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Abstract

With the booming prosperity of artificial intelligence (AI) technology, it triggers
a paradigm shift in engineering fields including material science. The integration
of Al and machine learning (ML) techniques in material science brings significant
advancements in understanding and characterizing underlying physics. Due to the
overall outstanding properties compared to conventional metallic materials, high-
performance fiber reinforced polymer (FRP) composites have attracted great
interest. This article aims to provide a comprehensive review of the state-of-the-
art works of applying AI/ML methods in high-performance FRP composites,
focusing on four critical stages throughout the product life cycle, i.e., design,
manufacturing, testing, and monitoring. This present study covers the tasks of
material development and selection, process modeling and optimization, material
property prediction, and damage diagnosis and prognosis in the four stages, which
are conducted with the aid of advanced AI/ML algorithms. An outlook for the
incorporation of modern advanced AI/ML models into FRP composite research is
provided by the identification of current challenges and potential future research
directions.

Keywords: Artificial intelligence; Machine learning; High-performance composites

1. Introduction

Recent advances in material science and engineering with the aid of modern
computational algorithms and devices [1] have greatly pushed the need of advanced materials
that can be adopted to increasingly complex engineering applications and adapted to multiple
functional and safety requirements. Among various types of advanced materials such as
crystal, metal alloy, etc., composite material, made up of at least two constituents into a
heterogeneous mix [2], is one of the most promising structures. Upon an appropriate

combination, the overall material performance will be enhanced, and characteristics of the
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constituents will be kept simultaneously. Moreover, tailoring material properties can be
achieved by adjusting the proportion, composition, structure and manufacturing accordingly
[3-5]. Specifically, high-performance composites, which here refer to fiber reinforced
polymers (FRPs) usually with carbon/glass fibers (CFRPs/GFRPs) and their joints, stand out
due to their extraordinary properties such as higher strength, lighter weight, greater resistance
to corrosion compared to conventional metallic materials, with a wide range of structural
applications in aerospace [6-9], automobile [10, 11], marine [12, 13], renewable energy [14,
15], and infrastructure industries [16]. For example, in the aircraft design, high-performance
FRP composites provide an improvement in fuel-efficiency and emission reduction. In
addition to functional benefits such as higher allowable hoop stress and corrosion resistances,
a composite fuselage would allow more comfortable levels of cabin pressure and humidity
which can effectively improve passenger comfort in modern commercial aircrafts such as
Boeing 787 [17], as shown in Fig. 1. Besides, there are many aerospace components made of

FRP composites even the primary structures are metallic [18].
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Fig. 1. Material usage in Boeing 787 where nearly 50% of components are composites [17].
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The whole product life cycle of high-performance FRP composite structures is shown in
Fig. 2, including five main stages: designing, manufacturing (i.e., part generation, machining
and post treatment, and joining including curing), testing, monitoring, and recycling. Despite
of the outstanding advantages of material properties in various aspects, the complex multi-
stage manufacturing process (MMP) and the intricate material structure that leads to material
nonlinearity and anisotropy make it a challenging task to understand the material dynamics
and physics and characterize material behaviors [19]. Physics-based methods have long been
developed to analyze and understand the FRP composite materials in each stage of the MMP,
including both analytical models [20-23] and numerical simulations [24-31]. As analytical
models easily suffer from over-simplified assumptions, numerical simulations can achieve a

reasonable accuracy but often at the cost of computational resources.
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Fig. 2. Product life cycle of FRP composite parts [32].
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However, as there is abundant, even excessive, data produced and collected by the rapidly
developing sensing technology in all life cycle activities, it has opened the door for artificial
intelligence (Al), especially the machine learning (ML) technique due to the powerful data-
processing capability. Numerous efforts have been made in applying AI/ML methods to the
field of high-performance FRP composites, attempting to take the advantage of data-driven
methods to address engineering problems. Existing studies on FRP composite structures with
AI/ML techniques have mainly focused on surrogate modeling of finite element methods
(FEMs) [33-35], physical process modeling [36-38], regression for property prediction [39-
42], and signal/image-based classification [43-45]. Specifically, for instance, in the aerospace
application of composite fuselage assembly, sparse learning models [46, 47] were proposed
for the optimal placement of actuators and shape adjustment to reduce the maximum gap
between two fuselages, significantly improving efficiency compared to traditional manual
practice. Zhong et al. [48] further developed a finite element analysis (FEA) model-based
automatic optimal shape control (AOSC) framework with model uncertainties addressed by
cautious control.

Compared to traditional modeling methods of engineering problems such as analytical
derivation and numerical simulations, AI/ML techniques generally require much less domain
knowledge and are expected to discover underlying representative patterns in the dataset. For
an intricate engineering problem that lacks adequate physical understanding like the adhesive
joining of high-performance FRP composite structures, which is currently a common practice
in aircraft manufacturing and repair but not fully proved due to its complexity, AI/ML can
play a pivotal role in modeling, bypassing the requirement of thorough comprehension of its
physical and chemical mechanism. State-of-the-art mechanical analysis of FRP composite
adhesive joining is often under a simplified assumption that materials are linear elastic and

isotropic [23]. Although one can set a more complex material setting in numerical analysis,
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e.g., FEA, which is more consistent with reality [49, 50], an accurate result is usually at the
cost of computational resources and time. On the other hand, once trained, AI/ML models
take only a few seconds for prediction with a new input, which is much faster than traditional
numerical simulations. Another prominent advantage of AI/ML methods over conventional
ones is that data-driven algorithms have the potential to end-to-end model the whole MMP of
high-performance FRP composites and adhesive joining given appropriate data pairs [39, 51].
This is significantly important for quality-critical applications because the manufacturing
parameters are control inputs and of great interest. Analytical and numerical models usually
cannot capture this relation due to the unknown interactions between stages of MMP. In spite
of these advantages, AI/ML models suffer from data-related issues which will be discussed in
Section 7.2 in detail.

However, there is still a research gap in thoroughly understanding all the life cycle
activities of FRP composite structures, especially the stages of designing, manufacturing,
testing, and monitoring which substantially affect the in-service performance of FRP
composites. A comprehensive article is highly desired that bridges the widespread and
advanced AI/ML techniques for the engineering production and applications of high-
performance FRP composites. Therefore, as shown in Fig. 3, this study summarizes current
state-of-the-art adoption of AI/ML methods in design, manufacturing, testing, and monitoring
stages of high-performance FRP composite structures with tasks of material development and
selection, process modeling and optimization, material property prediction, and damage
diagnosis and prognosis, respectively.

Hereafter, the rest of this article is organized as follows: section 2 provides a brief history
of the development of AI/ML methods and their general applications in engineering. Section
3 describes current utilization of AI/ML models in the material development and selection of

composites with a focus on the framework of material genome initiative and inverse design.
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The process modeling and optimization for the manufacturing processes including both part
generation and curing processes with the aid of AI/ML techniques are reviewed in section 4.
Section 5 considers the characterization of FRP composites, especially on the mechanical
properties of strength and fatigue, using AI/ML algorithms. Section 6 discusses the state-of-
the-art works for damage diagnosis and prognosis of composite structures that are integrated
with AI/ML methods. Section 7 concludes this review and looks forward to the prospects and

challenges by presenting potential future research directions.
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Fig. 3. AI/ML models in design, manufacturing, testing, and monitoring stages of high-
performance FRP composite structures with tasks of material development and selection,
process modeling and optimization, material property prediction, and damage diagnosis and
prognosis, respectively, where (a) Composite structure with tunable negative thermal
expansion through computational design [52]; (b) FRP composite structure with simulation
result to minimize PID through inverse design [53]; (c) AFP process for FRP composite part
generation [54]; (d) Autoclave curing process with cure cycle of FRP composite structure
[38]; (e) Microscopic stress tensor field maps of FRP composites for prediction [55]; (f)
Stiffness degradation of composite laminates under cyclic loadings predicted by ANN [56];
(g) Simulation of propagating Lamb wave with deformation magnification for NDI of FRP
composites [57]; and (h) Integrated self-monitoring and self-healing design of CFRP

structure for SHM [58].

