
5 0.0290 0.0579 1546.6411 NNT
6 0.0832 0.0322 37.2414 HLA-DRB1
6 0.0133 0.0323 61.7333 HLA-DRB5
6 0.0063 0.0731 69.3420 HLA-DRB6
7 0.0011 0.0900 2901.9021 FOXP2
9 0.0200 0.0354 1883.3812 HEMGN
12 0.0222 0.0452 2024.0176 SYT1
19 0.0368 0.0478 675.6476 GRIK5
22 0.0880 0.0438 2000.9901 APOL1
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HLA-DRB6 gene, also identi�ed in our CEU scan, attains a 
10-window mean sweep probability of 0.9989. Together 
with the discovery of noteworthy signals in two neighboring 
candidate genes (HLA-DRB1 with a mean sweep probability 
of 0.963 and HLA-DRB5 with a mean sweep probability of 
0.988), these �ndings emphasize the ongoing selection pres-
sures to maintain genetic diversity in this chromosomal region. 
Though TrIdent was primarily trained to detect selective 
sweeps that reduce haplotypic diversity, regions subject to re-
cent balancing selection can sometimes exhibit signatures re-
sembling those of soft or incomplete sweeps (Hermisson and 
Pennings 2005; Fijarczyk and Babik 2015). This similarity is 
because balancing selection, particularly when recent or 
strong, may lead to localized increases in linkage disequilib-
rium and allele frequency patterns that mimic the sweep-like 
signals captured by the model.

The signals found by TrIdent at RBMS3 on chromosome 3 
and MTOR on chromosome 1, identi�ed in both YRI and 
CEU scans, underscore their broad adaptive signi�cance. 
The relatively lower mean sweep probabilities in the YRI 
scan (0.911 for RBMS3 and 0.906 for MTOR; Figs. 10g 
and 10h) compared to CEU may reJect differences in sweep 
completion status at these genes between the populations. 
Additionally, two particularly interesting candidates in the 
YRI genome are ROBO2 (mean sweep probability score of 
0.9975) on chromosome 3 (Fig. 10i) and FOXP2 (mean sweep 
probability score of 0.916) on chromosome 7 (Fig. 10j). 
Though FOXP2 is a classical candidate for selection related 
to language traits, both ROBO2 and FOXP2 are associated 
with brain development and cognitive processes (Enard et al. 
2002; López-Bendito et al. 2007). Previous studies have hy-
pothesized that these genes might reside in introgression de-
serts, potentially indicating selective pressure to preserve 
speci�c brain functions against introgressed variants from ar-
chaic humans that could disrupt these traits (Kuhlwilm 2018; 
Buisan et al. 2022). However, Atkinson et al. (2018) found no 
evidence of recent adaptation at FOXP2, attributing previous 
signals to sample composition in which an intronic region en-
riched for sites that are conserved in nonhuman primates but 
are polymorphic among humans may be connected to a loss 
of function in humans. While Atkinson et al. (2018) attributed 
earlier �ndings of selection at this locus to sample compos-
ition, their methodology may have been underpowered to de-
tect older or subtler sweeps. Flex-sweep (Lauterbur et al. 
2023), a modern and sensitive method, also identi�es 
FOXP2 as a high-con�dence candidate for positive selection. 
Despite the detection of sweep signals at FOXP2 using 
TrIdent, further investigation may be warranted to reconcile 
these results and to better understand the evolutionary history 
of this gene.

To explore whether high-scoring sweep candidates were en-
riched for speci�c biological processes, molecular functions, 
or cellular components, we performed Gene Ontology (GO) 
analysis using GOrilla (Eden et al. 2009) applied to a single 
ranked list, where genes were ranked in decreasing order based 
on their highest 10-window mean sweep probabilities. 
Signi�cant GO term enrichment was selected based on false 
discovery rate adjusted q-values of <0.05. The GO analysis 
of our CEU scan (supplementary tables S3 and S4, 
Supplementary Material online) identi�ed several signi�cant 
biological process terms, including regulation of cell migra-
tion, regulation of cell motility, and positive and negative 
regulation of locomotion, consistently involving key genes 

