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QLSTM-Based Microgrid Daily Operation with Renewable Uncertainty

Zeina Bahij, Najmus Sahar, Bing Yan

Abstract— Microgrid is a small-scale grid where generation is
close to the demand allowing more penetration of renewables, like
photovoltaic (PV). However, the intermittent nature of PV power
generation poses a significant challenge in microgrid operation,
especially on days with highly variable weather conditions. In this
paper, a deep reinforcement Q-learning long short-term memory
(QLSTM) model is developed to predict the operation strategy of
a microgrid for the next day at a 15-minute time interval. To
address the uncertainty of PV power and demand, the previous
three days’ PV and load data are added as inputs to the model
since weather conditions on consecutive days may depend on
similar atmospheric conditions. Also, to address the effect of
propagation of error in the long forecasting horizon with multiple
steps, a moving window training method is implemented. The
moving window will be shifted by 15 minutes at each step once the
actual PV and load data are available till the end of the day. The
model is tested in a microgrid consisting of combined cooling,
heating and power, heat pump, PV, battery, and heating and
cooling energy storage systems. Results show that our model
outperforms gated recurrent unit, LSTM, and Q-learning for
testing data from different months. Also, it shows better
performance than MATLAB 2023 Optimization Toolbox (the
branch-and-bound method) which uses forecasted data,
especially on a day with highly variable weather conditions.

Keywords: Microgrid operation, PV, QLSTM, uncertainty.

. INTRODUCTION

Microgrid supports a flexible and efficient grid by enabling
the integration of distributed energy resources. It allows more
penetration of renewables, like photovoltaic (PV) along with
other conventional generators and storage units. With multiple
units generating power at the same time, there is a need to
optimize the daily microgrid operation to specify the hourly
power generation amount needed from each unit to satisfy the
variable demand. The main difficulty in the operation
optimization of microgrids lies in the intermittency and
uncertainty of renewables and demand. Also, predicting PV and
demand at once for the next day at multiple time intervals
results in a high forecasting error.

The daily operation of microgrids has been studied by many
researchers as reviewed in Section II. A commonly used
approach is deterministic where the PV power and demand
forecasted data are used without considering the uncertainties.
This approach shows a high deviation from optimal generation
levels due to the forecasting error in the input data (PV and
demand). In the stochastic approach, renewables are modeled
using scenario-based approaches without considering their
changes with time. The most recent approach for solving the
problem is machine learning where a model is trained to predict
the operation strategy using PV and load forecasted data as
input. It shows better results than previous approaches.

However, during days with highly variable weather conditions,
the high forecasting error results in improper scheduling of
microgrids. Also, the effect of propagation of forecasting error
is high in a long forecasting horizon with multiple steps.

In this paper, a deep reinforcement Q learning long short-
term memory (QLSTM) model is developed to predict the
operation strategy of a microgrid. The microgrid structure and
problem formulation are presented in Section III. The QLSTM
model is developed in Section IV. To address the problem of
uncertainty of the input data (PV and demand), the last three
days’ data of actual PV and demand and the LSTM forecasted
data for the next day time steps are added as inputs to the
QLSTM model since consecutive days’ weather conditions
may depend on similar atmospheric conditions. Adding
previous days data method is not possible in previous
mathematical built approaches. Also, to address the problem of
propagation of error in a long forecasting horizon with multiple
steps, a moving window training method is implemented. As
time passes, the actual input data will be available and added to
the model inputs. Then the moving window is shifted by one
time step till the end of the day. Flexibility of QLSTM model
in updating input information, which previous models lack, will
provide more accurate results.

The testing results are presented in section V. Datasets
consist of the PV power data that was collected from a 2-MW
PV farm at Rochester Institute of Technology (RIT) in
Rochester, New York, and power, cooling, and heating demand
data that were collected from a large hotel in New York State.
Using the actual PV and demand data, the operation problem of
the microgrid under study is solved by MATLAB Optimization
Toolbox (branch and bound) to generate the training and testing
data. The prediction performance of the developed QLSTM
model was compared to Gated Recurrent Unit (GRU), LSTM,
and Q-Network performance prediction using testing data from
different months where QLSTM outperformed all other
models. Also, the QLSTM model is tested on three different
days with low, medium, and high variance in PV power and
shows better performance than solving using the mathematical
model with forecasted PV and demand data, especially on a day
with high PV power variance.