2. Development of AI/ML for Engineering

Artificial intelligence (Al) is the field of computer science that studies how machines can
be made to act intelligently [59], involving human-like psychological skills such as
perception, association, prediction, planning, motor control, etc., with diverse information-
processing capacities [60]. With a narrow definition, machine learning (ML), as a subfield of
study in Al, investigates algorithms and statistical models that computer systems utilize to
perform a specific task, e.g., classification, regression, clustering, etc., without being
explicitly programmed [61].

The Al technology has long been developed since McCulloch and Pitts [62] proposed the
MP neuron model, connecting nervous activity with computation in 1940s. Classic Al models
were later extensively explored such as perceptron [63, 64], back-propagation technique [65],

LeNet [66], LeNet-5 [67], support vector machine (SVM) [68, 69], k-nearest neighbor (kNN)
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[70], long short-term memory (LSTM) [71], and etc., in which many of the landmark goals
had been achieved.

Al, especially ML techniques, thrived when it entered the 21st century. Various concepts
derived from ML, e.g., active learning [72], deep learning (DL) [73], physics-informed
machine learning (PIML) [74], meta-learning [75], incremental learning [76], and etc., were
proposed and developed to strengthen learning ability and deal with real engineering
problems. In terms of implementation, one of the most powerful ML models is the neural
network (NN). Numerous advanced artificial neural network (ANN) structures were explored
including deep neural network (DNN), convolutional neural network (CNN) [66], AlexNet
[77], ResNet [78], region-based CNN [79-82], recurrent neural network (RNN) [71, 83-85],
generative adversarial network (GAN) [86-88], attention mechanism [89, 90], physics-
informed neural network (PINN) [91], generative Al [92] for multiple tasks such as
classification, pattern recognition, clustering, prediction and sequence processing.

In addition to the booming development of generic ML models, AI/ML models
specifically designed for real engineering problems have also been extensively explored.
Generally, the applications of AI/ML models to engineering can be divided into two parts: (1)
AI/ML models help in computational modeling of complex physical systems, especially
those with multi-physics interactions or unknown physics; and (2) Post-processing of
experimental data can be conducted through advanced AI/ML models given their powerful
data-mining capabilities.

In the domain of computational modelling, one of the most important goals is to build a
simulator with a good balance between computational cost and simulation accuracy. Physics-
based simulators by the first principle are usually able to achieve very high accuracy yet
suffer from costing huge computational resources. While ML-based models can retain such

computational advantage and dramatically reduce the required time when properly trained on
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related physically-simulated data [93]. ANN has been successfully used to simulate the phase
change of crystal materials based on molecular dynamics [94, 95] in the microscale, and
turbulent flow dynamics [96, 97] macroscopically. Another significant application of AI/ML
methods is surrogate modeling to perform downstream tasks such as real-time prediction,
characterization, system health monitoring and control. AI/ML models have been extensively
employed for estimating mechanical properties of composite materials and adhesives [39, 51,
98], prediction of compressive strength of concrete [99], real-time anomaly detection on
aircrafts [100], understanding transient physics of 2D fluid system [101, 102], and many
other aspects. Recent advances in PIML have fostered massive applications to various
engineering systems by incorporating known or partially known physics, which can be
expressed in a set of ordinary/partial differential equations (ODEs/PDEs) into a machine
learning framework. Hot topics are about fluid and thermal dynamics where PIML has great
potential to emulate system dynamics for different applications, such as curing of composite
systems [37, 38, 103] and weather system [104].

Post-processing of experimental data is also critical in engineering problems. AI/ML
algorithms have long been utilized in biology and related fields to analyze large-scale data
about molecules, proteins and genes by clustering [105-107] and using CNNs [108, 109]. In
other fields such as composites [110-113], astronomy [114], cybersecurity [115], researchers

are proactively exploring new applications of AI/ML methods as well.

3. AI/ML in Material Development and Selection of High-Performance

Composites

The incorporation of AI/ML into material science has brought new vigor and vitality,
enabling more innovation in material development and selection, including the field of high-

performance composites. One breakthrough is that deep generative models such as diffusion
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models are applied to create novel crystal material representations at micro level by exploring
latent feature spaces with the aid of fundamental physical law, e.g., quantum mechanics [116,
117]. Although such models have not been extensively employed in the field of composites,
it is expected that deep generative models would advance the discovery of better FRP
composite materials with appropriate adaptation. The recent applications of AI/ML methods
in material genome initiative and inverse design for composites will be discussed in this

section.
3.1 AI/ML in Material Genome Initiative for High-Performance Composites

Material Genome Initiative (MGI) is a federal multi-agency program that has been
advanced to push the development of computational material science since its announcement
in 2011 [118]. MGI is designed to accelerate the pace of discovery, design, deployment, and
engineering of advanced materials via high-throughput experimentation (HTE) which is a
technique that highly integrated with theory, experiment, and computation [119], where
AI/ML models can be potentially applied for higher computational efficiency and accuracy.
Along with the prosperity of AI/ML over the past decade, MGI has already enabled
significant advances in material science with numerous applications. Utilizing high-
throughput virtual screening (HTVS) that combines quantum chemical calculations, machine
learning techniques, and cheminformatics methods, Gomez-Bombarelli et al. [120] explored
over one million candidates in molecular space to identify promising novel design of organic
light-emitting diodes (OLEDs). The selected candidates were experimentally demonstrated to
reach state-of-the-art external quantum efficiencies.

In addition to advanced materials in the molecular level, MGI has profoundly impacted
the progress in many other fields of materials, e.g., composites. Wang et al. [52] designed
three-dimensional composite structures with tuneable negative thermal expansion through

multi-material projection micro-stereolithography in the framework of computational design
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that is advanced by MGI. Liu et al. [121] reported an HTE method that was used on
functional composite hydrogels to facilitate rapid high-throughput screening of composition-
property relationships, enabling accelerated engineering with optimized properties for
processability and performance, which was proved by application to different functional
composite hydrogel systems.

Although MGI has numerous successes in expediting discovery and development of new
advanced functional materials including some composites, there is still a gap in the area of
high-performance composites. The HTE method combined with powerful computation ability
provided by ML algorithms has a great potential to optimize the design of high-performance
FRP composite materials by searching for better combinations of reinforcement and matrix

materials in terms of both composition and structure.
3.2 AI/ML in Inverse Materials Design of High-Performance Composites

Unlike structure- and element-oriented design that are usually under some constraints,
inverse design begins from a required functionality and searches for an ideal material
structure [122]. Kim et al. [123] proposed a DNN-RNN-based encoder-decoder structure for
the inverse design of organic molecules. The generated molecular structures achieved good
agreement with the targeted triplet excitation energy of OLEDs in a later experimental
validation.

