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Introduction 
The COVID-19 pandemic severely strained local,state,and federal health agencies 

across the United States. Rapid and sometimes unexpected rises in disease 

transmission led to increased morbidity and mortality and associated shortages in 

health care staffing, testing capacity, and personal protective equipment. 

Modeling and advanced analytics that provided predictive information on the 

timing and magnitude of surges under various scenarios were urgently needed to 

inform public health response. However, in order to provide such insights, there 

were several challenges to overcome. First, prior to the COVID-19 pandemic, 

minimal infecti us di eas delin a existed at state, tribal, local, and territorial hea 

Bf) twaepartments. At a e eral level, the Centers for Disease Control and 

Prevention (CDC) also had limited capacity until the formation of the Center for 

Forecasting and Outbreak Analytics (CFA) in late 2021; even then, its capacity 

for locally focused modeling outputs remained restricted. Second, early in the 

COVID-19 pandemic, govemment systems struggled to ingest, manage, and 

report the tremendous volume of COVID-19 data, while data access for infectious 

disease modelers remained a barrier. Despite significant funding efforts by CDC 

and other agencies in support of data modernization and forecasting, challenges 

persisted for many public health agencies, including the California Department of 

Public Health (CDPH). 
The CDPH addressed the need for infectious disease modeling expertise in 

multiple ways. First, CDPH engaged external public and privatesector 

stakeholders and citizen scientistsearly on during the COVID-19 response to 

iteratively develop and synthesize 
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results and build internal capacity to interact with modeling outputs. 

This effort resulted in the formation of a Modeling and Advanced 

Analytics Team that both leveraged existing CDPH staff and onboarded infectious 

disease modelers. The team was dedicated to synthesizing externally developed 

nowcasts, forecasts, and scenarios and producing internal modeling and analytical 

tools, with a major focus on the launch and development of the California COVID 

Assessment Tool (CalCAT, https://calcat. cdph.ca.gov/).The  CalCAT 

 compiles available nowcasts,forecasts, and scenario models for both 

internal situational awareness and to share with other public health agencies, health 

care systems, and the public. These modeling resources—especially those at the 

county scale—were extremely helpful for understandingnearfuture health care 

impacts and informing policy decisions in the face of substantial uncertainty about 

COVID-19 biology, epidemiology, and control measure by Virginia Polytechnic 

Institute and Sté 

However, the CDPH Modeling and Advanced Analytics Team 

sometimes had insufficient staffor specific expertise to answer pressing 

policy questions in a short timeframe, especially when evidence in the 

literature was lacking. Specifically, there was a need for rapid, ad hoc 

modeling and expert assessment on fast-breaking topics such as the 

potential impact of emerging viral variants and waning immunity on 

transmission. Acquiring these resources within CDPH and other health 

jurisdictions would have required significant time and effort amidst 

many competing priorities during an ongoing public

 health emergency. In contrast, 

manyacademicswerealreadywellpositionedtodigcsttherapidly

 evolving literature on variant properties and immunity and synthesize 

the implications for modeling transmission and hospital burden. 

Therefore, CDPH recognized that its response would benefit from closer 

academic collaborations, including with the I()campus University of 

California (UC) system, a large state-based institution. 

The University of California Health-CDPH COVID Modeling Consortium (https://modelingconsortium.ucsf.edu/), hereafter referred as 
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the "Modeling Consortium", vvas launched in early 2021 with the 

