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Abstract 8 

With the booming prosperity of artificial intelligence (AI) technology, it triggers 9 
a paradigm shift in engineering fields including material science. The integration 10 
of AI and machine learning (ML) techniques in material science brings significant 11 
advancements in understanding and characterizing underlying physics. Due to the 12 
overall outstanding properties compared to conventional metallic materials, high-13 
performance fiber reinforced polymer (FRP) composites have attracted great 14 
interest. This article aims to provide a comprehensive review of the state-of-the-15 
art works of applying AI/ML methods in high-performance FRP composites, 16 
focusing on four critical stages throughout the product life cycle, i.e., design, 17 
manufacturing, testing, and monitoring. This present study covers the tasks of 18 
material development and selection, process modeling and optimization, material 19 
property prediction, and damage diagnosis and prognosis in the four stages, which 20 
are conducted with the aid of advanced AI/ML algorithms. An outlook for the 21 
incorporation of modern advanced AI/ML models into FRP composite research is 22 
provided by the identification of current challenges and potential future research 23 
directions. 24 
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1. Introduction  26 

Recent advances in material science and engineering with the aid of modern 27 

computational algorithms and devices [1] have greatly pushed the need of advanced materials 28 

that can be adopted to increasingly complex engineering applications and adapted to multiple 29 

functional and safety requirements. Among various types of advanced materials such as 30 

crystal, metal alloy, etc., composite material, made up of at least two constituents into a 31 

heterogeneous mix [2], is one of the most promising structures. Upon an appropriate 32 

combination, the overall material performance will be enhanced, and characteristics of the 33 
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constituents will be kept simultaneously. Moreover, tailoring material properties can be 34 

achieved by adjusting the proportion, composition, structure and manufacturing accordingly 35 

[3-5]. Specifically, high-performance composites, which here refer to fiber reinforced 36 

polymers (FRPs) usually with carbon/glass fibers (CFRPs/GFRPs) and their joints, stand out 37 

due to their extraordinary properties such as higher strength, lighter weight, greater resistance 38 

to corrosion compared to conventional metallic materials, with a wide range of structural 39 

applications in aerospace [6-9], automobile [10, 11], marine [12, 13], renewable energy [14, 40 

15], and infrastructure industries [16]. For example, in the aircraft design, high-performance 41 

FRP composites provide an improvement in fuel-efficiency and emission reduction. In 42 

addition to functional benefits such as higher allowable hoop stress and corrosion resistances, 43 

a composite fuselage would allow more comfortable levels of cabin pressure and humidity 44 

which can effectively improve passenger comfort in modern commercial aircrafts such as 45 

Boeing 787 [17], as shown in Fig. 1. Besides, there are many aerospace components made of 46 

FRP composites even the primary structures are metallic [18]. 47 

 48 

 49 

Fig. 1. Material usage in Boeing 787 where nearly 50% of components are composites [17]. 50 

 51 
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The whole product life cycle of high-performance FRP composite structures is shown in 52 

Fig. 2, including five main stages: designing, manufacturing (i.e., part generation, machining 53 

and post treatment, and joining including curing), testing, monitoring, and recycling. Despite 54 

of the outstanding advantages of material properties in various aspects, the complex multi-55 

stage manufacturing process (MMP) and the intricate material structure that leads to material 56 

nonlinearity and anisotropy make it a challenging task to understand the material dynamics 57 

and physics and characterize material behaviors [19]. Physics-based methods have long been 58 

developed to analyze and understand the FRP composite materials in each stage of the MMP, 59 

including both analytical models [20-23] and numerical simulations [24-31]. As analytical 60 

models easily suffer from over-simplified assumptions, numerical simulations can achieve a 61 

reasonable accuracy but often at the cost of computational resources.  62 

 63 

 64 

Fig. 2. Product life cycle of FRP composite parts [32]. 65 

 66 
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However, as there is abundant, even excessive, data produced and collected by the rapidly 67 

developing sensing technology in all life cycle activities, it has opened the door for artificial 68 

intelligence (AI), especially the machine learning (ML) technique due to the powerful data-69 

processing capability. Numerous efforts have been made in applying AI/ML methods to the 70 

field of high-performance FRP composites, attempting to take the advantage of data-driven 71 

methods to address engineering problems. Existing studies on FRP composite structures with 72 

AI/ML techniques have mainly focused on surrogate modeling of finite element methods 73 

(FEMs) [33-35], physical process modeling [36-38], regression for property prediction [39-74 

42], and signal/image-based classification [43-45]. Specifically, for instance, in the aerospace 75 

application of composite fuselage assembly, sparse learning models [46, 47] were proposed 76 

for the optimal placement of actuators and shape adjustment to reduce the maximum gap 77 

between two fuselages, significantly improving efficiency compared to traditional manual 78 

practice. Zhong et al. [48] further developed a finite element analysis (FEA) model-based 79 

automatic optimal shape control (AOSC) framework with model uncertainties addressed by 80 

cautious control.  81 

Compared to traditional modeling methods of engineering problems such as analytical 82 

derivation and numerical simulations, AI/ML techniques generally require much less domain 83 

knowledge and are expected to discover underlying representative patterns in the dataset. For 84 

an intricate engineering problem that lacks adequate physical understanding like the adhesive 85 

joining of high-performance FRP composite structures, which is currently a common practice 86 

in aircraft manufacturing and repair but not fully proved due to its complexity, AI/ML can 87 

play a pivotal role in modeling, bypassing the requirement of thorough comprehension of its 88 

physical and chemical mechanism. State-of-the-art mechanical analysis of FRP composite 89 

adhesive joining is often under a simplified assumption that materials are linear elastic and 90 

isotropic [23]. Although one can set a more complex material setting in numerical analysis, 91 
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e.g., FEA, which is more consistent with reality [49, 50], an accurate result is usually at the 92 

cost of computational resources and time. On the other hand, once trained, AI/ML models 93 

take only a few seconds for prediction with a new input, which is much faster than traditional 94 

numerical simulations. Another prominent advantage of AI/ML methods over conventional 95 

ones is that data-driven algorithms have the potential to end-to-end model the whole MMP of 96 

high-performance FRP composites and adhesive joining given appropriate data pairs [39, 51]. 97 

This is significantly important for quality-critical applications because the manufacturing 98 

parameters are control inputs and of great interest. Analytical and numerical models usually 99 

cannot capture this relation due to the unknown interactions between stages of MMP. In spite 100 

of these advantages, AI/ML models suffer from data-related issues which will be discussed in 101 

Section 7.2 in detail.  102 

However, there is still a research gap in thoroughly understanding all the life cycle 103 

activities of FRP composite structures, especially the stages of designing, manufacturing, 104 

testing, and monitoring which substantially affect the in-service performance of FRP 105 

composites. A comprehensive article is highly desired that bridges the widespread and 106 

advanced AI/ML techniques for the engineering production and applications of high-107 

performance FRP composites. Therefore, as shown in Fig. 3, this study summarizes current 108 

state-of-the-art adoption of AI/ML methods in design, manufacturing, testing, and monitoring 109 

stages of high-performance FRP composite structures with tasks of material development and 110 

selection, process modeling and optimization, material property prediction, and damage 111 

diagnosis and prognosis, respectively.  112 

Hereafter, the rest of this article is organized as follows: section 2 provides a brief history 113 

of the development of AI/ML methods and their general applications in engineering. Section 114 

3 describes current utilization of AI/ML models in the material development and selection of 115 

composites with a focus on the framework of material genome initiative and inverse design. 116 
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The process modeling and optimization for the manufacturing processes including both part 117 

generation and curing processes with the aid of AI/ML techniques are reviewed in section 4. 118 

Section 5 considers the characterization of FRP composites, especially on the mechanical 119 

properties of strength and fatigue, using AI/ML algorithms. Section 6 discusses the state-of-120 

the-art works for damage diagnosis and prognosis of composite structures that are integrated 121 

with AI/ML methods. Section 7 concludes this review and looks forward to the prospects and 122 

challenges by presenting potential future research directions. 123 

 124 

 125 
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Fig. 3. AI/ML models in design, manufacturing, testing, and monitoring stages of high-126 

performance FRP composite structures with tasks of material development and selection, 127 

process modeling and optimization, material property prediction, and damage diagnosis and 128 

prognosis, respectively, where (a) Composite structure with tunable negative thermal 129 

expansion through computational design [52]; (b) FRP composite structure with simulation 130 

result to minimize PID through inverse design [53]; (c) AFP process for FRP composite part 131 

generation [54]; (d) Autoclave curing process with cure cycle of FRP composite structure 132 