Not only in design of molecular structures, but researchers also applied inverse design to
composite materials, especially high-performance ones. Nomura et al. [124] used topology
optimization specifically with tensor field variables on the fiber orientation to obtain beam
structures with minimum compliance. Topology optimization was also employed by Jung et
al. [125] to search for optimal spatially-varying fiber size and orientation in a multiscale
manner in order to minimize structure compliance. AI/ML algorithms were successfully

utilized in the inverse design process of high-performance composites, covering more
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complex physical functionalities. Luo et al. [53] integrated FEM and ANN to perform
prediction and inverse design of thermosetting-matrix composites of an asymmetric laminate
for a targeted maximum process-induced distortion (PID). The resultant composite of carbon
fiber and epoxy agreed with the targeted maximum PID with a root mean square error
(RMSE) of 8.01%. Considering random uncertainty, Song et al. [126] firstly developed
Kriging surrogate models to learn the transfer functions of both laminated and 2D-woven
composites and employed a genetic algorithm (GA) to solve the inverse optimization design
to achieve desired mechanical properties with minimum statistical deviation. Liu et al. [40]
applied optimization algorithms for inverse design based on a deep operator network
(DeepONet) that is designated to bridge the gap between mechanical behaviors and design
space of hierarchical composites.

Extensive research works have shown the benefit of incorporating AI/ML algorithms into
conventional inverse design and engineering of composite materials. However, this
innovative approach demands a great generalization ability of AI/ML methods that can find
novel material structures not included in existing databases. Current works in the field of
high-performance composites mainly focus on utilizing AI/ML for surrogate modeling to
represent the mapping from design space to the desired functionality, and then employing a
separate optimization method for inverse design. A holistic approach that integrates these two
steps is anticipated to achieve better performance. To this end, generative Al models have
great potential to overcome the inherent limitations of finiteness of material choices in
material databases. Specifically, combining variational autoencoders (VAEs) with diffusion
models can be one of the prospective ML structures, which is able to generate novel material
representations in the latent space, as demonstrated in [116]. Translating this strategy into
composites domain and incorporating composite-specific physics knowledge is expected to

contribute remarkable advances.
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4. AI/ML in Manufacturing Process Modeling and Optimization of High-

Performance Composites

Manufacturing of high-performance FRP composites parts and components involves part
generation process and joining process by various techniques and methods. One of the
pioneering works on composite manufacturing process modeling is the utilization of PIML
and PINN which integrate physics and engineering knowledge into the framework of data-
driven ML modeling, e.g., for composite curing process [37, 38, 103, 127]. This section will
introduce both conventional and advanced manufacturing processes of FRP composites and

review the state-of-the-art applications of AI/ML methods in it.

4.1 AI/ML in Part Generation Process Modeling and Optimization of High-

Performance Composites

The part generation process of FRP composites is the process to reinforce matrix material
with fiber preforms that are usually made by weaving, knitting, braiding, and stitching of
fibers in sheet structure [128]. Conventional generation processes generally include injection
molding, compression molding, liquid composite molding (resin transfer molding, rotational
molding, and wet pressing), fiber deposition (automated tape/fiber placement), pultrusion,
thermoforming, and filament winding. With the integration of AI/ML techniques into the
manufacturing processes, higher production efficiency with less defects can be achieved by
process modeling, monitoring, and optimization thanks to the powerful data processing
capability of AI/ML algorithms.

Image processing techniques have been actively applied into the automated fiber
placement (AFP) process for layup defect detection and segmentation [54]. Zambal et al.
[129] trained a CNN by images artificially generated by a probabilistic graphical model to

mitigate the issue of data scarcity of some new defect types, where the trained model
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achieved a 95% accuracy on real laser sensor data in AFP process for defect segmentation
and classification. Thermal images were employed by Schmidt et al. [45] to comprehensively
evaluate CNNs with three various architectures. Sacco et al. [130] presented their Advanced
Composite Structures Inspection System (ACSIS) based on ANN for automated AFP defect
detection, classification, and documentation. Meister et al. [131] investigated the relevance of
certain image pixels regarding the decision-making response of a CNN classifier through
explainable Al methods smooth integrated gradients and deep learning important features
with Shapley additive explanations (DeepSHAP) to guide monitoring strategies in AFP
inspection. In order to find optimized AFP process parameters given desirable mechanical
properties, Islam et al. [132] proposed a hybrid approach which combines benefits of ANN,
virtual sample generation (VSG) method, and physics-based numerical simulation with real
data, as shown in Fig. 4(a).

On the other hand, additive manufacturing (AM) is one of the leading and advanced
technologies in composite manufacturing for its flexibility in selection of fiber volume and
orientation and ability to adapt to complex geometry. Broadly speaking, FRP composites that
are additively manufactured can be categorized into continuous-fiber reinforced composites
(by fused filament fabrication, laminated objective manufacturing), short-fiber reinforced
composites (by material extrusion processes, vat photopolymerization processes, powder bed
fusion processes, binder jetting), and voxelated polymeric composites (uniquely by AM
approaches such as multiple jet fusion, and direct ink writing) [133]. AI/ML techniques have
significantly improved AM processes, especially in process modeling and optimization.
Yanamandra et al. [134] utilized a refined RNN with LSTM architecture to identify the fiber
orientation in each layer to capture the tool-path information so as to reverse engineer a FRP
composite made by fused filament fabrication (FFF). With the aid of Gaussian process

regression (GPR), Hu et al. [135] thoroughly analyzed mechanical properties of polylactic
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acid (PLA) composites with reinforcement of chopped long carbon fiber (CF) via fused
deposition modeling (FDM) fabrication. Wright et al. [136] developed a novel closed-loop
DL-integrated extrusion AM system to perform in-situ imaging and process parameter
optimization on milled CF-reinforced polymetric composite by several CNNs to maximize
material properties and quality, as shown in Fig. 4(b). The composite parts manufactured by
direct ink writing (DIW) using the autonomously determined optimal parameters were
inspected to be defect-free, demonstrating the effectiveness of the DL-DIW process
optimization framework. A similar closed-loop robot-based AM system for real-time defect
detection and parameter adjustment of CFRPs enabled by advanced CNN models, e.g.,

YOLOv4, was proposed by Lu et al. [137].
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cure kinetics and thermochemical coupling using non-isothermal differential scanning

calorimetry (DSC) data [38].

4.2 AI/ML in Curing Process Modeling and Optimization of High-

Performance Composites

Once the FRP parts are manufactured, joining them together is the next step to make a
component. In addition to traditional joining methods, e.g., mechanical fasteners such as
riveted or bolted joints, and welding, adhesive joining is getting increasingly prevalent for
composite parts due to its weight reduction and avoiding material damage and stress
concentrations. The necessary step to join composite parts with adhesive films or pastes is to
cure them. Not only happening during part generation, but the curing process also occurs in
the joining processes of polymetric composites. However, residual stress will be generated
during this process due to intrinsic factors of material and extrinsic cure conditions, possibly
leading to defects like crack, delamination, distortion, and degradation of mechanical
performance [138]. Understanding the physics of curing process and evolution of curing-
induced residual stress is thus critical to improve the quality of FRP composites. Yet the
curing process and corresponding residual stress and process-induced deformation (PID) are
often complex interactions between thermal-chemical, flow-compaction, and thermal-
mechanical properties of the fiber and matrix materials [139], AI/ML methods play a pivotal
role in such research problems, fostering the understanding of complicated physics through a
data-driven point of view.

ANNSs have already been used in early attempts to model the curing kinetics and predict
related parameters such as retained mass [140], degree of cure (DoC) [36], and time
derivative of DoC [141]. Kim and Zobeiry [142] developed an ANN to identify equivalent 1-

D cases for the 2-D geometry to speed up process simulation considering both geometric and
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cure cycle parameters. Zobeiry and Poursartip [143] investigated three different scenarios of
curing, i.e., to predict thermal lag or exotherm in a curing composite part on an either inert or
metallic tool using theory-guided ML which takes physics-based features and uses a physics-
based rationale to choose activation functions. Hui et al. [38] considered both cure kinetics
and thermochemical coupling in building an ANN to predict the evolution of the DoC. As
shown in Fig. 4(c), the predicted curing dynamics can be further used to guide the FE
analysis or experiments.

