
Abstract— Microgrid is a small-scale grid where generation is 

close to the demand allowing more penetration of renewables, like 

photovoltaic (PV). However, the intermittent nature of PV power 

generation poses a significant challenge in microgrid operation, 

especially on days with highly variable weather conditions. In this 

paper, a deep reinforcement Q-learning long short-term memory 

(QLSTM) model is developed to predict the operation strategy of 

a microgrid for the next day at a 15-minute time interval. To 

address the uncertainty of PV power and demand, the previous 

three days’ PV and load data are added as inputs to the model 

since weather conditions on consecutive days may depend on 

similar atmospheric conditions. Also, to address the effect of 

propagation of error in the long forecasting horizon with multiple 

steps, a moving window training method is implemented. The 

moving window will be shifted by 15 minutes at each step once the 

actual PV and load data are available till the end of the day. The 

model is tested in a microgrid consisting of combined cooling, 

heating and power, heat pump, PV, battery, and heating and 

cooling energy storage systems. Results show that our model 

outperforms gated recurrent unit, LSTM, and Q-learning for 

testing data from different months. Also, it shows better 

performance than MATLAB 2023 Optimization Toolbox (the 

branch-and-bound method) which uses forecasted data, 

especially on a day with highly variable weather conditions. 1 

Keywords: Microgrid operation, PV, QLSTM, uncertainty. 

I. INTRODUCTION 

Microgrid supports a flexible and efficient grid by enabling 
the integration of distributed energy resources. It allows more 
penetration of renewables, like photovoltaic (PV) along with 
other conventional generators and storage units. With multiple 
units generating power at the same time, there is a need to 
optimize the daily microgrid operation to specify the hourly 
power generation amount needed from each unit to satisfy the 
variable demand. The main difficulty in the operation 
optimization of microgrids lies in the intermittency and 
uncertainty of renewables and demand. Also, predicting PV and 
demand at once for the next day at multiple time intervals 
results in a high forecasting error. 

The daily operation of microgrids has been studied by many 
researchers as reviewed in Section II. A commonly used 
approach is deterministic where the PV power and demand 
forecasted data are used without considering the uncertainties. 
This approach shows a high deviation from optimal generation 
levels due to the forecasting error in the input data (PV and 
demand). In the stochastic approach, renewables are modeled 

using scenario-based approaches without considering their 
changes with time. The most recent approach for solving the 
problem is machine learning where a model is trained to predict 
the operation strategy using PV and load forecasted data as 
input. It shows better results than previous approaches. 
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However, during days with highly variable weather conditions, 
the high forecasting error results in improper scheduling of 
microgrids. Also, the effect of propagation of forecasting error 
is high in a long forecasting horizon with multiple steps.  

In this paper, a deep reinforcement Q learning long short-
term memory (QLSTM) model is developed to predict the 
operation strategy of a microgrid. The microgrid structure and 
problem formulation are presented in Section III. The QLSTM 
model is developed in Section IV. To address the problem of 
uncertainty of the input data (PV and demand), the last three 
days’ data of actual PV and demand and the LSTM forecasted 
data for the next day time steps are added as inputs to the 
QLSTM model since consecutive days’ weather conditions 
may depend on similar atmospheric conditions. Adding 
previous days data method is not possible in previous 
mathematical built approaches. Also, to address the problem of 
propagation of error in a long forecasting horizon with multiple 
steps, a moving window training method is implemented. As 
time passes, the actual input data will be available and added to 
the model inputs. Then the moving window is shifted by one 
time step till the end of the day. Flexibility of QLSTM model 
in updating input information, which previous models lack, will 
provide more accurate results. 

The testing results are presented in section V. Datasets 
consist of the PV power data that was collected from a 2-MW 
PV farm at Rochester Institute of Technology (RIT) in 
Rochester, New York, and power, cooling, and heating demand 
data that were collected from a large hotel in New York State. 
Using the actual PV and demand data, the operation problem of 
the microgrid under study is solved by MATLAB Optimization 
Toolbox (branch and bound) to generate the training and testing 
data. The prediction performance of the developed QLSTM 
model was compared to Gated Recurrent Unit (GRU), LSTM, 
and Q-Network performance prediction using testing data from 
different months where QLSTM outperformed all other 
models. Also, the QLSTM model is tested on three different 
days with low, medium, and high variance in PV power and 
shows better performance than solving using the mathematical 
model with forecasted PV and demand data, especially on a day 
with high PV power variance. 

The main contributions of this paper are as follows: 

1. A deep reinforcement learning QLSTM model is 

developed to address the uncertainty of PV and demand 

by adding the last three days of actual data of PV and 

demand along with the next day's forecasted data. 

