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Abstract—This paper presents a novel, general-purpose inter-
face for adding interactive human-in-the-loop steering controls to
existing simulation codes. The design is agnostic to any specific in
situ analysis and visualization library, though our reference im-
plementation is based on Ascent — a common in situ visualization
and analysis library for large-scale simulations. Traditional in
situ analysis and visualization workflows are typically automated
through trigger mechanisms that execute as simulations reach
certain predefined states (e.g. every N timesteps, simulation pa-
rameters become unstable, etc.). Although such automated in situ
tasks suffice for many real-world applications, we demonstrate
that a complementary interactive interface can significantly boost
scientific productivity. We show through two use cases how our
approach enables scientists to pause simulations and make in-
teractive adjustments between timesteps. This method eliminates
cold restart overhead, accelerating setup, troubleshooting, and
exploration.

Index Terms—Human-in-the-loop, in situ, interactive steering,
Ascent, simulation.

I. INTRODUCTION

Scientific simulations serve as crucial instruments for mod-
eling real-world phenomena in a controlled and reproducible
manner, enabling scientists to answer questions that might be
impractical or prohibitively expensive to investigate through
direct physical experiments [21]. As high-performance com-
puting (HPC) systems evolve, scientific simulations grow in
scale and complexity. Exascale computing [15] has enabled
more detailed, dynamic, and high-resolution simulations, un-
locking new scientific discoveries. These advancements have
increased data sizes, causing I/O and storage challenges [9].
Issues like I/O bottlenecks highlight the need for modern
in situ analysis and visualization techniques. These methods
provide scientists with a standardized and efficient way to
extract intermediate results from their simulations without
requiring the output of raw simulation data [5].

Computational steering, a form of in situ processing, allows
scientists to adjust simulation parameters on the fly, enhancing
their productivity by reducing the delay between user inter-
vention and the observation of outcomes [20]. Intervention
includes changing parameters, adjusting mesh resolution, or
restoring a checkpoint. In situ techniques, including com-
putational steering, play a vital role in enabling scientists

to discover answers to research questions more swiftly and
efficiently.

Historically, implementing interactive computational steer-
ing has necessitated the development of custom steering infras-
tructure on a per-simulation basis, or employing specialized
frameworks such as SCIRun [16]. However, the emergence
of general-purpose in situ libraries, characterized by “time
division and on node proximity” [6], has facilitated the integra-
tion of powerful analysis capabilities into existing simulation
codes, minimizing the reliance on bespoke solutions. Despite
these advancements, most in situ steering relies on triggers
which automatically execute based on the simulation state.
We feel that there remains a significant gap in facilitating
human-in-the-loop simulation interactivity and steering for
situations where domain knowledge is critical for determining
appropriate intervention strategies.

To our knowledge, there are currently no in situ libraries that
provide a comprehensive, general-purpose steering interface
to interactively control existing simulation codes. This paper
marks our attempt to meet this requirement, presenting:

1) An implementation of our interactive bidirectional steer-
ing mechanism based on the Ascent [11] in situ frame-
work.

2) The creation of terminal-based and Jupyter notebook-
based steering interfaces.

3) Two fully implemented use cases of interactive steering,
each based on a different simulation, neither of which
natively supports steering without our mechanism.

All the features described in this paper are also currently
integrated in Ascent and readily available to use.

II. BACKGROUND

The rise in popularity of in situ methods has led to the
development of specialized software libraries designed for
“time division and on node proximity” [6] to make these
capabilities readily accessible to simulation developers. Note-
worthy libraries, including VisIt/Libsim [4], ParaView/Catalyst
[2], SENSEI [3], and Ascent [11] [1], aim to alleviate the
complexities of building efficient, heterogeneous, and vendor-
agnostic in situ infrastructures.



Libsim and Catalyst are Application Programming Inter-
faces (APIs) designed to interface with Vislt and ParaView
respectively, each allowing users to define and execute in situ
analysis and visualization tasks via scripts. Both APIs can
also interface with their respective Graphical User Interfaces
(GUIs) for interactive analysis, allowing users to configure
render pipelines manually in a GUI and then export them as
scripts to use for subsequent simulation runs. Catalyst sup-
ports bidirectional data communication, crucial for interactive
steering.