With the advent of PIML and PINN, physical dynamics that are described by
ODEs/PDEs can be emulated with higher efficiency and accuracy by incorporating the
physics law into the loss function or ML model structure. Zobeiry and Humfeld [127] utilized
a PINN to solve the conductive heat transfer PDE along with convective heat transfer PDEs
as boundary conditions (BCs) of a heating composite part. Niaki et al. [37] modelled the
thermochemical curing process considering exothermic heat transfer by creating two coupled
PINNs for a bi-material composite-tool system. One PINN is to predict the DoC that is
applicable to the composite material, while the other one is for the temperature distribution
for both the tool and the composite part. Losses specially designed for boundary conditions
were added to improve the performance of the PINN model. Akhare et al. [103] proposed a
physics-informed neural differentiable (PiNDiff) model based on the pioneering PINN model
Neural ODE to learn unknown physics from the limited indirect data and to infer unobserved
variables and parameters in the application of composite curing. Based on a computational
model of cure behaviour of a carbon/epoxy prepreg system proposed by Anandan et al. [22],
the PINDiff model for composite curing was structured as shown in Fig. 5(a) with a great
performance on predicting curing dynamics of corner location of a square laminate when

trained on temperature data collected at the center, as shown in Fig. 5(b).
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393  Fig. 5. (a) Schematics of the PINDiff module for the curing process; (b) PINDiff predictions
394  on the temperature data collected at the center of the laminate, where black solid line

395  represents autoclave temperature that is the BC, red/blue solid line represents the prediction
396  at the center/corner location, red/blue dashed line represents the ground truth at the

397  center/corner location. (Reproduced from reference [103].)

398

399 A natural extension to process modeling is process optimization and control. Jahromi et al.
400  [144] formulated a nonlinear programming (NLP) problem to develop multi-linear-stage cure

401  cycles by minimizing the maximum temperature difference through the cure cycle to improve
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the mechanical properties and gain a curing uniformity, by using a RNN for surrogate
modeling. Struzziero and Teuwen [145] tackled the multi-objective optimization of the cure
stage of the vacuum assisted resin transfer molding (VARTM) process for wind turbine
blades, aiming to minimizing process time, spring-in, and maximum temperature overshoot
by comparing the Pareto front obtained from GA. A ML framework, CompML (Composites
Machine Learning), was used by Humfeld and Zobeiry [146] for active control of the
composites autoclave processing. Specifically, two LSTM models were trained to solve the
forward thermochemical problem to predict temperature histories of the part and tool, then
the results were fed into a third ANN to search for an optimal cure cycle. Yuan et al. [33]
built a surrogate model through radial basis function (RBF) of multi-field coupled FEM
results and utilized a non-dominated sorting genetic algorithm-II (NSGA-II) to search for the
global optimum solution where the cure time and maximum gradient of temperature and DoC
are minimized to reduce the residual stress and improve production efficiency. Tang et al.
[147] employed a multi-objective particle swarm optimization (MOPSO) algorithm to find an
optimal cure cycle that minimizes total curing time, maximum difference of DoC, and spring-
back angle of a C-shaped composite specimen after curing based on FEM simulations. The
optimal cycle was later verified by an experiment to effectively shorten the curing time and
reduce the spring-back angle.

Although various advancements have been made by AI/ML methods in the
manufacturing and curing processes modeling and optimization of FRP composites, there are
still areas not fully touched. One notable domain is to end-to-end model the whole
manufacturing process including both part generation and curing processes to better link all
related manufacturing parameters with the ultimate performance measures. PIML/PINN are
specifically designed to be applied on physics-related problems, having a great potential for

understanding the complex interactions during the manufacturing of composite materials.
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5. AI/ML in Material Property Prediction of High-Performance

Composites

Typically, material properties encompass chemical (chemical composition, atomic
bonding, corrosion resistance, etc.), electrical (conductivity, resistivity, dielectricity, etc.),
magnetic (ferro/para/diamagnetism, etc.), thermal (thermal conductivity, expansion,
diffusivity, etc.), mechanical (strength, stiffness, elasticity, plasticity, toughness, fatigue,
ductility, brittleness, etc.), and optical (refection, refraction, diffraction, etc.) aspects [148].
Mechanical properties, among all these aspects, often hold significant importance since they
characterize the material in most engineering applications. Traditional methods to determine
the mechanical properties of a material rely on repeating mechanical tests laboriously, which
is time-consuming and expensive. However, the utilization of AI/ML methods to predict
material properties has experienced significant growth and released a large number of efforts
from laborious tests for various materials including composites. The capacity to learn
intricate nonlinearities has enabled AI/ML methods to encourage researchers to use them to
perform these tasks. The main breakthrough in predicting mechanical properties of high-
performance composite structures is to forecast the stress/strain tensor field maps instead of
merely a value of strength, which requires a more sophisticated design of model to deal with
the high-dimensional and multiscale data. CNN-based neural operator with multiscale FEM
would be a good candidate [41, 55, 149-151]. This section will focus on the recent advances
of AI/ML techniques for prediction of mechanical properties of high-performance composites,
especially on strength and fatigue behavior of composites and their joints.

5.1 AI/ML in Strength Prediction of High-Performance Composites

Strength of material is often recognized as the most important mechanical
characterization for structural parts/components and engineering materials to which FRP

composites are usually applied. Rahman et al. [152] built a CNN-based surrogate ML model
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for molecular dynamics simulations to predict the shear strength of carbon nanotube-polymer
interfaces. In addition to the interfacial properties in carbon nanotube (CNT) composites, the
geometric deformation was investigated through a model that integrated functional PCA
(FPCA) with DNN to ensure predictive performance and interpretability [153]. On the other
hand, for general FRP composites, Abuodeh et al. [154] utilized a resilient back-propagating
neural network (RBPNN) as a regressor to predict the shear strength of reinforced concrete
(RC) beams strengthened with externally bonded FRP sheets. The recursive feature
elimination (RFE) algorithm and neural interpretation diagram (NID) were later employed to
identify significant parameters to improve predictive efficiency and accuracy. Yin and Liew
[155] investigated the application of gradient boosting regressor (GBR) and ANN on
evaluating the interfacial properties of FRP composites such as the interfacial shear strength
(IFSS) and the maximum force given fiber geometries and basic mechanical properties of
fiber and matrix materials. Li et al. [156] predicted the transverse microstructure-property
relationship of unidirectional (UD) FRP composites with microvoids through an ML-
combined material informatics approach where the principal component analysis (PCA) was
used to extract statistical representations and a genetic algorithm optimized back propagation
(GABP) neural network was built for prediction. A similar framework but with principal
component regression (PCR) was employed by Olfatbakhsh and Milani [157] on fabric
composites. Prediction and analysis of dynamic strength [158] and failure criteria [111] in
terms of both maximum compressive and tensile stress using AI/ML methods were also
explored.

