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Editor's note: The opinions expressed in this article are those ofthe Analytics Team that both leveraged existing CDPH staff and onboarded infectious
authors and do not necessarily reflect the views of the American Journal ~ disease modelers. The team was dedicated to synthesizing externally developed
of Epidemiology. nowcasts, forecasts, and scenarios and producing internal modeling and analytical
tools, with a major focus on the launch and development of the California COVID
Assessment Tool (CalCAT, https://calcat.  cdph.ca.gov/).The CalCAT

compiles available nowcasts,forecasts, and scenario models for both

Introduction

The COVID-19 pandemic severely strained local,state,and federal health agencies
across the United States. Rapid and sometimes unexpected rises in disease
transmission led to increased morbidity and mortality and associated shortages in

internal situational awareness and to share with other public health agencies, health
care systems, and the public. These modeling resources—especially those at the
county scale—were extremely helpful for understandingnearfuture health care

health care staffing, testing capacity, and personal protective equipment. impacts and informing policy decisions in the face of substantial uncertainty about
Modeling and advanced analytics that provided predictive information on the COVID-19 biology, epidemiology, and control measure by Virginia Polytechnic
timing and magnitude of surges under various scenarios were urgently needed to Institute and Sté

inform public health response. However, in order to provide such insights, there

were several challenges to overcome. First, prior to the COVID-19 pandemic, However, the CDPH Modeling and Advanced Analytics Team

minimal infecti us di eas delin a existed at state, tribal, local, and territorial hea sometimes had insufficient staffor speciﬁc expertise to answer pressing
Bf) twaepartments. At a e eral level, the Centers for Disease Control and
Prevention (CDC) also had limited capacity until the formation of the Center for
Forecasting and Outbreak Analytics (CFA) in late 2021; even then, its capacity
for locally focused modeling outputs remained restricted. Second, early in the modeling and expert assessment on fast-breaking topics such as the
COVID-19 pandemic, govemment systems struggled to ingest, manage, and potential impact of emerging viral variants and waning immunity on
report the tremendous volume of COVID-19 data, while data access for infectious transmission. Acquiring these resources within CDPH and other health
disease modelers remained a barrier. Despite significant funding efforts by CDC
and other agencies in support of data modernization and forecasting, challenges
persisted for many public health agencies, including the California Department of
Public Health (CDPH). health emergency. In contrast,

The CDPH addressed the need for infectious disease modeling expertise in ~ manyacademicswerealreadywellpositionedtodigesttherapidly

policy questions in a short timeframe, especially when evidence in the
literature was lacking. Specifically, there was a need for rapid, ad hoc

jurisdictions would have required significant time and effort amidst
many competing priorities during an ongoing public
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multiple ways. First, CDPH engaged external public and privatesector  evolving literature on variant properties and immunity and synthesize
stakeholders and citizen scientistsearly on during the COVID-19 response to
iteratively develop and synthesize
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the implications for modeling transmission and hospital burden.
Therefore, CDPH recognized that its response would benefit from closer

o . . . . academic collaborations, including with the I()campus University of
results and build internal capacity to interact with modeling outputs.

This effort resulted in the formation of a Modeling and Advanced
The University of California Health-CDPH COVID Modeling Consortium (https://modelingconsortium.ucsf.edu/), hereafter referred as

California (UC) system, a large state-based institution.



the "Modeling Consortium", vvas launched in early 2021 with the
backing of top leadership of both institutions to facilitate collaboration
between CDPH and UC scientists on COVID-19 through 4 major
areas. First, the Modeling Consortium awarded several rapid grants
and contracts to UCbased investigators, enabled by state and federal
funding for the pandemic response. The CDPH leadership and staff
scientists provided frequent input on project progress, resulting in
deliverables that were directly relevant to CDPH for pressing policy
questions, including tailored nowcasts, forecasts, and scenarios that
were displayed on CalCAT, as well as more traditional academic
publications. '-* Second, the Modeling Consortium provided UC
investigators access to more granular data than publicly available for
rapid analysis of research questions specifically relevant to California's
COVID19 situation. Although data sharing challenges persisted, this
finer scale data access and ongoing alignment with CDPH and its
counties may have benefited model performance. In a retrospective
analysis of forecasting performance, two Califomia-specific
forecasting models run by UC partners (ie, COVID NearTerm and
LEMMA) outperformed the CalCAT ensemble when forecasting