[38]; (e) Microscopic stress tensor field maps of FRP composites for prediction [55]; (f) 133 

Stiffness degradation of composite laminates under cyclic loadings predicted by ANN [56]; 134 

(g) Simulation of propagating Lamb wave with deformation magnification for NDI of FRP 135 

composites [57]; and (h) Integrated self-monitoring and self-healing design of CFRP 136 

structure for SHM [58]. 137 

 138 

2. Development of AI/ML for Engineering 139 

Artificial intelligence (AI) is the field of computer science that studies how machines can 140 

be made to act intelligently [59], involving human-like psychological skills such as 141 

perception, association, prediction, planning, motor control, etc., with diverse information-142 

processing capacities [60]. With a narrow definition, machine learning (ML), as a subfield of 143 

study in AI, investigates algorithms and statistical models that computer systems utilize to 144 

perform a specific task, e.g., classification, regression, clustering, etc., without being 145 

explicitly programmed [61].  146 

The AI technology has long been developed since McCulloch and Pitts [62] proposed the 147 

MP neuron model, connecting nervous activity with computation in 1940s. Classic AI models 148 

were later extensively explored such as perceptron [63, 64], back-propagation technique [65], 149 

LeNet [66], LeNet-5 [67], support vector machine (SVM) [68, 69], k-nearest neighbor (kNN) 150 
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[70], long short-term memory (LSTM) [71], and etc., in which many of the landmark goals 151 

had been achieved. 152 

AI, especially ML techniques, thrived when it entered the 21st century. Various concepts 153 

derived from ML, e.g., active learning [72], deep learning (DL) [73], physics-informed 154 

machine learning (PIML) [74], meta-learning [75], incremental learning [76], and etc., were 155 

proposed and developed to strengthen learning ability and deal with real engineering 156 

problems. In terms of implementation, one of the most powerful ML models is the neural 157 

network (NN). Numerous advanced artificial neural network (ANN) structures were explored 158 

including deep neural network (DNN), convolutional neural network (CNN) [66], AlexNet 159 

[77], ResNet [78], region-based CNN [79-82], recurrent neural network (RNN) [71, 83-85], 160 

generative adversarial network (GAN) [86-88], attention mechanism [89, 90], physics-161 

informed neural network (PINN) [91], generative AI [92] for multiple tasks such as 162 

classification, pattern recognition, clustering, prediction and sequence processing. 163 

In addition to the booming development of generic ML models, AI/ML models 164 

specifically designed for real engineering problems have also been extensively explored. 165 

Generally, the applications of AI/ML models to engineering can be divided into two parts: (1) 166 

AI/ML models help in computational modeling of complex physical systems, especially 167 

those with multi-physics interactions or unknown physics; and (2) Post-processing of 168 

experimental data can be conducted through advanced AI/ML models given their powerful 169 

data-mining capabilities. 170 

In the domain of computational modelling, one of the most important goals is to build a 171 

simulator with a good balance between computational cost and simulation accuracy. Physics-172 

based simulators by the first principle are usually able to achieve very high accuracy yet 173 

suffer from costing huge computational resources. While ML-based models can retain such 174 

computational advantage and dramatically reduce the required time when properly trained on 175 
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related physically-simulated data [93]. ANN has been successfully used to simulate the phase 176 

change of crystal materials based on molecular dynamics [94, 95] in the microscale, and 177 

turbulent flow dynamics [96, 97] macroscopically. Another significant application of AI/ML 178 

methods is surrogate modeling to perform downstream tasks such as real-time prediction, 179 

characterization, system health monitoring and control. AI/ML models have been extensively 180 

employed for estimating mechanical properties of composite materials and adhesives [39, 51, 181 

98], prediction of compressive strength of concrete [99], real-time anomaly detection on 182 

aircrafts [100], understanding transient physics of 2D fluid system [101, 102], and many 183 

other aspects. Recent advances in PIML have fostered massive applications to various 184 

engineering systems by incorporating known or partially known physics, which can be 185 

expressed in a set of ordinary/partial differential equations (ODEs/PDEs) into a machine 186 

learning framework. Hot topics are about fluid and thermal dynamics where PIML has great 187 

potential to emulate system dynamics for different applications, such as curing of composite 188 

systems [37, 38, 103] and weather system [104]. 189 

Post-processing of experimental data is also critical in engineering problems. AI/ML 190 

algorithms have long been utilized in biology and related fields to analyze large-scale data 191 

about molecules, proteins and genes by clustering [105-107] and using CNNs [108, 109]. In 192 

other fields such as composites [110-113], astronomy [114], cybersecurity [115], researchers 193 

are proactively exploring new applications of AI/ML methods as well. 194 

 195 

3. AI/ML in Material Development and Selection of High-Performance 196 

Composites 197 

The incorporation of AI/ML into material science has brought new vigor and vitality, 198 

enabling more innovation in material development and selection, including the field of high-199 

performance composites. One breakthrough is that deep generative models such as diffusion 200 
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models are applied to create novel crystal material representations at micro level by exploring 201 

latent feature spaces with the aid of fundamental physical law, e.g., quantum mechanics [116, 202 

117]. Although such models have not been extensively employed in the field of composites, 203 

it is expected that deep generative models would advance the discovery of better FRP 204 

composite materials with appropriate adaptation. The recent applications of AI/ML methods 205 

in material genome initiative and inverse design for composites will be discussed in this 206 

section. 207 

3.1 AI/ML in Material Genome Initiative for High-Performance Composites 208 

Material Genome Initiative (MGI) is a federal multi-agency program that has been 209 

advanced to push the development of computational material science since its announcement 210 

in 2011 [118]. MGI is designed to accelerate the pace of discovery, design, deployment, and 211 

engineering of advanced materials via high-throughput experimentation (HTE) which is a 212 

technique that highly integrated with theory, experiment, and computation [119], where 213 

AI/ML models can be potentially applied for higher computational efficiency and accuracy. 214 

Along with the prosperity of AI/ML over the past decade, MGI has already enabled 215 

significant advances in material science with numerous applications. Utilizing high-216 

throughput virtual screening (HTVS) that combines quantum chemical calculations, machine 217 

learning techniques, and cheminformatics methods, Gómez-Bombarelli et al. [120] explored 218 

over one million candidates in molecular space to identify promising novel design of organic 219 

light-emitting diodes (OLEDs). The selected candidates were experimentally demonstrated to 220 

reach state-of-the-art external quantum efficiencies. 221 

In addition to advanced materials in the molecular level, MGI has profoundly impacted 222 

the progress in many other fields of materials, e.g., composites. Wang et al. [52] designed 223 

three-dimensional composite structures with tuneable negative thermal expansion through 224 

multi-material projection micro-stereolithography in the framework of computational design 225 
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that is advanced by MGI. Liu et al. [121] reported an HTE method that was used on 226 

functional composite hydrogels to facilitate rapid high-throughput screening of composition-227 

property relationships, enabling accelerated engineering with optimized properties for 228 

processability and performance, which was proved by application to different functional 229 

composite hydrogel systems.  230 

Although MGI has numerous successes in expediting discovery and development of new 231 

advanced functional materials including some composites, there is still a gap in the area of 232 

high-performance composites. The HTE method combined with powerful computation ability 233 

provided by ML algorithms has a great potential to optimize the design of high-performance 234 

FRP composite materials by searching for better combinations of reinforcement and matrix 235 

materials in terms of both composition and structure.  236 

3.2 AI/ML in Inverse Materials Design of High-Performance Composites 237 

Unlike structure- and element-oriented design that are usually under some constraints, 238 

inverse design begins from a required functionality and searches for an ideal material 239 

structure [122]. Kim et al. [123] proposed a DNN-RNN-based encoder-decoder structure for 240 

the inverse design of organic molecules. The generated molecular structures achieved good 241 

agreement with the targeted triplet excitation energy of OLEDs in a later experimental 242 

validation.  243 

Not only in design of molecular structures, but researchers also applied inverse design to 244 

composite materials, especially high-performance ones. Nomura et al. [124] used topology 245 

optimization specifically with tensor field variables on the fiber orientation to obtain beam 246 

structures with minimum compliance. Topology optimization was also employed by Jung et 247 

al. [125] to search for optimal spatially-varying fiber size and orientation in a multiscale 248 

manner in order to minimize structure compliance. AI/ML algorithms were successfully 249 

utilized in the inverse design process of high-performance composites, covering more 250 
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complex physical functionalities. Luo et al. [53] integrated FEM and ANN to perform 251 

prediction and inverse design of thermosetting-matrix composites of an asymmetric laminate 252 

for a targeted maximum process-induced distortion (PID). The resultant composite of carbon 253 

fiber and epoxy agreed with the targeted maximum PID with a root mean square error 254 