Apart from predicting a single or several strengths that are in the form of scalar, FRP
composite stress field prediction has caught great attention and been proactively explored
recently [41, 55, 149-151]. Specifically, Rashid et al. [149] utilized the Fourier neural

operator (FNO) to predict component-wise stress and strain for two-phase composites. As
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shown in Fig. 6(a), the FNO learned the constitutive relation between the design geometry
and different mechanical responses, predicting the normal and shear components of the stress
and strain tensor field in an end-to-end fashion with the material microstructure alone as the
input. Notably, the FNO framework was demonstrated to have a decent generalization ability
to unseen microstructure geometries. Gupta et al. [55] reported an ML-based approach for
multiscale mechanics modeling considering microstructural heterogeneity where a CNN with
U-Net architecture was trained to learn the mapping between the spatial arrangement of fibers
and corresponding 2D stress tensor fields. Three different approaches for predicting the stress
field of a heterogeneous macro-structured composite and a comparison of computational time
are shown in Fig. 6(b). The U-Net model trained for stress prediction in the microstructure
was tested successfully on three different macro-structures of varying sizes and subjected to

different loading and boundary conditions, showing the capability for multiscale analysis.
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492 2D digital composite geometry is analyzed for the mode-I tensile test using FEM with a pre-

493  crack along the x-direction and loading in the y-direction, and the tensor components are
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used to derive scalar-valued equivalent measures such as von-mises stress and equivalent
strains [149]; (b) Multiscale mechanics modeling of a heterogeneous macro-structure using
three different approaches: (i) full-scale FE analysis, (ii) FE? analysis, and (iii) ML-driven
multiscale analysis. The full-scale FE analysis is the least efficient, the multiscale FE analysis
is parallelizable and more efficient, and the ML-driven multiscale analysis is the most

efficient [55].

In addition to predicting strength of FRP composite itself, research on forecasting
strength and failure analysis on composite adhesive joints has also been extensively explored
for its critical significance in multiple engineering applications. Not only the structural epoxy
adhesives [39, 159], but also the whole bonded joints, e.g., interfacial properties, are of great
research interest, with various types of mechanical testing for different fractures such as
mode-I [51], mode-II [160-164], and mixed-mode [113, 165, 166], and the adhesion between
different materials [167, 168]. ANN is the most used model among all the AI/ML algorithms,
combined with FEM utilizing cohesive zone model (CZM) that describes composite adhesion
by a traction-separation law given some certain simplified assumptions, to predict shear and
peel strength of composite adhesive joints and perform failure analysis. This combined model
directly links nominal material properties (usually from datasheet) and joint geometries to the
mechanical characterization, effectively improving the prediction efficiency compared to
FEM alone. The potential of applying advanced AI/ML models has been explored as well.
Considering the issue of small dataset that is common in engineering applications, Pruksawan
et al. [159] utilized an active learning framework with gradient boosting as the regressor and
Bayesian optimization for final proposing for a combination of epoxy parameters that yield a
maximum adhesive joint strength. This active learning framework will augment the training

dataset by adding additional data proposed by the predictive model from the original design
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space, as shown in Fig. 7, which runs in an iterative supervised manner and would generate a
highly uniform set of sample points. This property of active learning is expected to mitigate

the issue of lack of training data in a real engineering problem such as FRP composites.
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Fig. 7. Flowchart of the active learning approach for modeling and optimization of epoxy

adhesive [159].

5.2 AI/ML in Fatigue Prediction of High-Performance Composites

Compared to the strength of material, fatigue characterizes the behavior and failure of a
material due to a cyclic loading other than a quasi-static one, which is also the most common
material failure modes that harm the safety of structural components [169]. Fatigue data is
often noisy and unapproachable for physics-based methods to get an accurate result, which is
suitable for AI/ML analysis. Fatigue life prediction is a widely studied topic in the literature
where researches apply AI/ML models to the fatigue analysis of composites, attempting to
bridge material and experimental parameters and the fatigue life [42, 170-174]. Other aspects
have also been extensively analyzed, with more concentrations on the fatigue behavior
characterization, e.g., damage/crack evolution [112, 175], strength/stiffness degradation [56,

176], and fatigue diagnosis and prognosis [34, 177-179].
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Based on the strain pattern obtained from distributed optical fiber sensors bonded on a
CFRP double cantilever beam (DCB) specimen under a cyclic loading, Cristiani et al. [175]
built a one-dimensional (1D) and a two-dimensional (2D) CNN which were separately
trained to predict the delamination length due to fatigue loading to track the crack evolution.
Notably, as shown in Fig. 8(a), Tao et al. [56] applied a f-variational autoencoder (S-VAE)
firstly to extract and disentangle the latent features to represent the underlying driving
mechanism of stiffness degradation, and then adopted the Neural ODE framework to learn
the dynamics of the latent features. The Neural ODE framework predicts the stiffness of the
composite laminate over the cycle-domain continuously, achieving a better accuracy than a
conventional phenomenological model. Lee et al. [179] built a deep autoencoder (DAE)-
based model, as shown in Fig. 8(b), to detect and classify fatigue damage in composite
structures using the ultrasonic signals collected from the CFRP plate under ultrasonic Lamb
waves. The DAE was trained to reconstruct the ultrasonic signals obtained when the sample
was intact and for testing, the reconstruction RMSE was selected as an index to detect
damage once it exceeded the determined threshold. On the other hand, the feature learned by
the hidden layer of the DAE was extracted for damage classification by a density-based
spatial clustering of applications with noise (DBSCAN) algorithm after processed by singular
value decomposition (SVD) for dimension reduction.

Composite materials exhibit complex hierarchical structures, and thus their mechanical
properties depend on interactions at multiple length scales. It is expected to predict material
properties with improved accuracy and better understanding of the connection between the
structure and properties if an AI/ML model is adopted which considers multi-scales, e.g.,
from nanoscale to micro- and macroscale, and with considerable interpretability. Additionally,
neural operator (NO), other than ordinary neural network, has a great potential on predicting

more complex material properties based on material structure and some basic properties, e.g.,
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as demonstrated in [149], because it is able to map between input and output functions on
continuous domains and do super-resolution on the output instead of just mapping between
input and output points on a fixed, discrete grid [180]. This special nature enables NO

overcome the inherent issue of lacking enough continuous data in engineering applications.
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Fig. 8. (a) Computation graph of the ANN model based on the Neural ODE structure with -
variational autoencoder (f-VAE) [56]; (b) Overview of the deep autoencoder-based fatigue

damage detection and classification for composite structures [179].
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6. AI/ML in Damage Diagnosis and Prognosis of High-Performance

Composites

With the increasing use of high-performance composite parts and components in real life,
it is of great importance to maintain the structural integrity by damage detection and
evaluation not only during manufacturing processes, but also when they are in service.
Comprehensive diagnostic and prognostic for FRP composites are critically significant for
safety concerns, yet particularly challenging due to non-homogeneity and anisotropy of
composite materials [181]. Generally, diagnosis is to obtain a clear picture of the health state
of the material, and prognosis will estimate the remaining useful life (RUL) [35]. Therefore,
robust and reliable non-destructive inspection (NDI) methods are essential and highly
desirable for detection of various types of damages. On the other hand, structural health
monitoring (SHM) performs an in-situ and continuous damage evaluation of composite
structures, and thus has the potential to identify defects in the early stages, allowing for a
timelier maintenance and repair [182]. Although performing a reliable NDI and SHM on FRP
composite is difficult because of intricate structural nature, AI/ML methods shed a light by
the powerful data analysis capabilities. For example, weak adhesion and kissing bonds are the
defects in composite laminates and adhesive joints that are extremely difficult to detect non-
destructively through conventional techniques and yet very safety-concerning. AI/ML models,
on the other hand, with appropriate feature extraction based on physical knowledge, perform
decently on a binary classification task to determine the existence of such defects [110].
Recent advancements in utilizing state-of-the-art AI/ML methods for NDI and SHM on high-

performance composites will be reviewed in this section.
6.1 AI/ML in Non-Destructive Inspection of High-Performance Composites

