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Abstract

We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple
components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these
account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and
target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range,
joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of
the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most
source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean
rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases
source and target dimensions by one.
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1. Introduction

This paper concerns homotopy groups of spaces of links of various dimensions, where the source
and target manifolds are either Euclidean spaces or spheres. We focus mainly on spaces L=

?1 ,...,?< :=
Emb2

�›<
8=1 R

?8
, R=

�
of long links, meaning smooth embeddings

›<
8=1 R

?8
õ! R= with fixed compact

support. For the most part, we will assume ?1, . . . , ?<  = � 3. Extensive progress that has been made
on the rational homotopy type of these spaces, but less is known over the integers, and less is known
about explicit “geometric” generators of these homotopy groups than about their ranks.

We study map ⌧ : ⌦L=
?1 ,...,?< ! L=+1

?1+1,...,?<+1 given by graphing, in the sense of the graph of
a function. It produces an embedding from a based loop of embeddings by incorporating the loop
parameter into both the source and target; see Definition 2.4. It is most easily visualized when = = 2 and
?1 = · · · = ?< = 0. Extending work of Budney [Bud08] from one component to multiple components,
we use it to determine the homotopy groups of L=

?1 ,...,?< in a range, with the key ingredient being
Goodwillie’s connectivity estimates for pseudoisotopy embedding spaces [Goo90b, Goo90a, GK15].
Then we explicitly describe generators for these groups, up to describing those for homotopy groups of
spheres. Our main results are organized as follows:

• Theorem A concerns injectivity on homotopy groups of graphing. It is an easy generalization of a
theorem on isotopy classes of links to higher homotopy groups of spaces of links. We use it to prove
other main results.

• Theorems B and C calculate, modulo knotting, the homotopy groups c8 of spaces L=
?1 ,...,?< of long

links, in roughly the “metastable” or “triple-point-free” range. If ?1 = · · · = ?< = ?, this range is
just below 8 = 2= � 3? � 3; there is no knotting in this range (see Corollary 4.5); and all the classes
are in the image of the map induced by iterated graphing from spheres. Theorem D extends this
calculation to 8 = 2= � 3? � 3 for ?1 = · · · = ?< = ? with mild lower bounds on ?.

• Theorem E gives explicit generators for the group c2=�3?�3L=
?,...,? calculated in Theorem D. They

are described for ? � 3 and any number < of components, as well as for ? = 2 and 2 components.
Modulo torsion, we obtain generators for ? � 1 and any <. For the space K=

? := Emb2 (R?
,R=) of

long knots, generators of the previously known group c2=�3?�3K=
? are described in terms of 2- and

3-component links and homotopy groups of spheres. Ultimately, all the generators in Theorem E
come from either c2=�2?�3(

=�?�1 or an analogue of the Borromean rings.

Each batch of results is proven using a di�erent method. Before describing them in more detail, we
survey some earlier related work.

1.1. Previous related results

In all of the following previous results, the codimensions of the embeddings are assumed to be at
least 3. An early antecedent of our approach here is the work of Zeeman [Zee60], who established an
injection of c? ((=�?�1) into the set c0Emb((? t (? , (=) of isotopy classes of spherical links. Shortly
afterwards, Haefliger [Hae67] determined this set in a range of values of ?, @, and = and showed that it
is an abelian group. This range was improved slightly by M. Skopenkov [Sko09]. Their result applies
in the 2-metastable range. This is roughly the quadruple-point-free range, meaning that if ? = @, then
roughly ? < 3=/4. More precisely their range is 3= � 2? � 2@ � 6. Crowley, Ferry, and M. Skopenkov
[CFS14] computed rational isotopy classes of spherical links with an arbitrary number of components.
Songhafouo Tsopméné and Turchin [STT18b, Theorem 3.2] described rational isotopy classes of long
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links in terms of trivalent trees. They conjectured an extension to all rational homotopy groups of spaces
of long links in terms of the homology of a graph complex, which was proven in the extensive work of
Fresse, Turchin, and Willwacher [FTW, Section 5.5].

Haefliger [Hae66] showed that the group c0Emb((? , (=) (which is isomorphic to c0K=
?) is trivial

in the metastable range, which is roughly the triple-point-free range ? < 2=/3. More precisely, there is
no knotting if 2= � 3? � 4. He also computed this group for the first family of dimensions (?, =) where
they are nontrivial, namely where 2= � 3? = 3. Using iterates of the graphing map, Budney [Bud08]
generalized these results from isotopy classes to families of knots, specifically from c0K=

? to c8K=
?

where 0  8  2= � 3? � 3. He showed that c8K=
? = 0 if 8  2= � 3? � 4 and calculated c2=�3?�3K=

? .

1.2. Main results and organization

Our results use the same iterated graphing construction, adapted easily from long knots to long links. To
get nontrivial classes for knots from iterated graphing, one must start with at least 1-dimensional knots,
whereas in our setting of links, we can start with links where one or both components have dimension
0. The space of such links has a subspace homeomorphic to a sphere, and most of our results involve
classes from homotopy groups of spheres. Though some of our results hold in codimension less than 3,
they say nothing new in these cases.

Our first main result gives nontrivial homotopy classes in spaces of 2-component links from homotopy
groups of spheres with little restriction on the dimensions involved:

Theorem A. If 0  ?  @  =�1 and 8 � 0, then c8Emb2 (R?tR@ , R=) contains a direct summand of
c8+?(=�@�1. An inclusion of this summand is given by composing maps induced by a based homotopy
equivalence (=�@�1 ! R=�? �R@�? , the inclusion Emb2 (⇤,R=�? �R@�?) õ! Emb2 (⇤tR@�? , R=�?),
and the ?-fold graphing map ⌧ ? : ⌦?Emb2 (⇤ t R@�? , R=�?) ! Emb2 (R? t R@ , R=).