backing of top leadership of both institutions to facilitate collaboration 

between CDPH and UC scientists on COVID-19 through 4 major 

areas. First, the Modeling Consortium awarded several rapid grants 

and contracts to UCbased investigators, enabled by state and federal 

funding for the pandemic response. The CDPH leadership and staff 

scientists provided frequent input on project progress, resulting in 

deliverables that were directly relevant to CDPH for pressing policy 

questions, including tailored nowcasts, forecasts, and scenarios that 

were displayed on CalCAT, as well as more traditional academic 

publications. l-4 Second, the Modeling Consortium provided UC 

investigators access to more granular data than publicly available for 

rapid analysis of research questions specifically relevant to California's 

COVID19 situation. Although data sharing challenges persisted, this 

finer scale data access and ongoing alignment with CDPH and its 

counties may have benefited model performance. In a retrospective 

analysis of forecasting performance, two Califomia-specific 

forecasting models run by UC partners (ie, COVID NearTerm and 

LEMMA) outperformed the CalCAT ensemble when forecasting 

COVID-19 hospital census at the county level.5 7 Third, through 

mutual training opportunities, UC graduate students and postdoctoral 

researchers interacted more directly with public health practice, and 

CDPH employees gained access to academic courses and cutting-edge 

research to further their professional development. Finally, the 

Modeling Consortium hosted virtual seminars and targeted small-

group meetings I to 2 times each month. Each seminar combined 

shortformat presentations on a topic of urgent concem (eg, COVID-19 

transmission in schools, masking effectiveness) followed by open 

discussion. These fora included dozens of scientists from across the 

UC system and a range of CDPH staff including the State Health 

Officer and State Epidemiologist who indicated that these meetings 

provided them with critical information to make urgent policy-related 

decisions and recommendations to state government leadership. The 

targeted small-group meetings included the CDPH Modeling Team 

and a core group of UC scientists who discussed the most urgent 

scientific questions that the CDPH Modeling Team was addressing. 

Three key examples that demonstrated the benefit of the Modeling 

Consortium were the prediction of hospital burden during emergence 

of the Delta and Omicron variants, discussion and synthesis of 

evidence around nonpharmaceutical interventions, and collaborative 

work on understanding COVID-19 transmission in K-12 schools.3'6 

Several challenges to this collaboration were mitigated but not 

eliminated during the pandemic, and many lessons were 

leamedfromthisjointeffort(Table 1).ItwaschallengingforCDPH to 

establish data use agreements (DUAs) quickly and to subsequently 

make that data one ',vay to continue to increase collaborations and 

improve coordination across levels and sectors. However, the 

feasibility and sustainability of such an approach is not certain, as the 

COVID19 pandemic response facilitated funding this type of 

collaboration in an unprecedented way. State, territorial, local, and 

tribal (STLT) governments are generally not in a position to provide 

such funding, but funding bodies should consider alternative 

mechanisms wherein STLTs can help shape grant priorities and 

deliverables rather than being more passive partners. Building internal 

capacity for modeling infectious diseases within CDPH was also a key 

feature in promoting crosssector communication and collaboration; the 

CDPH Modeling Team played a key role in translating requests from 

leadership to academic partners and synthesizing evidence from 

academic deliverables for leadership, thus amplifying the ability of 

partners to influence policy decisions and resource prioritization. Our 

experiences working together have demonstrated tangible benefits for 

both sides: academic trainees better understood and contributed to 

applied public health practice, and research was catalyzed to have real-

world impact in the hands of practitioners and policymakers. 

Additionally, govemment workers were informed about cutting-edge 

research,while learning methodologies and approaches from academic 

colleagues. This training fostered workforce development and 

employment opponunities in public health that benefited 

CDPHandpublichealthmorebroadly.Expandingacademicincentives for 

this sort of public service and supporting publication of research for 

academic and public health scientists will support ongoing 

parmerships. 
A key overall question is: what parts of the Modeling Consortium, 

and academic-public health modeling partnerships in general,should 

be preserved and fostered for work on current and emerging public 

health issues as well as pandemic preparedness going forward? CDPH 

occupies a unique and privileged position in having access to multiple 

world-class universities within the state of Califomia.Since the number 

of public health jurisdictions greatly exceeds the number academic 

centers with expertise in infectious disease modeling, national and 

regional coordination will be necessary for optimizing the performance 

and impact of such collaborations. Some of this work is just beginning 

through national scenario modeling and forecasting hubs, as well as 

dedicated efforts such as the National Outbreak Analytics & Disease 

Modeling Network (Insight Net). More work is needed to make sure 

that such collaborations are benefiting jurisdictions across a range of 

capacities and experience in infectious disease modeling. As others 

have suggested, highfrequency, real-time outbreak analyses are well-

suited tasks for in-house modeling teams.8 Therefore, modeling 

pipelines and tools should be built in a 

personnel i irom ionin fitt dat Kine andandavailable to academic investigators in re tbownföadeå tim P o 

generalizable .way that can be further customized  to Virginia local health Polytechnic public contextInstitute and Ste maintaining data pipelines requires 

health department resources not traditionally covered by grants and other funding mechanisms. Future efforts 

should include support for this necessary aspect of collaboration with contingencies for changes in data sharing depending on whether a statewide public health 

emergency declaration order is in effect. Health departments should also be encouraged to engage in robust and ongoing data govemance practices, so that data 

sharing questions can be quickly evaluated and approved when needed. Another key challenge was that incentives in state government and academia were not 

initially aligned; cooperation depended on both academics and CDPH setting aside other activities to focus on California's COVID-19 response. Modeling 