SENSEI is an intermediary between simulations and various
in situ endpoints, enabling different in situ back-ends to
be swapped in at runtime. When Catalyst is used as an
endpoint, SENSEI can facilitate bidirectional data communi-
cation through the Catalyst APIL. By contrast, Ascent is stand-
alone and primarily relies on YAML or JSON files for task
definition, with the option to provide it with external Python
scripts for added flexibility. Although Ascent does not directly
integrate with GUI applications like Vislt or ParaView, it
provides a Python interface which can be used for data analysis
within a Jupyter Notebook environment.

Bidirectional Steering. The distinction between computa-
tional steering and bidirectional steering is subtle. Computa-
tional steering occurs when the simulation state changes as a
result of external intervention, whether it originates directly
from a user or as the result of a trigger. Bidirectional steering
is computational steering informed by in situ analysis and
visualization. In other words, it is the feedback loop through
which a user performs in situ tasks on simulation data and
makes steering decisions. In this scenario, each communica-
tion direction (the user and the simulation, with a steering
interface acting as a bridge) influences the other component.

Libsim, Catalyst, and, by extension, SENSEI facilitate bidi-
rectional communication limited to passing simulation data
around. This allows for limited simulation steering via their
respective GUIs (Vislt for Libsim, ParaView for Catalyst) [18].
Catalyst stands out for its simplicity in integrating interactive
bidirectional steering into existing simulation codes. Until
recently, Catalyst was bound to the Paraview user interface,
but Catalyst 2 [13] now provides an API which external
applications could integrate and use, such as ADIOS 2 [14].
In principle, this new interface could be used to perform bi-
directional interactions, however it requires all components of
the workflow to interface with the given API. Our proposed
mechanism instead, is more flexible and allows to register, list
and invoke callbacks that are part of the simulation, in situ
framework or third party applications, as well as executing
system commands (e.g., Linux utilities) and scripts as part of
the in situ workflow.

A. Use Cases For Bidirectional Steering

To demonstrate the capabilities of our bidirectional steering
mechanism we focus on some real-world scenarios, such as:
(i) correcting unproductive simulations that might otherwise
require a complete restart due to issues like modeling errors,
software bugs, or resource limitations; (ii) streamlining the

process of finding optimal initial conditions; (iii) investigating
intriguing simulation states to explore phenomena of interest.

III. IMPLEMENTATION

This section presents an overview of the existing features of
Ascent that motivated its selection for our reference implemen-
tation. We then discuss our design/implementation decisions.

A. Existing Ascent Capabilities

The Ascent framework supports various data models and
extraction methods, and features a comprehensive actions API,
a sophisticated trigger system, and an interactive data analysis
through Jupyter Notebook integration [10]. Actions within
Ascent, which include rendering specifications, data transfor-
mations, camera settings, plots, and other configurations, are
determined before the simulation runs and can be defined in
the code or specified in external YAML files. Notably, before
this work, this could only be used to analyze the current
timestep data, and not influence the simulation.

A noteworthy aspect of Ascent is its query and trigger mech-
anism, enabling the execution of specific in situ actions based
on the simulation’s state. This functionality can range from
simple triggers, such as actions occurring every N timesteps, to
more complex conditions, like triggering visualizations when
data entropy exceeds a certain level. Additionally, Ascent’s
data extraction features allow for the output of timestep data
in various forms: saving to disk as HDF?5 files, processing via
external Python scripts, forwarding to a visualization cluster
with ADIOS2, or displaying in real-time in a Jupyter Notebook
instance [8]. The maturity of the framework and the features
described above, make Ascent the perfect framework to extend
for our goals.

B. Bidirectional Interface Integration

The integration of Ascent into a new simulation codebase
is generally straightforward. It involves initializing Ascent,
setting how often it receives data, defining in situ tasks, and
finalizing Ascent when the simulation ends. Data is passed by
reference using zero-copy methods provided by Conduit. To
enable bidirectional steering capabilities, we wanted to provide
the ability for users to register and invoke arbitrary functions or
scripts through a steering interface. Hence, our implementation
adds support for application callback registration and extended
the trigger system in Ascent to use those.

Simulation/Application Callbacks. Since developers and
users know best what interactivity their simulations need, we
delegate the implementation of specific details to them, avoid-
ing the inclusion of specific steering functionalities within As-
cent. This consideration is particularly relevant for simulations
that already possess internal functions capable of performing
desired actions, but are normally inaccessible to the in situ
library. Aiming for a versatile solution, we devised a system
where developers can register functions with Ascent.