MTOR and LAMC2 that we highlighted earlier. Both genes 
are critical in pathways associated with cell movement and lo-
calization, and their dysregulation may contribute to cancer 
progression through mechanisms like abnormal cellular mi-
gration, localization, and growth (Kariya and Miyazaki 
2004; Stipp 2010; Zoncu et al. 2011; Masuda et al. 2012; 
Saxton and Sabatini 2017). Additionally, the GO analysis 
highlighted an enrichment of genes involved in essential cellu-
lar components, especially those associated with the plasma 
membrane and cytoskeleton, which are central to cellular 
structure and movement (Alberts et al. 2002; Fletcher and 
Mullins 2010; Keren 2011; Jacobson et al. 2019). 
Alterations in these components can facilitate uncontrolled 
cell motility and invasion seen in metastatic cancer 
(Condeelis and Pollard 2006; Yilmaz and Christofori 2009). 
The identi�ed cellular component GO terms also include lam-
inin complex and cell projection part that are associated with 
LAMC2. LAMC2 helps encode the laminin complex protein 
that supports cell growth, motility, and adhesion, essential 
processes that are often disrupted in cancer progression. In 
contrast, the YRI GO analysis did not yield signi�cantly en-
riched terms, indicating that, unlike the CEU population, the 
sweep candidate genes in the YRI population do not appear 
to center on speci�c molecular functions, cellular components, 
or biological processes to the same extent.

Discussion

Our results show that the TrIdent[IRV2] model demonstrates 
strong performance in detecting selective sweeps, outperform-
ing T-REx, a technique that also uses images of haplotype 
variation as input, in both accuracy and power. 
TrIdent[IRV2] effectively captured the complex genetic pat-
terns suggestive of selective sweeps through the utilization of 
the pretrained InceptionResNetV2 architecture, which is 
known for its sophisticated deep feature extraction prowess. 
Due to overall higher accuracy and power, we adopted the 
Trident[IRV2] model over four alternative TrIdent models. 
The complex architecture of InceptionResNetV2 allows 
TrIdent[IRV2] to effectively identify signals of selection 
from relatively small amounts of data that may be missed by 
simpler models. Moreover, the use of a pretrained deep learn-
ing model as an upstream feature extractor in TrIdent[IRV2] 
offers practical bene�ts beyond just performance, including 
reduction in time and resources required for model training.

A key strength of TrIdent is its ability to achieve strong clas-
si�cation performance even when trained with a relatively 
small dataset, with the original implementation requiring 
only 1,000 samples per class. Notably, increasing the training 
data size does not yield substantial improvements in per-
formance, suggesting that TrIdent effectively captures the 
relevant patterns with limited data. For the CEU test case, 
increasing the training set to 5,000 samples per class results 
in only a marginal 0.4% improvement in classi�cation accur-
acy, with a further increase to 10,000 samples per class yield-
ing just an additional 0.2% gain (supplementary �g. S13, 
Supplementary Material online). Similarly, for the YRI test 
case, increasing the training set to 5,000 samples per class im-
proves accuracy by only 0.2%, and expanding it to 10,000 
samples per class provides no further improvement in classi�ca-
tion accuracy. These �ndings indicate that TrIdent reaches 
near-optimal performance with relatively small training 
datasets, making it a highly data-ef�cient approach for sweep 
detection.
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The differences between the image generation strategies of 
TrIdent and T-REx lie in several key aspects. First, T-REx 
processes an entire 1.1 Mb region by sorting haplotypes in 
windows of 100 SNPs with a stride of 10 SNPs, whereas 
TrIdent focuses on a more �ne-grained approach, using win-
dows of 25 SNPs with a stride of two SNPs across a region 
of 499 SNPs. Second, at the SNPs where different windows 
overlap, T-REx averages the minor allele count at these 
SNPs after performing an L1-norm-based haplotype re-
arrangement. To accomplish this task, T-REx �rst stores the 
windows, rearranges them, and then calculates the intersec-
tions between windows to average the minor allele counts at 
these intersections. This process is meant to smooth transi-
tions between windows and retain information, especially use-
ful for detecting weak or old sweeps. In contrast, TrIdent 
follows a more streamlined approach, which sequentially �lls 
the input image matrix by calculating minor allele counts and 
sorting these counts directly within windows, avoiding the 
need to store windows or recalculate quantities at window in-
tersections. This procedure not only allows TrIdent to bypass 
the additional space overhead required by T-REx, it also al-
lows for faster processing times and based on the presented re-
sults, is a more computationally ef�cient set of operations that 
does not compromise the detection of selection signals. Our 
image generation approach therefore prevents the need for ex-
tra manipulation of genomic images, which can lead to the 
emergence of summary statistics and poor generalization 
(Cecil and Sugden 2023).