The main contributions of this paper are as follows:

1. A deep reinforcement learning QLSTM model is
developed to address the uncertainty of PV and demand
by adding the last three days of actual data of PV and
demand along with the next day's forecasted data.

2. A moving window training method is implemented to
manage the issue of the effect of propagation of error in a
long forecasting horizon with multiple steps.
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II. LITERATURE REVIEW

This section gives a summary of the existing work on
microgrid operation under the uncertainty of renewables.
Subsection A summarizes existing work done using math
optimization, and subsection B summarizes some research
papers that used machine learning models.

A. Math Optimization

Modeling renewable uncertainties to solve the operation
problem of microgrids has been studied by many researchers.
In [1], Bing et al. developed a stochastic mixed-integer linear
programming model with uncertain renewable generation
modeled by a Markovian process for a microgrid that includes
different energy conversion devices and thermal storage
systems. The problem is aimed at reducing energy costs and
environmental impacts. Markovian process was also used in [2]
by M. Di Somma et al to optimize energy costs and exergy
efficiency. A multi-objective linear programming problem was
formulated in a microgrid consisting of CCHP, biomass, heat
pump, thermal solar plant, and thermal store units. In [3], An
economic model predictive control scheme is developed to
achieve optimal economic performance in the operational costs
of the microgrid. The control scheme was tested in a simulated
microgrid composed of a wind turbine, a set of PV panels,
battery in a grid-connected mode.

However, due to the intermittent nature of weather
conditions, mathematical models are inaccurate. An
optimization problem should consider the uncertainty in the PV
generation. In [4], Duan et al. developed a two-stage expected-
scenario robust optimization approach to address the
uncertainty effect of renewables output and load in a microgrid.
The first stage was the day ahead scheduling stage where all
possible scenarios, including the worst case, were considered,;
the second was the real-time rescheduling stage. This approach
showed effectiveness in reducing uncertainty impact.

B. Machine learning methods

With the recent advancement in artificial intelligence (Al)
methods to solve optimization problems, some researchers used
Al-based approaches to solve the operation problem in
microgrids. A. Chaouachi et al [5] developed an intelligent
energy management system that combines the artificial neural
network technique and the linear programming-based multi-
objective optimization technique. The developed model aimed
to minimize generation cost and environmental impacts in a
microgrid consisting of PV, Wind Turbine (WT), fuel cell,
batteries, and a microturbine. Inputs of the model were the
predicted PV power generation, wind power, and load demand
for the coming 24 hours at one hour step. Then, the power
generation levels from each generation unit were determined.
In [6], M. Gamez et al. developed a new recurrent neural
network model to optimize the operation of a microgrid made
of PV, WT, batteries, and electric vehicles (EV). The
optimization problem was solved using the multiagent system,
where each agent was defined to be a unit in the microgrid and
sent information about its power generation levels and
constraints. The developed model determines the optimal
power over one week for wind, solar, and battery to minimize
the power delivered from the grid and maximize the power
supplied from renewable energy sources. Results showed that
the developed model achieved optimal generation levels from
each source.

Due to the effect of deep reinforcement learning in
optimization problems, it has been used in the operation
optimization of microgrids. In [7], Kuznetsova developed a 2-
steps ahead reinforcement learning model to optimize the
operation of a microgrid made of WT and batteries.
Optimization aimed at increasing the utilization rate of batteries
and wind turbines during high-load power. Battery scheduling
actions were defined by the reinforcement learning model that
was fed by predicted WT power generation. In [8], a deep
reinforcement learning model was used to predict the operation
strategy of a microgrid, inputs of the model were the forecasted
PV generation and the states of each energy device, which is
the power of each device generation. During days with highly
variable weather conditions, the forecasting error is high
leading to improper scheduling of generation. Also, the effect
of propagation of errors in forecasting PV and load data in one
shot for the next 24 hours will result in improper scheduling.

