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Abstract: Fire models predict fire behavior and effects. However, there is a need to know how
confident users can be in forecasts. This work developed a probabilistic methodology based on
ensemble simulations that incorporated uncertainty in weather, fuel loading, and model physics
parameters. It provided information on the most likely forecast scenario, confidence levels, and
potential outliers. It also introduced novel ways to communicate uncertainty in calculation and
graphical representation and applied this to diverse wildfires using ensemble simulations of the
CAWEFE coupled weather-fire model ranging from 12 to 26 members. The ensembles captured many
features but spread was narrower than expected, especially with varying weather and fuel inputs,
suggesting errors may not be easily mitigated by improving input data. Varying physics parameters
created a wider spread, including identifying an outlier, underscoring modeling knowledge gaps.
Uncertainty was communicated using burn probability, spread rate, and heat flux, a fire intensity
metric related to burn severity. Despite limited ensemble spread, maps of mean and standard
deviation exposed event times and locations where fire behavior was more uncertain, requiring more
management or observations. Interpretability was enhanced by replacing traditional hot—cold color
palettes with ones that accommodate the vision-impaired and adhere to web accessibility standards.

Keywords: wildfire modeling; ensemble; uncertainty; fire behavior; forecasting; prediction; coupled
weather-fire model; fire effects modeling; ensemble visualization; web accessibility

1. Introduction

Land management today is exceedingly complex, with key difficulties in assessing
and managing uncertainty to limit wildland fire risk. It aims to mitigate the extent and
impact of wildfires that are said to be becoming more unpredictable [1] and which are often
characterized by complex, uncertain behavior in steep, complex, and forested terrain. This
is weighed against the strategic manipulation of forest fuel amount and structure using
tools such as prescribed fire, which is accompanied by its own risks [2]. Retrospectively,
inadequate evaluation of fire and weather conditions is often cited in cases of unintended
prescribed fire consequences [3]. Uncertainty about fire effects, such as the smoke impacts
of prescribed fire, also reduces its use [4]. Mitigation now requires quantitative planning [5]
but modeling tools do not currently have the dynamic complexity and means to estimate
confidence in predicted fire behavior, smoke, and ecological effects, especially in complex
environments [6,7]. The benefits of better estimating uncertainty extend to improving
firefighter safety, as entrapment potential peaks when fire behavior rapidly deviates from
an assumed trajectory and becomes extreme [8].

To date, forest and emergency management planning have accessed deterministic kine-
matic models. Used as guidance, deterministic prediction of both wildfire and prescribed
fire behavior and effects has shown limitations, particularly in outlier events [9]. Examples
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of fire behavior prediction tools in the United States include FARSITE [10], Minimum
Travel Time (MTT) [11], Near Term Fire Behavior in the Wildland Fire Decision Support
System [12], Wildfire Analyst [13], WIFIRE [14], ELMFIRE (Eulerian Level Set Model of Fire
Spread) [15], and GridFire [16], each built using U.S.-based semi-empirical fire algorithms.
To some extent, shortcomings arise from one of this kinematic model generation’s now-
recognized limitations—its inability to represent fire-induced winds created by the fire’s
interaction with the surrounding atmosphere—and thus overlook the potential for dynamic
feedbacks, and amplification into sudden shifts in wind and fire direction, blow-ups, and
large fire whirls. Thus, many kinematic models in use today can underestimate the range of
possible outcomes, leading to the misinterpretation of possible impacts to people, property,
and the environment.

Transient fire behavior and phenomena have been better modeled and, when used to
forecast fire spread, better predicted by a new generation of dynamic coupled numerical
weather prediction (NWP)-wildland fire behavior systems (hereafter referred to as “coupled
models”), some of which are being tested in operational forecasting frameworks (e.g.,
CAWFE® [17], WRF-Fire [18], and their derivatives). Although coupled models should be
able to simulate transient, dynamic behavior arising from internal dynamics (e.g., surprising
fire runs on days similar to previous weather, blow-ups, destructive fire whirls, and plume-
driven behavior such as the production of pyrocumulus and plume collapse), a wide range
of outcomes are possible given very similar initial conditions because of the inherently
nonlinear, apparently unpredictable nature of wildfire events. Other dynamic models (e.g.,
FIRETEC [19], WEDS [20,21], QUIC-fire [22]) are used non-operationally at meter scales
for fuel treatment or prescribed fire decision-making. Although the more sophisticated
generation of dynamic fire models may reproduce higher fidelity and complexity, the need
to calculate and communicate the uncertainty associated with fire prediction becomes even
more critical.

Recognizing the practitioner’s need for confidence estimates related to fire forecasts,
efforts have been made to attach uncertainty estimates to fire behavior predictions [23].
These are meant to answer questions such as: “How confident are you in your prediction?
90%? 50-50?”, “What is the range of possible outcomes?”, or “What outcome is most likely?”
Current efforts to bridge this gap include industry standard tools such as Fire Spread
PRObability simulator (FSPro) [24], which draws from climatology and its variability at a
current fire’s location to estimate a range of possible outcomes. A drawback is that the past
is not necessarily a good prediction for current conditions, especially in outlier situations.
In addition, in practice, interpretation of FSPro graphical predictions for probability of
being burned over can easily be misinterpreted as the deterministically predicted shape
of an expanding fire perimeter. Fresh approaches are needed that answer user demands
for fire behavior and associated fire effects forecasts that include clear and meaningful
information about how confident one can be in them. However, human impact research on
the issuance of weather forecasts that are statistical in nature (e.g., “a 50% chance of rain”,
“a 100-year flood”) has shown that people interpret such information differently [25] and
not always as intended. Thus, to be valuable, an approach must effectively convey how
users should interpret its products.

This study developed and applied an approach for conducting and communicating
probabilistic fire growth forecasts that can be used with a wide range of fire behavior mod-
eling systems. It carried the uncertainty in key fire environment input variables—notably,
weather and fuel loads— and physics parameters through to estimate uncertainty in pre-
dicted outcomes of fire behavior and effects using four coupled weather-wildland fire
model ensemble simulations of recent wildfire events. It also developed methods to graph-
ically and effectively communicate to a wide range of practitioners the probabilistic fire
growth forecast uncertainty but also the operationally relevant rate of spread and an
example of a fire effect, fire heat flux, as an indicator of fire severity.
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2. Background

This approach draws from several disparate research threads in its aim to satisfy both
a research and application gap; a summary of each follows. This section describes user
needs, the status of probabilistic fire growth, weather, and fuel products, and research on
visualization of ensembles.