In contrast, when comparing TrIdent to shallow 
CNN-based methods that use images of summary statistic 
variation as input (e.g. diploS/HIC), we found that TrIdent 
trained with native images underperformed relative to these 
competitors. However, the nature of input data explains this 
disparity. In particular, diploS/HIC bene�ts from the usage 
of relatively shallow CNNs speci�cally trained on structured 
matrices of summary statistics, yet TrIdent outperforms 
diploS/HIC when trained on images of the same summary sta-
tistics. This performance boost highlights the advantage 
TrIdent gains from utilizing the InceptionResNetV2 architec-
ture, which excels in extracting complex patterns from images. 
Unlike the shallower CNNs in diploS/HIC, InceptionResNetV2 
combines both deep and wide feature extraction pathways, en-
abling TrIdent to capture genomic variation patterns in a richer 
and more nuanced manner.

While diploS/HIC is a widely recognized strong performer in 
detecting sweeps, newer and more powerful summary statistic- 
based tools like Flex-sweep (Lauterbur et al. 2023) have dem-
onstrated further improvement in detection accuracy. 
Flex-sweep not only employs a broader set of advanced sum-
mary statistics than diploS/HIC but also incorporates custom- 
designed statistics that have been shown to be highly effective. 
A key advantage of Flex-sweep lies in its unique approach to 
summary statistic computation as it computes nine out of its 
11 summary statistics within each window at �ve different 
nested scales. This multiscale approach allows Flex-sweep to 
capture genomic variation patterns more comprehensively, 
leading to superior performance. Despite both methods 
utilizing similar CNN-based architectures, the enhanced 
information content within the summary statistic images used 
by Flex-sweep likely explains its improved accuracy. 
Furthermore, our results with TrIdent[IRV2, SS] reinforce the 
idea that summary statistic-based images, when carefully de-
signed for pretrained models, can signi�cantly boost 

performance. Though TrIdent integrates both image generation 
and feature extraction-prediction methodologies, users can se-
lectively deploy either component depending on their analytical 
goals, offering Jexibility in genomic sweep detection tasks.

In analyzing the GradCAM-based class activation maps 
generated from TrIdent[IRV2], we observed a consistent fo-
cus on the lower-middle regions of the images, which corre-
sponds to the difference of high minor allele count pattern 
between sweep and neutral replicates. Interestingly, a slight 
asymmetry in the gradient patterns was noted, with the right- 
hand side of the lower-center region appearing more empha-
sized than the left. We hypothesize that this asymmetry may 
arise from redundancy in the pixel patterns across the two 
halves of the center pattern. Speci�cally, the pattern on the 
right-hand side could render the left-hand side redundant 
due to the regularization penalty applied during the training 
of the logistic regression model. To investigate this hypothesis, 
we horizontally Jipped the input images from the original 
training datasets and recomputed the GradCAM maps to gen-
erate the mean heatmaps. Despite this transformation, the re-
sulting maps continued to emphasize the right-hand side of the 
lower-center pattern (supplementary �g. S14, Supplementary 
Material online). This consistent focus, irrespective of Jip-
ping, suggests that the model identi�es key features in these re-
gions that are central to distinguishing sweeps from neutrality, 
even if one-half of the central change in gradient renders the 
other half marginally redundant.

To evaluate the robustness of TrIdent in detecting sweeps 
across different selection strengths, we analyzed its perform-
ance across varying selection coef�cient ranges. Because the 
original implementation of TrIdent[IRV2] was trained on 
sweeps with selection coef�cients within the interval 
[0.005, 0.1], it predictably struggled to detect sweeps in the 
weaker selection range of [0.001, 0.005], as these values fell 
outside the training distribution. Speci�cally, sweep classi�ca-
tion accuracy in this range was 59.15% for the CEU test case 
and 63.3% for the YRI test case (supplementary �g. S15, 
Supplementary Material online). To explore whether we can 
improve generalizability, we trained new TrIdent[IRV2] mod-
els on datasets where selection coef�cients were drawn from 
the broader range of [0.001, 0.1], sampled uniformly on a 
logarithmic scale. This adjustment caused a slight decrease 
in performance on the original test dataset. Detection of 
sweeps in the weaker selection range of [0.001, 0.005] for 
the CEU test case was increased by only around 3%, yet the 
YRI test case improved by almost 7% (supplementary �g. 
S16, Supplementary Material online; right panels). While 
this analysis demonstrates that the performance of TrIdent 
in detecting weaker sweeps is contingent upon the selection re-
gime used during training, we hypothesize that we may need to 
substantially increase training samples to further improve gen-
eralizability of TrIdent in regard to detecting both stronger 
and weaker sweeps.