Theorem A appears in the main body as Theorem 3.2. In the Appendix, we prove Theorem A.4 and
Theorem A.6, which are analogues of it for spherical links and for link maps (i.e., smooth maps such that
the images of the components are disjoint). Putting 8 = 0 gives the above-mentioned result of Zeeman.
The case 8 = 0 and ? + @ = = � 1 corresponds to classes dual to the generalized linking number. See
Example 3.3. Theorem A clearly yields many nontrivial torsion classes in spaces of links. The proof of
Theorem A relies on showing that graphing is the inclusion of a retract up to homotopy.

In our second set of results, we determine certain homotopy groups. The first among them mutually
extends to c8Emb2 (R? tR@ , R=) both Budney’s result on c8Emb2 (R?

, R=) and the result of Haefliger
and M. Skopenkov on c0Emb((?t(@ , R=). Indeed, Lemma 4.9 identifies spherical isotopy classes with
long isotopy classes. The next theorem applies in a range that generalizes the triple-point-free range for
isotopy classes to 8-parameter families. There are however many nontrivial groups for links in this range,
in contrast to the setting of knots. Recall that L=

?, @ := Emb2 (R? tR@ , R=) and K=
? := Emb2 (R?

, R=).
Theorem B appears as Theorem 4.4 in the main body of the paper.

Theorem B. If 1  ?  @  = � 3 and 8  2= � ? � 2@ � 4, then in the sequence of maps

c8+?L=�?
0, @�?

⌧⇤�! c8+?�1L=�?+1
1, @�?+1

⌧⇤�! . . .

⌧⇤�! c8L=
?, @

⌧⇤�! . . .

⌧⇤�! c0L8+=
8+?, 8+@

induces by graphing, each map is an isomorphism, except possibly the first. The first map is always a
surjection, and it is an isomorphism if 8  2= � ? � 2@ � 5 or ? = @.

Graphing preserves the quantity 2=�?�2@�4�8, that is, replacing 8, ?, @, and = by the corresponding
four parameters in any term in the sequence gives the same number and thus preserves the assumed
inequality involving them. Corollary 4.5 describes c8L=

?, @ as c8+?(=�@�1 � c0K 8+=
8+@ . If = � @ � 2, then

we can identify c0K 8+=
8+@ with isotopy classes of spherical knots in the sphere or Euclidean space. This

group vanishes if 2= � 3@ � 4, hence it vanishes in the assumed range if ? = @. It is also known if
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2=� 3@ is 3 or 2, by work of Haefliger [Hae66] and Milgram [Mil72]. The latter further identifies the 2-
primary part of this group for some smaller values of this quantity. See the exposition by A. Skopenkov
[Skob]. The proof of Theorem B uses Goodwillie’s connectivity results on pseudoisotopy embedding
spaces, much like the result of Budney’s that it generalizes. The iterated graphing in Theorems A and
B becomes simpler when ? = @, in which case the source space L=�?

0, @�? is just the configuration space
of two points in R=�? .

Theorem C appears as Theorem 4.8 in the main body. It says that for spaces of links with <

components, in a range analogous to that in Theorem B, all elements of those homotopy groups come
from links with at most 2 components. More specifically, for 8  2= � ?1 � ?<�1 � ?< � 4, it allows
us to describe all classes in c8L=

?1 ,...,?< as in Corollary 4.5. Its proof uses the Hilton–Milnor theorem,
restriction fibrations, and a homotopy retract as in the proof of Theorem A

Theorem C. Suppose that 0  ✓  <, 1  ?1  · · ·  ?<  =� 3, and 0  8 < 1� ?1 +
Õ<

:=<�✓+1 (=�
?: � 2). Then every class in c8L=

?1 ,...,?< is in
’

(⇢{1,...,<}, |( |✓
im(]()⇤, where ]( is the inclusion of the

subspace of links with components labeled by a subset ( of {1, . . . ,<}.
Next, methods like those used to prove Theorem B yield a calculation of homotopy groups of

equidimensional 2-component links of dimension at least 2 in the degree where graphing from spheres
ceases to be surjective. Theorem D is a slightly abbreviated version of Theorem 4.11.

Theorem D. Suppose 1  ?  = � 3.

(a) For 2-component links, consider the sequence of maps induced by graphing:

c2=�3?�3L=
?, ? ! c2=�3?�4L=+1

?+1, ?+1 ! . . .! c0L3=�3?�3
2=�2?�3, 2=�2?�3.

If ? � 2, then all the maps are isomorphisms, and these groups are isomorphic to

Z3 � c2=�2?�3(
=�?�1 if = � ? is odd

(Z/2)3 � c2=�2?�3(
=�?�1 if = � ? is even.

If ? = 1, then the first map is surjective, and the remaining maps are isomorphisms.
(b) For 3-component links, consider the sequence of maps induced by graphing:

c2=�3?�3L=
3·? ! c2=�3?�4L=+1

3· (?+1) ! . . .! c0L3=�3?�3
3· (2=�2?�3) .

If ? � 3, then all the maps are isomorphisms, and these groups are isomorphic to

Z7 �
�
c2=�2?�3(

=�?�1�3
if = � ? is odd

Z � (Z/2)6 �
�
c2=�2?�3(

=�?�1�3
if = � ? is even.