2.1. User Needs

The disconnect between users’ needs and current wildfire model products reflects
both a recognition that model predictions are often imperfect and users’ discomfort with
probabilistic information, which is often considered “hedging”. While a single deterministic
simulation is relatively simple to convey, it will likely contain error. While Gaussian
(normal) distributions are often assumed to be the outcome of an ensemble of simulations,
probabilistic forecasts can produce a variety of fire perimeter shapes [26] (Figure 1). A
narrow range of outcomes can mean one is relatively confident in the forecast quantity
while a wide range can indicate confidence is low. The distribution can be skewed when
outcomes on one side are more likely than the other, or when the uncertainty is bimodal or
has extended tails.
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Figure 1. Examples of different types of uncertainty outcomes. Modified from [26].

Improbable, highly destructive “black swan” events [27] that arise from “a perfect
storm” of fatally timed components are easily missed by single deterministic simulations.
Errors in one input (such as forecasted wind speed or direction) can result in spurious
fire predictions. Large wildland fires are driven by spatially and temporally varying heat
fluxes released by burning vegetation, creating updraft plumes, wind shifts, firenadoes,
pyrocumulus clouds, and other transient phenomena. The least understood events and
phenomena arise from complex mountain airflows, plume-driven fires, fire-induced winds,
and situations where both play a role. An example of the latter is the Carr fire behav-
ior on 26 July 2018, where the growing wildfire overran the shifting intersection of two
airflows—westerlies descending into the Sacramento Valley creating a confluence line with
dry southerlies—just as it entered Redding, spinning up a large, destructive fire vortex with
winds exceeding 50 m s~ ! seen in radar data [28] and modeling [29]. In addition to scientific
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issues in reproducing such events, outliers present a communication challenge—how to
communicate the small possibility of a catastrophic event.

Finally, a key need for land managers is the ability to predict fire effects, such as smoke
production, various severity metrics, and mortality, in a physically consistent manner
with fire behavior [30], rather than diagnosing fire effects with separate models using
unmeasured or unknown fire behavior metrics, as is currently done. A parallel need is
to estimate the error in those fire effects predictions due to uncertainty in environmental
conditions, notably weather and fuel. For example, air quality managers currently are
presented with multiple different predictions of smoke impacts with no confidence or
uncertainty estimates, making it difficult to use this information for guidance.

2.2. Probabilistic Fire Growth

Operational fire prediction is founded on deterministic prediction for short-term esti-
mates of fire growth and, recognizing the increasing unreliability in longer-term predictions
due to decreases in weather forecast skill with time, seeks to express the possible range of
outcomes for longer-term fire forecasts [12]. This section describes approaches in which fire
models are used to estimate the range of possible outcomes, and although it makes a key
distinction between two classes of models, it does not detail specific models” limitations.
(Note that in fire modeling literature, the term “uncertainty” has sometimes been used to
refer to a particular model’s error rather than an estimate of confidence.)

Though multiple efforts have used multiple simulations to estimate a range of pos-
sible outcomes, there is currently no established consensus or state-of-the-art approach
to constructing fire modeling ensembles (i.e., how many simulations to run or how to
make members different from each other) themselves. In addition, previous efforts have
used kinematic (e.g., [31,32]) rather than dynamic models. Kinematic models focus more
on the motion of fire spread without considering complex interactions between variables.
Dynamic models, on the other hand, incorporate nonlinear interactions between different
factors, such as fire-weather feedbacks. Only in the latter can small perturbations in initial
conditions amplify through nonlinear interactions between variables where, over time,
the amplified errors lead to diverging forecasts (the “uncertainty”), where the difference
between the actual state and the predicted state (the model error) grows with time.

The operational FSPro simulator [24] calculates fire growth from the current extent
using the kinematic model FARSITE, wind velocities stochastically sampled from historical
observations from a nearby weather station (i.e., climatology), seasonal trends in fuel
moisture, and recent weather trends to produce fire growth forecasts for two weeks or
more [12]. FSPro calculates two-dimensional fire growth and maps the probability of a fire
reaching each point on the landscape in the determined time interval (e.g., the next two
weeks). This approach has weaknesses that lead to unsatisfactory predictions. Namely,
it assumes that historical wind variability indicates the conditions and the uncertainty
in the near future, whereas a sample of past conditions may not reflect more extreme
conditions driving the current fire. Other probabilistic modeling approaches borrow the
numerical weather prediction term “ensemble” [33] to describe the use of many simulations.
Past efforts have generated longer-term probabilistic predictions from wind station data
based on the likelihood of past wind regimes [34] or other atmospheric state variables [35].
Others simply varied inputs over the natural possible range of input fire environment
variables—for example, ref. [36] used the natural range of fuel loads to compute a range of
possible outcomes as if each were equally likely, while others arbitrarily assigned probability
to inputs [37]. While these approaches may produce a suite of naturally possible outcomes,
each member of the set of simulations is not equally likely and when considered as a whole,
the frequency of an outcome does not represent its probability of occurrence. As a result,
the spread among the outcomes in these approaches does not answer the critical questions
of how uncertain current conditions are, which outcome is most likely, or how confident
one should be.
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Visual presentation of fire growth forecasts has similarly been limited to static pre-
sentation of the probability of being overrun during a particular period. The expansion
of internet-delivered information, the variety of device capabilities, and need for web
accessibility compliance to support disability inclusion in the workforce call for a renewed
approach to communicating needed uncertainty information. Color palettes commonly
used in earth system modeling (e.g., red /hot—green/cold, or blues/yellows) are difficult to
discern by those with the most common types of color blindness, while accessible color
palettes aim for higher standards (e.g., maintaining contrast), considering how those with
other vision impairments will perceive web content. Importantly, as products may be
adopted by federal or state agencies, associated products must meet web accessibility com-
pliance standards established for those working with federal and many state governments
such as 508 compliance [38] or Title III of the Americans with Disabilities Act, accommo-
dating individuals with disabilities (e.g., color blindness) so that they may interact with
new technology.

2.3. Probabilistic Weather Forecasts

Numerical weather prediction research has grappled with forecast uncertainty. The
atmosphere is a nonlinear dynamical system that depends sensitively on the initial condi-
tions. Estimates of the current state and the models themselves are imperfect; thus, forecast
uncertainty grows with simulated time. One way to explicitly address uncertainty is using
ensembles of simulations [39] rather than single deterministic forecasts. Dynamic ensemble
forecasts are composed of multiple “ensemble members”—independent forecasts that are
configured in a unique manner to provide forecast diversity. This diversity can be achieved
by configuring individual members with different meteorological initial conditions, inputs,
or physics. Due to these differences between members’ configurations, forecast outcomes
across the members will differ, and the range of outcomes predicted by an ensemble indi-
cates uncertainty and is related to forecast confidence. Furthermore, probabilities of event
occurrence can be easily calculated. Compared to single deterministic forecasts, proba-
bilistic forecasts offer more information to users and can aid decision-making (e.g., [40]).
However, ensemble numerical weather prediction comes with several limitations including
computational cost, biases inherent to their underlying weather models, limited spread
and independence among members and outcomes, and struggles to predict rare or extreme
events, along with verification challenges, interpretation, and communication [41].