Generally, based on the output signal for analysis and its frequency, NDI techniques can

be categorized into three main groups: acoustic wave-based, electromagnetic techniques-
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based, and imaging techniques-based [183]. AI/ML methods, especially ANNs and CNNs,
have been applied to these specific fields for composite defect and damage inspection,
detection, localization, and classification. Acoustic wave-based NDI mainly includes acoustic
emission (AE) [184] and ultrasonic testing (UT) using Lamb waves [185, 186], guided waves
[187, 188], and etc., which are suitable for monitoring and locating cracking and
delamination in FRP composites. Defects such as crushing and impact that are explicitly on
the surface are easily detected by visual inspection (VI), which has also been aided by
ANNSs/CNNs for automation and better visual detectability for defects that are negligible for
naked eyes [189, 190]. Apart from VI and eddy current testing (ECT) [191], another
important NDI method in the -electromagnetic techniques-based group is infrared
thermography (IRT). Combined with different AI/ML methods, e.g., hierarchical clustering
[192], kNN [193], Faster R-CNN with attention mechanism [194], IRT is able to detect the
size and location of defects in composite laminates based on thermal images in an automated
manner. The third group imaging techniques-based NDI generally utilizes the difference
between images obtained at different time to highlight changes in defects, including
shearography and digital image correlation (DIC) for measuring strain and displacement
[195, 196], and X-ray computed tomography (CT) with the capacity to obtain information
about internal porosity, pores shape, dimension, and etc. [197]. Additionally, Gillespie et al.
[198] utilized the transient thermal conduction profiles to detect delamination in composite
laminates based on a supervised support vector classification (SVC) algorithm.

Although AI/ML algorithms have been extensively applied to detect defects and flaws in
composite structures, the area of composite adhesive joints, e.g., damages and weak adhesion,
has not been fully explored due to its intricate and invisible nature. Kissing bond, defined as a
“zero-volume disbond” [199] that the adhesive and adherend are in contact without voids and

chemical and/or molecular bonds between the surfaces, is one of the most interested and
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safety-concerning defects of composite adhesive joints. Because the defect locates in the
bondline, i.e., in the interface between two non-transparent materials, and the considerable
thickness of adherends compared to that of adhesive, ordinary visual methods and those
depending on subtle deformation of a thin part are challenging to be applied. Despite of such
difficulties, multiple physics-based methods, especially based on ultrasonic signals, were
developed [200-202]. AI/ML methods are also under proactive exploration. Boll et al. [110]
employed an ANN to classify kissing bonds made by release agent from pristine samples and
defective specimen with a polytetrafluoroethylene (PTFE) film inserted and predict the shear
strength of these three types of bonding based on vibroacoustic modulation (VAM) analysis.
Specifically, as shown in Fig. 9(a), an ultrasonic Lamb-wave signal f., with a high-strain
pump wave fp will result in a signal modulation and sidebands through the bonding area. The
material nonlinearity introduced by defects and induced under a high-strain load is expected
to further modulate the ultrasonic Lamb wave, revealing higher harmonics than pristine
samples. As illustrated in Fig. 9(b), the sidebands and carrier amplitudes after a fast Fourier
transform (FFT) were selected as the input of the ANN model for defect classification and
shear strength prediction. With the aid of ML classifiers such as SVM, ultrasonic signals that
obtained from different NDI methods such as pulse-echo immersion [43], phased array [203]
and ordinary UT [204] were utilized to extract physics-based features for classification of

adhesive bonding.
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643  Fig. 9. (a) Schematic representation of a VAM analysis, where combining a high-strain pump
644  wave fp with an ultrasonic Lamb-wave as signal carrier f, results in a signal modulation and
645  sidebands, and the piezoceramic of the carrier signal (In) is excited at f, and resulting

646  vibrations are received by another piezoceramic actuator (Out); (b) Exemplary illustration of
647  the ANN approach used to analyse VAM signals, where the Prist, RA and PTFE are

648  corresponding labels of pristine specimen and specimen with release agent contamination or

649  a PTFE-film, respectively. (Reproduced from reference [110].)
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6.2 AI/ML in Structural Health Monitoring of High-Performance Composites

Taking NDI technique as core a component, SHM provides a continuous and in-situ
monitoring of structural loads and damages and environmental parameters, sensing structural
state parameters such as stress and/or strain [205]. Selecting a proper sensor and designing an
appropriate way to embed the sensor into composite structures without harming structural
integrity and strength too much are the primary task and challenge of SHM. The general
workflow of SHM is depicted in Fig. 10. The SHM process consists of a diagnostic and a
prognostic part where the former one estimates the current state of the structure or the system
while the latter one evaluates the damage evolution and forecasts the remaining service life
[35]. After diagnosis and prognosis of a system with adequate sensing ability, one can obtain
the failure probability for downstream decision making about repair or replacement. There
are also four performance levels of SHM defined by Rytter [206], namely, (1) verification of
damage presence; (2) determination of damage location; (3) estimation of damage severity;

and (4) prediction of remaining service life.
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Fig. 10. The multidisciplinary structural health monitoring process [207].

With the development of advanced sensor technology, numerous physics-based SHM
research have been done with various design and application of sensing strategies, e.g.,

electromechanical impedance/resistance-based sensors [208-210], electric time domain
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reflectometry [211, 212], fiber Bragg grating sensors [213], self-monitoring and self-healing
[58], and etc. As shown in Fig. 11(a-c), a smart sensing grid that is comprised of continuous
carbon fiber tows were integrated within the polymer matrix to identify the deformation field
distribution and detect both micro- and macro-damage according to the dramatic change in
the slope of fractional change in electrical resistance with the strain based on the electrical-
mechanical behavior [210]. Luan et al. [58] pioneeringly designed a self-monitoring and self-
healing composite structure with curing agent embedded using the dual-material AM
technology, which is shown in Fig. 11(d), where the continuous carbon fibers serve as both a
sensory element and reinforcement. Fig. 11(e) plots the result of three-point bending testing

with four obvious stages. Damages can be detected depending on the change of the slope.
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Fig. 11. (a-c) Schematic of a meshed smart structure and fabrication sequence (from bottom-
layer to top-layer) with the testing result of fractional change in electrical resistance of each
continuous carbon fiber tow, and a detailed look at the relation of middle tows that can be
three apparent stages: elastic stage, micro-damage stage, and macro-damage stage [210]; (d,
e) Specimens with plane-, spiral-, and interlock-type of self-healing structures, with a testing
result of variation of fractional change in resistance and stress versus time for the continuous

carbon fiber tow embedded specimen during the entire loading process [58].
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AI/ML methods, e.g., ANN, SVM, kNN, etc., have been utilized to analyze the
experiment data for downstream tasks such as damage detection, classification, and
characterization for different composite structures [44, 57, 214-216]. Ewald et al. [57]
proposed a CNN framework called DeepSHM which involves data augmentation of
ultrasonic guided wave signals through wavelet transform and formalizes a generic method
for end-to-end deep learning for defect classification. Liu et al. [214] performed a clustering
analysis using the bisecting K-means algorithm to identify different damage modes for
acoustic emission signal sources from a composite wind turbine blade. Khan et al. [215]
investigated the classification of two types of delaminated samples from healthy ones using
SVM with input of multi-level features extracted from various DL models through transfer
learning. The raw structural vibration data was encoded into high-resolution time-frequency
images using synchroextracting transforms (SETs). Reis et al. [216] employed an ANN
model with input of mini-batches from the high-dimensional vibration data by dislocated
series method to detect and classify delamination damage of composite beams. Diaz-Escobar
et al. [44] evaluated the performance of different ML models including ANN, kNN, random
forest (RF), and SVM on damage identification and characterization in composite laminates
using the electrical resistance tomography (ERT) data.