2. A moving window training method is implemented to 

manage the issue of the effect of propagation of error in a 

long forecasting horizon with multiple steps. 

This work is based upon work supported by the National Science Foundation 

(NSF) under Award ESSC-2340095. Any opinions, findings, and conclusions 

or recommendations expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the NSF. 
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II. LITERATURE REVIEW 

This section gives a summary of the existing work on 

microgrid operation under the uncertainty of renewables. 

Subsection A summarizes existing work done using math 

optimization, and subsection B summarizes some research 

papers that used machine learning models. 

A. Math Optimization  
Modeling renewable uncertainties to solve the operation 

problem of microgrids has been studied by many researchers. 
In [1], Bing et al. developed a stochastic mixed-integer linear 
programming model with uncertain renewable generation 
modeled by a Markovian process for a microgrid that includes 
different energy conversion devices and thermal storage 
systems. The problem is aimed at reducing energy costs and 
environmental impacts. Markovian process was also used in [2] 
by M. Di Somma et al to optimize energy costs and exergy 
efficiency. A multi-objective linear programming problem was 
formulated in a microgrid consisting of CCHP, biomass, heat 
pump, thermal solar plant, and thermal store units. In [3], An 
economic model predictive control scheme is developed to 
achieve optimal economic performance in the operational costs 
of the microgrid. The control scheme was tested in a simulated 
microgrid composed of a wind turbine, a set of PV panels, 
battery in a grid-connected mode.   

However, due to the intermittent nature of weather 
conditions, mathematical models are inaccurate. An 
optimization problem should consider the uncertainty in the PV 
generation. In [4], Duan et al. developed a two-stage expected-
scenario robust optimization approach to address the 
uncertainty effect of renewables output and load in a microgrid. 
The first stage was the day ahead scheduling stage where all 
possible scenarios, including the worst case, were considered; 
the second was the real-time rescheduling stage. This approach 
showed effectiveness in reducing uncertainty impact.  

B. Machine learning methods 
With the recent advancement in artificial intelligence (AI) 

methods to solve optimization problems, some researchers used 
AI-based approaches to solve the operation problem in 
microgrids. A. Chaouachi et al [5] developed an intelligent 
energy management system that combines the artificial neural 
network technique and the linear programming-based multi-
objective optimization technique. The developed model aimed 
to minimize generation cost and environmental impacts in a 
microgrid consisting of PV, Wind Turbine (WT), fuel cell, 
batteries, and a microturbine. Inputs of the model were the 
predicted PV power generation, wind power, and load demand 
for the coming 24 hours at one hour step. Then, the power 
generation levels from each generation unit were determined. 
In [6], M. Gamez et al. developed a new recurrent neural 
network model to optimize the operation of a microgrid made 
of PV, WT, batteries, and electric vehicles (EV). The 
optimization problem was solved using the multiagent system, 
where each agent was defined to be a unit in the microgrid and 
sent information about its power generation levels and 
constraints. The developed model determines the optimal 
power over one week for wind, solar, and battery to minimize 
the power delivered from the grid and maximize the power 
supplied from renewable energy sources. Results showed that 
the developed model achieved optimal generation levels from 
each source.  

Due to the effect of deep reinforcement learning in 
optimization problems, it has been used in the operation 
optimization of microgrids. In [7], Kuznetsova developed a 2-
steps ahead reinforcement learning model to optimize the 
operation of a microgrid made of WT and batteries. 
Optimization aimed at increasing the utilization rate of batteries 
and wind turbines during high-load power. Battery scheduling 
actions were defined by the reinforcement learning model that 
was fed by predicted WT power generation. In [8], a deep 
reinforcement learning model was used to predict the operation 
strategy of a microgrid, inputs of the model were the forecasted 
PV generation and the states of each energy device, which is 
the power of each device generation. During days with highly 
variable weather conditions, the forecasting error is high 
leading to improper scheduling of generation. Also, the effect 
of propagation of errors in forecasting PV and load data in one 
shot for the next 24 hours will result in improper scheduling. 

III. PROBLEM FORMULATION  

This section gives a summary of the microgrid structure 

under study and the problem formulation. Subsection A 

presents the structure of the microgrid; modeling of energy 

devices is discussed in subsection B; power and thermal 

balance are presented in subsection C; and the objective 

function is presented in subsection D. 

A. Microgrid structure  

The microgrid under study consists of a CCHP, heat pump, 

PV, battery, and heating and cooling energy storage systems. 

The microgrid structure is shown in Fig. 1. The CCHP includes 

a gas turbine that generates power from burning natural gas. 