Low-coverage data presents signi�cant challenges for gen-
omic analysis due to the uncertainty in determining genotypes 
(Nielsen et al. 2011; Fumagalli 2013; Korneliussen et al. 
2014). This uncertainty stems from various sources, including 
mapping errors, sequencing errors, and the random sampling 
of haploid reads from a diploid genotype, making it dif�cult to 
accurately infer the underlying genetic variation. In genomic 
regions of low coverage, the detection of selective sweeps is 
particularly problematic, as the likelihood of missing key gen-
etic variants increases, leading to incomplete or inaccurate 
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genomic signals that may masquerade as sweeps. TrIdent may 
be well-suited for applications to low-coverage data, as it relies 
on windows of minor allele counts and works with unphased 
multilocus genotype data. These minor allele counts could be 
approximated with expected allele counts from genotype like-
lihoods (Fumagalli et al. 2014; Fox et al. 2019), which would 
permit TrIdent to account for the uncertainties in calling gen-
otypes from low-coverage sequencing and has been shown to 
be a suitable approach for similar settings (Gower et al. 2021). 
Finally, using minor allele counts within TrIdent input images 
is advantageous as it does not require a reliable outgroup se-
quence to polarize alleles as derived or ancestral. This charac-
teristic is important, as erroneous allele polarization can alter 
the distribution of allele frequencies to be skewed toward 
high-frequency derived alleles, much like that of a selective 
sweep (Hernandez et al. 2007).

To expand upon how our local sorting of haplotypes inJu-
ences model performance, we explored its bene�ts compared 
to a global sorting approach, which we denote as 
TrIdent[IRV2, global]. The image generation process of 
TrIdent, as described in the Image Generation subsection of 
the Materials and Methods, arranges haplotypes based on mi-
nor allele counts independently within small sub-windows, 
preserving localized structural patterns critical for classi�ca-
tion. In contrast, global sorting organizes the entire 499-SNP 
window at once based on total minor allele counts. While glo-
bal sorting guarantees that every pixel value in a row of the re-
sulting image corresponds to the same haplotype, this uniform 
arrangement may obscure subtle, localized patterns essential 
for distinguishing sweeps from neutrality. Our results demon-
strate that local sorting signi�cantly improves predictive ac-
curacy, with global sorting resulting in accuracy losses of 
9.25% in the CEU dataset and 6.1% in the YRI dataset 
(supplementary �g. S17, Supplementary Material online). 
The larger effect in the CEU population, which has experi-
enced a bottlenecked demographic history, highlights the crit-
ical role of local patterns that are more susceptible to being 
blurred by global sorting. By preserving the �ne-grained 
haplotype structures within sub-windows, local sorting 
enables TrIdent to capture nuanced signals associated with 
selective sweeps, especially in populations with complex evo-
lutionary histories.

In our efforts to bridge the gap between the highly complex 
deep CNN architecture of InceptionResNetV2 and compara-
tively shallower sequential CNN architecture used in 
smbCNN (which is identical to the diploS/HIC architecture), 
we examined a custom designed residual (He et al. 2016) 
and multipath (Szegedy et al. 2017) CNN architecture that 
we term scCNN (shallow complex CNN) for ease of reference. 
By incorporating advanced architectural features, scCNN en-
hances complex feature extraction and maintains training ef�-
ciency, making it well-suited for complex tasks without the 
need for excessively deep networks like InceptionResNetV2. 
The architecture of scCNN is detailed in Constructing the 
scCNN architecture in Methods. Despite the structural com-
plexities introduced in scCNN compared to smbCNN, 
scCNN achieved accuracies of 84.10% on the CEU dataset 
and 86.75% on the YRI dataset (supplementary �g. S18, 
Supplementary Material online). The scCNN model still falls 
short of the performance levels achieved by TrIdent[IRV2] 
with its pretrained InceptionResNetV2 backbone. The reason 
lies in the inherent strengths of the InceptionResNetV2 archi-
tecture, which bene�ts from extensive pretraining on large-scale 

datasets and a more sophisticated multipath design that can 
capture a broader range of features across different scales. 
While this scCNN model represents a marginal improvement 
over the simpler smbCNN architecture, it underscores the su-
perior capability of the InceptionResNetV2 architecture em-
ployed by TrIdent[IRV2] in detecting subtle patterns of 
selection in our haplotype rearrangement-based images.