High-resolution ensembles have increasingly been used in NWP and are now run in
real time at many worldwide centers, including the National Centers for Environmental
Prediction’s (NCEP) High-Resolution Ensemble Forecast (HREF) system and the Short-
Range Ensemble Forecast (SREF) weather forecast system. SREF is a regional ensemble
operated over North America. It provides an 87 h forecast with output at 3 hourly intervals
using a 16 km horizontal grid spacing initialized at 0300, 0900, 1500, and 2100 Coordinated
Universal Time (UTC). It has 26 members: 13 use the Advanced Research WRF (WRF-ARW)
model and 13 members use the NEMS Non-Hydrostatic Multiscale Model on a B-grid
(NEMS-NMMB). These SREF ensemble members use different physics parameterizations,
lateral boundary conditions from the Global Ensemble Forecast System (GEFS), and initial
conditions to generate variability between members. Details on the various SREF members
can be found in [42].

The variability in predictions between ensemble members increases with time, between
atmospheric state variables, and between weather types. For example, Figure 2 shows
predicted precipitation, temperature, and near surface winds from SREF forecasts for two
different conditions—a summer day with little precipitation (Figure 2a—c) and one with
convective rainfall (Figure 2d-f). The presence of precipitation dramatically increases the
difference between members, and even when temperature spreads little between members,
differences in near surface winds increase with time. As gridded output from ensemble
forecasts such as SREF may be used as initialization and boundary condition data for more
refined simulations, a hypothesis is that this uncertainty in weather input encapsulates
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the possible fire behavior outcomes. Thus, because wind is the most important factor
influencing fire growth rate—rate of spread responds as much as the square of the wind
speed in some flashy fuel types—it is anticipated that variance among SREF members
could amplify variability in predicted fire spread.
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Figure 2. NCEP SREF forecasts for Oklahoma City (OKC) for 2 days with different weather types: 11
August 2022, at 15 UTC, a day with little precipitation (upper row) and 19 August 2022, at 15 UTC,
a day with convective precipitation (lower row). The forecast fields are (a) 3 hourly precipitation,
(b,e) 3 hourly temperature, (d) total cumulative precipitation, and (c,f) 3 hourly 10 m wind speed.
Figures obtained from [43].

2.4. Probabilistic Fuel Information

Many fire modeling systems rely on the United States Geological Survey’s LANDFIRE
database, which offers fuel data wall-to-wall across the U.S. LANDFIRE provides fuel
information through stylized categorical surface fuel models (e.g., [44,45]), enabling model-
ing of fire behavior, emissions, and other fire-related products. Each surface fuel model
prescribes a characteristic load (mass per unit area), depth, surface area to volume ratio,
and physical characteristics. Additional data layers provide canopy load, base height, and
height. Advances have been made in documenting errors in LANDFIRES’s fuel types [46]
but the methodology has limitations, e.g., its data is largely static, updated on a several-year
rotation, and it provides a single set of characteristics based on the ecosystem type whereas
a broad range of site conditions, such as stand age, geographic conditions, and other factors
introduce large variations in fuels even within one mapped fuel type [47].

Recent advancements in fuel measurement include the development of methods using
LiDAR remote sensing data to infer fuel type and structure from airborne or terrestrial
platforms. LiDAR offers detailed 3D views of vegetation, resulting in more accurate fuel
estimates compared to methods reliant on manual sampling and which potentially diverge
from standard forest databases like LANDFIRE (e.g., [48,49]). Airborne LiDAR has given
insight into fuel characteristics (crown bulk density, height to live crown, ladder fuels
biomass, and in some conditions, surface fuels biomass) (e.g., [50]). However, advances in
remote sensing approaches to fuel measurement stem largely from the sensitivity of small-
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footprint terrestrial LIDAR to understory conditions, whereas airborne remote sensing
is primarily sensitive to the upper canopy, leading to potential errors. Still, the error or
“uncertainty” in products derived from these measurements or the standard databases is
not provided or known. While the accumulation or deliberate reduction in fuel loads is
widely credited with modulating fire behavior across many ecosystem types, given that
simulated fire behavior using coupled models has shown dramatically different sensitivities
than previous kinematic models to fuel properties through the possibility of “plume-driven”
dynamic feedbacks in complex terrain [51,52], variability in predicted fire behavior between
ensemble members may be amplified in coupled model ensembles where fuel uncertainty
is used to establish the ensemble member configuration.

The assemblage of fuel datasets from LiDAR, other techniques, and direct field mea-
surements have allowed researchers to develop more sophisticated databases that not only
provide the mean properties for a particular fuel type but also provide a probability density
function representing the inner-category variability. The North American Wildland Fuels
database (NAWFD) was created to improve characterization of fuel loading for types across
the U.S. [47]. The database is a compilation of fuels data from many sources and provides a
new fitted distribution of loadings for each fuel bed strata (Figure 3) [46].

North American Wildland Fuels Database

: Michigan Tech 9 @ W
Home Map Matrix Fuelbeds Data About R .

Probability Density Functions, Summary Stats, Coverage Map, and Data Sources for EVT Group fuelbed:

615: Douglas-firWestern Hemlock Forest and Woodland -

AGGREGATE
Trees

[] Snags
Shrub

[] Herbaceous
FWD

[] cwp
Litter

[] Duff

Figure 3. Example of the NAWEFD fuel bed view for the Douglas fir—western hemlock existing
vegetation type (EVT), showing computed probability density functions for each fuel bed stratum.
Figure was generated using https:/ /fuels.mtri.org.

2.5. Visualization of Ensembles

Methods for visualizing ensembles have advanced along with the availability of
ensemble datasets and expansion of ensemble use across disciplines [53]. In [53], authors
reviewed how traditional visualization techniques have been adapted to meet the challenge
of visualizing data with an additional dimension (the number of members), categorizing
research by technique and the analytic task (e.g., comparison, clustering, or trend analysis).
Other examples of visualizing ensembles include [54], which developed an approach to
visualize confidence in cluster-based analyses of trends in ensemble weather forecasts,
visualizing the robustness of clusters and uncertainty in trends. Also, Ref. [55] presented
a method to visualize the statistical properties of streamlines passing through a location
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from an ensemble of flow fields. In the latter, derivation of confidence regions indicated
where streamlines most likely reside [55].

Color mapping is a crucial aspect of data visualization, enabling users to successfully
and efficiently glean insights from data [56]. A survey on techniques for generating color
maps [56] categorized these methods based on the characteristics of the data in various
applications, providing a reference for users dealing with similar data or tasks. In [57], color
theory concepts were applied to digital media and visualization, visual color impairments
were reviewed, and tools were provided for examining how a specific color map will look
to affected individuals.