(RMSE) of 8.01%. Considering random uncertainty, Song et al. [126] firstly developed 255 

Kriging surrogate models to learn the transfer functions of both laminated and 2D-woven 256 

composites and employed a genetic algorithm (GA) to solve the inverse optimization design 257 

to achieve desired mechanical properties with minimum statistical deviation. Liu et al. [40] 258 

applied optimization algorithms for inverse design based on a deep operator network 259 

(DeepONet) that is designated to bridge the gap between mechanical behaviors and design 260 

space of hierarchical composites. 261 

Extensive research works have shown the benefit of incorporating AI/ML algorithms into 262 

conventional inverse design and engineering of composite materials. However, this 263 

innovative approach demands a great generalization ability of AI/ML methods that can find 264 

novel material structures not included in existing databases. Current works in the field of 265 

high-performance composites mainly focus on utilizing AI/ML for surrogate modeling to 266 

represent the mapping from design space to the desired functionality, and then employing a 267 

separate optimization method for inverse design. A holistic approach that integrates these two 268 

steps is anticipated to achieve better performance. To this end, generative AI models have 269 

great potential to overcome the inherent limitations of finiteness of material choices in 270 

material databases. Specifically, combining variational autoencoders (VAEs) with diffusion 271 

models can be one of the prospective ML structures, which is able to generate novel material 272 

representations in the latent space, as demonstrated in [116]. Translating this strategy into 273 

composites domain and incorporating composite-specific physics knowledge is expected to 274 

contribute remarkable advances. 275 
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 276 

4. AI/ML in Manufacturing Process Modeling and Optimization of High-277 

Performance Composites 278 

Manufacturing of high-performance FRP composites parts and components involves part 279 

generation process and joining process by various techniques and methods. One of the 280 

pioneering works on composite manufacturing process modeling is the utilization of PIML 281 

and PINN which integrate physics and engineering knowledge into the framework of data-282 

driven ML modeling, e.g., for composite curing process [37, 38, 103, 127]. This section will 283 

introduce both conventional and advanced manufacturing processes of FRP composites and 284 

review the state-of-the-art applications of AI/ML methods in it. 285 

4.1 AI/ML in Part Generation Process Modeling and Optimization of High-286 

Performance Composites 287 

The part generation process of FRP composites is the process to reinforce matrix material 288 

with fiber preforms that are usually made by weaving, knitting, braiding, and stitching of 289 

fibers in sheet structure [128]. Conventional generation processes generally include injection 290 

molding, compression molding, liquid composite molding (resin transfer molding, rotational 291 

molding, and wet pressing), fiber deposition (automated tape/fiber placement), pultrusion, 292 

thermoforming, and filament winding. With the integration of AI/ML techniques into the 293 

manufacturing processes, higher production efficiency with less defects can be achieved by 294 

process modeling, monitoring, and optimization thanks to the powerful data processing 295 

capability of AI/ML algorithms. 296 

Image processing techniques have been actively applied into the automated fiber 297 

placement (AFP) process for layup defect detection and segmentation [54]. Zambal et al. 298 

[129] trained a CNN by images artificially generated by a probabilistic graphical model to 299 

mitigate the issue of data scarcity of some new defect types, where the trained model 300 
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achieved a 95% accuracy on real laser sensor data in AFP process for defect segmentation 301 

and classification. Thermal images were employed by Schmidt et al. [45] to comprehensively 302 

evaluate CNNs with three various architectures. Sacco et al. [130] presented their Advanced 303 

Composite Structures Inspection System (ACSIS) based on ANN for automated AFP defect 304 

detection, classification, and documentation. Meister et al. [131] investigated the relevance of 305 

certain image pixels regarding the decision-making response of a CNN classifier through 306 

explainable AI methods smooth integrated gradients and deep learning important features 307 

with Shapley additive explanations (DeepSHAP) to guide monitoring strategies in AFP 308 

inspection. In order to find optimized AFP process parameters given desirable mechanical 309 

properties, Islam et al. [132] proposed a hybrid approach which combines benefits of ANN, 310 

virtual sample generation (VSG) method, and physics-based numerical simulation with real 311 

data, as shown in Fig. 4(a).  312 

On the other hand, additive manufacturing (AM) is one of the leading and advanced 313 

technologies in composite manufacturing for its flexibility in selection of fiber volume and 314 

orientation and ability to adapt to complex geometry. Broadly speaking, FRP composites that 315 

are additively manufactured can be categorized into continuous-fiber reinforced composites 316 

(by fused filament fabrication, laminated objective manufacturing), short-fiber reinforced 317 

composites (by material extrusion processes, vat photopolymerization processes, powder bed 318 

fusion processes, binder jetting), and voxelated polymeric composites (uniquely by AM 319 

approaches such as multiple jet fusion, and direct ink writing) [133]. AI/ML techniques have 320 

significantly improved AM processes, especially in process modeling and optimization. 321 

Yanamandra et al. [134] utilized a refined RNN with LSTM architecture to identify the fiber 322 

orientation in each layer to capture the tool-path information so as to reverse engineer a FRP 323 

composite made by fused filament fabrication (FFF). With the aid of Gaussian process 324 

regression (GPR), Hu et al. [135] thoroughly analyzed mechanical properties of polylactic 325 
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acid (PLA) composites with reinforcement of chopped long carbon fiber (CF) via fused 326 

deposition modeling (FDM) fabrication. Wright et al. [136] developed a novel closed-loop 327 

DL-integrated extrusion AM system to perform in-situ imaging and process parameter 328 

optimization on milled CF-reinforced polymetric composite by several CNNs to maximize 329 

material properties and quality, as shown in Fig. 4(b). The composite parts manufactured by 330 

direct ink writing (DIW) using the autonomously determined optimal parameters were 331 

inspected to be defect-free, demonstrating the effectiveness of the DL-DIW process 332 

optimization framework. A similar closed-loop robot-based AM system for real-time defect 333 

detection and parameter adjustment of CFRPs enabled by advanced CNN models, e.g., 334 

YOLOv4, was proposed by Lu et al. [137]. 335 

 336 
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 337 

Fig. 4. (a) Process flow diagram indicating the steps from user-input to ML process 338 

optimization to AFP-based manufacturing [132]; (b) Overview of the DL-DIW framework 339 

showing how a computer, FFF printer, and USB camera are interconnected to perform in-situ 340 

parameter optimization [136]; (c) Flow chart of the cure process analysis via ANN including 341 
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cure kinetics and thermochemical coupling using non-isothermal differential scanning 342 

calorimetry (DSC) data [38]. 343 

 344 

4.2 AI/ML in Curing Process Modeling and Optimization of High-345 

Performance Composites 346 

Once the FRP parts are manufactured, joining them together is the next step to make a 347 

component. In addition to traditional joining methods, e.g., mechanical fasteners such as 348 

riveted or bolted joints, and welding, adhesive joining is getting increasingly prevalent for 349 

composite parts due to its weight reduction and avoiding material damage and stress 350 

concentrations. The necessary step to join composite parts with adhesive films or pastes is to 351 

cure them. Not only happening during part generation, but the curing process also occurs in 352 

the joining processes of polymetric composites. However, residual stress will be generated 353 

during this process due to intrinsic factors of material and extrinsic cure conditions, possibly 354 

leading to defects like crack, delamination, distortion, and degradation of mechanical 355 

performance [138]. Understanding the physics of curing process and evolution of curing-356 

induced residual stress is thus critical to improve the quality of FRP composites. Yet the 357 

curing process and corresponding residual stress and process-induced deformation (PID) are 358 

often complex interactions between thermal-chemical, flow-compaction, and thermal-359 

mechanical properties of the fiber and matrix materials [139], AI/ML methods play a pivotal 360 

role in such research problems, fostering the understanding of complicated physics through a 361 

data-driven point of view. 362 

ANNs have already been used in early attempts to model the curing kinetics and predict 363 

related parameters such as retained mass [140], degree of cure (DoC) [36], and time 364 

derivative of DoC [141]. Kim and Zobeiry [142] developed an ANN to identify equivalent 1-365 