If ? = 2, then the first map is surjective, and the remaining maps are isomorphisms.

Our last main result gives explicit generators of these groups for equidimensional long links. It
connects spaces of 2- and 3-component pure braids to spaces of long knots and 2-component long links,
in the homotopy group just outside the ranges of Theorems B and C, i.e., the group c2=�3?�3, which
appeared in Theorem D.

For (spherical) 1-dimensional links inR3, joining all three components of the Borromean rings yields
a trefoil knot, and joining just two of the three components yields the Whitehead link. (Figure 1 shows
long links which have the same Vassiliev invariants of order at most 2 as long versions of these links.) A
generalization to isotopy classes of higher-dimensional spherical links is also known [Skoa]. Theorem
E generalizes this fact to higher homotopy groups. Certain classes in it can be viewed as analogues of
the trefoil, Borromean rings, and Whitehead link. Indeed, Theorem 5.7 says that the “parametrized long
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Borromean rings” maps via graphing and closure to the high-dimensional spherical Borromean rings
defined by Haefliger [Hae62b, Section 4.1]. (Using Theorem 5.7 and Theorem E, we also establish in
Corollary 5.8 that the Haefliger trefoil generates c0K3:

2:�1 for : odd, the analogue of a fact proven by
Haefliger for : even.)

For equidimensional links, the domain of the graphing map⌧ ? : L=�?
<·0 ! L=

<·? is the configuration
space Conf (<,R=�?), denoted in this way in Theorem E. For < = 2, we pre-compose by a homotopy
equivalence (=�?�1 ! Conf (2,R=�?). Theorem E involves a map � (defined in Definition 2.6) that
joins components. More specifically, it joins the last two components, and when ? = 1, component
< � 1 is traversed before component <. Of course � can be iterated. Theorem E appears as Theorem 5.3
in the main body.

Theorem E. Suppose 1  ?  = � 3 and 2= � 3? � 3 � 0.

(a) If = � ? is odd, then the map c2=�2?�3(
=�?�1 ! c2=�3?�3K=

? (� Z) given by ?-fold graphing
followed by joining the two link components sends the Whitehead square [ =�?�1, =�?�1] of the
identity to twice a generator. Thus if = � ? = 3, 5, or 9, it sends the Hopf fibration to a generator.

(b) The map c2=�3?�3⌦?Conf (3,R=�?) ! c2=�3?�3K=
? (� Z or Z/2) induced by the composition of

?-fold graphing followed by joining the three components together maps the “parametrized long
Borromean rings” class [121, 131] to a generator.

(c) For ? = 1, there is a basis for c2=�6L=
1, 1 modulo torsion, consisting of the images of a generator of

c2=�6K=
1 under the inclusions ]1, ]2 : K=

1 ! L=
1, 1; the result of graphing and then joining two

components of [121, 131]; and for = � ? odd, the result of graphing [ =�2, =�2].
If ? � 2, then c2=�3?�3L=

?, ? is generated by the two inclusions of a generator of c2=�3?�3K=
?; the

result of graphing and then joining two components of [121, 131]; and the image of a generating set
of c2=�2?�3(

=�?�1 under graphing.
If ? � 3 and < � 3, then c2=�3?�3L=

<·? is generated by the < inclusions of a generator of
c2=�3?�3K=

?; the result of graphing and then joining two components of [121, 131] for every pair of
components (8, 9) with 1  8 < 9  <; the image under graphing of a generating set of
c2=�2?�3(

=�?�1 for every (8, 9) with 1  8 < 9  <; and the result of graphing [121, 131] for every
(8, 9 , :) with 1  8 < 9 < :  <.

�7�! �7�!

Figure 1. Picture of the long Borromean rings (i.e., a pure braid commutator) [121, 131] and the results
of joining its components in the classical setting where ? = 1 and = = 3..

Recall that the first nontrivial homotopy group of K=
? occurs in dimension 2= � 3? � 3. This is also

the lowest dimension in which a class not detected by the first two stages of the Goodwillie–Weiss
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Taylor tower can appear. Equivalently, it is the lowest dimension of classes dual to analogues of type-2
Vassiliev invariants. Remark 5.9 is a detailed discussion of this analogy in terms of the construction
used in the proof. The branching of part (c) into several cases according to the value of ? is not ideal,
and Conjecture 5.11 is that the statement for ? � 3 extends to ? � 1. By recent results on rational
homotopy of these spaces [FTW], the only hurdle is ruling out any other torsion.

Theorem E is proven via cohomology classes from configuration space integrals for long 1-
dimensional links in R= [CCRL02, KMV13] and dual homology classes from resolving singular links.
These integrals are indexed by graphs as in formulas (5.1) through (5.8), and the singular links we use are
illustrated in Figures 2, 3, 4, 5, 6, and 7. We represent all the homotopy classes in the Theorem by such
resolutions and their images under graphing. In previous joint work of ours, we related the restriction to
1-dimensional pure braids in R= of these integrals to Chen’s integrals for based loop spaces [KKV20].
We then determined the values of Chen integrals on iterated pure braid commutators (i.e. Whitehead
products) [KKV]. These two results of ours help us identify⌧⇤ [121, 131] and⌧⇤ [ =�?�1, =�?�1] with
resolved singular links. We also rely on a calculation of c2=�6L=

1, 1⌦Q [AT15, STT18a] to understand 2-
component link classes that come from neither braiding nor knotting. We use Budney’s work [Bud08] to
obtain a generator of c2=�6K=

1 and importantly to bootstrap from 1-dimensional links to ?-dimensional
links.