III. PROBLEM FORMULATION

This section gives a summary of the microgrid structure
under study and the problem formulation. Subsection A
presents the structure of the microgrid; modeling of energy
devices is discussed in subsection B; power and thermal
balance are presented in subsection C; and the objective
function is presented in subsection D.

A. Microgrid structure

The microgrid under study consists of a CCHP, heat pump,
PV, battery, and heating and cooling energy storage systems.
The microgrid structure is shown in Fig. 1. The CCHP includes
a gas turbine that generates power from burning natural gas.
The recovered exhaust gas can be used by the heat recovery
boiler and the absorption chiller along with the direct flow of
natural gas for space cooling and space heating. The heat pump
supplies space heating and space cooling for charging thermal
storage and satisfying the load. PV provides electricity to
satisfy the demand, charge the battery, and supply the heat
pumps. Power demand and heat pump required power are
satisfied by the CCHP generated power from the gas turbine,
PV power, the grid power, and the power discharged from the
battery. Space heating demand is satisfied by the thermal
energy provided by the CCHP through the heat recovery
boiler, heat pump, and the thermal energy discharged from the
space heating thermal storage. Space cooling demand is
satisfied by the thermal energy provided by the absorption
chiller, heat pump, and the thermal cooling energy discharged.
B. Modelling of energy devices
For all the devices except for PV, battery, and thermal storage,
there is a set of binary variables x to present the device's on/off
status. If the device is on (xge,,(t) is 1), its generation level
Pje, () has to be within minimum and maximum levels as
shown in equation (1),

Xdev (t) Pgéi;n SPdev (t)f Xdev (t) Pgé%x- (1)
1) CCHP

CCHP consists of a gas turbine, an absorption chiller, and
a heat recovery boiler. The volumetric flow rate of natural gas
in the gas turbine is presented in equation (2),
Gice(t) = Eccup/MeLHVyqs, ()

where Ecyp is the electricity provided by the engine, 7, is
the engine gas-to-electric efficiency, and LHV,, is the lower
heat value of natural gas. In addition, between two consecutive
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Fig. 1: Microgrid Structure

time steps, the change in electricity level should not exceed
ramp-up or go below ramp-down rates.

The heat rate available from the exhaust gas recovered from
the gas turbine is shown in equation (3),

QGT,ex (t) = PGT (t)(l - r/e - :uGT)/ne: (3)
where pgr is the present heat loss of the gas turbine. This
exhaust gas is recovered by the heat recovery boiler and the
gas turbine to generate heating and cooling as shown in
equations (4) and (5), respectively,

Hygp,ex(t) = Qgrex(O)- &su()-Nur ure - COPypp, 4)
Cabs,ex(t) = QGT,ex(t)- ESC(t)-nHR,abs . COPgps, (5)
where &gy (t)and Zg.-(t) are the fractions of exhaust gas for
space heating and cooling respectively; their summation
should be one, nyrpyrp and 7Mygqps are the waste heat
recovery efficiency, and COPyzp and COP,,s are the
coefficients of performance of the heat boiler and the
absorption chiller, respectively,

The volumetric flow rate of natural gas by the heat recovery
boiler and the absorption chiller are presented in equations (6)
and (7), respectively,

Gurpai(t) = HHRB,di(t)/(LHVgaS' Nup - COPygp ), (6)
Gabs,di(t) = Cabs,di(t)/(LHans-nabs . COPgys), @)
where Hypp q;and Cgps q; are the heating and cooling rates
generated by natural gas, and nygpp and 7,4, are the
efficiencies of the heat recovery boiler and absorption chiller
combustors, respectively.

2) Heat Pump

The power consumption of the heat pump for heating is

shown in (8),
Pypu (t) = (Hyp(t) X At)/COPyp y, (3)
where COPyp  is the coefficient of performance of the heat
pump in the heating mode and Hyp (t) is the heating rate in the
heat pump.