D cases for the 2-D geometry to speed up process simulation considering both geometric and 366 
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cure cycle parameters. Zobeiry and Poursartip [143] investigated three different scenarios of 367 

curing, i.e., to predict thermal lag or exotherm in a curing composite part on an either inert or 368 

metallic tool using theory-guided ML which takes physics-based features and uses a physics-369 

based rationale to choose activation functions. Hui et al. [38] considered both cure kinetics 370 

and thermochemical coupling in building an ANN to predict the evolution of the DoC. As 371 

shown in Fig. 4(c), the predicted curing dynamics can be further used to guide the FE 372 

analysis or experiments.  373 

With the advent of PIML and PINN, physical dynamics that are described by 374 

ODEs/PDEs can be emulated with higher efficiency and accuracy by incorporating the 375 

physics law into the loss function or ML model structure. Zobeiry and Humfeld [127] utilized 376 

a PINN to solve the conductive heat transfer PDE along with convective heat transfer PDEs 377 

as boundary conditions (BCs) of a heating composite part. Niaki et al. [37] modelled the 378 

thermochemical curing process considering exothermic heat transfer by creating two coupled 379 

PINNs for a bi-material composite-tool system. One PINN is to predict the DoC that is 380 

applicable to the composite material, while the other one is for the temperature distribution 381 

for both the tool and the composite part. Losses specially designed for boundary conditions 382 

were added to improve the performance of the PINN model. Akhare et al. [103] proposed a 383 

physics-informed neural differentiable (PiNDiff) model based on the pioneering PINN model 384 

Neural ODE to learn unknown physics from the limited indirect data and to infer unobserved 385 

variables and parameters in the application of composite curing. Based on a computational 386 

model of cure behaviour of a carbon/epoxy prepreg system proposed by Anandan et al. [22], 387 

the PiNDiff model for composite curing was structured as shown in Fig. 5(a) with a great 388 

performance on predicting curing dynamics of corner location of a square laminate when 389 

trained on temperature data collected at the center, as shown in Fig. 5(b). 390 

 391 
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 392 

Fig. 5. (a) Schematics of the PiNDiff module for the curing process; (b) PiNDiff predictions 393 

on the temperature data collected at the center of the laminate, where black solid line 394 

represents autoclave temperature that is the BC, red/blue solid line represents the prediction 395 

at the center/corner location, red/blue dashed line represents the ground truth at the 396 

center/corner location. (Reproduced from reference [103].) 397 

 398 

A natural extension to process modeling is process optimization and control. Jahromi et al. 399 

[144] formulated a nonlinear programming (NLP) problem to develop multi-linear-stage cure 400 

cycles by minimizing the maximum temperature difference through the cure cycle to improve 401 
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the mechanical properties and gain a curing uniformity, by using a RNN for surrogate 402 

modeling. Struzziero and Teuwen [145] tackled the multi-objective optimization of the cure 403 

stage of the vacuum assisted resin transfer molding (VARTM) process for wind turbine 404 

blades, aiming to minimizing process time, spring-in, and maximum temperature overshoot 405 

by comparing the Pareto front obtained from GA. A ML framework, CompML (Composites 406 

Machine Learning), was used by Humfeld and Zobeiry [146] for active control of the 407 

composites autoclave processing. Specifically, two LSTM models were trained to solve the 408 

forward thermochemical problem to predict temperature histories of the part and tool, then 409 

the results were fed into a third ANN to search for an optimal cure cycle. Yuan et al. [33] 410 

built a surrogate model through radial basis function (RBF) of multi-field coupled FEM 411 

results and utilized a non-dominated sorting genetic algorithm-II (NSGA-II) to search for the 412 

global optimum solution where the cure time and maximum gradient of temperature and DoC 413 

are minimized to reduce the residual stress and improve production efficiency. Tang et al. 414 

[147] employed a multi-objective particle swarm optimization (MOPSO) algorithm to find an 415 

optimal cure cycle that minimizes total curing time, maximum difference of DoC, and spring-416 

back angle of a C-shaped composite specimen after curing based on FEM simulations. The 417 

optimal cycle was later verified by an experiment to effectively shorten the curing time and 418 

reduce the spring-back angle. 419 

Although various advancements have been made by AI/ML methods in the 420 

manufacturing and curing processes modeling and optimization of FRP composites, there are 421 

still areas not fully touched. One notable domain is to end-to-end model the whole 422 

manufacturing process including both part generation and curing processes to better link all 423 

related manufacturing parameters with the ultimate performance measures. PIML/PINN are 424 

specifically designed to be applied on physics-related problems, having a great potential for 425 

understanding the complex interactions during the manufacturing of composite materials. 426 
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5. AI/ML in Material Property Prediction of High-Performance 427 

Composites 428 

Typically, material properties encompass chemical (chemical composition, atomic 429 

bonding, corrosion resistance, etc.), electrical (conductivity, resistivity, dielectricity, etc.), 430 

magnetic (ferro/para/diamagnetism, etc.), thermal (thermal conductivity, expansion, 431 

diffusivity, etc.), mechanical (strength, stiffness, elasticity, plasticity, toughness, fatigue, 432 

ductility, brittleness, etc.), and optical (refection, refraction, diffraction, etc.) aspects [148]. 433 

Mechanical properties, among all these aspects, often hold significant importance since they 434 

characterize the material in most engineering applications. Traditional methods to determine 435 

the mechanical properties of a material rely on repeating mechanical tests laboriously, which 436 

is time-consuming and expensive. However, the utilization of AI/ML methods to predict 437 

material properties has experienced significant growth and released a large number of efforts 438 

from laborious tests for various materials including composites. The capacity to learn 439 

intricate nonlinearities has enabled AI/ML methods to encourage researchers to use them to 440 

perform these tasks. The main breakthrough in predicting mechanical properties of high-441 

performance composite structures is to forecast the stress/strain tensor field maps instead of 442 

merely a value of strength, which requires a more sophisticated design of model to deal with 443 

the high-dimensional and multiscale data. CNN-based neural operator with multiscale FEM 444 

would be a good candidate [41, 55, 149-151]. This section will focus on the recent advances 445 

of AI/ML techniques for prediction of mechanical properties of high-performance composites, 446 

especially on strength and fatigue behavior of composites and their joints.  447 

5.1 AI/ML in Strength Prediction of High-Performance Composites 448 

Strength of material is often recognized as the most important mechanical 449 

characterization for structural parts/components and engineering materials to which FRP 450 

composites are usually applied. Rahman et al. [152] built a CNN-based surrogate ML model 451 
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for molecular dynamics simulations to predict the shear strength of carbon nanotube-polymer 452 

interfaces. In addition to the interfacial properties in carbon nanotube (CNT) composites, the 453 

geometric deformation was investigated through a model that integrated functional PCA 454 

(FPCA) with DNN to ensure predictive performance and interpretability [153]. On the other 455 

hand, for general FRP composites, Abuodeh et al. [154] utilized a resilient back-propagating 456 

neural network (RBPNN) as a regressor to predict the shear strength of reinforced concrete 457 

(RC) beams strengthened with externally bonded FRP sheets. The recursive feature 458 

elimination (RFE) algorithm and neural interpretation diagram (NID) were later employed to 459 

identify significant parameters to improve predictive efficiency and accuracy. Yin and Liew 460 

[155] investigated the application of gradient boosting regressor (GBR) and ANN on 461 

evaluating the interfacial properties of FRP composites such as the interfacial shear strength 462 

(IFSS) and the maximum force given fiber geometries and basic mechanical properties of 463 

fiber and matrix materials. Li et al. [156] predicted the transverse microstructure-property 464 

relationship of unidirectional (UD) FRP composites with microvoids through an ML-465 

combined material informatics approach where the principal component analysis (PCA) was 466 

used to extract statistical representations and a genetic algorithm optimized back propagation 467 

(GABP) neural network was built for prediction. A similar framework but with principal 468 

component regression (PCR) was employed by Olfatbakhsh and Milani [157] on fabric 469 

composites. Prediction and analysis of dynamic strength [158] and failure criteria [111] in 470 

terms of both maximum compressive and tensile stress using AI/ML methods were also 471 

explored.  472 

Apart from predicting a single or several strengths that are in the form of scalar, FRP 473 

composite stress field prediction has caught great attention and been proactively explored 474 

recently [41, 55, 149-151]. Specifically, Rashid et al. [149] utilized the Fourier neural 475 

operator (FNO) to predict component-wise stress and strain for two-phase composites. As 476 