The recovered exhaust gas can be used by the heat recovery 

boiler and the absorption chiller along with the direct flow of 

natural gas for space cooling and space heating. The heat pump 

supplies space heating and space cooling for charging thermal 

storage and satisfying the load. PV provides electricity to 

satisfy the demand, charge the battery, and supply the heat 

pumps. Power demand and heat pump required power are 

satisfied by the CCHP generated power from the gas turbine, 

PV power, the grid power, and the power discharged from the 

battery. Space heating demand is satisfied by the thermal 

energy provided by the CCHP through the heat recovery 

boiler, heat pump, and the thermal energy discharged from the 

space heating thermal storage. Space cooling demand is 

satisfied by the thermal energy provided by the absorption 

chiller, heat pump, and the thermal cooling energy discharged.  

B. Modelling of energy devices 

For all the devices except for PV, battery, and thermal storage, 

there is a set of binary variables x to present the device's on/off 

status. If the device is on (𝑥𝑑𝑒𝑣(𝑡) is 1), its generation level 

𝑃𝑑𝑒𝑣(𝑡) has to be within minimum and maximum levels as 

shown in equation (1),  

𝑥𝑑𝑒𝑣(𝑡)𝑃𝑑𝑒𝑣
𝑚𝑖𝑛  ≤𝑃𝑑𝑒𝑣(𝑡)≤ 𝑥𝑑𝑒𝑣(𝑡)𝑃𝑑𝑒𝑣

𝑚𝑎𝑥 .          (1) 

1) CCHP 

CCHP consists of a gas turbine, an absorption chiller, and 

a heat recovery boiler. The volumetric flow rate of natural gas 

in the gas turbine is presented in equation (2),  

𝐺𝐼𝐶𝐸(𝑡) = 𝐸𝐶𝐶𝐻𝑃/𝜂𝑒𝐿𝐻𝑉𝑔𝑎𝑠,           (2) 

where 𝐸𝐶𝐶𝐻𝑃  is the electricity provided by the engine, 𝜂𝑒 is 

the engine gas-to-electric efficiency, and 𝐿𝐻𝑉𝑔𝑎𝑠   is the lower 

heat value of natural gas. In addition, between two consecutive 
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time steps, the change in electricity level should not exceed 

ramp-up or go below ramp-down rates.   

The heat rate available from the exhaust gas recovered from 

the gas turbine is shown in equation (3), 

𝑄𝐺𝑇,𝑒𝑥 (𝑡) = 𝑃𝐺𝑇(𝑡)(1 − 𝜂𝑒 − 𝜇𝐺𝑇)/𝜂𝑒,          (3) 

where 𝜇𝐺𝑇  is the present heat loss of the gas turbine. This 

exhaust gas is recovered by the heat recovery boiler and the 

gas turbine to generate heating and cooling as shown in 

equations (4) and (5), respectively, 

𝐻𝐻𝑅𝐵,𝑒𝑥(𝑡) =  𝑄𝐺𝑇,𝑒𝑥(𝑡).  ξ𝑆𝐻(𝑡). 𝜂𝐻𝑅,𝐻𝑅𝐵 .  𝐶𝑂𝑃𝐻𝑅𝐵 ,         (4) 

𝐶𝑎𝑏𝑠,𝑒𝑥(𝑡) =  𝑄𝐺𝑇,𝑒𝑥(𝑡).  Ξ𝑆𝐶(𝑡). 𝜂𝐻𝑅,𝑎𝑏𝑠  .  𝐶𝑂𝑃𝑎𝑏𝑠,         (5) 

where  ξ𝑆𝐻(𝑡) and Ξ𝑆𝐶(𝑡) are the fractions of exhaust gas for 

space heating and cooling respectively; their summation 

should be one, 𝜂𝐻𝑅,𝐻𝑅𝐵  and 𝜂𝐻𝑅,𝑎𝑏𝑠  are the waste heat 

recovery efficiency, and 𝐶𝑂𝑃𝐻𝑅𝐵  and 𝐶𝑂𝑃𝑎𝑏𝑠 are the 

coefficients of performance of the heat boiler and the 

absorption chiller, respectively, 

The volumetric flow rate of natural gas by the heat recovery 

boiler and the absorption chiller are presented in equations (6) 

and (7), respectively, 

𝐺𝐻𝑅𝐵,𝑑𝑖(𝑡) = 𝐻𝐻𝑅𝐵,𝑑𝑖(𝑡)/(𝐿𝐻𝑉𝑔𝑎𝑠 . 𝜂𝐻𝑃 .  𝐶𝑂𝑃𝐻𝑅𝐵  ),         (6) 

𝐺𝑎𝑏𝑠,𝑑𝑖(𝑡) = 𝐶𝑎𝑏𝑠,𝑑𝑖(𝑡) (𝐿𝐻𝑉𝑔𝑎𝑠 . 𝜂𝑎𝑏𝑠 .  𝐶𝑂𝑃𝑎𝑏𝑠)⁄ ,            (7) 

where 𝐻𝐻𝑅𝐵,𝑑𝑖 and𝐶𝑎𝑏𝑠,𝑑𝑖  are the heating and cooling rates 

generated by natural gas, and 𝜂𝐻𝑅𝐵  and 𝜂𝑎𝑏𝑠 are the 

efficiencies of the heat recovery boiler and absorption chiller 

combustors, respectively. 