3. Materials and Methods

This study applied the ensemble approach, widely used in meteorology, to coupled
weather—fire modeling to communicate the range of possibilities in predicted fire products
(fire progression, the operational criterion of spread rate, and heat flux, which may be
related to vegetation burn severity, an example of a fire effect) due to uncertainty in the
principal factors of weather, fuels, and physics parameters. Ensembles were constructed
such that in each, the breadth of the solutions reflected the uncertainty from each source
(either weather, fuel load, or physics parameters). Visualization techniques were devel-
oped to communicate likely outcomes, confidence, and areas or times of uncertainty or
outlier behavior.

3.1. The CAWFE® Coupled Weather-Wildland Fire Behavior Model

CAWFE® (derived from Coupled Atmosphere-Wildland Fire Environment) integrates
an NWP model with a module for fire behavior and fuel consumption. These components
interact, with heat and water vapor fluxes from the fire influencing the atmospheric state, re-
sulting in fire winds. Conversely, the evolving atmospheric conditions impact fire behavior.
CAWFEE is built upon a 3D meteorological model [58,59] optimized for fine scales (~100 m
grid spacing) in extremely complex terrain. Vertically stretched terrain-following coordi-
nates allow detailed simulation of airflow at horizontal resolutions of tens of kilometers
while telescoping in to focus at hundreds of meters. The outer of several interactive, nested
modeling domains is initialized from and boundary conditions are updated with gridded
atmospheric analyses or large-scale model forecasts, such as the members of the SREF.

CAWFEFE's fire module [17,60] uses semi-empirical algorithms to calculate the speed
of surface fire spread within wildland fuel complexes [61]. This prediction is based on
terrain features, fuel characteristics, moisture levels, and fire-altered winds. Additionally,
the module estimates fuel consumption rates, whether fire transitions into the canopy, and
the subsequent spread as a crown fire [62]. The consumption of fuel is determined using
BURNUP [63] algorithms. As the fuel is consumed (data sourced from LANDFIRE [64]
or the North American Wildland Fuels database (NAWFD), detailed below), it releases
sensible and latent heat, as well as smoke particulates, dispersed throughout the lowest
atmospheric grid volumes. These algorithms represent fire and fuel properties on a subgrid
within each atmospheric cell at ground level. Fires may be introduced into a simulation
either using ignition location and time or in progress using active fire detection data from
the Visible and Infrared Imaging Radiometer Suite (VIIRS) [65] or Landsat’s Operational
Land Imager (OLI) [66] sensors, incident reports, or airborne fixed wing or UAS data, all of
which can also be used for evaluation.

As configured here for a forecast, CAWFE operates with a 370 m horizontal grid
spacing, running approximately 6 times faster than real-time on a single workstation
processor for large events (e.g., [51,67]) and 20 times faster for small fires; thus, this approach
can be applied as a forecasting system.

3.2. Overview of Experiments

Four ensemble simulations using CAWFE were performed to capture a spectrum of
wildfire behaviors across diverse environments. The events were selected because they



Fire 2024, 7, 227

9 of 28

were shaped by distinct drivers. Specifically, wind-driven fires are sensitive to topographic
airflow parameters while plume-driven fires are driven by fire-induced winds fueled by fuel
consumption, and thus, are sensitive to fuel loads. As a test, these experiments provided
the greatest opportunity for small differences to grow and drive members apart.

These ensembles simulated up to 36 h periods of three events. One was a period
of the Mosquito Fire, California’s largest wildfire of 2022, when it experienced plume-
driven growth within the canyons of the American River watershed, occurring amid dry
conditions and weak ambient winds [68]. This employed both physics-varying and SREF
weather initiation ensembles.

A second ensemble was applied to the 2017 Tubbs Fire, which occurred during a strong
Diablo wind event and was one of more than two hundred wind-driven fires that occurred
during the 2017 California North Bay firestorm [69]. Previous studies of this event (e.g., [67])
noted the presence of pulsing winds and wind extrema over shorter, secondary ridges—an
exceptional airflow regime produced by a shallow river of fast moving, stable air near the
surface. This ensemble used a weather-varying initialization from the SREF mesoscale
weather forecasting ensemble. Varied weather inputs are important in downslope wind
events because subtle differences in the modeled airflow, particularly wind speed at hilltop
height, can generate vastly different flow patterns and wind maxima. These fluctuations
can profoundly alter the behavior and spread of fires in such environments.

The third event modeled was the 2021 Caldor Fire [70], a wildfire southwest of
Nevada/California’s Lake Tahoe, that was driven jointly by moderate ambient winds
and upslope plume-driven winds [71], as seen on ALERT California camera feeds [72], dur-
ing this period. This ensemble was initialized with varying fuel conditions. The sensitivity
to fuel loads was of particular significance in this case because prior partial fuel reduction
was carried out to reduce fire danger to the community of Grizzly Flats, which was overrun
by the Caldor Fire during this period [73]. While sensitivity to weather was also important,
the SREF mesoscale ensemble forecast data are typically not archived longer than a week
and were not available for the simulated period.

In each simulation, CAWFE was configured with 4 nested domains, refining from
10 km horizontal grid spacing by a horizontal refinement ratio of 3 to 3.33 km, 1.11 km,
and 0.370 km. In simulations of the Mosquito Fire and Caldor Fire, the vertical grid was
refined by a factor of 2 in the 4th domain, and, in the Tubbs simulation, the vertical grid
was refined by a factor of 2 in the 3rd domain and by another factor of 2 in the 4th domain.