23 
 

shown in Fig. 6(a), the FNO learned the constitutive relation between the design geometry 477 

and different mechanical responses, predicting the normal and shear components of the stress 478 

and strain tensor field in an end-to-end fashion with the material microstructure alone as the 479 

input. Notably, the FNO framework was demonstrated to have a decent generalization ability 480 

to unseen microstructure geometries. Gupta et al. [55] reported an ML-based approach for 481 

multiscale mechanics modeling considering microstructural heterogeneity where a CNN with 482 

U-Net architecture was trained to learn the mapping between the spatial arrangement of fibers 483 

and corresponding 2D stress tensor fields. Three different approaches for predicting the stress 484 

field of a heterogeneous macro-structured composite and a comparison of computational time 485 

are shown in Fig. 6(b). The U-Net model trained for stress prediction in the microstructure 486 

was tested successfully on three different macro-structures of varying sizes and subjected to 487 

different loading and boundary conditions, showing the capability for multiscale analysis. 488 

 489 
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 490 

Fig. 6. (a) The workflow of FNO framework for predicting stress and strain field, where the 491 

2D digital composite geometry is analyzed for the mode-I tensile test using FEM with a pre-492 

crack along the 𝑥𝑥-direction and loading in the 𝑦𝑦-direction, and the tensor components are 493 
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used to derive scalar-valued equivalent measures such as von-mises stress and equivalent 494 

strains [149]; (b) Multiscale mechanics modeling of a heterogeneous macro-structure using 495 

three different approaches: (i) full-scale FE analysis, (ii) FE2 analysis, and (iii) ML-driven 496 

multiscale analysis. The full-scale FE analysis is the least efficient, the multiscale FE analysis 497 

is parallelizable and more efficient, and the ML-driven multiscale analysis is the most 498 

efficient [55]. 499 

 500 

In addition to predicting strength of FRP composite itself, research on forecasting 501 

strength and failure analysis on composite adhesive joints has also been extensively explored 502 

for its critical significance in multiple engineering applications. Not only the structural epoxy 503 

adhesives [39, 159], but also the whole bonded joints, e.g., interfacial properties, are of great 504 

research interest, with various types of mechanical testing for different fractures such as 505 

mode-I [51], mode-II [160-164], and mixed-mode [113, 165, 166], and the adhesion between 506 

different materials [167, 168]. ANN is the most used model among all the AI/ML algorithms, 507 

combined with FEM utilizing cohesive zone model (CZM) that describes composite adhesion 508 

by a traction-separation law given some certain simplified assumptions, to predict shear and 509 

peel strength of composite adhesive joints and perform failure analysis. This combined model 510 

directly links nominal material properties (usually from datasheet) and joint geometries to the 511 

mechanical characterization, effectively improving the prediction efficiency compared to 512 

FEM alone. The potential of applying advanced AI/ML models has been explored as well. 513 

Considering the issue of small dataset that is common in engineering applications, Pruksawan 514 

et al. [159] utilized an active learning framework with gradient boosting as the regressor and 515 

Bayesian optimization for final proposing for a combination of epoxy parameters that yield a 516 

maximum adhesive joint strength. This active learning framework will augment the training 517 

dataset by adding additional data proposed by the predictive model from the original design 518 
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space, as shown in Fig. 7, which runs in an iterative supervised manner and would generate a 519 

highly uniform set of sample points. This property of active learning is expected to mitigate 520 

the issue of lack of training data in a real engineering problem such as FRP composites. 521 

 522 

 523 

Fig. 7. Flowchart of the active learning approach for modeling and optimization of epoxy 524 

adhesive [159]. 525 

 526 

5.2 AI/ML in Fatigue Prediction of High-Performance Composites 527 

Compared to the strength of material, fatigue characterizes the behavior and failure of a 528 

material due to a cyclic loading other than a quasi-static one, which is also the most common 529 

material failure modes that harm the safety of structural components [169]. Fatigue data is 530 

often noisy and unapproachable for physics-based methods to get an accurate result, which is 531 

suitable for AI/ML analysis. Fatigue life prediction is a widely studied topic in the literature 532 

where researches apply AI/ML models to the fatigue analysis of composites, attempting to 533 

bridge material and experimental parameters and the fatigue life [42, 170-174]. Other aspects 534 

have also been extensively analyzed, with more concentrations on the fatigue behavior 535 

characterization, e.g., damage/crack evolution [112, 175], strength/stiffness degradation [56, 536 

176], and fatigue diagnosis and prognosis [34, 177-179]. 537 
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Based on the strain pattern obtained from distributed optical fiber sensors bonded on a 538 

CFRP double cantilever beam (DCB) specimen under a cyclic loading, Cristiani et al. [175] 539 

built a one-dimensional (1D) and a two-dimensional (2D) CNN which were separately 540 

trained to predict the delamination length due to fatigue loading to track the crack evolution. 541 

Notably, as shown in Fig. 8(a), Tao et al. [56] applied a 𝛽𝛽-variational autoencoder (𝛽𝛽-VAE) 542 

firstly to extract and disentangle the latent features to represent the underlying driving 543 

mechanism of stiffness degradation, and then adopted the Neural ODE framework to learn 544 

the dynamics of the latent features. The Neural ODE framework predicts the stiffness of the 545 

composite laminate over the cycle-domain continuously, achieving a better accuracy than a 546 

conventional phenomenological model. Lee et al. [179] built a deep autoencoder (DAE)-547 

based model, as shown in Fig. 8(b), to detect and classify fatigue damage in composite 548 

structures using the ultrasonic signals collected from the CFRP plate under ultrasonic Lamb 549 

waves. The DAE was trained to reconstruct the ultrasonic signals obtained when the sample 550 

was intact and for testing, the reconstruction RMSE was selected as an index to detect 551 

damage once it exceeded the determined threshold. On the other hand, the feature learned by 552 

the hidden layer of the DAE was extracted for damage classification by a density-based 553 

spatial clustering of applications with noise (DBSCAN) algorithm after processed by singular 554 

value decomposition (SVD) for dimension reduction. 555 

Composite materials exhibit complex hierarchical structures, and thus their mechanical 556 

properties depend on interactions at multiple length scales. It is expected to predict material 557 

properties with improved accuracy and better understanding of the connection between the 558 

structure and properties if an AI/ML model is adopted which considers multi-scales, e.g., 559 

from nanoscale to micro- and macroscale, and with considerable interpretability. Additionally, 560 

neural operator (NO), other than ordinary neural network, has a great potential on predicting 561 

more complex material properties based on material structure and some basic properties, e.g., 562 
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as demonstrated in [149], because it is able to map between input and output functions on 563 

continuous domains and do super-resolution on the output instead of just mapping between 564 

input and output points on a fixed, discrete grid [180]. This special nature enables NO 565 

overcome the inherent issue of lacking enough continuous data in engineering applications.  566 

 567 
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 568 

Fig. 8. (a) Computation graph of the ANN model based on the Neural ODE structure with 𝛽𝛽-569 

variational autoencoder (𝛽𝛽-VAE) [56]; (b) Overview of the deep autoencoder-based fatigue 570 

damage detection and classification for composite structures [179]. 571 
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6. AI/ML in Damage Diagnosis and Prognosis of High-Performance 572 

Composites 573 

With the increasing use of high-performance composite parts and components in real life, 574 

it is of great importance to maintain the structural integrity by damage detection and 575 

evaluation not only during manufacturing processes, but also when they are in service. 576 

Comprehensive diagnostic and prognostic for FRP composites are critically significant for 577 

safety concerns, yet particularly challenging due to non-homogeneity and anisotropy of 578 

composite materials [181]. Generally, diagnosis is to obtain a clear picture of the health state 579 

of the material, and prognosis will estimate the remaining useful life (RUL) [35]. Therefore, 580 

robust and reliable non-destructive inspection (NDI) methods are essential and highly 581 

desirable for detection of various types of damages. On the other hand, structural health 582 

monitoring (SHM) performs an in-situ and continuous damage evaluation of composite 583 

structures, and thus has the potential to identify defects in the early stages, allowing for a 584 

timelier maintenance and repair [182]. Although performing a reliable NDI and SHM on FRP 585 

composite is difficult because of intricate structural nature, AI/ML methods shed a light by 586 

the powerful data analysis capabilities. For example, weak adhesion and kissing bonds are the 587 

defects in composite laminates and adhesive joints that are extremely difficult to detect non-588 

destructively through conventional techniques and yet very safety-concerning. AI/ML models, 589 

on the other hand, with appropriate feature extraction based on physical knowledge, perform 590 

decently on a binary classification task to determine the existence of such defects [110]. 591 