Our interface provides the ability to invoke functions on the
simulation/application side. Such functions, may either wrap
existing simulation capabilities, or be written from scratch
to provide custom functionality. These functions use void or
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Fig. 1. Diagram illustrating the user’s input of commands and parameters via the steering interface, which Ascent processes and executes. The subsequent

output is returned to the user. Based on the in situ analysis, the user makes steering decisions that change the simulation state. This can be repeated as many

times as desired.

boolean callback signatures, defining how Ascent registers
and invokes them. They can either wrap existing simulation
capabilities or be written from scratch. Once these functions
are defined, they must be registered with Ascent. Registering
function callbacks involves providing Ascent with a function
reference and a user-friendly name to associate with the
command.

Ascent has been modified to include a mapping of call-
back names to function pointers. We also introduced static
methods for registering these callbacks with Ascent and the
necessary infrastructure to invoke these callbacks by name.
Two simulation callback signature types are supported: one
accepts two Conduit Node references for input and output
parameters, returning void, while the other accepts no argu-
ments and returns a boolean. Conduit Nodes allow a broad
range of parameters to be passed without requiring Ascent to
understand their semantics. The callback system is designed to
abstract MPI communication details, ensuring that end-users
do not need to manually handle MPI communicators when
invoking steering commands. However, developers can still
access the MPI communicator, providing greater flexibility for
those needing custom MPI logic within their callbacks.

Other in situ libraries could theoretically allow the registra-
tion of the same callbacks based on the function signatures
defined here, providing a flexible mechanism for callback
integration. Adopting a mechanism for callback registration
and integration similar to what we implemented would enable
compatibility across different in situ frameworks.

action: "add_triggers"

triggers:

tl:
params:
callback: "isStable"
actions_file :"stable_actions.yml"
2:
params:

callback: "isUnstable"
actions_file :"unstable_actions.yml"

Listing 1. Ascent actions which combine the existing trigger infrastructure
with custom callbacks to create more complex control flow.

Trigger mechanism extension. To implement our interac-
tive steering interface, a trigger mechanism is set up to signal
Ascent when to enter steering mode, pausing the simulation
and allowing for real-time user interaction with the assurance
that the simulation state won’t continue changing. This setup
enables users to engage with the simulation through an inter-
active steering interface, offering direct control over in situ
tasks and the ability to issue commands.

Leveraging Ascent’s trigger infrastructure to utilize simula-
tion callbacks as conditions for initiating custom in situ actions

allows users to craft nuanced control flows. An example is
in Listing 1, in which two triggers are defined using two
separate callbacks as conditions. Ascent will perform different
sets of actions depending on whether the simulation is stable.
Additionally, for scenarios where users wish to modify the
simulation interactively, they can develop and register complex
void callbacks that process input parameters and produce
outputs. This method of callback support empowers simulation
developers to design an interaction API best suited for their
codebase, embodying the flexibility central to our general-
purpose approach. For example, this allows to simply use ex-
ternal tools into steering workflows. One possible application
for this feature is to set up external notifications about the
simulation’s state. For instance, if a trigger condition identifies
a noteworthy event, it could be configured to automatically
send an email notification to the user

C. Interactive User Steering Interfaces

We have developed two user steering interfaces: a terminal-
based interface and a Jupyter-notebook interface. Once the
simulation triggers the designated condition and enters a
paused state, the user is prompted to issue commands using
either interface. While the simulation is paused, all compu-
tational resources are held in place, ready for the simulation
to resume without the need for reallocation or reinitialization.
This interface-agnostic approach gives users the flexibility to
choose between the straightforwardness of a terminal, the
typical experience offered by a Jupyter-notebook, or to develop
something entirely custom to their needs.

Our terminal-based steering interface is dependency-free,
using an event loop to parse user inputs into executable
commands. A list feature displays the simulation callbacks
registered with Ascent, informing users of available simulation
commands. An internal Conduit node facilitates argument
passing for execution with simulation commands, manipulated
via a param command for assigning values to parameters. The
interface ensures that commands are executed with the current
parameter set, while parameter resets are also possible. To
conclude steering and resume simulation, users can use an
exit command.