3.3. Physics-Varying Ensemble Forecast of the Mosquito Fire

The 17-member physics-varying CAWFE ensemble began with a control experiment
(MQQ01), around which various parameters were systematically altered. These parameters
included fuel properties (such as load and depth, dead fuel moisture content, or canopy
moisture content), the method and vertical location for sourcing winds that drive the fire,
model smoothing parameters (e.g., length scale for the model smoothing coefficient or
strength of a model filter (VIS)), and parameters from the semi-empirical crown fire rate of
spread formula [62], or thresholds for transitioning to crown fire formulations. (Refer to
Table 1 for specifics.) Aside from these varied parameters, the simulations used standard
LANDFIRE surface and canopy fuel data for initialization. The simulations began using the
second hour of a 36 h 13 km North American Mesoscale (NAM) weather forecast, starting
at 11 AM on 8 September 2022 (18 UTC). At 2036 UTC on 8 September 2022, VIIRS active
fire detection data of the ongoing fire were introduced at the model time of 37 min, and the
CAWFEFE simulations continued throughout the remaining 34 h of the NAM forecast.
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Table 1. Parameter settings for physics-varying CAWFE model ensemble members for Mosquito Fire.
Fuel Factors (Amount and Moisture) Factors Related to Wind Driving Fire Model Smoothing Crown Fire Parameters
Ensemble ;/o of Standard ?/Ii)zgtﬁreeIContent Canopy Fuel El.evatiun to Which Ve}‘tical Grid If Wind B Length .Scale. for Smoothing Coef. Crow.n Fire ROS };I;r;::r?slgtif)l::o
Memper| SoraeTuelLosd o Diimal” " Moitore Content iy Arelnerpolited - fuit Usedfor - speed <oms - Eddy Diffwion (1) upleot o5 CF Biscdon
Amplitude (%) HFGL (kW m—2)
MQO1 100% 40+02 90% 5m AGL, log interp. 3 yes 180, 90 0.1 5 17
MQO02 50% 40£02 90% 5m AGL, log interp. 3 yes 180, 90 0.1 5 1.7
MQO03 200% 40£02 90% 5 m AGL, log interp. 3 yes 180, 90 0.1 5 1.7
MQO04 100% 50402 90% 5m AGL, log interp. 3 yes 180, 90 0.1 5 1.7
MQO5 100% 3.0+02 90% 5m AGL, log interp. 3 yes 180, 90 0.1 5 17
MQO06 100% 40+0.2 90% 1.5 x fuel depth 3 yes 180, 90 0.1 5 1.7
MQO07 100% 40£02 90% 5m AGL, linear interp. 3 yes 180, 90 0.1 5 17
MQO08 100% 40£02 90% 5m AGL, linear interp. 2 yes 180, 90 0.1 5 1.7
MQO09 100% 404+02 90% 5m AGL, linear interp. 4 yes 180, 90 0.1 5 1.7
MQ10 100% 40+02 90% 5m AGL, log interp. 2 yes 180, 90 0.1 5 17
MQ11 100% 40£02 90% 5m AGL, log interp. 4 yes 180, 90 0.1 5 1.7
MQ12 100% 40£02 90% 5m AGL, log interp. 3 no 180, 90 0.1 5 1.7
MQ13 100% 40+02 90% 5m AGL, log interp. 3 yes 360,180 0.15 5 17
MQ14 100% 40402 90% 5m AGL, log interp. 3 yes 180, 90 0.1 9 1.7
MQ15 100% 40+02 90% 5m AGL, log interp. 3 yes 180, 90 0.1 5 0.
MQ16 100% 40£02 110% 5m AGL, log interp. 3 yes 180, 90 0.1 5 1.7
MQ17 100% 40+02 70% 5m AGL, log interp. 3 yes 180, 90 0.1 5 17
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3.4. SREF Weather Initialization of the Mosquito Fire and the Tubbs Fire

The third forecast hour of each SREF ensemble member was used to initialize a
CAWEE simulation’s atmospheric state. This data were also used to establish lateral
boundary conditions at 3 h intervals through hour 39. CAWFE simulations were capped
at a 36 h forecast because, beyond this point, the finer-resolution simulations tend to lose
accuracy, typically retaining skill for only 1-2 days due to the inherent limits of atmospheric
predictability. Regarding other CAWEFE settings, ensemble members were initialized with
LANDFIRE surface and canopy fuel data, along with a uniform set of physics parameters.
This approach was applied to conduct ensemble simulations for two wildfires—the 2022
Mosquito Fire and the 2017 Tubbs Fire—during periods of active growth.

Ensemble members were configured with model settings consistent with MQO1 (refer
to Table 1). The CAWFE simulations began at 11 AM on 8 September 2022 using data from
the third hour of the 8 September 2022, 15 UTC SREF forecast. At 2036 UTC on 8 September
2022, VIIRS active fire detection data of the ongoing fire were integrated into the simulation
at the model time of 2 h and 37 min and the simulation continued through 34 h.

The CAWEFE ensemble simulation of the Tubbs Fire used model settings outlined in [67]
but was initialized with the SREF ensemble members from the 8 October 2017, 1500 UTC
forecast, with the ignition introduced as a point at 4 h 43 min into the simulation, and the
simulation carried out for 14 h until the simulated fire exited the computational domain.

3.5. Fuel-Varying Initialization of the Caldor Fire

A fuel-varying CAWEFE ensemble was applied to the Caldor Fire. From both the
NAWED fine woody debris (FWD) and aggregate tree fuel data strata, six fields of data
were extracted: the mean, minimum, 25th percentile, 50th percentile, 75th percentile,
and maximum values of the fuel load distribution for each existing vegetation type (as
illustrated in Figure 4). These data points were used to replace surface fuel loads from
LANDEFIRE in each CAWFE ensemble member. Another member was initialized with
standard surface fuel properties from the identified fuel model categorized using the
Anderson 13 system and standard LANDFIRE canopy fuel loads (obtained by multiplying
the canopy bulk density by the difference between the canopy height and the canopy
base height).

All ensemble members were initialized using a NAM weather forecast, specifically, the
second hour of the 16 August 2021, 18 UTC forecast, at 1 p.m. on 16 August 2021. Hourly
boundary conditions were applied along with a surface fuel moisture content of 5%, subject
to a 0.8% sinusoidal diurnal variability, and uniform physics settings. The fire was ignited
in progress using the 16 August 2021, 2150 UTC VIIRS observation at 1 h and 50 min into
the simulation, and the runs carried out for 23 h and 5 min.

The Caldor Fire represented an event driven both by moderate winds and energy
released by the fire. It occurred in an area where fire mitigation by strategic fuel reduction
was practiced. In fact, this period encompassed when the fire overran the community of
Grizzly Flats, CA, where some but not all planned mitigation had occurred. Additional
treatments were planned in areas approached by the fire in later periods. In addition,
previous LiDAR measurements found substantial differences from common databases
widely used for fire modeling. Thus, ensemble simulation of fire behavior examining
differences due to fuel representation have additional significance for this area.
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Figure 4. The (left) fine woody debris (surface) fuel loads and (right) aggregate tree (canopy) fuel

loads associated with the existing vegetation types present in the vicinity of the Caldor Fire from the

North American Wildland Fuels Database. Each entry’s mean load for the rectangle sampled from (in

Mg ha~!) is given in the center box. Figures were generated using https://fuels.mtri.org.


https://fuels.mtri.org

Fire 2024, 7, 227

13 of 28

4. Results
4.1. Simulation Results and Evaluation

This section presents the outcomes of several ensembles conducted to show how
varying initialization approaches impact predicted uncertainty, as shown by variability
among members. The ensembles use the CAWFE model, examining different initializations
including SREF weather initialization, probabilistic fuel data initialization, and physics-
varying ensemble forecasts. These are compared to observations from VIIRS. The objectives
are to assess whether the ensemble prediction encapsulates the actual fire spread, to
understand the influence of different initialization approaches on uncertainty, and to
visualize the probabilistic outcomes.