Recent advancements in utilizing state-of-the-art AI/ML methods for NDI and SHM on high-592 

performance composites will be reviewed in this section. 593 

6.1 AI/ML in Non-Destructive Inspection of High-Performance Composites 594 

Generally, based on the output signal for analysis and its frequency, NDI techniques can 595 

be categorized into three main groups: acoustic wave-based, electromagnetic techniques-596 
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based, and imaging techniques-based [183]. AI/ML methods, especially ANNs and CNNs, 597 

have been applied to these specific fields for composite defect and damage inspection, 598 

detection, localization, and classification. Acoustic wave-based NDI mainly includes acoustic 599 

emission (AE) [184] and ultrasonic testing (UT) using Lamb waves [185, 186], guided waves 600 

[187, 188], and etc., which are suitable for monitoring and locating cracking and 601 

delamination in FRP composites. Defects such as crushing and impact that are explicitly on 602 

the surface are easily detected by visual inspection (VI), which has also been aided by 603 

ANNs/CNNs for automation and better visual detectability for defects that are negligible for 604 

naked eyes [189, 190]. Apart from VI and eddy current testing (ECT) [191], another 605 

important NDI method in the electromagnetic techniques-based group is infrared 606 

thermography (IRT). Combined with different AI/ML methods, e.g., hierarchical clustering 607 

[192], kNN [193], Faster R-CNN with attention mechanism [194], IRT is able to detect the 608 

size and location of defects in composite laminates based on thermal images in an automated 609 

manner. The third group imaging techniques-based NDI generally utilizes the difference 610 

between images obtained at different time to highlight changes in defects, including 611 

shearography and digital image correlation (DIC) for measuring strain and displacement 612 

[195, 196], and X-ray computed tomography (CT) with the capacity to obtain information 613 

about internal porosity, pores shape, dimension, and etc. [197]. Additionally, Gillespie et al. 614 

[198] utilized the transient thermal conduction profiles to detect delamination in composite 615 

laminates based on a supervised support vector classification (SVC) algorithm. 616 

Although AI/ML algorithms have been extensively applied to detect defects and flaws in 617 

composite structures, the area of composite adhesive joints, e.g., damages and weak adhesion, 618 

has not been fully explored due to its intricate and invisible nature. Kissing bond, defined as a 619 

“zero-volume disbond” [199] that the adhesive and adherend are in contact without voids and 620 

chemical and/or molecular bonds between the surfaces, is one of the most interested and 621 
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safety-concerning defects of composite adhesive joints. Because the defect locates in the 622 

bondline, i.e., in the interface between two non-transparent materials, and the considerable 623 

thickness of adherends compared to that of adhesive, ordinary visual methods and those 624 

depending on subtle deformation of a thin part are challenging to be applied. Despite of such 625 

difficulties, multiple physics-based methods, especially based on ultrasonic signals, were 626 

developed [200-202]. AI/ML methods are also under proactive exploration. Boll et al. [110] 627 

employed an ANN to classify kissing bonds made by release agent from pristine samples and 628 

defective specimen with a polytetrafluoroethylene (PTFE) film inserted and predict the shear 629 

strength of these three types of bonding based on vibroacoustic modulation (VAM) analysis. 630 

Specifically, as shown in Fig. 9(a), an ultrasonic Lamb-wave signal 𝑓𝑓𝐶𝐶𝐶𝐶 with a high-strain 631 

pump wave 𝑓𝑓𝑃𝑃 will result in a signal modulation and sidebands through the bonding area. The 632 

material nonlinearity introduced by defects and induced under a high-strain load is expected 633 

to further modulate the ultrasonic Lamb wave, revealing higher harmonics than pristine 634 

samples. As illustrated in Fig. 9(b), the sidebands and carrier amplitudes after a fast Fourier 635 

transform (FFT) were selected as the input of the ANN model for defect classification and 636 

shear strength prediction. With the aid of ML classifiers such as SVM, ultrasonic signals that 637 

obtained from different NDI methods such as pulse-echo immersion [43], phased array [203] 638 

and ordinary UT [204] were utilized to extract physics-based features for classification of 639 

adhesive bonding. 640 

 641 
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 642 

Fig. 9. (a) Schematic representation of a VAM analysis, where combining a high-strain pump 643 

wave 𝑓𝑓𝑃𝑃 with an ultrasonic Lamb-wave as signal carrier 𝑓𝑓𝐶𝐶𝐶𝐶 results in a signal modulation and 644 

sidebands, and the piezoceramic of the carrier signal (In) is excited at 𝑓𝑓𝐶𝐶𝐶𝐶 and resulting 645 

vibrations are received by another piezoceramic actuator (Out); (b) Exemplary illustration of 646 

the ANN approach used to analyse VAM signals, where the Prist, RA and PTFE are 647 

corresponding labels of pristine specimen and specimen with release agent contamination or 648 

a PTFE-film, respectively. (Reproduced from reference [110].) 649 
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 650 

6.2 AI/ML in Structural Health Monitoring of High-Performance Composites 651 

Taking NDI technique as core a component, SHM provides a continuous and in-situ 652 

monitoring of structural loads and damages and environmental parameters, sensing structural 653 

state parameters such as stress and/or strain [205]. Selecting a proper sensor and designing an 654 

appropriate way to embed the sensor into composite structures without harming structural 655 

integrity and strength too much are the primary task and challenge of SHM. The general 656 

workflow of SHM is depicted in Fig. 10. The SHM process consists of a diagnostic and a 657 

prognostic part where the former one estimates the current state of the structure or the system 658 

while the latter one evaluates the damage evolution and forecasts the remaining service life 659 

[35]. After diagnosis and prognosis of a system with adequate sensing ability, one can obtain 660 

the failure probability for downstream decision making about repair or replacement. There 661 

are also four performance levels of SHM defined by Rytter [206], namely, (1) verification of 662 

damage presence; (2) determination of damage location; (3) estimation of damage severity; 663 

and (4) prediction of remaining service life. 664 

 665 

 666 

Fig. 10. The multidisciplinary structural health monitoring process [207]. 667 

 668 

With the development of advanced sensor technology, numerous physics-based SHM 669 

research have been done with various design and application of sensing strategies, e.g., 670 

electromechanical impedance/resistance-based sensors [208-210], electric time domain 671 
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reflectometry [211, 212], fiber Bragg grating sensors [213], self-monitoring and self-healing 672 

[58], and etc. As shown in Fig. 11(a-c), a smart sensing grid that is comprised of continuous 673 

carbon fiber tows were integrated within the polymer matrix to identify the deformation field 674 

distribution and detect both micro- and macro-damage according to the dramatic change in 675 

the slope of fractional change in electrical resistance with the strain based on the electrical-676 

mechanical behavior [210]. Luan et al. [58] pioneeringly designed a self-monitoring and self-677 

healing composite structure with curing agent embedded using the dual-material AM 678 

technology, which is shown in Fig. 11(d), where the continuous carbon fibers serve as both a 679 

sensory element and reinforcement. Fig. 11(e) plots the result of three-point bending testing 680 

with four obvious stages. Damages can be detected depending on the change of the slope. 681 

 682 
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 683 

Fig. 11. (a-c) Schematic of a meshed smart structure and fabrication sequence (from bottom-684 

layer to top-layer) with the testing result of fractional change in electrical resistance of each 685 

continuous carbon fiber tow, and a detailed look at the relation of middle tows that can be 686 

three apparent stages: elastic stage, micro-damage stage, and macro-damage stage [210]; (d, 687 

e) Specimens with plane-, spiral-, and  interlock-type of self-healing structures, with a testing 688 

result of variation of fractional change in resistance and stress versus time for the continuous 689 

carbon fiber tow embedded specimen during the entire loading process [58]. 690 

 691 



37 
 

AI/ML methods, e.g., ANN, SVM, kNN, etc., have been utilized to analyze the 692 

experiment data for downstream tasks such as damage detection, classification, and 693 

characterization for different composite structures [44, 57, 214-216]. Ewald et al. [57] 694 

proposed a CNN framework called DeepSHM which involves data augmentation of 695 

ultrasonic guided wave signals through wavelet transform and formalizes a generic method 696 

for end-to-end deep learning for defect classification. Liu et al. [214] performed a clustering 697 

analysis using the bisecting K-means algorithm to identify different damage modes for 698 

acoustic emission signal sources from a composite wind turbine blade. Khan et al. [215] 699 

investigated the classification of two types of delaminated samples from healthy ones using 700 