The cooling in the heat pump is modeled the same way as
in heating.

3) Modeling of the battery

The state-of-charge (SOC) dynamics is presented in

equation (9),

SO0Cpgss(t +1) = SOCpgss(t). (1 — bpgss) —
Pgischarge(t)
Z .h £ At + 7'Icharge- Pcharge (t) . At’ (9)
discharge

where SOCgpss(t) and SOCgpss(t + 1) are the energy of
BESS at the time ¢ and t+1, respectively, Ngiscnarge and
Ncharge are the charge and discharge efficiencies respectively,
and S is the energy loss ratio of the storage.

The battery cannot be charged and discharged
simultaneously, and the SOC level cannot go below or above
the SOC maximum and minimum limits.

4) Modeling of the thermal storage

The energy stored for space heating is shown in (10),
Hto(8) = Hqro(t = A8). (1 = @50 (40)) +
(Hiz, (0 — HE (@) At, (10)
where @4, is the heat loss through the tank wall, At is the
length of the time interval, HX (t), HS¥ (t) are the heat rates
brought in and taken out by the flow in and out of water
respectively, and Hg;, (t), Hgo(t — At) are the energy stored
and the current and previous time steps, respectively.

The space heating stored energy cannot go below and
above the space heating storage minimum or maximum limits.
The space cooling in thermal storage is modeled the same way
as the heating storage.

C. Power and thermal balance

A balance between power demand, Pjepqnq(t) heating
demand, Hyemana (t), and cooling demand, Czemana(t), and
the generation should be established by the energy devices
generation and the grid power as shown in equations (11)-(13),
respectively,

Pyemana(t) + Pcharge () + Poeu(t) + Pyp(t) + Pep(t) =
Paischarge (t) + Ppyy (£) + Ppy (£) + Pecup (), (11)
Haemana ®)=Hecup (t) + Hyp(t) + H (8) — Hsl?o ®, (12)
Caemana ()= Cecup(t) + Cep(t) + CSEF(t) — Cfo (), (13)
where Pgoy;(t) and Py, (t) are the sold and bought power
levels from and to the grid, respectively.

D. Objective Function

This work aims at minimizing the operation cost which is
the grid power cost, the difference between buying power from
the grid and selling power to the grid, as shown in equation
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(14), and the natural gas cost as shown in equation (15). The
total operation cost is the summation of grid power cost and
natural gas cost as shown in equation (16),

Cgrl’d = Z?:l(cbuy(t)Pbuy (t)-At — Csell (t)Psell (t)-At)' (14)
Cgas turbine — Z?:l (CgasGCCHP (t))v (1 5)

CT = Cgas turbine + Cgrid’ (16)
where cpyy, and ¢y are the cost/revenue of buying/selling
power from/to the grid, and ¢y, is the cost of gas.

IV. METHODOLOGY

In this section, the QLSTM model for predicting the
operation strategy in the microgrid under study is presented.
The main challenge in the microgrid optimization problem lies
in the intermittency and uncertainty of renewables and demand
data. A hybrid prediction model that has the ability of both
addressing the uncertainty in input variables and predicting for
the optimal reward value can address the above issue. Q-
learning is a type of reinforcement learning that shows
effectiveness in predicting the optimal state-action reward
value, that matches with the operation problem of a microgrid.
However, it is not a time series prediction model, it will take
the input data at once to predict the operation strategy for the
next day. To address the above issue, an LSTM layer is added
to predict the operation strategy in a time series manner. The
PV data mainly depend on weather conditions, weather
conditions on consecutive days depend on the same
atmospheric conditions, so a history of the last three days of
PV and demand data achieves the goal of using experience.