Theorem E suggests the possibility of obtaining arbitrary classes of long links from pure braids,
generalizing known results on obtaining isotopy classes and =-equivalence classes of knots via pure
braids; see Questions 5.12 and 5.13.

The paper is organized as follows. In Section 2, we define various spaces of links and various maps
between them. Readers familiar with the subject matter may wish to initially skip this Section and refer
back to it as needed. The remaining Sections are mostly independent of each other, except that results
from previous Sections are used, as noted. In Section 3, we prove Theorem 3.2 (Theorem A) about
the injectivity of homotopy groups of spheres into homotopy groups of spaces of long 2-component
links. Section 4 contains Theorem 4.4 (Theorem B) and Theorem 4.8 (Theorem C), which determine
homotopy groups of spaces of long links, up to knotting, in a certain range. Their proofs use Theorem A.
In Section 5, we prove Theorem 5.3 (Theorem E) on nontrivial classes in spaces of long knots and links
from classes in spaces of pure braids, including classes from spheres. Its proof uses Theorems A, C, and
D. We conclude this Section with conjectures and questions to explore in future work. In Appendix A, we
prove the injectivity of graphing for spaces of 2-component spherical links and 2-component link maps.

2. Key definitions

In Section 2.1, we define a handful of spaces of smooth embeddings or smooth maps. In Sections 2.2
and 2.3, we define a number maps involving these spaces. We begin with some basic conventions and
notation.

For any : � 0, let ⇡: denote the closed :-dimensional unit disk in R: . Let � := ⇡1 = [�1, 1]. For
a smooth manifold - with a basepoint G, we write ⌦:

- for the space of smooth based :-fold loops in
- . We take these to be smooth maps R: ! - which are constant at G outside �: . We may sometimes
allow the role of �: to be played by ⇡: , or by a product of disks whose dimensions sum to : , via a
homeomorphism that is a di�eomorphism between the interiors. One can define c:- as c0⌦:

- , and
c8⌦ 9

- � c8+ 9- for any non-negative integers 8 and 9 . We may also represent a :-fold loop in - by a
based map (: ! - . We write cB8 for the 8-th stable homotopy group of spheres, i.e., cB8 := colim

:!1
c:+8(: .

2.1. Spaces of embeddings, link maps, and pseudoisotopy embeddings

For smooth manifolds % and # , we write Emb(%, #) for the space of smooth embeddings of % into # . Let
%1, . . . , %< be the path components of %. A link map is a smooth map ( 51, . . . , 5<) :

›<
1 %8 ! # such

that the images of the 58 are pairwise disjoint. We denote the space of such link maps by Link
�›<

1 %8 , #
�
.
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We will usually use the term links for embeddings
›<

1 %8 ! # , especially when < > 1, though we
may occasionally use it for link maps when there is no risk of confusion.

If the components of % have basepoints 11, . . . , 1< and H1, . . . , H< are fixed distinct points in # ,
we define Emb⇤ (%, #) as the space of based embeddings, meaning embeddings 5 : % ! # such that
5 (11) = H1, . . . , 5 (1<) = H<. We write Emb2 (%, #) for a space of compactly supported embeddings
of % into # , which we will define more precisely in Definition 2.1. We use the notation Link⇤ (%, #)
and Link2 (%, #) for similarly defined spaces of based link maps and compactly supported link maps
respectively. For spaces - and . , we write Map⇤ (- ,. ) for the space of based continuous maps - ! . .

All spaces of smooth maps are equipped with the Whitney ⇠1-topology, while spaces of continuous
maps have the compact-open topology. In this paper, # will often be a sphere or Euclidean space, while
% will often be a disjoint union of finitely many spheres or Euclidean spaces.

Definition 2.1. Let < and = be positive integers and ?1, . . . , ?< be nonnegative integers less than =.
Let C⇤1, . . . , C

⇤
< be points with �1 < C

⇤
1 < C

⇤
2 < · · · < C⇤< < 1 and with equal gaps between each successive

pair; that is, C⇤8 = �1 + 28/(< + 1). We define the space Emb2 (R?1 t . . . t R?<
, R=) of long links in

R= as follows. An element 5 of this embedding space is required to map
›<

1 (�1, 1) ?8 into (�1, 1)=.
Outside of

›<
1 (�1, 1) ?8 , 5 must agree with the embedding

4 = (41, . . . , 4<) :
<fi
1

R?8
õ! R=

48 : (C1, . . . , C?8 ) 7! (C⇤8 , 0, . . . , 0, C1, . . . , C?8 ).

We take 4 to be the basepoint of Emb2
�›<

1 R
?8
, R=

�
. A long knot is a long link with one component.

We define the space Link2
�›<

1 R
?8
, R=

�
of long link maps similarly, just replacing embeddings by

link maps.

We sometimes abbreviate L=
?1 ,...,?< := Emb2

�›<
1 R

?8
, R=

�
and write L=

<·? when ?1 = · · · = ?< =
?. Many authors use the term “string links” instead of “long links.” Our convention of using the last
rather than first ?8 coordinates of R= in Definition 2.1 is chosen to match our conventions in Definition
2.4 of the graphing map. Any other choice of standard long link 4 produces a space of long links
homeomorphic to the one in Definition 2.1. Above each 48 depends on <, which is suppressed from the
notation when there is no risk of confusion.