4.1.1. Physics-Varying Ensemble Forecast of the Mosquito Fire

The 34 h simulation of the Mosquito Fire, conducted during a phase of plume-driven
growth using a CAWFE ensemble with varied physics parameters (Table 1), produced
modest differences among ensemble members (Figure 5). Variations in spread direction
were minimal due to the dominant influence of river canyon topography, but discrepancies
were noted in the spread rate along the northern and southeastern regions and into a bowl-
shaped area on the fire’s southern flank. The ensemble generally captured the outward
expansion of the fire well compared to a VIIRS observation (Figure 6), although it missed a
rapid growth to the southeast attributed to a sudden wind push from the northwest [74].
Outlier member MQ10, resulting from wind interpolation settings, successfully captured
the rapid expansion but deviated by 45 degrees in direction and overestimated growth
elsewhere. Collectively, the ensemble depicted both overall trends and an exceptional event
in the fire’s behavior.
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Figure 5. CAWFE ensemble members’ simulations of the Mosquito Fire, highlighting the variation
among simulations due to different physics parameters, as specified in Table 1. MQO1 was the control
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38.85

experiment, around which other configurations were varied. The red contour outlines the simulated
fire extent at the conclusion of the 34 h simulation, on 9 September 2022, at 11 p.m. local time. The
terrain is shown with contour intervals of 54 m. The simulation domain covers an area of 33.3 km by
33.3 km.
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Figure 6. VIIRS images used to initialize and evaluate progression in simulations of the Mosquito
Fire. Panel (a) shows the fire on 8 September 2022 at 2036 UTC and (b) displays the fire’s state on
9 September 2022 at 1035 UTC, overlaid with ensemble member simulated fluxes at that time. The

legend for satellite active fire detection data shown in (a) applies also to (b).

4.1.2. Short-Range Ensemble Forecast (SREF) Weather Initialization of the Mosquito Fire

A 26-member CAWEFE ensemble, initialized with boundary conditions from each of
the 26 SREF larger-scale weather forecasts, was run for the same 34 h period (Figure 7). The
simulations exhibited little variability, clustering closely around the main body of the fire
(Figure 8). More variability was observed among NMB members than ARW members, with
differences primarily appearing in the last few NMB members (NP4-NP6), which predicted
greater growth in the north-spreading region. No distinct outliers were produced, and all
members missed the sudden southeast growth.

4.1.3. Short-Range Ensemble Forecast (SREF) Weather Initialization of the Tubbs Fire

Each CAWFE ensemble member began at 5 p.m. local time on 8 October 2017, using
the ninth hour of the 15 UTC SREF forecast. The simulations varied in the spread rate of the
leading edge, lateral expansion, and whether the fire veered toward the west later in the
period (Figure 9). More variability was seen among NMB-initialized members than ARW-
initialized members. Evaluation against the 9 October 2017, 1009 UTC VIIRS observation
(Figure 10) showed that while the ensemble encompassed the observed fire perimeter, the
predicted western veering by four members did not occur.
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Figure 7. CAWFE ensemble members’ simulations of the Mosquito Fire, each initialized by a
different member of the Short-Range Ensemble Forecast (SREF) large-scale weather ensemble. The
top 13 frames show simulations initialized by ARW-based members, while the bottom 13 frames
show simulations initialized by NMB-based members. Each frame is labeled with the specific SREF
member used for initialization. The red contour outlines the simulated fire extent at the end of the
34 h simulation period, on 9 September 2022, at 11 p.m. local time. Terrain contour intervals are 54 m,
and the domain size is 33.3 km by 33.3 km.



Fire 2024, 7, 227

16 of 28

]
© fluxGIS0025,
© fluxGIS0024.
© fluxGIS0024.
® fluxGIS0023
© fluxGIS0022
® fluxGIS0021
® fluxGIS0020.
® fluxGIS0019.
© fluxGIS0018
© fluxGIS0016.
© fluxGIS0015,
© fluxGIS0014.
® fluxGIS0013,
© fluxGIS0012
® fluxGIS0011
H ® fluxGIS0010.
scssess @ fluxGIS0009
...... A

© fluxGIS0007.
(o]
© fluxGIS0006.
® fluxGIS0005,
© fluxGIS0004.
\\\\\\\ Blue — water body . © fluxGIS0003
- cloud (or thick smoke) SRS @ fluxGIS0002

White - unclassifiable 2 @ fluxGIS0001

"

~120.84 T1-120.64 -120.45

Red —active fire
Brick previous fire, not
active
Blue — water body

- cloud (or thick smoke)
White - unclassifiable

Red —active fire
Brick previous fire, not
active

1-120.64 ~120.45!

Figure 8. VIIRS data from the Mosquito Fire from (a) 8 September 2022, at 2036 UTC, the data used to
initialize fire in progress, and (b) 9 September 2022, at 1035 UTC, over which lie ensemble member
simulated fluxes initialized with 8 September 2022 15Z SREF members at that time.

4.1.4. Probabilistic Fuel Data Initialization of the Caldor Fire

An ensemble of CAWEFE simulations, initialized with surface and canopy fuel loads
statistically distributed around the mean loads for the mapped vegetation types, was
compared to a simulation based on LANDFIRE fuel data (Figure 11). Despite wide-ranging
fuel loads, simulations were remarkably similar, with only subtle increases in fire extent for
increased surface fine woody debris or tree fuel loads. The LANDFIRE-based ensemble
predicted more growth to the west. Compared to the VIIRS observation (Figure 12), the
simulations encompassed the actual fire extent after 11.5 h of simulation, particularly the
forward growth, but consistently overestimated bulging to the west.

4.2. Visualization Results

Graphic representations and communication methods were created to express the
most likely outcomes for the spread of modeled solutions and occurrence of outliers. Three
key probabilistic products were chosen: (1) burn probability (the likelihood of a given
location on the landscape burning during the forecast period), (2) spread rate (the speed at
which points on the fire line are moving), and (3) heat flux (a measure of the fire’s intensity
and a potential proxy for vegetative burn severity). These used model output variables
commonly derivable in wildfire behavior modeling systems—(1) the time of arrival (TOA)
of a modeled fire at a location, (2) instantaneous spread rate at points along the fire line (a
key operational metric), and (3) minute by minute instantaneous output of the total sensible
and latent heat flux from both surface and crown fires (a measure of energy released per
unit area per unit time). Users desired both statistically combined ensemble outputs and
the ability to inspect individual members to identify outliers. An example is given in
Figure S1.
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Figure 9. CAWFE ensemble simulations for the Tubbs Fire, initialized with varying SREF large-scale
weather ensemble members. The top 13 frames represent ARW-based initializations, while the bottom
13 frames depict NMB-based initializations (details in text). The red contour delineates the simulated
fire extent after 9 h of simulation, on 9 October 2017, at 4 a.m. local time. Terrain contours are shown
at 31 m intervals in a domain spanning 26.7 km x 26.7 km.
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Figure 10. VIIRS data from the Tubbs Fire from 9 October 2017, at 1006 UTC (3:06 a.m. local time), over
which lie ensemble member’s simulated fluxes at that time. The Tubbs Fire CAWFE ensemble (the
26 members are coded by color in figure legend) was initialized from its ignition point at 0443 UTC
(9:43 p.m. local time).