The environment, agents, actions, and reward of the
QLSTM model are taken as below:

1. Environment

The environmental observations space, E (t), are taken to
be the input data, the PV power data at time ¢, Ppy, (t), the
power demand data at time ¢, Pyomana (t),the space cooling
load at time ¢, Comana(t), and the space heating load at time
t, Hyemana (t), as shown in equation (17),

E@®):{ Pry(t) , Paemana (1), Caemana (t), Haemana () }-

2. Agents

Agents, G, are the energy devices to be scheduled, gas
turbine, absorption chiller, heat recovery boiler, battery, heat
pump, thermal storage, and grid power as shown in equation

18),
( )gas turbine. absorption chiller, heat recovery
G:{ boiler, battery, heat pump, thermal storage, ;. (18)
grid power

(17

3. Actions

Actions, A(t), are presented in equation (19) which are the
gas turbine natural gas flow rate at time ¢, G47(t), the ratio of
supplied exhaust gas to the heat recovery boiler for heating at
time ¢, £g (t), the flow rate of natural gas in the heat recovery
boiler at time 7, Gygp 4;(t), the ratio of supplied exhaust gas to
the absorption chiller for cooling at time ¢, {5¢(t), cooling
directly from the absorption chiller at time 7, Ggps g;(t), the
heat pump heating rate at time ¢, Hyp(t), the heat pump
cooling rate at time #, Ccp(t), battery charging power at time
t, Peharge(t), Dbattery discharging power at time ¢,

Pyischarge(t) , heating rate input to the storage, HE (1),
heating rate output to the storage, HS! (t), cooling rate input
to the storage, C% (t), cooling rate output to the storage,
Cro (),

Ger(£), su(t), Gyprp,ai(t), §sc (0),
Gabs,di(t)' HHP (t)' CCP (t)' Pcharge (t)'

A(t): ; 19
( ) Pdischarge(t):HSL?o(t):Hgtl:)t(t): ( )
Csto (1), €325 (8
4. States

States are presented in equation (20) which are the gas
turbine power at time ¢, Psr(t), heating rate generated by the
exhaust gas Hypp 0, (t), heating rates generated by natural gas
at time ¢, Hy; yrp(t), cooling rate generated by exhaust gas at
time ¢ Chpsex(t), cooling rates generated by natural gas
Cai aps (t), power consumption of the heat pump for heating at
time #, Pyp y (t), the power consumption of the heat pump for
cooling at time 7, Pyp ¢ (t), energy stored for space heating at
time ¢, Hg;, (t), and the energy stored for space heating at time
ta Csto (t),

S(0): { Per(8), Hyrp,ex (t), Hairs (), Caps,ex (£),
Caiabs (), Pupy (8), Pup ¢ (t), Hseo (8), Csro (2)

5. Reward

Since in the Q learning model, the model tends to maximize
the reward and the microgrid operation aims at minimizing the
total operation cost, the reward Ry is taken to be the negative
of the total operation cost of one day —Cr, as expressed in
equation (21),

Ry = = (Cgas turvine T Cyria ),
where T represents the testing day.

The QLSTM model developed to predict the operation
strategy of the microgrid under study is shown in Fig. 2. The
LSTM model will take the data for the previous three days
starting from #-3X96 till 96 where /=0 represents the start of
the testing day for both the environmental observations O(-
3x96),..., O(t+96)} actions A(#-3x96),..., A(t++96)}, and the
output will be the predicted states, S(¢),..., S(t+96) the Q-
Network will take the series of predicted states as inputs and
will output the Q-value reward Ry which is the total operation
cost of the microgrid on the testing day.

}. (20)

(e2))

—_

Fig. 2: QLSTM model

V. Results
The QLSTM model is tested in this
microgrid’s

section. The
configuration under study is presented in
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subsection A; the dataset description is presented in subsection
B; testing criteria in subsection C; QLSTM configuration and
testing results in subsection D; comparison to other models
results in subsection E; and testing during variable weather
conditions in subsection F.

A. Microgrid Configuration

Microgrid configuration and the size per device are shown
in Table I. The microgrid configuration was determined based
on the demand. Coefficients shown in equations (1) — (11) for
modeling energy devices are taken from [9].