2) Heat Pump 

The power consumption of the heat pump for heating is 

shown in (8), 

𝑃𝐻𝑃,𝐻 (𝑡) = (𝐻𝐻𝑃(𝑡) × 𝛥𝑡)/𝐶𝑂𝑃𝐻𝑃,𝐻,          (8) 

where 𝐶𝑂𝑃𝐻𝑃,𝐻  is the coefficient of performance of the heat 

pump in the heating mode and 𝐻𝐻𝑃(𝑡) is the heating rate in the 

heat pump. 

The cooling in the heat pump is modeled the same way as 

in heating. 

3) Modeling of the battery  

The state-of-charge (SOC) dynamics is presented in 

equation (9), 

𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡 + 1) =  𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡). (1 −  𝛿𝐵𝐸𝑆𝑆) −
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
. 𝛥𝑡 + 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 . 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) .  𝛥𝑡,             (9) 

where  𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡) and 𝑆𝑂𝐶𝐵𝐸𝑆𝑆(𝑡 + 1) are the energy of 

BESS at the time t and t+1, respectively, 𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  and 

𝜂𝑐ℎ𝑎𝑟𝑔𝑒  are the charge and discharge efficiencies respectively, 

and 𝛿𝐵𝐸𝑆𝑆 is the energy loss ratio of the storage. 

The battery cannot be charged and discharged 

simultaneously, and the SOC level cannot go below or above 

the SOC maximum and minimum limits. 

4) Modeling of the thermal storage 

The energy stored for space heating is shown in (10), 

𝐻𝑠𝑡𝑜(𝑡) =  𝐻𝑠𝑡𝑜(𝑡 − 𝛥𝑡).  (1 − 𝜑𝑠𝑡𝑜(𝛥𝑡)) +

(𝐻𝑠𝑡𝑜
𝑖𝑛 (𝑡) −  𝐻𝑠𝑡𝑜

𝑜𝑢𝑡(𝑡)) 𝛥𝑡,           (10) 

where 𝜑𝑠𝑡𝑜  is the heat loss through the tank wall, 𝛥𝑡  is the 

length of the time interval, 𝐻𝑠𝑡𝑜
𝑖𝑛 (𝑡), 𝐻𝑠𝑡𝑜

𝑜𝑢𝑡(𝑡) are the heat rates 

brought in and taken out by the flow in and out of water 

respectively, and 𝐻𝑠𝑡𝑜(𝑡),  𝐻𝑠𝑡𝑜(𝑡 − 𝛥𝑡) are the energy stored 

and the current and previous time steps, respectively.  

The space heating stored energy cannot go below and 

above the space heating storage minimum or maximum limits. 

The space cooling in thermal storage is modeled the same way 

as the heating storage. 

C. Power and thermal balance 

A balance between power demand, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)  heating 

demand, 𝐻𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), and cooling demand, 𝐶𝑑𝑒𝑚𝑎𝑛𝑑(𝑡),  and 

the generation should be established by the energy devices 

generation and the grid power as shown in equations (11)-(13), 

respectively, 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡) + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) +  𝑃𝑠𝑒𝑙𝑙(𝑡) + 𝑃𝐻𝑃(𝑡) + 𝑃𝐶𝑃(𝑡) =

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) + 𝑃𝑏𝑢𝑦 (𝑡) + 𝑃𝑃𝑉(𝑡) +  𝑃𝐶𝐶𝐻𝑃(𝑡),                 (11) 

𝐻𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)=𝐻𝐶𝐶𝐻𝑃(𝑡) + 𝐻𝐻𝑃(𝑡) +  𝐻𝑠𝑡𝑜
𝑜𝑢𝑡(𝑡) − 𝐻𝑠𝑡𝑜

𝑖𝑛 (𝑡),   (12) 

𝐶𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)= 𝐶𝐶𝐶𝐻𝑃(𝑡) + 𝐶𝐶𝑃(𝑡) + 𝐶𝑠𝑡𝑜
𝑜𝑢𝑡(𝑡) − 𝐶𝑠𝑡𝑜

𝑖𝑛 (𝑡),     (13) 

where 𝑃𝑠𝑒𝑙𝑙(𝑡)and 𝑃𝑏𝑢𝑦 (𝑡) are the sold and bought power 

levels from and to the grid, respectively. 