Though TrIdent achieved good performance on demo-
graphic settings with Juctuating populations, it is also import-
ant to consider other, more complex, demographic factors 
that could impact method performance, such as signi�cant 
population substructure and admixture. These factors, par-
ticularly the timing and scale of migration events, can strongly 
inJuence the observed spatial haplotypic diversity and may re-
sult in misleading indicators of selection (Harris et al. 2018). 
The mean of the sweep images used by TrIdent 
(supplementary �g. S1, Supplementary Material online) re-
veals a funnel-shaped dark region at the selected locus (center 
columns of the image), indicating low pixel intensity values 
that are absent in the mean of the neutral images. Class activa-
tion maps (Fig. 7) also show that TrIdent focuses on the lower- 
middle input image pixels for classi�cation. Now, the image 
generation process (Fig. 1) illustrates that pixels at the top of 
the images represent haplotypes with low minor allele counts 
resulting in zero or near-zero values, whereas pixels toward 
the bottom of the images reJect haplotypes with higher minor 
allele counts resulting in higher values that can reach values up 
to 25 (Modeling Description). This observation suggests that 
the loss of haplotype diversity near sweep loci leads to more 
near-zero values in the middle-to-lower parts of the image, 
which TrIdent uses for classi�cation. Therefore, any form of 
migration or population structure introducing near-zero mi-
nor allele counts in this region could be misclassi�ed as a 
sweep, whereas higher values could obscure sweep signals. 
Migration from a population with a smaller effective size 
can introduce haplotypes with limited diversity to the recipient 
population. As a consequence, high migration rate settings 
may replace much of the haplotypic variation in the recipient 
with this low haplotype diversity from the donor, leading 
many polymorphic sites with low minor allele counts, thereby 
increasing the occurrence of near-zero values in the 
middle-to-lower sections of image matrices and potentially 
causing false inferences of sweeps. On the other hand, such mi-
gration from a population with a moderate to large effective 
size after the bene�cial allele has swept can mask sweep foot-
prints by replacing the low haplotypic diversity with moderate 
to high levels from the donor population, resulting in higher 
pixel values in the middle-to-lower image regions. Therefore, 
if it is expected that the study population may have received 
signi�cant gene Jow from other populations, then accounting 
for such processes when generating training datasets is likely 
important to guard against both false positive and false nega-
tive results when detecting sweeps.

Furthermore, we conducted additional analyses to assess the 
impact of sweep shoulders on the classi�cation performance of 
TrIdent. Speci�cally, we evaluated the ability of TrIdent to de-
tect sweeps when the bene�cial mutation was positioned at dif-
ferent locations within a 1.1 Mb sequence. By centering sweeps 
at 500, 375, 250, 125, and 0 kb away from the center, we 
found that TrIdent gradually loses detection ability when the 
sweep moves farther off-center for both CEU and YRI test 
cases (supplementary �g. S19, Supplementary Material online; 
left panel). For example, when the sweep is positioned 125 kb 
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away from the image center, sweep detection accuracy is ap-
proximately 78%, but performance predictably drops substan-
tially at greater distances. To further investigate how sweep 
probability signals diffuse across the genomic region, we con-
ducted a scan across the simulated sweep sequences, protocol 
of which is detailed in the Assessing sweep shoulders subsection 
of the Methods. This analysis enabled us to systematically as-
sess how predicted sweep probabilities change with distance 
from the bene�cial mutation (supplementary �g. S19, 
Supplementary Material online; right panel), demonstrating 
that while TrIdent can detect selective sweeps beyond a perfect-
ly centered mutation, its accuracy declines as the focal muta-
tion shifts further from the image center, emphasizing the 
importance of generating images in small genomic distances 
when analyzing empirical data.

The pretrained InceptionResNetV2 model is especially suit-
able for assessing the image of multilocus variation used by 
TrIdent because of its hybrid architecture, which effectively 
integrates the advantageous qualities of both Inception and 
Residual networks. Inception modules facilitate the extraction 
of features at several scales, enabling the detection of patterns 
of different sizes and complexities in the input images. The 
added residual connections enhance the feature extraction 
process by utilizing network depth, as model layers have the 
ability to capture diverse sets of features, which allows for ac-
curate identi�cation of small changes in genomic variation 
with multilevel inspection and concatenation of information 
from input images without the need for further training. The 
promising performance of TrIdent on detecting sweeps when 
confronted with common empirical hurdles while also having 
the capacity to predict evolutionary parameters underlying 
sweeps makes it a versatile tool for population genetic studies. 
This versatility is underscored by consistently good perform-
ance of TrIdent across two demographic histories, showing 
marginally higher accuracy in the YRI dataset due to greater 
genetic diversity, whereas on the CEU dataset, affected by a re-
cent severe bottleneck, exhibited reduced background vari-
ation that slightly diminished sweep detection accuracy. The 
robust performance of TrIdent when faced with nonsweep 
patterns that can masquerade as sweeps, such as technical is-
sues that lead to large missing genomic segments and the pro-
cess of background selection further underscores its ability to 
handle challenging genomic scenarios effectively. Missing 
data, such as undiscovered polymorphism due to poor mapp-
ability, can mimic selective sweeps by reducing local haplo-
typic diversity. Despite this challenge, TrIdent maintains 
high and only marginally-decreased accuracy under such set-
tings. Additionally, TrIdent shows resilience against mislead-
ing patterns of lost diversity due to background selection. By 
analyzing haplotype distributions, the model can effectively 
guard against false classi�cation of background selection as 
a selective sweep while maintaining a low FPR.