Table I: Microgrid Size

Energy Device Size Per Unit

Gas Turbine 40-300 MW

Battery 5-50 MW

Absorption Chiller 10-100 MW

Heat Recovery Boiler 15-150 MW

Heat Pump 192 MW — 128 MW (Heating, Cooling)

B. Dataset Description
The dataset used to test the model consists of PV, demand
price data, and the training and testing datasets.
1) Demand
Power, heating, and cooling demand data are taken from a
large hotel in New York State for each 15- minutes for the year
2020 [10] with a total of 35,040 data points.
2) PV
The PV power data was taken from a 2-MW solar farm
from RIT for the year 2020 [11]. The power generation was
scaled up 10 times to adjust to the power demand of the large
hotel. The time step is 5 minutes, but to get the same time
interval data as the available demand data, the data points at
every 15 minutes are considered in this study.
3) Price
The price of natural gas is fixed at 180 /MWh for the whole
day [12] as shown in equation (22),
Cost(Pg(t))= 180 $/MWh for 0 <t <23 (22)
The cost of buying power from the grid is shown in
equation (23). The price is higher during peak hours 9:00 am
to 6:00 pm, [12]

140 $/MWh for0<z<9
Cost(Pyrig ()= 210 /MWh  for9<7<18 (23)
140 $/MWh for 18 <t<23

The price of selling power to the grid is 80% of the buying
cost as shown below in equation (24),

Revenue(Psy (1))= 0.8XCost(Pyy,, (t)) for 0 <t <23
4) Training and testing dataset

A dataset is generated by solving the operation
optimization problem of microgrids using MATLAB 2023
Optimization Toolbox (the branch-and-bound method) for the
year 2020. The average solving time for one day is 10.54
seconds. A total of 35,040 data points are created. The dataset
includes input variables, (PV power, power heating and
cooling demand), the actions and states described in IV.B.3
and IV.B.4, respectively.

From the above data, 80% of data from each month was
taken for training, 10% for validation, and 10% for testing to
consider all possible changes in the weather conditions.

C. Testing criteria

24

The prediction error is calculated based on the total
operation cost. After predicting the operation strategy for the
whole day, and specifying the generation levels from each
device the operation cost is calculated using equation (19).
First, correlation (r), mean absolute error (MAE), and root
mean square error (RMSE) as shown in equations (25)- (27)
are calculated between the predicted cost and the optimal cost
in case the actual data is used to solve the problem by
MATLAB 2023 Optimization Toolbox (branch and bound) for
the testing data.

i (=D i=)

r= , 25)
[P0 S -9
1
MAE = - e =il (26)
1
RMSE = |1 (S1y0x — ). @7)

where xi and yi are the real and forecasted values,
respectively, and xand y are the average values of the real and
the forecasted data, respectively.

D. QLSTM configuration and testing results

After performing a hyper parameter tuning, the number of
hidden layers in LSTM is 4, each with 96 units which is the
number of time steps in one day. The epoch size is set to 100,
and the batch size is 64 using the "Adam" optimizer. In the Q-
learning layer, same number of hidden layers (4) is and units
(96) are used, the learning rate is set to 0.01 to prevent very
fast or slow convergence to optimal value and the discount rate
to 0.95 to present the importance of the future rewards since
the model aims at minimizing the total cost of microgrid
operation of one day. The QLSTM model has been
implemented in MATLAB 2023 and simulation is performed
on a DESKTOP-MAMPLNIJ with a 2.5 GHz Dual-Core Intel
i5 processor and system memory of 8 GB 1.5 GHz.

Training and testing results of the QLSTM model are
shown in Table II. The training time is 344 seconds while the
testing time is 197 seconds for the whole training and testing
datasets, respectively.

Table II: Training and testing accuracy and time

Dataset R(%) MAE(S) RMSE(S) Time (sec)
Training | 96.28 104.30 182.80 344
Testing 95.50 103.18 193.72 197

The prediction time for one day is 5.41 seconds using
QLSTM while solving time for one day using MATLAB 2023
Optimization Toolbox is 10.54 seconds.

E. Testing results: comparison to other models

For the whole testing dataset, the correlation, MAE, and
RMSE between the predicted total operation cost and the
optimal cost using LSTM, Q-learning, and QLSTM are shown
in Table III. For a fair comparison, the same moving window
method was implemented in all models.