D. Objective Function 

This work aims at minimizing the operation cost which is 

the grid power cost, the difference between buying power from 

the grid and selling power to the grid, as shown in equation 

Fig. 1: Microgrid Structure 
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(14), and the natural gas cost as shown in equation (15). The 

total operation cost is the summation of grid power cost and 

natural gas cost as shown in equation (16), 

𝐶𝑔𝑟𝑖𝑑 =  ∑ (𝑐𝑏𝑢𝑦(𝑡)𝑃𝑏𝑢𝑦(𝑡).Δt − 𝑐𝑠𝑒𝑙𝑙(𝑡)𝑃𝑠𝑒𝑙𝑙(𝑡).Δt)𝑇
𝑡=1 ,   (14) 

𝐶𝑔𝑎𝑠 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =  ∑ (𝑐𝑔𝑎𝑠𝐺𝐶𝐶𝐻𝑃(𝑡))
𝑇
𝑡=1 ,        (15) 

𝐶𝑇 = 𝐶𝑔𝑎𝑠 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + 𝐶𝑔𝑟𝑖𝑑,           (16) 

where 𝑐𝑏𝑢𝑦  and 𝑐𝑠𝑒𝑙𝑙  are the cost/revenue of buying/selling 

power from/to the grid, and 𝑐𝑔𝑎𝑠 is the cost of gas. 

IV.  METHODOLOGY  

In this section, the QLSTM model for predicting the 

operation strategy in the microgrid under study is presented. 

The main challenge in the microgrid optimization problem lies 

in the intermittency and uncertainty of renewables and demand 

data. A hybrid prediction model that has the ability of both 

addressing the uncertainty in input variables and predicting for 

the optimal reward value can address the above issue. Q-

learning is a type of reinforcement learning that shows 

effectiveness in predicting the optimal state-action reward 

value, that matches with the operation problem of a microgrid. 

However, it is not a time series prediction model, it will take 

the input data at once to predict the operation strategy for the 

next day. To address the above issue, an LSTM layer is added 

to predict the operation strategy in a time series manner. The 

PV data mainly depend on weather conditions, weather 

conditions on consecutive days depend on the same 

atmospheric conditions, so a history of the last three days of 

PV and demand data achieves the goal of using experience. 

The environment, agents, actions, and reward of the 

QLSTM model are taken as below: 

1. Environment  

The environmental observations space, 𝐸(𝑡), are taken to 

be the input data, the PV power data at time t, 𝑃𝑃𝑉(𝑡),  the 

power demand data at time t, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡),the space cooling 

load at time t, 𝐶𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), and  the space heating load at time 

t, 𝐻𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), as shown in equation (17), 

𝐸(𝑡): { 𝑃𝑃𝑉(𝑡) , 𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), 𝐶𝑑𝑒𝑚𝑎𝑛𝑑(𝑡), 𝐻𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)}.      (17) 

2. Agents  

Agents, G, are the energy devices to be scheduled, gas 

turbine, absorption chiller, heat recovery boiler, battery, heat 

pump, thermal storage, and grid power as shown in equation 

(18), 

𝐺: {

𝑔𝑎𝑠 𝑡𝑢𝑟𝑏𝑖𝑛𝑒. 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐ℎ𝑖𝑙𝑙𝑒𝑟, ℎ𝑒𝑎𝑡 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦
𝑏𝑜𝑖𝑙𝑒𝑟, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝, 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒,

𝑔𝑟𝑖𝑑 𝑝𝑜𝑤𝑒𝑟
}.   (18) 

3. Actions 

Actions, 𝐴(𝑡), are presented in equation (19) which are the 

gas turbine natural gas flow rate at time t, 𝐺𝐺𝑇(𝑡), the ratio of 

supplied exhaust gas  to the heat recovery boiler for heating at 

time t, 𝜉𝑆𝐻(𝑡), the flow rate of natural gas in the heat recovery 

boiler at time t, 𝐺𝐻𝑅𝐵,𝑑𝑖(𝑡), the ratio of supplied exhaust gas to 

the absorption chiller for cooling  at time t, 𝜉𝑆𝐶(𝑡),  cooling 

directly from the absorption chiller  at time t, 𝐺𝑎𝑏𝑠,𝑑𝑖(𝑡),  the 

heat pump heating rate at time t, 𝐻𝐻𝑃(𝑡),    the heat pump 

cooling rate at time t,  𝐶𝐶𝑃(𝑡), battery charging power at time 

t, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡),  battery discharging power at time t, 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) , heating rate input to the storage, 𝐻𝑠𝑡𝑜
𝑖𝑛 (𝑡), 

heating rate output to the storage, 𝐻𝑠𝑡𝑜
𝑜𝑢𝑡(𝑡), cooling rate input 

to the storage, 𝐶𝑠𝑡𝑜
𝑖𝑛 (𝑡),  cooling rate output to the storage,  

𝐶𝑠𝑡𝑜
𝑜𝑢𝑡(𝑡), 

𝐴(𝑡): 