NDI and SHM signals are usually high-dimensional data, leaving a great space for AI/ML
algorithms due to their powerful data analysis and processing capabilities. Despite of recent
advances in applying AI/ML methods to perform damage and defect detection, localization,
and classification, and prediction of RUL for high-performance composite structures, current
focuses are mainly on these downstream tasks. Integrating the manufacturing information
such as parameters in part generation and curing processes is expected to improve the model

performance as these information reveals inherent material properties. NDI and SHM may
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also benefit from multi-model systems which incorporate multiple sensors and inspection

methods.

7. Conclusions and Future Scope

7.1 Conclusions

AI/ML technologies have witnessed their rapid development where novel techniques
sprout at an unprecedented rate, which triggers a paradigm shift in engineering including
material science. How advanced materials are conceptualized, designed, manufactured, and
tested is redefined enabled by the great computational power of high-dimensional data
analysis and processing. High-performance FRP composite materials, with the advancements
in material science and engineering, have been extensively applied to replace conventional
structural materials in various industries such as aerospace, marine, automotive, and
infrastructure. The intricate structure and complicated interaction inherent in FRP composite
structures raise an obstacle to researchers for understanding material behaviors. The
utilization and integration of AI/ML algorithms into the science and engineering of high-
performance composites marks a pivotal advancement, providing a new understanding from
the view of data analytics.

In the current era of innovation with the emergence of AI/ML techniques, this article
provides a comprehensive review of recent advances and applications of AI/ML methods in
the product cycle life activities of high-performance FRP composites including material
development and selection, manufacturing, testing, defect and damage inspection, and in-
service monitoring, as summarized in Table 1. The development of AI/ML techniques for
science and engineering is briefly reviewed. The AI/ML-based MGI and inverse design of
advanced materials are considered when discussing the application of AI/ML methods in

material development and selection. Later, this review categorizes the manufacturing of FRP
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composite structures into part generation and curing processes with an overview of process

modeling and optimization using AI/ML techniques. Predicting material properties utilizing

AI/ML models is then discussed with the emphasis on two significant mechanical properties,

i.e., strength and fatigue. In addition, this study goes over advances of the application of

AI/ML methods to the NDI and SHM of composite structures.

Table 1. Details of AI/ML models for design, manufacturing, testing and monitoring stages

of high-performance composites in the literature listed in this review.

Stage/Task Application Method
Customized material
Design: fabrication MGI[52]
Material Composite functionality High-Throughput Experimentation, Synthesis,
Development optimization Characterization [121]
and Selection | Inverse design for required | DeepONet [40], ANN [53], Topology Optimization
functionality [124, 125], Kriging with GA [40, 126]
AFP process optimization CNN [45, 129, 131], ANN [130, 132]
. AM process modeling and | GPR [135], Refined RNN with LSTM [134], CNN
Manufacturing: optimization [136, 137]
Pro'cess . : ANN [36, 38, 140-143], PINN [37, 127], Neural
Modeling and | Curing process modeling ODE [103]
Optimization Curt RBF Network with NSGA-II [33], RNN with NLP
op timi‘zl;?fnp;ggecssn ol | [1441, Multi-Objective GA [145], ANN and LSTM
[146], MOPSO Algorithm [147]
Composite strength Sparse Regression [111], ANN [154, 155, 158],
prediction GABP Network with PCA [156], PCR [157]
Composite stress field | ; No( based CNN [41, 55, 150, 1511, FNO [149]
prediction
Testing: Composite adhesive joint ANN [39, 51, 160, 163-165, 167, 168], GPR [113,
Material .. 166], Active Learning [159], DNN and Genetic
Property strength prediction Programming [161], PINN [162, 163]
Prediction Fatigue prediction and ANN [42, 171, 174], Neural ODE [56, 112], RNN
characterization [170], RF [172], Gradient Boosting [173], CNN
[175], GA [176]
Fatigue diagnosis and ANN and Particle Filtering [34], SVM and RF
prognosis [177], DNN [178], DAE [179]
CNN [184, 186, 188, 189, 195-197], SVM and RF
Composite damage [185], ANN [187, 190, 191], Hierarchical
Monitoring: classification and detection | Clustering [192], kNN [193], Faster R-CNN [194],
Damage SVC [198]
Diagnosis and | Composite adhesive joint
Prognosis defect detection SVM43,203,204], ANN [110]
Structural health ANN [44, 216], CNN [57], K-Means [214], SVM
monitoring [215]
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7.2 Issues of AI/ML and Potential Solutions

There are certain drawbacks inherent in data-driven AI/ML models and limitations in the
implementation and practice of adopting such algorithms in a complex engineering problem
of high-performance composites. These shortcomings are summarized to point out the room
for future improvements.

7.2.1 Data Issues and Potential Solutions

Lack of data, especially structured data, often impacts the successful utilization of AI/ML
models which are usually data-hungry. Structured data in an appropriate form of input data
and output label is highly desired for the application of the standard supervised learning.
Because of the expensive cost of physically destructive testing and experiments of high-
performance FRP composites, data scarcity and imbalance are one of the most common
issues that hinder extensive deployment of AI/ML methods.

Data scarcity occurs generally in each activity during the life cycle of composite
structures due to the expensive and time-consuming testing, and data imbalance can be often
observed when considering defects and damages in process modeling, material properties
prediction, and classification/localization tasks in NDI and SHM. In addition to the ordinary
methods that deal with data imbalance such as stratified sampling, a reliable and robust data
augmentation strategy is expected to address both issues of scarce and imbalanced data. Such
a strategy can be a combination of conventional preprocessing of data, e.g., noise injection,
transformation, filtering, etc. and generating synthetic data using advanced AI/ML models
such as GAN and its variants.

Another issue related to data is the lack of paired labels. In the framework of supervised
learning, it is often assumed that the input data and labels are balanced and paired, which is

not reflective of the real-world scenarios where data acquisition and labelling processes are
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not ideal. Labels can be noisy, incorrect, and/or incomplete, resulting in an inexact,
inaccurate, and/or incomplete supervision. To address this issue, weakly-supervised learning
is desirable that is designated to train ML models with limited, noisy, and/or imprecise
labelling through data-driven methods [217]. Weakly-supervised learning has been applied to
a variety of fields [218-221], but its potential in the area of high-performance composite
structures has not been fully explored yet.

Considering complex engineering problems of FRP composites, data issues of scarcity,
imbalance, labeling pose challenges to the effective and efficient application of AI/ML
methods. Low data quality such as inaccurate manufacturing process parameters, testing
measurements with large uncertainties requires researchers to cautiously acquire and/or
collect data needed. Limited data will degrade AI/ML model performance. However, data
augmentation and incorporating physics knowledge, e.g., physical laws, nominal material
properties/behaviors, are expected to mitigate such issue for stages of manufacturing, testing
and monitoring. With the aid of physical laws, AI/ML algorithms have the potential to
comprehend material behaviors with unseen configurations, e.g., fraction of fibers, and
predict “A-Basis” and “B-Basis” values for FRP composite design when trained on a
moderate size dataset. In summary, techniques such as data augmentation, physics-informed
machine learning and weakly-supervised learning are available to alleviate data issues, but it
remains to be an open question waiting for further exploration.