Though our empirical �ltration method, as detailed in the 
Filtration of empirical data and empirical image generation 
subsection of the Materials and Methods, is effective in redu-
cing false discoveries, it can also inadvertently exclude some 
true signals from the analysis. A notable case study of this phe-
nomenon is the ACKR1 gene (Atypical Chemokine Receptor 
1), also known as the DARC gene (Duffy Antigen Receptor 
for Chemokines), which has been widely recognized as a target 
of positive selection due to its role in conferring resistance to 
malaria caused by Plasmodium vivax infection (Horuk 
2015; Yin et al. 2018). This highly recombining locus poses 

a particular challenge for detecting selection signals due to 
its complex genetic landscape (McManus et al. 2017; 
Lauterbur et al. 2023). In our analysis, ACKR1 was excluded 
during the �ltration process because it exhibited a low mean 
CRG score. To assess whether this exclusion impacted the de-
tection of a true signal at this locus, we reanalyzed SNPs with-
in and around ACKR1. This reanalysis revealed evidence of a 
sweep in the YRI scan, with a mean peak probability of 0.858 
(supplementary �g. S20, Supplementary Material online). 
However, no similar signal was detected in the CEU scan. 
This example illustrates the tradeoffs inherent in applying 
stringent �ltration criteria and highlights the importance of 
carefully balancing false discovery control with the retention 
of biologically meaningful signals.

Finally, we scanned two human populations (CEU and YRI) 
for sweeps using TrIdent, and reported candidate genes 
with previous literature support, as well as some novel 
candidate loci. However, it is also important to highlight those 
candidates that TrIdent identi�ed with highest con�dence. We 
therefore considered the 10 sweep candidates (supplementary 
tables S1 and S2, Supplementary Material online) with highest 
10-window mean sweep probabilities within each population 
to better compare and contrast the genomic regions strongly 
favored by TrIdent. Two genes (LAMC2 and MTOR) in our 
CEU analysis and two genes (HLA-DRB6 and ROBO2) in 
our YRI analysis are among the top 10 candidates in their 
respective scans. By focusing on these top 10 candidates, 
which have no overlap between the pair of sweep scans, 
we may gain insights into the key genetic adaptations and 
distinct evolutionary pressures that have shaped these popula-
tions. Whereas the CEU candidates reJect adaptations 
potentially linked to metabolism, neurodevelopment, and 
cancer-related pathways, those from the YRI focus more on 
immune function and pathogen resistance. This potential 
functional divergence highlights how different environments 
and historical pressures may have shaped the genetic land-
scape of these populations in unique ways. However, the 
exclusivity of candidates may also suggest a limitation of 
the trained TrIdent model, in which it may have reduced cap-
acity for detecting more ancient sweeps that would have oc-
curred prior to the split of CEU and YRI, thus missing 
shared sweep signals across these populations. Future studies 
could train TrIdent models on variation across multiple pop-
ulations to detect shared sweeps and discriminate them from 
population-speci�c events.

Materials and Methods

Simulation Protocol

To simulate replicates under both the European and 
sub-Saharan African human demographic histories, we drew 
the per-site per-generation mutation rate μ uniformly at ran-
dom within the interval [2.21 × 10−9, 2.21 × 10−8] with a 
mean of 1.21 × 10−8 (Scally and Durbin 2012; Schrider and 
Kern 2017) and the per-site per-generation recombination 
rate r at random from an exponential distribution with 
mean 10−8 (Payseur and Nachman 2000; Schrider and Kern 
2017) and truncated at three times the mean (Schrider and 
Kern 2017). For each replicate simulated under the inferred 
demographic history (Tennessen et al. 2012), we sampled 
198 haplotypes for CEU and 216 haplotypes for YRI of length 
1.1 Mb to match the number of sampled haplotypes in our em-
pirical experiments.
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We generated sweep simulations with per-generation selection 
strength s acting on a bene�cial allele at frequency f that arose at 
a locus at the center of a simulated genomic region, with s drawn 
uniformly at random within the interval [0.005, 0.1] and f 
drawn uniformly at random on a logarithmic scale within the 
interval [1/(2Ne), 0.2] (Schrider and Kern 2017), where Ne is 
the present-day effective population size. Moreover, we also 
drew the number of generations τ in the past at which the bene-
�cial allele reached �xation uniformly at random within the 
interval [0, 2,000] (Schrider and Kern 2017). This simulation 
protocol guarantees that both training and test sets reJect an ar-
ray of sweep settings, including weaker (small s) and stronger 
(large s) selection scenarios, harder (small f) and softer (large f) 
sweeps, and time τ in which mutation, recombination, and gen-
etic drift can erode signals of sweeps, all of which affect the size 
and prominence of the genomic footprint left by a sweep after 
�xation. These modeled genetic, demographic, and selection pa-
rameters are expected to lead to signi�cant overlap in the distri-
butions of genetic variation between sweeps and neutrality.