If ?1 = · · · = ?< = 0 in Definition 2.1, one obtains the configuration space of< points in R=, which
we also denote Conf (<,R=). Applying Definition 2.1, we obtain ((C⇤1, 0, . . . , 0), . . . , (C⇤<, 0, . . . , 0)) as
the basepoint of Conf (<,R=). For a finite set (, we will also write Conf ((,R=) for Emb((,R=). We call
an element of the space ⌦?Conf (<,R=�?) a ?-dimensional,<-component pure braid in R=. Using the
graphing map (see Definition 2.4 below), we may sometimes view such an element as lying in L=

<·? .
For any 8 and 9 with 1  8 < 9  <, let 18 9 2 c=�1Conf (<,R=) be the cycle obtained from the map

(
=�1 ! Conf (<,R=)
E 7! (G1, . . . , G8�1, G 9 + YE, G8+1, . . . , G<)

where Y < min8 (C⇤8 � C⇤8�1). More precisely, we get a based map by conjugating by a path which takes
the 8-th point from its position at the basepoint to the image of the sphere above. For < = 2, the map
112 (or 121) is a homotopy equivalence.

Definition 2.2. If < � 1 and 1  ?1, . . . , ?< < =, we define the space PEmb
�›<

8=1 R
?8
, R=

�
of

pseudoisotopy embeddings as the subspace of embeddings 5 = ( 51, . . . , 5<) :
›<

8=1 R
?8
õ! R= such

that

• 5 agrees with the standard embedding 4 = (41, . . . , 4<) outside of
›<

8=1 �
?8�1 ⇥ [�1,1) and

• there is a long link 6 = (61, . . . , 6<) 2 L=�1
?1�1,..., ?<�1 such that if C?8 2 [1,1), then
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58 (C1, . . . , C?8 ) = (68 (C1, . . . , C?8�1), C?8 ).
We will often abbreviate this space by P=

?1 ,...,?< := PEmb
�›<

8=1 R
?8
, R=

�
.

Some authors write PE(� ?�1
, �

=�1) or CE(� ?�1
, �

=�1) to denote a similarly defined space of embed-
dings � ? õ! �

=. This space is homeomorphic to P=
? via restriction and extension maps. One can think

of a pseudoisotopy embedding as an embedding that is fixed on the bottom and sides of the domain
cubes and takes the top faces of the domain into the top face of the codomain.

2.2. Stacking, graphing, closure, and joining maps

We now define various maps between spaces of links, starting with a multiplication on spaces of long
links.

Definition 2.3. Let < � 1 and 1  ?1, . . . , ?< < =. There is a product on Emb2
�›<

1 R
?8
, R=

�
called

stacking which sends ( 5 , 6) 2
�
Emb2

�›<
1 R

?8
, R=

� �2 to the map 5 #6 2 Emb2
�›<

1 R
?8
, R=

�
defined

on
›<

1 [�1, 1] ?8 by

( 5 #6)8 (C1, . . . , C?8 ) :=
⇢
( =�1 ⇥ d�1

� ) � 58 � ( ?8�1 ⇥ d�) on [�1, 1] ?8�1 ⇥ [�1, 0]
( =�1 ⇥ d�1

+ ) � 58 � ( ?8�1 ⇥ d+) on [�1, 1] ?8�1 ⇥ [0, 1]

for each 8 = 1, . . . ,<, where d±(C) := 2C ⌥ 1 and where : denotes the identity map on R: .

This map gives the space of long links the structure of a homotopy-associative H-space. An anal-
ogous operation gives a homotopy associative H-space structure on Link2

�›<
1 R

?8
, R=

�
. If all the

codimensions are at least 3, then c0 of either of these spaces is an abelian group under stacking [Hae62a].

The next map appears in most of our main results. In contrast with the usual conventions for graphs, we
put the range coordinates of 5 before its domain coordinates because for = = 2 and ?1 = · · · = ?< = 0,
we view braids as flowing vertically rather than horizontally.

Definition 2.4. For any < � 1, 0  ?1, . . . , ?< < =, define the graphing map

⌧ : ⌦Emb2

 
<fi
1

R?8
, R=

!
! Emb2

 
<fi
1

R?8+1
, R=+1

!

(C 7! 5 (C) = ( 51 (C), . . . , 5< (C))) 7! (⌧ ( 5 )1, . . . ,⌧ ( 5 )<)

by

⌧ ( 5 )8 (C1, . . . , C?8+1) := ( 58 (C?8+1) (C1, . . . , C?8 ), C?8+1)

for 8 = 1, . . . ,<.

Iterating such graphing maps gives rise to maps of the form

⌧
: : ⌦:Emb2

 
<fi
1

R?8
, R=

!
! Emb2

 
<fi
1

R?8+:
, R=+:

!
.

More precisely, ⌧: is the composition of the maps induced on various iterated loop spaces by various
graphing maps, all of which by abuse of notation we will denote ⌧.

The next map lets us pass from long links to spherical (based) links in a Euclidean space. It will be
used to relate isotopy classes of the two types in Lemma 4.9 and to prove variants of the injectivity of
graphing in Appendix A. It is roughly given by fixing disjoint disks in the complement of [�1, 1]= and
gluing these “closing disks” to the parts of the long link in [�1, 1]=.
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First, for any : � 1 and any subspace ( ⇢ R: , let A( be the result of scaling ( by A . In particular,
[�1, 1]: is a cube inscribed in

p
:(

:�1.

Definition 2.5. For < � 1 and 1  ?1, . . . , ?<  = � 2, define the closure map

b· : Emb2

 
<fi
1

R?8
, R=

!
! Emb⇤

 
<fi
1

(
?8
, R=

!