Figure 11. CAWFE ensemble members for simulations of the Caldor Fire, where each member is
initialized with different fuel information, indicated in each frame. The top left figure uses mean
NAWED fire woody debris and tree fuel loads. The lower left figure is a simulation using the industry
standard LANDFIRE fuel data. The top row uses mean fine woody debris fuel loads and (from
left to right) minimum, 25th percentile, median, 75th percentile, and maximum tree fuel loads from
NAWED, respectively. The bottom row uses mean tree fuel loads and (from left to right) minimum,
25th percentile, median, 75th percentile, and maximum fine woody debris fuel loads, respectively. The
red contour outlines the simulated fire extent after 23 h of simulation, on 17 August 2021, at 10 a.m.
local time. Terrain contours are shown at 69 m intervals in a domain spanning 44.4 km x 44.4 km.
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Figure 12. VIIRS data from the Caldor Fire from (a) 16 August 2021, at 2150 UTC (2:50 p.m. local
time), the data used to initialize fire in progress, and (b) 17 August 2021, at 0919 UTC, (2:19 a.m. local
time) over which lie ensemble member simulated fluxes at that time. The legend for satellite active
fire detection data shown in (a) applies also to (b).

Burn probability was calculated by accumulating predicted fire tracks from ensemble
members and calculating the percentage of members that overran each point within a
spatial domain. Animating the burn probability provided a clearer expectation of evolving
fire extent, as locations of uncertainty evolved over time. Presentation challenges included
maintaining distinct delineation between contour steps while communicating chance
quantity, spread direction, and advances in time. Outcomes for each ensemble included an
animated layer showing the percentage of members that burned each cell by the hourly
timestep (Figure 13a—d). The palette for burn probability met the highest federal and
California AAA web accessibility standards, remaining distinct when overlaid on real-color
Earth geographic imagery.

Spread rate indicates how fast the fire line is expanding and varies widely in time and
space. One-minute interval outputs from the CAWFE model provide a 2-D map of instanta-
neous spread rate throughout the forecast period for each ensemble member. This detailed
data allows for the visualization of spread rate values for all ensemble members during the
fire’s progression, identifying potential times and locations of rapid fire spread (Figure 14a).
By plotting the standard deviation, areas of uncertainty are highlighted (Figure 14b). Addi-
tionally, the 95th percentile values for spread rate reveal potential locations of fire spread
chutes (Figure 14c). The color schemes for these fields (Figure 14d) are chosen to meet the
strictest web accessibility standards and maintain clarity when overlaid on typical maps
and earth imagery. Expanding this graphical approach, an animation of the mean spread
rate and standard deviation, such as in Video S2 of the SREF weather-varying ensemble for
the Tubbs Fire, exposes areas where slight uncertainties in wind speed create local wind
“hotspots” with higher uncertainty. In downslope wind events, where wind extrema are
produced by certain combinations of near-surface wind speed, atmospheric static stability,
and terrain aspect ratio, these locations can be associated with high-impact electric grid
ignitions. This approach provides additional hazard information, possibly prompting
increased scrutiny from managers or triggering additional in situ or remote observations.
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Figure 13. The burn probability (the percentage, 0-100%, in intervals of 10%) of ensemble members
that burned each cell, shown at the end of the forecast period, for each ensemble: (a) Caldor Fire,
(b) Mosquito Fire (physics-varying ensemble, (c) Mosquito Fire (SREF ensemble weather initial-
ization), and (d) Tubbs Fire (SREF ensemble weather initialization). The color palette for (a—d) is
shown in (e). This figure illustrates how burn probabilities were visualized, highlighting regions with
varying likelihoods of burning based on ensemble forecasts.
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Figure 14. Montage of (a) mean spread rate, normalized to the maximum, identifying locations
of rapid fire spread, and (b) standard deviation of the Mosquito Fire physics-varying ensemble,
normalized to the maximum, at the end of the forecast period, indicating areas of uncertainty.
(c) Layer shows the 95th percentile values for spread rate, normalized to the maximum, recorded
within each cell at each timestep for the Mosquito Fire physics-varying ensemble, showing potential
fire spread chutes. (d) The AAA compliance-rated color palette developed for spread rate, ensuring
clarity and accessibility used in (a,c), where the range from 0.0 to 1.0 is divided into intervals of 0.1.
Subfigure (d) shows three settings of transparency, which may be used as an additional accessibility
tool. The standard deviation (b) uses the color palette shown in Figure 13e. This figure provides
insights into the dynamics of fire spread and identifies regions of high uncertainty and potential
rapid expansion.

Heat Flux, on its own, indicates where high intensity burning is occurring and, cal-
culating either the maximum that occurred at a point as fire passed over it or the sum of
energy released at a location, may reflect the degree of vegetation consumption (vegetative
severity) and peak or cumulative impact to the soil properties, although in the latter, other
soil factors need be considered. In physics-varying CAWFE ensembles of the Mosquito Fire,
figures displayed mean total heat flux (Figure 15a) and variability (Figure 15b). The mean
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total heat flux revealed intense burning and heat release, effectively serving as burning
chutes, along the base of the river valleys through which the fire passed, as seen in traces of
the highest values (i.e., the warmest colors, as shown in Figure 15¢). The corresponding
uncertainty plots (Figure 15b) showed the maximum uncertainty (hottest colors) lies in
how far up the slopes of each river valley each member climbs—a good insight into the

uncertain behavior of a plume-driven event.
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Figure 15. (a) The ensemble mean total (over the forecast) heat flux for the Mosquito Fire physics-
varying ensemble, indicating locations of ensemble agreement on intense burning and heat release.
(b) The standard deviation in heat flux, showing areas of uncertainty in the fire’s behavior. The values
in (a,b) range from 0.0 to 1.0, each normalized to the maximum, divided into intervals of 0.1. Color
schemes selected for displaying heat flux mean, representing a temperature effect, and variability,
showing how transparency can be used to maintain clarity and accessibility, are presented in (c,d),
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Experiments varying the color ramps used to visualize heat flux mean and variability
significantly affected their interpretation, drawing the eye to areas of disagreement among
members. Heat flux invokes a sense of temperature, ranging from cold to hot, yet the
commonly used colors in earth system science include reds and greens, which may be
difficult to discern for people with color blindness. Our selection (Figure 15c) showcased
clear differences in the mean value as they increased, akin to a straightforward temper-
ature gradient. Clarity was upheld further when distinctions were conveyed through
transparency (Figure 15d), as this secondary visual cue meets the 508 requirement and
remains discernible when superimposed on real color earth imagery. Notably, the color
scale is 508-compliant and is unambiguous for individuals with diverse red and green
vision impairments (see Figure 15¢,d).