Image Generation

For each simulated replicate, we retain only bi-allelic SNPs with 
a minor allele count of at least three (i.e. removed singletons and 
doubletons). We then generate a matrix M of dimension 
n × 499, where n denotes the number of haplotypes in a repli-
cate, with each row representing one of the sampled haplotypes 
and each column representing one of 499 SNPs, where these 
SNPs were chosen as the central position, 249 closest SNPs up-
stream of the central position, and 249 closest SNPs down-
stream of the central position of the simulated genomic 
region, which is where the selected mutation is introduced in 
sweep simulations. The element Mij takes a value of zero if 
the haplotype within the ith row has the major allele at the 
SNP in the jth column, and otherwise has the value of one for 
the minor allele. From this matrix, we sought to create a re-
presentation of genome variation that might make pattern rec-
ognition easier by generating a matrix X of dimension n × 237 
computed using windows of 25 SNPs with a stride of two be-
tween each window, with element values Xij ∈ {0, 1, . . . , 25}. 
That is, for j ∈ {1, 2, . . . , 237}, we computed the minor allele 
counts for each of the n rows of a genomic window of length 
25 SNPs starting at column 2j − 1 of M, arranged these minor 
allele counts values in increasing order, and set the values in col-
umn j of X as this sorted list of minor allele counts. This proced-
ure summarizes the number of minor alleles within a given 
25-SNP window for each haplotype, and thus rows toward 
the top of X summarize haplotypes with a greater number of 
major alleles, whereas rows toward the bottom have a greater 
number of minor alleles. We then perform the same computa-
tion of each 25-SNP window by taking a stride of two SNPs. 
This matrix is subsequently resized using linear interpolation, 
depending on the input image size requirements of the pre-
trained neural network architectures. For example, pretrained 
models like InceptionResNetV2 require input image sizes of 
299 × 299, whereas for some pretrained models, such as 
VGG16 or MobileNetV2, the required input image size is 
224 × 224. An example illustrating this image generation pro-
cedure is presented in Fig. 1 (top panel).

Constructing the scCNN Architecture

The scCNN architecture begins with an initial convolutional 
layer that applies a set of �lters to the input image. 

Following this layer, the model incorporates a residual block 
that contains two convolutional layers, each followed by 
batch normalization (Bjorck et al. 2018) and ReLU activation 
(Krizhevsky 2012). A skip connection within the residual 
block bypasses these two convolution layers, directly adding 
the input to the next convolution layer, which maintains gra-
dient Jow during training and enables deeper feature learning 
(He et al. 2016). There is an additional skip connection before 
the �fth convolution layer that allows the concatenation of 
fourth and �fth convolution layer outputs that are then fed 
into the dense layer. The model is optimized using the Adam 
optimizer and binary cross-entropy loss, ensuring ef�cient 
training and robust performance.

Computational Resources and Requirements

Our analysis was conducted on a system equipped with an 
AMD EPYC 7,702 64-core CPU with 100 GB of RAM. The 
TrIdent image generation method requires a mean of 6.83 s 
to generate an image from a simulated replicate. Loading the 
InceptionResNetV2 architecture with its pretrained weights 
uses approximately 513 MB of RAM. The mean time to com-
pute the GAP layer output using InceptionResNetV2 is 0.018 s 
for a single input image. Training the penalized logistic regres-
sion model on 2,000 images with hyperparameter tuning, if 
run parallelly, requires approximately 6 min and 30 s and con-
sumes 56 MB of memory.