5 = ( 51, . . . , 5<) 7! b
5 = ( b51, . . . , b5<)

(2.1)

where for each 8 = 1, . . . ,<, b
58 is given by

• fixing a homeomorphism (
?8 ! p=⇡ ?8 [ p=⇡ ?8 ,

• taking the union of 58 |p=⇡?8 with an embedding 68 of another copy of
p
=⇡

?8 whose image is the
hemisphere �

(C⇤8 , 0, . . . , 0, C=�?8 , . . . , C=) : C2=�?8 + · · · + C2= = =
 
,

• and smoothing the resulting injection (?8 õ! R= in a fixed small neighborhood of the intersection of
the two disks

p
=⇡

?8 using a fixed partition of unity.

The codomain of the map b· is the space of based embeddings where we take the basepoint 18 in each
copy of (?8 to be any point in the image of 68 , and we take the image of 18 in R= to be the base value H8 .

Each b
58 has image in C⇤8 ⇥0=�?8�2⇥R?8+1 ⇢ R=, so the assumption that =� ?8 � 2 for all 8 guarantees

that their images are disjoint. Moreover, the closure b4 of the standard long link 4 is a trivial link, meaning
that its components bound disjoint (?8 + 1)-dimensional disks in R=. We take b4 to be the basepoint of
Emb⇤

�›<
8=1 (

?8
, R=

�
. We can also use it as the basepoint of the space Emb

�›<
8=1 (

?8
, R=

�
of unbased

embeddings. With di�erent choices of embeddings 68 , one could define a closure map where one allows
=� ?8 = 1, but it cannot take a standard long link to a trivial link if =� ?8 = 1 for three or more values of 8.

We will use similarly defined closure maps denoted by the same symbol:

b· : Link2

 
<fi
8=1

R?8
, R=

!
! Link⇤

 
<fi
8=1

(
?8
, R=

!
, b· : Emb2

 
<fi
1

R?8
, R=

!
! Emb

 
<fi
1

(
?8
, (

=

!

The second one is obtained by post-composing the map (2.1) by the map induced by a fixed inclusion
R= õ! (

=, and forgetting that the resulting embeddings are based.

The upcoming definition of the joining map is lengthy, but the payo� is the facilitation of compatibility
with graphing. That compatibility is crucial in proving Theorem E. The idea is indicated in Figure 1,
though without the modifications needed to obtain a based map of spaces of links. Roughly, the joining
map closes the <-th component and then connect sums the (< � 1)-th component, which could be done
with a tube (?�1⇥⇡1. Instead, we will essentially use a tubular neighborhood of a path in R=, and apply
a flow of R= along this path. The tube implicitly lies in the boundary of the tubular neighborhood.

We begin the precise definition by fixing auxiliary data for each < and each codimension = � ? � 2.
Recall that C⇤1, . . . , C

⇤
< are the first coordinates of the components 41, . . . , 4< of the standard link 4.

• Fix Y < 1/<. Find a real number : > 2 and a smooth embedding W : [0, 1] ! R=�?+1 such that

– W(0) = % := (C⇤<, 0, . . . , 0); W(1) = & := (C⇤<�1, 0, . . . , 0, :); W0(0), W0(1) ? 0=�? ⇥ R; and
– W has a tubular neighborhood [ of radius 1 + Y whose interior is contained in

[�1, 1] ⇥ [�2: , 2:]=�? �
 
[�1, C⇤<�1 + Y] ⇥ [�1, 1]=�? [ 4

 
<�1fi

1

R?

!!
.
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• Fix a framing [
��! W ⇥ R=�? which restricts to orientation-preserving a�ne-linear maps

(C⇤<, 0, . . . , 0) ⇥ [�1, 1] ! % ⇥ 0=�?�1 ⇥ [�1, 1] and

(C⇤<�1, 0, . . . , 0) ⇥ [: � 1, : + 1] ! & ⇥ 0=�?�1 ⇥ [�1, 1] .

This is possible because up to homotopy, such a framing is given by a path in $ (= � ?) with
prescribed last vectors at the endpoints, and we assume = � ? � 2.

• Let � ⇢ [ be the preimage of W ⇥ 0=�?�1 ⇥ [�1, 1] under the framing.
• Fix a di�eotopy iB : R=�?+1 ! R=�?+1, B 2 [0, 1], such that

– i0 = 1=�?+1,
– i1 (%) = &, and for each B > 0, iB |� is defined by flowing along W, using the framing of [,
– for each B 2 [0, 1], iB is supported in the set of points with distance at most Y from �, and
– for each B 2 [0, 1] and points G within Y of �, iB (G) is given by an interpolation (via a

partition of unity) between flowing along W and the identity map.

See [Hir76, Chapter 8.1] for constructions of maps similar to but more general than iB , which flows
along an embedded path.

Because of the condition on the framing, i1 takes (C⇤<, 0, . . . , 0) ⇥ [�1, 1] onto (C⇤<�1, 0, . . . , 0) ⇥
[: � 1, : + 1] by the unique orientation-preserving a�ne linear map between them. Since iB flows
along W and since int([) \ 4(›<�1

1 R?) = ú, we have i1 ((C⇤<�1, 1] ⇥ [�1, 1]=�1) \ 4(›<�1
1 R?) =

i1 ((C⇤<, 0, . . . , 0) ⇥ [�1, 1] ?).
Recall that L=

<·? stands for L=
?1 ,...,?< = Emb2

�›<
8=1 R

?8 R=
�

where each ?8 = ?. To disambiguate
between standard links of di�erent numbers of components, we denote the <-component standard link
by 4< = (4<1 , . . . , 4<<) and the first coordinates of 4<1 , . . . , 4

<
< by (C<1 )⇤, . . . , (C<<)⇤ for the rest of this

Section.