COVID-19 hospital census at the county level.’.” Third, through
mutual training opportunities, UC graduate students and postdoctoral
researchers interacted more directly with public health practice, and
CDPH employees gained access to academic courses and cutting-edge
research to further their professional development. Finally, the
Modeling Consortium hosted virtual seminars and targeted small-
group meetings I to 2 times each month. Each seminar combined
shortformat presentations on a topic of urgent concem (eg, COVID-19
transmission in schools, masking effectiveness) followed by open
discussion. These fora included dozens of scientists from across the
UC system and a range of CDPH staff including the State Health
Officer and State Epidemiologist who indicated that these meetings
provided them with critical information to make urgent policy-related
decisions and recommendations to state government leadership. The
targeted small-group meetings included the CDPH Modeling Team
and a core group of UC scientists who discussed the most urgent
scientific questions that the CDPH Modeling Team was addressing.
Three key examples that demonstrated the benefit of the Modeling
Consortium were the prediction of hospital burden during emergence
of the Delta and Omicron variants, discussion and synthesis of
evidence around nonpharmaceutical interventions, and collaborative
work on understanding COVID-19 transmission in K-12 schools.*'®

Several challenges to this collaboration were mitigated but not
eliminated during the pandemic, and many lessons were
leamedfromthisjointeffort(Table  1).ItwaschallengingforCDPH to
establish data use agreements (DUAs) quickly and to subsequently

available to academic investigators in re tbownfdaded tim P o

make that data one ',vay to continue to increase collaborations and
improve coordination across levels and sectors. However, the
feasibility and sustainability of such an approach is not certain, as the
COVID19 pandemic response facilitated funding this type of
collaboration in an unprecedented way. State, territorial, local, and
tribal (STLT) governments are generally not in a position to provide
such funding, but funding bodies should consider alternative
mechanisms wherein STLTs can help shape grant priorities and
deliverables rather than being more passive partners. Building internal
capacity for modeling infectious diseases within CDPH was also a key
feature in promoting crosssector communication and collaboration; the
CDPH Modeling Team played a key role in translating requests from
leadership to academic partners and synthesizing evidence from
academic deliverables for leadership, thus amplifying the ability of
partners to influence policy decisions and resource prioritization. Our
experiences working together have demonstrated tangible benefits for
both sides: academic trainees better understood and contributed to
applied public health practice, and research was catalyzed to have real-
world impact in the hands of practitioners and policymakers.
Additionally, govemment workers were informed about cutting-edge
research,while learning methodologies and approaches from academic
colleagues. This training fostered workforce development and
employment opponunities in public health that benefited
CDPHandpublichealthmorebroadly. Expandingacademicincentives for
this sort of public service and supporting publication of research for
academic and public health scientists will support ongoing
parmerships.

A key overall question is: what parts of the Modeling Consortium,
and academic-public health modeling partnerships in general,should
be preserved and fostered for work on current and emerging public
health issues as well as pandemic preparedness going forward? CDPH
occupies a unique and privileged position in having access to multiple
world-class universities within the state of Califomia.Since the number
of public health jurisdictions greatly exceeds the number academic
centers with expertise in infectious disease modeling, national and
regional coordination will be necessary for optimizing the performance
and impact of such collaborations. Some of this work is just beginning
through national scenario modeling and forecasting hubs, as well as
dedicated efforts such as the National Outbreak Analytics & Disease
Modeling Network (Insight Net). More work is needed to make sure
that such collaborations are benefiting jurisdictions across a range of
capacities and experience in infectious disease modeling. As others
have suggested, highfrequency, real-time outbreak analyses are well-
suited tasks for in-house modeling teams.® Therefore, modeling
pipelines and tools should be built in a

emic.oup.comvale/articie/ 194/6/1482/ (958 personnel i irom ionin fitt dat Kine .andand

demigeneralizable .way that can be further customized / to Virginia local health Polytechnic public contextInstitute and Ste maintaining data pipelines requires