Conversely, training the entire InceptionResNetV2 archi-
tecture, as executed in the training of the IRV2 model, neces-
sitates additional resources beyond those previously 
mentioned. Speci�cally, training IRV2 on 2,000 images, in-
corporating early stopping to prevent over�tting, attained 
convergence in 37 epochs for the CEU dataset and 26 epochs 
for the YRI dataset. Each epoch required approximately 4 
min to complete and utilized around 26 GB of RAM in total 
for both test cases. We anticipate that as more training images 
are used, the RAM utilization and the training time would in-
crease substantially for the full IRV2 model.

For comparison, we also assessed the computational resour-
ces required by diploS/HIC. Extracting 101 summary statistics 
from each simulated replicate takes on average 17.17 s. 
Training the CNN model with early stopping, using a dataset 
consisting of summary statistics from 1,000 replicates per 
class, allows diploS/HIC to converge in 13 epochs, requiring 
approximately 42 min and consuming 7.5 GB of RAM.

Application of CLUES2

To benchmark the accuracy and precision of the 
TrIdent[IRV2, ANN] nonlinear regression model in estimat-
ing selection coef�cients, we compared its results against 
CLUES2 (Vaughn and Nielsen 2024). First, we used the 
ms2vcf tool of the coatli (Klassmann 2013) package to 
convert discoal output ms formatted �les to VCF format, 
as SINGER (Deng et al. 2024), one of the two software sup-
ported by CLUES2 to compute ARGs, accepts VCF �les as in-
put. Because the exact mutation rate applied in each simulated 
replicate is unavailable, we used a mean mutation rate of 
1.21 × 10−8, consistent with our simulations. Additionally, 
as we could not extract the recombination to mutation rate ra-
tio for each replicate, we set this parameter to the default value 
of one in SINGER. We also retained the default number of 
posterior samples of 100. After generating ARGs, we used 
the SingerToCLUES pipeline of CLUES2 to convert the 
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output from SINGER to the required CLUES2 input format. 
For the genomic position of the bene�cial mutation, we se-
lected the SNP closest to the simulation center. Finally, to 
run the CLUES2 inference script, we used the sample-derived 
allele frequency of this central SNP. For the maximum time (in 
generations) to be considered in the analysis, we chose 2,000 
generations in the past. We also tested 1,000 and 4,000 gener-
ations, but the results remained largely unchanged.

Assessing Sweep Shoulders

To analyze classi�cation performance of TrIdent on sweep 
shoulders, for both CEU and YRI datasets, we computed the 
mean sweep probability across 1,000 test images within over-
lapping 20 kb bins spanning the 1.1 Mb simulated region. 
Using a stride of 10 kb, we created 48 bins with the �rst bin 
spanning 300 to 320 kb to last bin spanning 780 to 800 kb. 
We exclude the �rst and last 300 kb of the region because 
the image generation process requires at least 499 SNPs with 
the center SNP falling within a bin. When a bin is positioned 
too far from the simulation center (550 kb), the number of 
qualifying images meeting these criteria becomes insuf�cient 
for reliable analysis. To generate images for this experiment, 
we scanned the entire 1.1 Mb sweep replicates in an identical 
manner to how images were generated from chromosomes 
in our empirical analysis, as described in the Filtration of em-
pirical data and empirical image generation subsection. Once 
generated, images were assigned to bins based on their center 
SNP positions. Any image with a center SNP falling outside 
these prede�ned bins was excluded from further analysis.

Filtration of Empirical Data and Empirical Image 
Generation

To apply TrIdent to the phased genotype data from the 99 CEU 
and 108 YRI individuals of the 1000 Genomes Project dataset 
(1000 Genomes Project Consortium 2015), we retained only 
bi-allelic SNPs with a minor allele count of at least three (i.e. re-
moved singletons and doubletons). Following the protocol of 
Mughal et al. (2020), we further �ltered this dataset by exclud-
ing genomic segments of length 100 kb with mean CRG 
(Consensus Reference Genomes) mappability and alignability 
scores (Talkowski et al. 2011) below 0.9 to reduce the possibil-
ity of misleading signals due to technical concerns. CRG mapp-
ability scores reJect the probability of accurately mapping short 
sequencing reads to a speci�c genomic region. We then created 
images for input to TrIdent by considering the �rst 499 contigu-
ous SNPs on an autosome, converting the haplotype variation 
across these SNPs into an image according to the procedure out-
lined in the Image generation subsection, processing subsequent 
images by moving the SNP window by a stride of two SNPs 
along the autosome, and repeating this procedure for all auto-
somes. The chromosomal location of each observation was 
set as mean position of the 249th and 250th SNP.

Supplementary Material

Supplementary material is available at Molecular Biology and 
Evolution online.
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