Definition 2.6. For < � 2 and 1  ?  = � 2, we define the joining map

� : L=
<·? ! L=

(<�1) ·?

on a link 5 = ( 51, . . . , 5<) in L=
<·? in two steps, using the di�eotopy iB and the number : fixed above:

1. First define an embedding
›<�1

1 R? ! R= as

(i1 ⇥ 1?�1) � 5 [ (i1 ⇥ 1?�1) � 5 � ) [ 4
<

on � [ ⌫ [ ⇠, where

� :=
<�1fi

1

[�1, 1] ? , ⌫ :=
<�2fi

1

ú t
⇣
[: � 1, : + 1] ⇥ [�1, 1] ?�1

⌘
,

⇠ :=
<�2fi

1

(R? � [�1, 1] ?) t (R? � ( [�1, 1] ? [ [: � 1, : + 1] ⇥ [�1, 1] ?�1)),

and ) is the a�ne-linear map taking ⌫ onto [�1, 1] ? in the <-th component. The maps and all their
derivatives agree on the intersections because of the behavior of long link components outside
[�1, 1] ? and because of the behavior of i1 on (C⇤<, 0, . . . , 0) ⇥ [�1, 1] ? . The above-mentioned
property of i1 ((C⇤<�1, 1] ⇥ [�1, 1]=�1) guarantees that we get an embedding.

2. Pre-compose the embedding
›<�1

1 R? ! R= from step (1) by the map 2: ⇥ 1?�1 : R? ! R? in
each summand. Post-compose it by the map ((, 1/(2:), . . . , 1/(2:)) ⇥ 1?�1 : R= ! R=, where
( : R! R is the a�ne-linear map that sends (C<1 )⇤, . . . , (C<<�1)⇤ to (C<�1

1 )⇤, . . . , (C<�1
<�1)⇤.
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Step (2) ensures that outside of
›<�1

1 [�1, 1] ? , � ( 5 ) agrees with 4
<�1, so � ( 5 ) is a long link.

Regarding basepoints, applying step (1) to 5 = 4
< yields a link where every component is a�ne-

linear and has derivative (0=�? , 1?) : R? ! R=. The e�ect of step (2) when 5 = 4
< is only to

alter the first coordinate in each component, thus yielding 4<�1. Hence � preserves basepoints, i.e.,
� ((4<1 , . . . , 4<<)) = (4<�1

1 , . . . , 4
<�1
<�1). As with graphing, we denote by abuse of notation all of the

joining maps for various <, =, and ? by the same symbol �. A generalization of � to joining di�erent
pairs of components is possible but not needed for our purposes. We now show that graphing commutes
with joining components:

Proposition 2.7. Suppose < � 2 and 1  ?  = � 2. The composites � �⌧ and ⌧ �⌦� are homotopic
as maps ⌦L=

<·? ! L=+1
(<�1) ·(?+1) .

Proof. The key point is that � is defined by maps that use only the first coordinate of the domain›<
1 R

? and the first = � ? + 1 coordinates of the codomain R=. Let l 2 ⌦L=
<·? . Applying either of

the two maps to l gives an embedding
›<�1

1 R?+1 ! R=+1. We view l as a family of embeddings
lC :

›<
1 R

?⇥C ! R=⇥C, C 2 [�1, 1], and hence⌦� (l) as a family of embeddings
›<�1

1 R?⇥C ! R=⇥C,
C 2 [�1, 1]. In these terms,⌧ �⌦� (l) :

›<�1
1 R?+1 ! R=+1 is obtained from ⌦� (l) by first taking the

union of the latter family over both the domain and codomain and then extending by the standard link
(41, . . . , 4<�1) for C?+1 8 [�1, 1]. Thus we must essentially compare the union of the family⌦� (l) with
the embedding

›<�1
1 R? ⇥ [�1, 1] ! R= ⇥ [�1, 1] obtained by restricting the domain and codomain

of � � ⌧ (l).
Let �, ⌫, and⇠ be the subspaces in the definition of joining ?-dimensional links in R=. Then each of

⌦� (l) and � �⌧ (l) is obtained by gluing embeddings of �⇥ [�1, 1], ⌫⇥ [�1, 1], and ⇠ ⇥ [�1, 1]. On
⇠ ⇥ [�1, 1], both are given by the restriction of the standard (? + 1)-dimensional (< � 1)-component
long link, since the combined e�ect of the pre- and post-compositions by the a�ne-linear maps of the
domain and codomain leaves the standard long link fixed. Recall that i1 is a di�eomorphism of R=�?+1.
On � ⇥ [�1, 1], � � ⌧ (l) is given by

(((, 1/(2:), . . . , 1/(2:)) ⇥ 1?) � ((i1 ⇥ 1?) � ⌧ (l)) � (2: ⇥ 1?). (2.2)

On each slice � ⇥ C, ⌦� (l) is given by

(((, 1/(2:), . . . , 1/(2:)) ⇥ 1?�1) � ((i1 ⇥ 1?�1) � lC ) � (2: ⇥ 1?�1). (2.3)

Applying ⌧ to (2.3) means taking the union over C 2 [�1, 1], which has the e�ect of replacing lC

by ⌧ (l) and replacing each instance of 1?�1 by 1? , thus yielding (2.2). On ⌫ ⇥ [�1, 1], we have a
similar comparison of two expressions, except that the second factors are (i1 ⇥ 1?) � ⌧ (l) � ) and
(i1 ⇥ 1?�1) � lC � ) respectively. ⇤

We have actually shown that � � ⌧ = ⌧ � ⌦�, but in Section 5.4 we will consider an alternative
description of � that may agree only up to homotopy with Definition 2.6.