5. Discussion

These initial attempts to apply uncertainty methods from numerical weather prediction
to fire behavior forecasting yielded mixed results. In this work, some ensemble-forming
approaches effectively portrayed a wide range of potential outcomes, including notable
outliers, while others did not exhibit expected variability, even when applied to event
types sensitive to specific environmental factors. Rather than evaluating the efficacy of
a specific fire model, these findings provide insights and recommendations for future
approaches to estimate uncertainty. This encompassing uncertainty framework holds
promise for application across various fire models, though it is geographically limited due
to the specific probabilistic fuel data and mesoscale ensemble weather forecasts used, which
are tailored to the U.S.

Previous fire modeling works have used terms like “uncertainty” and “ensemble”
but often in different contexts, sometimes equating uncertainty with model error. Unlike
previous probabilistic studies [24,31,32,34-37] that employed kinematic fire models, our dy-
namic model approach could generate perturbations that amplify over time, distinguishing
these results from prior work, where varying inputs showed model sensitivity to various
factors rather than uncertainty. Our study revealed that while ensembles captured many
unique characteristics of each wildfire event, the spread in burn probability was narrower
than anticipated, particularly from varying key fire environment inputs of weather and
fuel, indicating limited benefits from improving input data to reduce fire modeling errors.
Other studies, such as [36], may have found different results due to varying inputs over
implausibly wide ranges. The limited spread produced in these experiments from per-
turbed inputs yet wider variability in outcomes produced by varying physics parameters
echoes the widely noted challenge of developing sufficient diversity among numerical
weather prediction ensemble members [41]. However, limited spread among this work’s
ensemble members may have also occurred because, although nonlinear dynamics can
produce rapidly diverging behavior, the forecast period in these simulations ranged from
12 to 34 h, perhaps too short to develop much divergence among members.

Probabilistic predictions, like deterministic forecasts, can be evaluated, but this must
be done differently [41]; review, description, and evaluation of statistical evaluation meth-
ods was beyond the scope of this initial endeavor. Future efforts will focus on refining
ensemble forecasting techniques, evaluating probabilistic predictions using appropriate
statistical methods, and optimizing ensemble size to improve computational efficiency
without compromising predictive accuracy. For instance, this investigation revealed that
the weather-varying ensembles, each initialized with 13 members from two related weather
models, could potentially be consolidated into a single 13-member ensemble using the NMMB
model, leading to computational savings without limiting the diversity of outcomes.

Including multiple fire behavior and effects products in this work’s probabilistic
prediction outputs—such as spread rate and heat flux—provided additional scientific
insights, identifying areas and times prone to uncertain fire behavior, such as in ‘blow-
ups’ up valleys, chutes of intense burning, and occurrence of wind extrema in complex
terrain. Additional physical insights arose from analysis of fuel-varying ensembles of the
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Caldor Fire, which suggested that widespread landscape-scale fuel reduction may have
had limited impacts on fire behavior during its run through the Grizzly Flats community,
although more impactful effects of mitigation could occur beneath the scales resolved by
these simulations.

Statistical reduction of this work’s ensemble outputs to companion mean and variabil-
ity plots brought out features upon which ensemble members agreed (e.g., areas where the
fire will spread rapidly or burn intensely) as well as indicating locations of uncertainty (e.g.,
how widely a fire may swerve). A practical outcome from this methodology may be that
times and/or locations of increased uncertainty or outlier behavior may be revealed, indi-
cating a need for increased manager attention or more targeted observations. For example,
these might predict wind “hotspots”, potential electric grid disruptions, and heightened
probability of wildfire ignitions. Scientific visualization of ensemble predictions has rapidly
advanced and increased in sophistication. In this work, information interpretability was
increased first by simply animating combined ensemble products, compared to the static
burn probability presentation common in this field because uncertainty varies in time as
well as space. Secondly, offering animations of individual members satisfies the need to
inspect particular members or outliers. Additional statistical sectioning (such as distilling
the top few percent or quartiles) was conducted and may have specific uses.

The shift towards internet-delivered information and the need for web accessibility
compliance have underscored the need for improved methods to communicate uncertainty
in fire predictions. In this study, surprisingly important but to-date underemphasized
aspects of presenting probabilistic information emerged by including a graphic designer’s
input. Fire prediction information has historically been presented in hot—cold color palettes
that can exclude users with a range of vision impairments. This work developed intuitive
color palettes for each type of information and created presentation modes that showed clear
demarcation between intervals, integrated more than one method for showing gradations
(e.g., color and transparency), and satisfied the highest levels of web accessibility—a
necessity for products serving federal and many state users.

6. Conclusions

This work’s findings challenged the assumption that reducing uncertainty inherently
diminishes error in fire behavior modeling. Despite a broad spectrum of inputs, the range of
predicted outcomes remained constrained over forecast periods, highlighting the inherent
limitations of solely improving input data to rectify model deficiencies. Varying physics
parameters, however, created wider spreads in burn probability predictions, emphasizing
the need to address gaps in fire process modeling knowledge.

Statistical reduction of ensembles to mean and variability plots revealed areas of agree-
ment among ensemble members regarding rapid fire spread or intense burning, while also
pinpointing locations of uncertainty regarding fire behavior. This study also emphasized
the importance of enhancing information interpretability, even through simple innova-
tions such as animations of both ensemble and individual ensemble member products
and the development of intuitive color palettes for presenting probabilistic information.
These enhancements aimed to improve accessibility and clarity in fire prediction outputs,
addressing historical limitations in visual presentation methods.

Looking ahead, future directions for research include refinements in ensemble fore-
casting techniques, development of robust statistical methods for evaluating probabilistic
predictions, and optimizing ensemble size to achieve computational efficiency without
compromising predictive accuracy. Recent advancements in ensemble visualization tech-
niques have set a precedent for more sophisticated and informative presentations of fire
behavior predictions. The methods developed here not only improve the accessibility and
interpretability of fire forecast data but also enable stakeholders to better grasp the range of
uncertainties associated with fire behavior. These efforts could further advance the field of
fire behavior forecasting and enhance its value in operational and management applications.
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Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/fire7070227/s1, Figure S1: Time of arrival (in tenths of simulation
duration, from cool (blue) to hot (red) in CAWFE ensemble individual members, for simulations
of the Mosquito Fire, where the parameters governing each member are given in Table 1; Video S2:
Animated montage of (a) mean spread rate and (b) standard deviation for the Tubbs Fire initialized
with the SREF weather-varying ensemble. In downslope wind events, wind extrema sometimes
associated with electric grid ignitions are produced by certain combinations of near surface wind
speed, atmospheric static stability, and terrain aspect ratio. The graphical approach in this figure
indicates areas where slight uncertainties in the wind speed led to local wind “hotspots”.
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