SVM with input of multi-level features extracted from various DL models through transfer 701 

learning. The raw structural vibration data was encoded into high-resolution time-frequency 702 

images using synchroextracting transforms (SETs). Reis et al. [216] employed an ANN 703 

model with input of mini-batches from the high-dimensional vibration data by dislocated 704 

series method to detect and classify delamination damage of composite beams. Diaz-Escobar 705 

et al. [44] evaluated the performance of different ML models including ANN, kNN, random 706 

forest (RF), and SVM on damage identification and characterization in composite laminates 707 

using the electrical resistance tomography (ERT) data. 708 

NDI and SHM signals are usually high-dimensional data, leaving a great space for AI/ML 709 

algorithms due to their powerful data analysis and processing capabilities. Despite of recent 710 

advances in applying AI/ML methods to perform damage and defect detection, localization, 711 

and classification, and prediction of RUL for high-performance composite structures, current 712 

focuses are mainly on these downstream tasks. Integrating the manufacturing information 713 

such as parameters in part generation and curing processes is expected to improve the model 714 

performance as these information reveals inherent material properties. NDI and SHM may 715 
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also benefit from multi-model systems which incorporate multiple sensors and inspection 716 

methods. 717 

 718 

7. Conclusions and Future Scope 719 

7.1 Conclusions 720 

AI/ML technologies have witnessed their rapid development where novel techniques 721 

sprout at an unprecedented rate, which triggers a paradigm shift in engineering including 722 

material science. How advanced materials are conceptualized, designed, manufactured, and 723 

tested is redefined enabled by the great computational power of high-dimensional data 724 

analysis and processing. High-performance FRP composite materials, with the advancements 725 

in material science and engineering, have been extensively applied to replace conventional 726 

structural materials in various industries such as aerospace, marine, automotive, and 727 

infrastructure. The intricate structure and complicated interaction inherent in FRP composite 728 

structures raise an obstacle to researchers for understanding material behaviors. The 729 

utilization and integration of AI/ML algorithms into the science and engineering of high-730 

performance composites marks a pivotal advancement, providing a new understanding from 731 

the view of data analytics. 732 

In the current era of innovation with the emergence of AI/ML techniques, this article 733 

provides a comprehensive review of recent advances and applications of AI/ML methods in 734 

the product cycle life activities of high-performance FRP composites including material 735 

development and selection, manufacturing, testing, defect and damage inspection, and in-736 

service monitoring, as summarized in Table 1. The development of AI/ML techniques for 737 

science and engineering is briefly reviewed. The AI/ML-based MGI and inverse design of 738 

advanced materials are considered when discussing the application of AI/ML methods in 739 

material development and selection. Later, this review categorizes the manufacturing of FRP 740 
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composite structures into part generation and curing processes with an overview of process 741 

modeling and optimization using AI/ML techniques. Predicting material properties utilizing 742 

AI/ML models is then discussed with the emphasis on two significant mechanical properties, 743 

i.e., strength and fatigue. In addition, this study goes over advances of the application of 744 

AI/ML methods to the NDI and SHM of composite structures. 745 

 746 

Table 1. Details of AI/ML models for design, manufacturing, testing and monitoring stages 747 

of high-performance composites in the literature listed in this review. 748 

Stage/Task Application Method 

Design: 
Material 

Development 
and Selection 

Customized material 
fabrication MGI [52] 

Composite functionality 
optimization 

High-Throughput Experimentation, Synthesis, 
Characterization [121] 

Inverse design for required 
functionality 

DeepONet [40], ANN [53], Topology Optimization 
[124, 125], Kriging with GA [40, 126] 

Manufacturing: 
Process 

Modeling and 
Optimization 

AFP process optimization CNN [45, 129, 131], ANN [130, 132] 
AM process modeling and 

optimization 
GPR [135], Refined RNN with LSTM [134], CNN 

[136, 137] 

Curing process modeling ANN [36, 38, 140-143], PINN [37, 127], Neural 
ODE [103] 

Curing process 
optimization and control 

RBF Network with NSGA-II [33], RNN with NLP 
[144], Multi-Objective GA [145], ANN and LSTM 

[146], MOPSO Algorithm [147] 

Testing: 
Material 
Property 

Prediction 

Composite strength 
prediction 

Sparse Regression [111], ANN [154, 155, 158], 
GABP Network with PCA [156], PCR [157] 

Composite stress field 
prediction U-Net-based CNN [41, 55, 150, 151], FNO [149] 

Composite adhesive joint 
strength prediction 

ANN [39, 51, 160, 163-165, 167, 168], GPR [113, 
166], Active Learning [159], DNN and Genetic 

Programming [161], PINN [162, 163] 

Fatigue prediction and 
characterization 

ANN [42, 171, 174], Neural ODE [56, 112], RNN 
[170], RF [172], Gradient Boosting [173], CNN 

[175], GA [176] 
Fatigue diagnosis and 

prognosis 
ANN and Particle Filtering [34], SVM and RF 

[177], DNN [178], DAE [179] 

Monitoring: 
Damage 

Diagnosis and 
Prognosis 

Composite damage 
classification and detection 

CNN [184, 186, 188, 189, 195-197], SVM and RF 
[185], ANN [187, 190, 191], Hierarchical 

Clustering [192], kNN [193], Faster R-CNN [194], 
SVC [198] 

Composite adhesive joint 
defect detection SVM [43, 203, 204], ANN [110] 

Structural health 
monitoring 

ANN [44, 216], CNN [57], K-Means [214], SVM 
[215] 
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 749 

7.2 Issues of AI/ML and Potential Solutions 750 

There are certain drawbacks inherent in data-driven AI/ML models and limitations in the 751 

implementation and practice of adopting such algorithms in a complex engineering problem 752 

of high-performance composites. These shortcomings are summarized to point out the room 753 

for future improvements. 754 

7.2.1 Data Issues and Potential Solutions 755 

Lack of data, especially structured data, often impacts the successful utilization of AI/ML 756 

models which are usually data-hungry. Structured data in an appropriate form of input data 757 

and output label is highly desired for the application of the standard supervised learning. 758 

Because of the expensive cost of physically destructive testing and experiments of high-759 

performance FRP composites, data scarcity and imbalance are one of the most common 760 

issues that hinder extensive deployment of AI/ML methods.  761 

Data scarcity occurs generally in each activity during the life cycle of composite 762 

structures due to the expensive and time-consuming testing, and data imbalance can be often 763 

observed when considering defects and damages in process modeling, material properties 764 

prediction, and classification/localization tasks in NDI and SHM. In addition to the ordinary 765 

methods that deal with data imbalance such as stratified sampling, a reliable and robust data 766 

augmentation strategy is expected to address both issues of scarce and imbalanced data. Such 767 

a strategy can be a combination of conventional preprocessing of data, e.g., noise injection, 768 

transformation, filtering, etc. and generating synthetic data using advanced AI/ML models 769 

such as GAN and its variants. 770 

Another issue related to data is the lack of paired labels. In the framework of supervised 771 

learning, it is often assumed that the input data and labels are balanced and paired, which is 772 

not reflective of the real-world scenarios where data acquisition and labelling processes are 773 
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not ideal. Labels can be noisy, incorrect, and/or incomplete, resulting in an inexact, 774 

inaccurate, and/or incomplete supervision. To address this issue, weakly-supervised learning 775 

is desirable that is designated to train ML models with limited, noisy, and/or imprecise 776 

labelling through data-driven methods [217]. Weakly-supervised learning has been applied to 777 

a variety of fields [218-221], but its potential in the area of high-performance composite 778 

structures has not been fully explored yet. 779 

Considering complex engineering problems of FRP composites, data issues of scarcity, 780 

imbalance, labeling pose challenges to the effective and efficient application of AI/ML 781 

methods. Low data quality such as inaccurate manufacturing process parameters, testing 782 

measurements with large uncertainties requires researchers to cautiously acquire and/or 783 

collect data needed. Limited data will degrade AI/ML model performance. However, data 784 

augmentation and incorporating physics knowledge, e.g., physical laws, nominal material 785 

properties/behaviors, are expected to mitigate such issue for stages of manufacturing, testing 786 

and monitoring. With the aid of physical laws, AI/ML algorithms have the potential to 787 

comprehend material behaviors with unseen configurations, e.g., fraction of fibers, and 788 

predict “A-Basis” and “B-Basis” values for FRP composite design when trained on a 789 

moderate size dataset. In summary, techniques such as data augmentation, physics-informed 790 

machine learning and weakly-supervised learning are available to alleviate data issues, but it 791 

remains to be an open question waiting for further exploration. 792 

7.2.2 Other Issues and Potential Solutions 793 

In addition to data issues, other issues of AI/ML methods such as explainability and 794 

interpretability, uncertainty quantification, computational cost, and data privacy are discussed 795 

as follows. 796 

(1) Since data-driven methods such as AI/ML models are usually regarded as black-box 797 

procedures, the interpretability and explainability of AI/ML models and results have 798 
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attracted much research interest, which are also a major drawback especially when an 799 

analysis and interpretation of model are desirable which physically makes sense in an 800 

engineering application. To address this and facilitate the implementation of black-box 801 

models, explainable AI (XAI) that allows users to comprehend results produced by 802 