7.2.2 Other Issues and Potential Solutions

In addition to data issues, other issues of AI/ML methods such as explainability and
interpretability, uncertainty quantification, computational cost, and data privacy are discussed
as follows.

(1) Since data-driven methods such as AI/ML models are usually regarded as black-box

procedures, the interpretability and explainability of AI/ML models and results have
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attracted much research interest, which are also a major drawback especially when an
analysis and interpretation of model are desirable which physically makes sense in an
engineering application. To address this and facilitate the implementation of black-box
models, explainable Al (XAI) that allows users to comprehend results produced by

AI/ML algorithms should be investigated to associate with engineering knowledge.

(2) Compared to classic statistical methods, it is more difficult to analyze uncertainty

propagation and perform uncertainty quantification in AI/ML, especially DL, models.
Uncertainty quantification is significant in considering safety and reliability in any
engineering problems. GPR as a cheap-to-evaluate AI/ML model with the capability of
uncertainty analysis has been widely used in the field of FRP composites. However, it is
not typically utilized for the out-of-distribution (OOD) samples [222], i.e., unseen
samples, which are specially interested in the engineering design. Even with more
advanced AI/ML models such as Bayesian neural networks and deterministic methods,
uncertainty quantification of AI/ML results in high-performance composites is limited

and needs more investigation.

(3) One of the practical issues in the implementation of AI/ML methods is the requirement of

large amounts of computational resources and time especially for those large-scale
models with much data. The computational cost of AI/ML models poses challenges for

the extension to large scales and integration with legacy manufacturing systems.

(4) Considering the complexity of high-performance FRP composites such as anisotropy,

inhomogeneity, inherent large variability, human factor, etc., adopting AI/ML methods
requires more dedicated and special design and more data to ensure the model capture the
underlying complicated physics and patterns. End-to-end modeling of the multi-stage

manufacturing process of composites using AI/ML techniques remains under-explored.

(5) Regarding safety-critical applications such as aerospace industry, adopting data-extensive
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AI/ML models for each stage of high-performance FRP composite cycle life will require
additional attention to data privacy concerns and regulatory compliance. While the former
one can be addressed by techniques such as federated learning which is a collaboratively
decentralized privacy-preserving ML scheme to overcome challenges of data silos [223]
and often applied to privacy-sensitive areas such as healthcare, the latter concern requires
a much more cautious design of AI/ML algorithms with appropriate constraints to comply

with aerospace regulations.

7.3 Future Research Directions

Despite of these great advancements and extensive efforts in adopting AI/ML models for
engineering problems of high-performance FRP composite structures, there are still some
possible future research directions in certain areas that are presented below to provide a clear
and systematic overview of current challenges and outlooks in this field.

7.3.1 Exploring and Exploiting Generative Models

There are gaps in designing FRP composite structures based on AI/ML models. The
complex material structure and multiple-material system make it challenging to fully
understand the relationship between design space and material response merely relying on
physical knowledge. In the general framework of material inverse design, VAE is able to
learn a stable material representation in the low-dimensional subspace and the decoder
produces structures towards the targeted material property when combined with a generative
process and predictive model that links to material responses. Novel AI/ML models,
especially generative models, have great potential to help design and develop new materials,
as demonstrated in [116] where such method has been applied to the crystal materials. When
considering FRP composites, a potential direction is to explore structures and/or

combinations of fiber and matrix that are more resilient and robust to curing PIDs through the
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way of inverse design with the aid of generative AI/ML models.
7.3.2 Incorporating Physics and Engineering Knowledge

PIML and PINN generally perform better when solving engineering problems that are
related to nonlinear ODEs/PDEs via incorporating physics knowledge into ML and NN
frameworks. Such models are suitable for modeling of continuous processes such as
manufacturing, curing, and testing processes of composite structures. Based on prior domain
knowledge, multiple ways of integrating physics knowledge can be selected when building
PIML/PINN models such as adding physics-informed terms that are related to the
initial/boundary conditions to loss function, choosing activation functions based on physical
rationale, incorporating known or partially known ODEs/PDEs into NN structures, etc. In
addition, some advanced PIML/PINN models such as physics-informed neural operators
(PINOs) [224-226], Neural ODEs [227], etc. can either map between the input-output space
continuously or construct a continuous-depth structure, improving extrapolation performance.
This is valuable to some engineering problem where limited experiment data cannot fully
cover the input space, which applies to the field of FRP composites. Therefore, hybrid
physics-based and data-driven approaches provide opportunities to better understand and
model the manufacturing and testing processes of FRP composite structures.
7.3.3 Addressing High-Dimensional and Heterogeneous Data

Considering the high-dimensional data in NDI on composites such as C-scan data from
UT and a time-series of image signals, e.g., DIC, thermography, shearography, etc., it is
important to process the whole-field spatiotemporal data that is usually in the form of 3-order
tensor, whereas most of current works extract features through dimension reduction methods
such as PCA, inevitably losing information to some extent. Tensor-based data analytics such
as tensor decomposition and tensor-based network can play a role in processing such high-

dimensional data by preserving and leveraging the tensor structure and embedded
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spatiotemporal information, which can also be applied to the scenarios where multiple
sensors are distributed and deployed in SHM by fusing sensor signals together. Another
potential approach to deal with multiple distributed sensor signals is multi-model method.
Meta-learning, which learns from a collection of similar tasks with the goal of generalization
and adaptation to a related but new task [228], has the potential to be applied to multiple
homogeneous sensors. On the other hand, the SHM with heterogenous sensor setting is
expected to be benefited from multi-model meta-learning techniques [229, 230].
7.3.4 End-to-End and Calibration-Free Modeling

Modeling an engineering problem such as FRP composite structures often involves a
calibration process on some parameters, e.g., material properties, which are usually unknown
and intrinsic property of material. Such parameters vary among different materials yet are
constants during manufacturing for each material. Conventional methods for calibration rely
on laborious tests that are expensive and time-consuming. An end-to-end modeling is
expected to bypass the calibration process of material properties as these properties are also
the result of manufacturing parameters. With the aid of AI/ML methods, especially those
advanced models such as PINN, etc., complex nonlinearities in the relationship between
manufacturing and material response are possible to be revealed. On the other hand,
calibration-free algorithm [231] is potential to be applied on continuous processes with
multiple sensors, e.g., SHM, to “cancelling out” calibration parameters with an appropriate
design.
7.3.5 Multiscale Process Modeling

Multiscale modeling of structural composites for the mechanical performance analysis
has been explored in the past through numerical simulations, which often follows the process
where one first computes properties of one entity such as individual plies at a small length

scale, then homogenizes into a constitutive model and passes to the next level of length scale
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to estimate the corresponding behavior of a larger entity, e.g., composite laminate, and repeat
to the level of structural component afterwards [232]. A local-to-global multiscale simulation
strategy composed of computational micromechanics for ply level [233], mesomechanics for
laminate level [234], and mechanics for component level [235], however, requires multiple
runs of time-consuming numerical simulations. On the other hand, AI/ML methods are being
utilized to learn the physics at different length scales and to substitute simulations to improve
the efficiency of multiscale analysis of FRP composite structures [55, 236-239]. Generally,
AI/ML methods such as MultiScaleGNN [240] serve as surrogate models of numerical ones
to reduce simulation efforts in the inference stage and the PINN framework is employed to
strengthen the learning capabilities. As a promising alternative for traditional physics-based
numerical simulation, AI/ML techniques for the multiscale process modeling can be further

improved in the aspects of smoother transition between scales and more robust prediction.
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