{
 
 

 
 

 𝐺𝐺𝑇(𝑡), 𝜉𝑆𝐻(𝑡), 𝐺𝐻𝑅𝐵,𝑑𝑖(𝑡), 𝜉𝑆𝐶(𝑡),

𝐺𝑎𝑏𝑠,𝑑𝑖(𝑡), 𝐻𝐻𝑃(𝑡), 𝐶𝐶𝑃(𝑡), 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡),   

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡), 𝐻𝑠𝑡𝑜
𝑖𝑛 (𝑡), 𝐻𝑠𝑡𝑜

𝑜𝑢𝑡(𝑡),

𝐶𝑠𝑡𝑜
𝑖𝑛 (𝑡), 𝐶𝑠𝑡𝑜

𝑜𝑢𝑡(𝑡) }
 
 

 
 

.      (19) 

4. States 

States are presented in equation (20) which are the gas 

turbine power at time t, 𝑃𝐺𝑇(𝑡), heating rate generated by the 

exhaust gas 𝐻𝐻𝑅𝐵,𝑒𝑥(𝑡), heating rates generated by natural gas 

at time t, 𝐻𝑑𝑖,𝐻𝑅𝐵(𝑡), cooling rate generated by exhaust gas at 

time t 𝐶𝑎𝑏𝑠,𝑒𝑥(𝑡),  cooling rates generated by natural gas 

𝐶𝑑𝑖,𝑎𝑏𝑠 (𝑡), power consumption of the heat pump for heating at 

time t, 𝑃𝐻𝑃,𝐻 (𝑡), the power consumption of the heat pump for 

cooling at time t, 𝑃𝐻𝑃,𝐶 (𝑡), energy stored for space heating at 

time t, 𝐻𝑠𝑡𝑜(𝑡), and the energy stored for space heating at time  

t, 𝐶𝑠𝑡𝑜(𝑡), 

𝑆(𝑡): {
𝑃𝐺𝑇(𝑡), 𝐻𝐻𝑅𝐵,𝑒𝑥(𝑡), 𝐻𝑑𝑖,𝐻𝑅𝐵(𝑡), 𝐶𝑎𝑏𝑠,𝑒𝑥(𝑡),

𝐶𝑑𝑖,𝑎𝑏𝑠(𝑡), 𝑃𝐻𝑃,𝐻 (𝑡), 𝑃𝐻𝑃,𝐶 (𝑡), 𝐻𝑠𝑡𝑜(𝑡), 𝐶𝑠𝑡𝑜(𝑡) 
}.    (20) 

5. Reward  

Since in the Q learning model, the model tends to maximize 

the reward and the microgrid operation aims at minimizing the 

total operation cost, the reward 𝑅𝑇 is taken to be the negative 

of the total operation cost of one day −𝐶𝑇 , as expressed in 

equation (21), 

𝑅𝑇 = − (𝐶𝑔𝑎𝑠 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 + 𝐶𝑔𝑟𝑖𝑑 ),         (21) 

where T represents the testing day. 

The QLSTM model developed to predict the operation 

strategy of the microgrid under study is shown in Fig. 2. The 

LSTM model will take the data for the previous three days 

starting from t-3×96 till t+96 where t=0 represents the start of 

the testing day for both the environmental observations O(t-

3x96),…, O(t+96)} actions A(t-3x96),…, A(t+96)}, and the 

output will be the predicted states, S(t),…, S(t+96) the Q- 

Network will take the series of predicted states as inputs and 

will output the Q-value reward 𝑅𝑇 which is the total operation 

cost of the microgrid on the testing day.  

 

V. Results  

The QLSTM model is tested in this section. The 

microgrid’s configuration under study is presented in 

Fig. 2: QLSTM model 
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subsection A; the dataset description is presented in subsection 

B; testing criteria in subsection C; QLSTM configuration and 

testing results in subsection D; comparison to other models 

results in subsection E; and testing during variable weather 

conditions in subsection F.  