The Jupyter-notebook steering interface requires users
to establish an SSH tunnel to the Ascent instance’s compute
node. Upon accessing the notebook, users should select the
”Ascent-Jupyter-Bridge” kernel, enabling Ascent to establish
a live connection with the simulation. The initial step involves
executing the ”%connect” command, which bridges the user
to the simulation. At this point, Ascent functions like a
remote server processing Python code. While standard Jupyter-
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Fig. 2. LBM-CFD simulation without (left) and with (right) numerical
instability.

notebook features remain accessible (subject to certain con-
straints), our enhancement allows for the direct invocation of
simulation callbacks registered with Ascent. After concluding
interactions within the interface, the ”%disconnect” command
relinquishes control, allowing the simulation to proceed with
its execution. The Jupyter-notebook environment also provides
access to Ascent’s Python library and users’ Python environ-
ment allowing for more advanced interactive data analysis.

IV. USE CASES AND EVALUATION

We implemented two use cases to showcase some of the
potential in our general-purpose steering interface. Both sim-
ulations did not natively provide steering controls beforehand.

A. Rescue use case: Lattice Boltzmann CFD

For this demonstration, we utilized a 2D Lattice Boltzmann
CFD (LBM-CFD) simulation [7] to address the rescue use
case. This evaluation was performed using 20 nodes on the
Polaris supercomputer at Argonne National Laboratory [17].
This use case is important to show the ease of use and the
flexibility of the proposed mechanism.

Numerical instability, a common challenge in various sim-
ulations, can manifest in LBM-CFD simulations under certain
conditions. Instability occurs when the delta time for each
simulated timestep is too large, causing particles in the fluid to
move more than one grid cell per step, leading to cumulative
errors and eventual instability. Stability is maintained by
keeping density values above zero. Rescuing the simulation
involves reverting to a stable checkpoint, increasing timesteps,
and recalculating the state.

params = conduit.Node()

params[”timesteps”] = 3200

output = conduit.Node()
execute_callback("’setTimeSteps”, params, output)

Listing 2.
facilitating a comprehensive command structure.

This simulation includes a built-in function for stability
checking, which we encapsulated within a boolean callback,
registered this callback with Ascent, and defined correspond-
ing actions. After each timestep, Ascent checks this callback; if
stable, Ascent proceeds with actions that render the grid data.
If instability is detected (see Figure2), Ascent triggers actions
designated for unstable states, including sending an email
(i.e., using the system mail command), initiating a Jupyter
Notebook server, and awaiting user connection to the steering
interface, with the email conveniently linking directly to the
Jupyter server.

The user connects to the live simulation through Ascent’s
bridge kernel and interacts with timestep data and callbacks.

Users can manually input arguments for executing callbacks,

To stabilize the simulation, the user invokes two void call-
backs: revert to the last stable checkpoint and increase the
number of timesteps (as detailed in Listing 2). The simulation
then resumes with its state altered based on user input,
confirmed by Ascent’s return to stable visualizations.

This instance of successfully mitigating simulation insta-
bility through direct user intervention illustrates the potential
and versatility of our proposed interface, suggesting broader
applicability in solving real-world challenges in collaboration
with simulation developers and users.

B. Streamlining the process of finding optimal parameters:
Direct Forcing Immersed Boundary Method (DF-IBM) CFD

This use case is grounded in a CFD simulation of a real-
world terrestrial vegetation canopy. Vegetation is instrumental
in mitigating the urban heat island effect and enhancing
outdoor comfort (e.g., [12]). However, challenges persist in
modeling vegetation effects on momentum, turbulence, and
heat/moisture fluxes. A key challenge is bridging the scale gap
between centimeter-scale tree branches and meter-scale street
modeling. The goal is to find a range of suitable resolutions
such that the simulation performance is balanced with high
quality results.

The direct-forcing immersed boundary method (DF-IBM),
proposed by Yang et al. [22], was adopted to simulate real-
world tree vegetation using sample Lidar data available from
the US Geological Survey [19]. This method allows for
including sub-grid resolution geometrical features of trees,
such as branches and stems. The implementation, based on the
scalable Nek5000 solver, is suitable for both Large Eddy Sim-
ulation (LES) and Reynolds-Averaged Navier-Stokes (RANS)
simulations, utilizing Lidar data from real trees and vegetation
canopies. The runs were performed using 50 nodes, 6,400 total
cores, on Argonne’s LCRC (Laboratory Computing Resource
Center) Improv supercomputer.