AI/ML algorithms should be investigated to associate with engineering knowledge. 803 

(2) Compared to classic statistical methods, it is more difficult to analyze uncertainty 804 

propagation and perform uncertainty quantification in AI/ML, especially DL, models. 805 

Uncertainty quantification is significant in considering safety and reliability in any 806 

engineering problems. GPR as a cheap-to-evaluate AI/ML model with the capability of 807 

uncertainty analysis has been widely used in the field of FRP composites. However, it is 808 

not typically utilized for the out-of-distribution (OOD) samples [222], i.e., unseen 809 

samples, which are specially interested in the engineering design. Even with more 810 

advanced AI/ML models such as Bayesian neural networks and deterministic methods, 811 

uncertainty quantification of AI/ML results in high-performance composites is limited 812 

and needs more investigation. 813 

(3) One of the practical issues in the implementation of AI/ML methods is the requirement of 814 

large amounts of computational resources and time especially for those large-scale 815 

models with much data. The computational cost of AI/ML models poses challenges for 816 

the extension to large scales and integration with legacy manufacturing systems. 817 

(4) Considering the complexity of high-performance FRP composites such as anisotropy, 818 

inhomogeneity, inherent large variability, human factor, etc., adopting AI/ML methods 819 

requires more dedicated and special design and more data to ensure the model capture the 820 

underlying complicated physics and patterns. End-to-end modeling of the multi-stage 821 

manufacturing process of composites using AI/ML techniques remains under-explored. 822 

(5) Regarding safety-critical applications such as aerospace industry, adopting data-extensive 823 



43 
 

AI/ML models for each stage of high-performance FRP composite cycle life will require 824 

additional attention to data privacy concerns and regulatory compliance. While the former 825 

one can be addressed by techniques such as federated learning which is a collaboratively 826 

decentralized privacy-preserving ML scheme to overcome challenges of data silos [223] 827 

and often applied to privacy-sensitive areas such as healthcare, the latter concern requires 828 

a much more cautious design of AI/ML algorithms with appropriate constraints to comply 829 

with aerospace regulations. 830 

 831 

7.3 Future Research Directions 832 

Despite of these great advancements and extensive efforts in adopting AI/ML models for 833 

engineering problems of high-performance FRP composite structures, there are still some 834 

possible future research directions in certain areas that are presented below to provide a clear 835 

and systematic overview of current challenges and outlooks in this field. 836 

7.3.1 Exploring and Exploiting Generative Models 837 

There are gaps in designing FRP composite structures based on AI/ML models. The 838 

complex material structure and multiple-material system make it challenging to fully 839 

understand the relationship between design space and material response merely relying on 840 

physical knowledge. In the general framework of material inverse design, VAE is able to 841 

learn a stable material representation in the low-dimensional subspace and the decoder 842 

produces structures towards the targeted material property when combined with a generative 843 

process and predictive model that links to material responses. Novel AI/ML models, 844 

especially generative models, have great potential to help design and develop new materials, 845 

as demonstrated in [116] where such method has been applied to the crystal materials. When 846 

considering FRP composites, a potential direction is to explore structures and/or 847 

combinations of fiber and matrix that are more resilient and robust to curing PIDs through the 848 
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way of inverse design with the aid of generative AI/ML models. 849 

7.3.2 Incorporating Physics and Engineering Knowledge 850 

PIML and PINN generally perform better when solving engineering problems that are 851 

related to nonlinear ODEs/PDEs via incorporating physics knowledge into ML and NN 852 

frameworks. Such models are suitable for modeling of continuous processes such as 853 

manufacturing, curing, and testing processes of composite structures. Based on prior domain 854 

knowledge, multiple ways of integrating physics knowledge can be selected when building 855 

PIML/PINN models such as adding physics-informed terms that are related to the 856 

initial/boundary conditions to loss function, choosing activation functions based on physical 857 

rationale, incorporating known or partially known ODEs/PDEs into NN structures, etc. In 858 

addition, some advanced PIML/PINN models such as physics-informed neural operators 859 

(PINOs) [224-226], Neural ODEs [227], etc. can either map between the input-output space 860 

continuously or construct a continuous-depth structure, improving extrapolation performance. 861 

This is valuable to some engineering problem where limited experiment data cannot fully 862 

cover the input space, which applies to the field of FRP composites. Therefore, hybrid 863 

physics-based and data-driven approaches provide opportunities to better understand and 864 

model the manufacturing and testing processes of FRP composite structures. 865 

7.3.3 Addressing High-Dimensional and Heterogeneous Data 866 

Considering the high-dimensional data in NDI on composites such as C-scan data from 867 

UT and a time-series of image signals, e.g., DIC, thermography, shearography, etc., it is 868 

important to process the whole-field spatiotemporal data that is usually in the form of 3-order 869 

tensor, whereas most of current works extract features through dimension reduction methods 870 

such as PCA, inevitably losing information to some extent. Tensor-based data analytics such 871 

as tensor decomposition and tensor-based network can play a role in processing such high-872 

dimensional data by preserving and leveraging the tensor structure and embedded 873 
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spatiotemporal information, which can also be applied to the scenarios where multiple 874 

sensors are distributed and deployed in SHM by fusing sensor signals together. Another 875 

potential approach to deal with multiple distributed sensor signals is multi-model method. 876 

Meta-learning, which learns from a collection of similar tasks with the goal of generalization 877 

and adaptation to a related but new task [228], has the potential to be applied to multiple 878 

homogeneous sensors. On the other hand, the SHM with heterogenous sensor setting is 879 

expected to be benefited from multi-model meta-learning techniques [229, 230]. 880 

7.3.4 End-to-End and Calibration-Free Modeling 881 

Modeling an engineering problem such as FRP composite structures often involves a 882 

calibration process on some parameters, e.g., material properties, which are usually unknown 883 

and intrinsic property of material. Such parameters vary among different materials yet are 884 

constants during manufacturing for each material. Conventional methods for calibration rely 885 

on laborious tests that are expensive and time-consuming. An end-to-end modeling is 886 

expected to bypass the calibration process of material properties as these properties are also 887 

the result of manufacturing parameters. With the aid of AI/ML methods, especially those 888 

advanced models such as PINN, etc., complex nonlinearities in the relationship between 889 

manufacturing and material response are possible to be revealed. On the other hand, 890 

calibration-free algorithm [231] is potential to be applied on continuous processes with 891 

multiple sensors, e.g., SHM, to “cancelling out” calibration parameters with an appropriate 892 

design. 893 

7.3.5 Multiscale Process Modeling 894 

Multiscale modeling of structural composites for the mechanical performance analysis 895 

has been explored in the past through numerical simulations, which often follows the process 896 

where one first computes properties of one entity such as individual plies at a small length 897 

scale, then homogenizes into a constitutive model and passes to the next level of length scale 898 
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to estimate the corresponding behavior of a larger entity, e.g., composite laminate, and repeat 899 

to the level of structural component afterwards [232]. A local-to-global multiscale simulation 900 

strategy composed of computational micromechanics for ply level [233], mesomechanics for 901 

laminate level [234], and mechanics for component level [235], however, requires multiple 902 

runs of time-consuming numerical simulations. On the other hand, AI/ML methods are being 903 

utilized to learn the physics at different length scales and to substitute simulations to improve 904 

the efficiency of multiscale analysis of FRP composite structures [55, 236-239]. Generally, 905 

AI/ML methods such as MultiScaleGNN [240] serve as surrogate models of numerical ones 906 

to reduce simulation efforts in the inference stage and the PINN framework is employed to 907 

strengthen the learning capabilities. As a promising alternative for traditional physics-based 908 

numerical simulation, AI/ML techniques for the multiscale process modeling can be further 909 

improved in the aspects of smoother transition between scales and more robust prediction. 910 
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