A. Microgrid Configuration 

Microgrid configuration and the size per device are shown 

in Table I. The microgrid configuration was determined based 

on the demand. Coefficients shown in equations (1) – (11) for 

modeling energy devices are taken from [9]. 
Table I: Microgrid Size  

Energy Device Size Per Unit 

Gas Turbine 40-300 MW 

Battery  5-50 MW 

Absorption Chiller  10-100 MW 

Heat Recovery Boiler  15-150 MW 

Heat Pump  192 MW – 128 MW (Heating, Cooling) 

B. Dataset Description 

The dataset used to test the model consists of PV, demand 

price data, and the training and testing datasets.  

1) Demand  

Power, heating, and cooling demand data are taken from a 

large hotel in New York State for each 15- minutes for the year 

2020 [10] with a total of 35,040 data points.  

2) PV  

The PV power data was taken from a 2-MW solar farm 

from RIT for the year 2020 [11]. The power generation was 

scaled up 10 times to adjust to the power demand of the large 

hotel. The time step is 5 minutes, but to get the same time 

interval data as the available demand data, the data points at 

every 15 minutes are considered in this study. 

3) Price 

The price of natural gas is fixed at 180 /MWh for the whole 

day [12] as shown in equation (22), 

Cost(𝑃𝐺𝑇(𝑡))= 180 $/MWh  for 0 ≤t ≤23       (22) 

The cost of buying power from the grid is shown in 

equation (23). The price is higher during peak hours 9:00 am 

to 6:00 pm, [12] 

140 $/MWh  for 0 ≤ t ≤ 9  

Cost(𝑃𝑔𝑟𝑖𝑑(𝑡))=   210 $/MWh  for 9≤ t ≤ 18                 (23) 

140 $/MWh  for 18 ≤ t ≤ 23 

The price of selling power to the grid is 80% of the buying 

cost as shown below in equation (24), 

Revenue(𝑃𝑠𝑒𝑙𝑙(𝑡))= 0.8×Cost(𝑃𝑏𝑢𝑦(𝑡))  for 0 ≤t ≤23        (24) 

4) Training and testing dataset  

A dataset is generated by solving the operation 

optimization problem of microgrids using MATLAB 2023 

Optimization Toolbox (the branch-and-bound method) for the 

year 2020. The average solving time for one day is 10.54 

seconds. A total of 35,040 data points are created. The dataset 

includes input variables, (PV power, power heating and 

cooling demand), the actions and states described in IV.B.3 

and IV.B.4, respectively.  

From the above data, 80% of data from each month was 

taken for training, 10% for validation, and 10% for testing to 

consider all possible changes in the weather conditions. 

C. Testing criteria  

The prediction error is calculated based on the total 

operation cost. After predicting the operation strategy for the 

whole day, and specifying the generation levels from each 

device the operation cost is calculated using equation (19). 

First, correlation (r), mean absolute error (MAE), and root 

mean square error (RMSE) as shown in equations (25)- (27) 

are calculated between the predicted cost and the optimal cost 

in case the actual data is used to solve the problem by 

MATLAB 2023 Optimization Toolbox (branch and bound) for 

the testing data.  

𝑟 =
∑ ((𝑥𝑖−
𝑛
𝑖=1 𝑥̅)(𝑦𝑖−𝑦̅))

√∑ (𝑥𝑖−𝑥̅)
2∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

𝑛
𝑖=1

,                  (25) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 ,             (26) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
(∑ (𝑥𝑖 − 𝑦𝑖))

2𝑛
𝑖=1 .          (27) 

where 𝑥𝑖 and 𝑦𝑖 are the real and forecasted values, 

respectively, and 𝑥̅and 𝑦̅ are the average values of the real and 

the forecasted data, respectively. 

D. QLSTM configuration and testing results 

After performing a hyper parameter tuning, the number of 

hidden layers in LSTM is 4, each with 96 units which is the 

number of time steps in one day. The epoch size is set to 100, 

and the batch size is 64 using the "Adam" optimizer. In the Q-

learning layer, same number of hidden layers (4) is and units 

(96) are used, the learning rate is set to 0.01 to prevent very 

fast or slow convergence to optimal value and the discount rate 

to 0.95 to present the importance of the future rewards since 

the model aims at minimizing the total cost of microgrid 

operation of one day. The QLSTM model has been 

implemented in MATLAB 2023 and simulation is performed 

on a DESKTOP-MAMPLNJ with a 2.5 GHz Dual-Core Intel 

i5 processor and system memory of 8 GB 1.5 GHz.  

Training and testing results of the QLSTM model are 

shown in Table II. The training time is 344 seconds while the 

testing time is 197 seconds for the whole training and testing 

datasets, respectively. 