Consonium academics set aside or delayed writing publications to focus on providing model forecasts that were displayed on CalCAT, updated daily, and could 

be adjusted in response to feedback from CDPH leadership. The mutual engagement and singular focus in the early pandemic years paid large dividends but 

were unsustainable at that level beyond the crisis phase of the pandemic. 
The most important outcome of the Modeling Consortium was 

stronger collaborations—trust, partnerships, and networks— between 

state-based academic and government institutions that are both focused 

on serving the health and well-being of Californians. Funding academics 

to work directly with a state health department on locally important 

public health problems is 
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Table 1. Modeling consortium successes, challenges, and opportunities in preparedness and response activities. 

 Preparedness Response 

Accomplished 

Needs improvement 

Stronger trust, partnerships, and networks between academics and 

govemment staff 

Increased internal CDPH capacity for advanced modeling and 

analytics 

UC system academic training opportunities for CDPH staff 

Applied public health training opportunities for academic trainees 

Rapid deployment of data use agreements 
Health department personnel and capacity for data pipeline 

maintenance and provisioning 
Incentives for public health service for academics 

Collaboration on emerging topics 

Regularly scheduled seminars and targeted small-group 

meetings for exchange of ideas and infonnation 
Funding ofrapid grants and contracts for UC investigators with 

ongoing engagement with project deliverables from CDPH 

staff 

Generation of tailored nowcasting/forecasting/scenario 

deliverables specific to California context 
Sharing more granular data for UC investigators via secure 

server 

Faster engagement in cryptic phase 
Engagement with broader interdisciplinary fields 

Better mechanisms for sharing data with academic 

collaborators in real time with and without a public health 

order in effect 
Sustainability of collaborative pandemic response 

To support this approach, many Modeling Consortium investigators 

participated in the national modeling hubs, and the CDPH Modeling 

Team engaged in dialogs with researchers about tooling that could be 

used by other jurisdictions. 
Pandemic and public health emergency preparedness are widely 

shared priorities across sectors and jurisdictions. The successes of the 

Modeling Consortium in California during the COVID-19 pandemic 

highlight the potential value of synchronized academic-govemment 

partnerships in the face of new public health threats. Increased internal 

public health capacity for modeling and analytics, more rapid data 

sharing frameworks, fundingmechanismstoenable rapidsupportfor 

academicefforts, and incentives to facilitate close coordination between 

academic and government institutions will enable a better evidence-

based public health response in California and throughout the United 

States during the next public health emergency. 
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mass of adult females; Beltran et al., 2022; Haley et al., 1994), male 

offspring are on average only 7%—8% heavier than females at the time 

of weaning (Le Boeuf et al., 2019). This difference in maternal 

allocation may be too small to be substantially influenced by maternal 

age. If elephant seals do adaptively modify offspring sex ratios, 

environmental conditions appear to be more influential than maternal 

age (Kretzmann et al., 1993; Lee & Sydeman, 2009). 

Declining foraging efficiency with age is one mechanism for 

reproductive senescence (Lecomte et al., 2010). If older seals need 

additional foraging time to meet energy demands for maintenance and 

reproduction, then a greater portion of their annual cycle would need to 

be allocated to foraging trips. Since the breeding haul out is highly 

synchronous (Beltran et al., 2022), we hypothesized that older seals 

would reallocate time from the moulting haul out to foraging. However, 

the moulting haul out duration did not significantly change among 

females 11 years old and older. If seals skip breeding more often as they 

age, but are not altering their annual cycle, that suggests that the haul 

out durations are already as short as is physiologically possible. Skipped 

breeding may therefore become increasingly necessary with advanced 

age to reset seals' annual cycles. 

5 | CONCLUSIONS 
Northern elephant seals exhibit both fertility and maternal effect 

senescence. The rates of decline for these two processes (i.e. how rapidly 

fertility and offspring survival decline with maternal age) were not different 

from each other. Theory predicts maternal effect senescence should evolve 

to be more rapid than fertility senescence (Moorad & Nussey, 2015); 

similar analyses with larger sample sizes and more species are necessary to 

fully test this hypothesis. Furthermore, maternal effect senescence had a 

substantially larger impact on offspring production than fertility 

senescence. Although maternal effect senescence is relatively understudied, 

it appears to be highly prevalent, as it has been detected in 93% of studied 

populations (Ivimey- Cook & Moorad, 2020). Our results show that 

overestimated if only fertility senescence is considered. 
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