It requires using a Gaussian kernel to force each point
from the point cloud, which is then projected to the
Gauss—Lobatto-Legendre (GLL) points. However, there is a
trade-off between the number of points used to describe the
tree geometry and the additional computational cost required
for the DF-IBM method’s forcing, especially for subgrid
features. Numerical instability can occur across different sim-
ulations depending on the number of points, grid resolution,
geometry orientation, and imposed flow velocity at the inlet.

In a typical workflow, before any production simulation run
or parametric analysis occurs, optimizing the computational
setup of a case involves extensive testing with varying particle
numbers used to represent the geometry of the tree, selecting
an optimal time step (df) based on numerical stability and
computational efficiency for each run. Therefore, there is a
need to balance the resolution (number of points) used to
describe the geometry of the tree with the accuracy of the
resulting geometry (see Figure 3).

Using a non-interactive procedure, this process would re-
quire running several test simulations. While these simulations
could potentially be run simultaneously, users typically choose
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Fig. 3. Optimization of computational cost versus accurate representation of
obstacles described using the Immersed Boundary Method (IBM). On the left:
different resolution of points is shown. On the right: the corresponding results
for the instantaneous velocity field from an LES simulation are shown.

to perform them sequentially for convenience. For example,
if a simulation is already producing unacceptably inaccurate
results at the current resolution, the user would know to
not further reduce the resolution. Additionally, while these
runs could be scripted to execute automatically, the analysis
and setup of the simulations still requires manual efforts
(i.e., minutes or hours in complex cases). Finally, there is a
time overhead due to domain partitioning that occurs at the
beginning of each new simulation run.

As an alternative, our proposed general-purpose steering
interface was used to streamline this process. Rather than cold-
restarting the simulation for each resolution that we wanted to
test, we instead devised two callbacks: one which swaps the
current Lidar dataset with one of a higher or lower resolution,
and another which forces NekIBM to load and use the newly
swapped particle data. The simulation ran without restarting,
adjusting case resolution every 6,000 timesteps via the steering
interface. The average velocity at a downwind location on the
leeward side of the tree was plotted in situ, reviewed by a
scientist, and used as a metric to evaluate the accuracy of
the reduced case compared to the fully resolved target case.
In this use case the human-in-the-loop is essential as both
quantitative as well as qualitative metrics are required to take
a decision e.g., check the size of the wake behind the obstacles
(not only velocity but also turbulent quantities like TKE, etc.).
The thresholds for such qualitative analysis are not written
in stone and require scientific judgment. To further decrease
the computational cost, the simulations were not reinitialized
when the point number was updated. Instead, the solution from
a case with a higher number of points was used as the initial
condition for the next simulation, saving time.

This procedure was repeated until the scientist found an
optimal number of points, balancing reduced computational
cost with the representativeness of the target case results. In
addition to the metric plot, 3D visualization of the flow field
was also performed in situ, in order to give the scientist an
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Fig. 4. (a) Comparison of the performance between the high, medium and
small number of points cases. The small case deviates significantly from the
target case (large number of points). (b): 3D visualization of the velocity field
(m/s) over a slice in the computational domain. (c): isocontour of the velocity
field (in m/s).

opportunity to inspect the simulation results not only over
a single line (where the velocity profile is plotted) but also
everywhere in the domain (see Figure 4).

From a computational cost perspective, we observe that the
proposed mechanism does not add any sensitive overhead to
the runtime. On the contrary, it is saving the re-initialization
cost (2.5 minutes over a runtime of 57.5 minutes) when
interactively swapping the data at runtime versus running a
new simulation from scratch each time the user decides to
change the number of particles. A scientist working on this
case might perform this operation 4-6 times to find the right
resolution which makes the proposed mechanism very valuable
to reduce overhead from simulation restart while maintaining
an interactive experience.

V. CONCLUSION

We introduced a general purpose interactive bidirectional
steering mechanism which allows for easy real-time, human-
in-the-loop interventions. Our reference implementation ex-
tends Ascent’s in situ capabilities by enabling interactive
invocation of simulation callbacks and system commands
through terminal or Jupyter notebook interfaces. Our use cases
demonstrated the flexibility, ease of use, and benefits for
human-in-the-loop interactive in situ analysis and visualization
workflows.
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