Table II: Training and testing accuracy and time 

The prediction time for one day is 5.41 seconds using 

QLSTM while solving time for one day using MATLAB 2023 

Optimization Toolbox is 10.54 seconds.    

E. Testing results: comparison to other models  

For the whole testing dataset, the correlation, MAE, and 

RMSE between the predicted total operation cost and the 

optimal cost using LSTM, Q-learning, and QLSTM are shown 

in Table III. For a fair comparison, the same moving window 

method was implemented in all models.  

As shown in Table III, GRU and LSTM show the poorest 

performance, where R are only 84.6% and 85.79%, MAE are 

168.2$ and 155.3$ and RMSE are 283.8$ and 263.6$, 

respectively. The Q-Network model shows better performance 

than LSTM since LSTM will predict the operation strategy of 

the microgrid (generation levels of devices) by learning from 

the previous sequence without considering the objective 

function or the reward. By adding LSTM and Q-learning 

Dataset R(%) MAE($) RMSE($) Time (sec) 

Training  96.28 104.30 182.80 344 

Testing  95.50 103.18 193.72 197  
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models together, the hybrid model will take advantage of 

learning from previous sequences to predict the operation 

strategy to achieve the reward. QLSTM model outperformed 

all other models with R of 95.5%, MAE of 103.1$, and RMSE 

of 193.7$. 
Table III: Total cost prediction error using different models 

F. Testing during variable weather conditions  

Since the PV power represents the weather conditions, the 

testing days are chosen based on the variance of the PV power. 

Three days with low, medium, and high variance in PV power 

days are chosen for further testing. Table shows the variance 

and forecasting correlation between actual and forecasted 

values of the PV power. 
Table IV: Testing days  

Day Variance PV Forecasting Error 

January, 27 2.78 75.38% 

April, 26 4591.01 62.52% 

September, 8  1650.58 90.48% 

In the microgrid operation problem, the goal is to predict 

the operation strategy for the next day using the forecasted PV 

and demand. The error using math optimization or prediction 

models in this problem is a result of the forecasting error in the 

input data. In this test, the operation cost using the branch-and-

bound method in MATLAB 2023 Optimization Toolbox with 

the forecasted data and using the QLSTM model are compared 

as shown in Table V to test the effectiveness of the developed 

QLSTM model over math optimization to address the 

uncertainty in the input data.  

Table V: Operation cost using math optimization and QLSTM 

As shown in Table V, the QLSTM's total operation cost 

was closer to the optimal scheduling operation cost on all days. 

April 26 shows the highest variance in PV power and 

prediction error and hence highly variable weather conditions. 

On this day, the branch-and-bound optimization method with 

forecasted data shows a high difference of 423$ from the 

optimal cost because of the high forecasting error. QLSTM 

addressed this issue because of the LSTM layer that works in 

a time series manner with a difference of 127$. 

VI. CONCLUSION 

Solving the microgrid operation optimization problem is 

challenging due to the intermittent and uncertain nature of PV 

and load, especially during days with highly variable weather 

conditions. To address this issue, a novel QLSTM model is 

developed to predict the operation strategy for the next 24 

hours with 15- minutes as a time step. The key idea is adding 

the last three days of actual input data to the model since 

consecutive days' weather conditions are close to each other. 

Also, to address the effect of the propagation of errors in 

multiple-step forecasting, the model has been trained by a 

moving window method. The moving window is shifted by 

one time step to get the actual data and ends by the end of the 

day. The model has been tested using actual PV power data 

from RIT and demand actual data from a large hotel located in 

New York State. Testing and training datasets have been 

created by solving the operation problem using the branch and 

bound method in MATLAB 2023 Optimization Toolbox. The 

model performance is compared to three other models, GRU, 

LSTM, and Q-learning and it shows better performance for 

testing data from different months. Also, compared to the 

branch-and-bound method with forecasted data, it shows lower 

cost, especially on a day with highly variable weather 

conditions. The developed model needs longer time to 

coverage in a large action-state space, but still gives high 

accuracy in predicting the operation strategy. Also, in a 

transition from sunny days to an intermittent day, the LSTM 

layer in the developed model can mismatch the relation 

between the previous days and coming days data, but still 

predicting the operation strategy of the lower cost compared to 

other prediction models or solving methods. 
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R (%) MAE ($) RMSE ($)  

GRU 84.60 168.23 283.80 

LSTM 85.79 155.33 263.69 

Q-learning 87.71 144.64 240.84 

QLSTM 95.50 103.18 193.72 

 
OPERATION COST ($) 

Testing Day Optimal Math Optimization QLSTM 

January, 27 5892.44 6084.51 6019.10 

 April, 26 4918.45 5341.28 5101.59 

September, 8  1816.80 1919.20 1877.89 
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