f;0UR comyalerarlicion Ya/6/ 14t 908Uy D . ) )
health department [T IIRproved periormance,as circumstances alloW.resources not traditionally covered by grants and other funding mechanisms. Future efforts

should include support for this necessary aspect of collaboration with contingencies for changes in data sharing depending on whether a statewide public health
emergency declaration order is in effect. Health departments should also be encouraged to engage in robust and ongoing data govemance practices, so that data
sharing questions can be quickly evaluated and approved when needed. Another key challenge was that incentives in state government and academia were not
initially aligned; cooperation depended on both academics and CDPH setting aside other activities to focus on California's COVID-19 response. Modeling
Consonium academics set aside or delayed writing publications to focus on providing model forecasts that were displayed on CalCAT, updated daily, and could
be adjusted in response to feedback from CDPH leadership. The mutual engagement and singular focus in the early pandemic years paid large dividends but
were unsustainable at that level beyond the crisis phase of the pandemic.
The most important outcome of the Modeling Consortium was

stronger collaborations—trust, partnerships, and networks— between

state-based academic and government institutions that are both focused

on serving the health and well-being of Californians. Funding academics

to work directly with a state health department on locally important

public health problems is
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Table 1. Modeling consortium successes, challenges, and opportunities in preparedness and response activities.

Preparedness

Response

Accomplished
govemment staff

Increased internal CDPH capacity for advanced modeling and

analytics

UC system academic training opportunities for CDPH staff

Applied public health training opportunities for academic trainees

Needs improvement
Rapid deployment of data use agreements

Health department personnel and capacity for data pipeline

maintenance and provisioning

Incentives for public health service for academics

Stronger trust, partnerships, and networks between academics and Collaboration on emerging topics

Regularly scheduled seminars and targeted small-group
meetings for exchange of ideas and infonnation
Funding ofrapid grants and contracts for UC investigators with

ongoing engagement with project deliverables from CDPH
staff

Generation  of  tailored  nowcasting/forecasting/scenario
deliverables specific to California context
Sharing more granular data for UC investigators via secure

server

Faster engagement in cryptic phase

Engagement with broader interdisciplinary fields

Better mechanisms for sharing data with academic
collaborators in real time with and without a public health
order in effect

Sustainability of collaborative pandemic response

To support this approach, many Modeling Consortium investigators
participated in the national modeling hubs, and the CDPH Modeling
Team engaged in dialogs with researchers about tooling that could be
used by other jurisdictions.

Pandemic and public health emergency preparedness are widely
shared priorities across sectors and jurisdictions. The successes of the
Modeling Consortium in California during the COVID-19 pandemic
highlight the potential value of synchronized academic-govemment
partnerships in the face of new public health threats. Increased internal
public health capacity for modeling and analytics, more rapid data
sharing frameworks, fundingmechanismstoenable rapidsupportfor
academicefforts, and incentives to facilitate close coordination between
academic and government institutions will enable a better evidence-
based public health response in California and throughout the United
States during the next public health emergency.
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mass of adult females; Beltran et al., 2022; Haley et al., 1994), male
offspring are on average only 7%—=8% heavier than females at the time
of weaning (Le Boeuf et al., 2019). This difference in maternal
allocation may be too small to be substantially influenced by maternal
age. If elephant seals do adaptively modify offspring sex ratios,
environmental conditions appear to be more influential than maternal
age (Kretzmann et al., 1993; Lee & Sydeman, 2009).

Declining foraging efficiency with age is one mechanism for
reproductive senescence (Lecomte et al., 2010). If older seals need
additional foraging time to meet energy demands for maintenance and
reproduction, then a greater portion of their annual cycle would need to
be allocated to foraging trips. Since the breeding haul out is highly
synchronous (Beltran et al., 2022), we hypothesized that older seals
would reallocate time from the moulting haul out to foraging. However,
the moulting haul out duration did not significantly change among
females 11 years old and older. If seals skip breeding more often as they
age, but are not altering their annual cycle, that suggests that the haul
out durations are already as short as is physiologically possible. Skipped
breeding may therefore become increasingly necessary with advanced

age to reset seals' annual cycles.
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