As shown in Table III, GRU and LSTM show the poorest
performance, where R are only 84.6% and 85.79%, MAE are
168.28 and 155.3% and RMSE are 283.8% and 263.6%,
respectively. The Q-Network model shows better performance
than LSTM since LSTM will predict the operation strategy of
the microgrid (generation levels of devices) by learning from
the previous sequence without considering the objective
function or the reward. By adding LSTM and Q-learning
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models together, the hybrid model will take advantage of
learning from previous sequences to predict the operation
strategy to achieve the reward. QLSTM model outperformed
all other models with R 0f 95.5%, MAE of 103.1$, and RMSE
of 193.78.

Table I1I: Total cost prediction error using different models

R (%) MAE ($) RMSE ($)
GRU 84.60 168.23 283.80
LSTM 85.79 155.33 263.69
Q-learning 87.71 144.64 240.84
QLSTM 95.50 103.18 193.72

F. Testing during variable weather conditions

Since the PV power represents the weather conditions, the
testing days are chosen based on the variance of the PV power.
Three days with low, medium, and high variance in PV power
days are chosen for further testing. Table shows the variance
and forecasting correlation between actual and forecasted
values of the PV power.

Table IV: Testing days

Day Variance PV Forecasting Error
January, 27 2.78 75.38%
April, 26 4591.01 62.52%
September, 8 1650.58 90.48%

In the microgrid operation problem, the goal is to predict
the operation strategy for the next day using the forecasted PV
and demand. The error using math optimization or prediction
models in this problem is a result of the forecasting error in the
input data. In this test, the operation cost using the branch-and-
bound method in MATLAB 2023 Optimization Toolbox with
the forecasted data and using the QLSTM model are compared
as shown in Table V to test the effectiveness of the developed
QLSTM model over math optimization to address the
uncertainty in the input data.

Table V: Operation cost using math optimization and QLSTM

OPERATION COST (8)
Testing Day Optimal Math Optimization [ QLSTM
January, 27 5892.44 6084.51 6019.10
April, 26 4918.45 5341.28 5101.59
September, 8 1816.80 1919.20 1877.89

As shown in Table V, the QLSTM's total operation cost
was closer to the optimal scheduling operation cost on all days.
April 26 shows the highest variance in PV power and
prediction error and hence highly variable weather conditions.
On this day, the branch-and-bound optimization method with
forecasted data shows a high difference of 423§ from the
optimal cost because of the high forecasting error. QLSTM
addressed this issue because of the LSTM layer that works in
a time series manner with a difference of 1278.

VI. CONCLUSION
Solving the microgrid operation optimization problem is
challenging due to the intermittent and uncertain nature of PV

and load, especially during days with highly variable weather
conditions. To address this issue, a novel QLSTM model is

developed to predict the operation strategy for the next 24
hours with 15- minutes as a time step. The key idea is adding
the last three days of actual input data to the model since
consecutive days' weather conditions are close to each other.
Also, to address the effect of the propagation of errors in
multiple-step forecasting, the model has been trained by a
moving window method. The moving window is shifted by
one time step to get the actual data and ends by the end of the
day. The model has been tested using actual PV power data
from RIT and demand actual data from a large hotel located in
New York State. Testing and training datasets have been
created by solving the operation problem using the branch and
bound method in MATLAB 2023 Optimization Toolbox. The
model performance is compared to three other models, GRU,
LSTM, and Q-learning and it shows better performance for
testing data from different months. Also, compared to the
branch-and-bound method with forecasted data, it shows lower
cost, especially on a day with highly variable weather
conditions. The developed model needs longer time to
coverage in a large action-state space, but still gives high
accuracy in predicting the operation strategy. Also, in a
transition from sunny days to an intermittent day, the LSTM
layer in the developed model can mismatch the relation
between the previous days and coming days data, but still
predicting the operation strategy of the lower cost compared to
other prediction models or solving methods.
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