Remark 2.8. One can show that � depends only on the isotopy ⌘B ⇥ 1?�1 of the <-th copy of [�1, 1] ?
into the (< � 1)-th component, where ⌘B is the restriction of iB to (C<<)⇤ ⇥ 0=�?�1 ⇥ [�1, 1]. If we
generalize the construction from ⌘B ⇥ 1?�1 to any isotopy of [�1, 1] ? in R= coming from an embedded
path W in R=, then the space of possible choices in this construction is homotopy equivalent to

(R? � [�1, 1] ?)) n
 
Emb2

 
R,R= �

 
[�1, 1]= [ 4

 
<�1fi

1

R?

!!!
⇥⌦+? (R=�1)

!

where ⌫ n � is imprecise notation for a bundle with base ⌫ and fiber �, and where +? (R=�1) is the
Stiefel manifold of ?-frames in R=�1. If we restrict to paths W lying in R=�?+1 ⇥ 0?�1 and isotopies
⌘B ⇥ 1?�1 (as we do to ensure compatibility with graphing), then the space of possible choices is as
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above but with every instance of = replaced by =� ? + 1 and every instance of ? replaced by 1. In either
setting, the possible homotopy classes of � depend only on c0 of this space.

2.3. Restriction and inclusion maps

We now define restriction and inclusion maps between spaces of links of di�erent numbers of compo-
nents. Let ( ⇢ {1, . . . ,<}. Our link components are always ordered, and accordingly we view ( as an
ordered set using the standard order on {1, . . . ,<}. Let C⇤8 2 (�1, 1), 8 2 {1, . . . ,<} and B⇤8 2 (�1, 1),
8 2 ( be the basepoints’ first coordinates for L=

?1 ,...,?< and L=
?8 :82( respectively. Fix a di�eomorphism

6 : R2 ! R2 isotopic to the identity such that 6( [�1, 1]2) ⇢ [�1, 1]2 and 6(C⇤8 , 0) = (B⇤8 , 0) for all
8 2 (. Fix a di�eomorphism ⌘ : R2 ! R2 isotopic to the identity such that ⌘( [�1, 1]2) ⇢ [�1, 1]2,
⌘(B⇤8 , 0) = (C⇤8 , 0) for all 8 2 (, and (C⇤9 , 0) 8 ⌘( [�1, 1]2) for all 9 8 (. If ( is a consecutive subset of
{1, . . . ,<}, then each of 6 and ⌘ can be taken to be the product of an a�ne-linear map R ! R with
1 : R! R. It is convenient now to extend Definition 2.1 to allow < = 0, i.e. an empty list ( ) of source
dimensions, in which case L=

( ) := {⇤} (where the point may be viewed as the embedding of the empty
set).

Definition 2.9. Let < � 1 and 1  ?1, . . . , ?<  = � 1. Let ( ⇢ {1, . . . ,<}. Define the restriction d(

as the map

Emb2
©≠
´

fi
?8 :82{1,...,<}�(

R?8
, R= �

fi
82(
R?8™Æ

¨
! L=

?1 ,...,?<

d(�! L=
?8 :82( (2.4)

which first restricts a link to the components indexed by ( and then applies 6 ⇥ 1=�2, where the fiber is
taken over the standard long link 4 = (48)82( . Above R=�›82( R

?8 is shorthand for R=�›82( 48 (R?8 ).
The map d( is a fibration by work of Palais or Lima [Pal60, Lim64].

Definition 2.10. Let < � 1 and 1  ?1, . . . , ?<  = � 2. Let ( ⇢ {1, . . . ,<}. Define the inclusion

]( : L=
?8 :82( ! L=

?1 ,...,?<

by setting ]( ( 5 ) to be the standard embedding (48)82{1,...,<}�( together with (⌘ ⇥ 1=�2) � 5 .
We continue to suppress the ambient set containing ( from the notation for d( and ]( . Though this

set varies below between {1, . . . ,<} and subsets thereof, it should be clear from the context.

Proposition 2.11. Let < � 1 and 1  ?1, . . . , ?<  = � 2. Let (,) ⇢ {1, . . . ,<}.
(a) The map ]( is a section of d( up to homotopy.

(b) The composite d) � ]( is is homotopic to the composite L=
?8 :82(

d(\)����! L=
?8 :82(\)

](\)����! L=
?8 :82) .

Thus the induced maps on homotopy groups satisfy im(d) � ]()⇤ ⇢ im(](\) )⇤.
(c) If ) ⇢ (, the composite of the inclusions associated to ) ⇢ ( and ( ⇢ {1, . . . ,<} is homotopic to

the inclusion associated to ) ⇢ {1, . . . ,<}. An analogous statement holds for the restrictions. Thus
im(]) )⇤ ⇢ im(]()⇤ and ker(d()⇤ ⇢ ker(d) )⇤.

Proof. For part (a), d( � ]( takes a long link 5 to (6 � ⌘ ⇥ 1=�2) � 5 . By assumption 6 � ⌘ : R2 ! R2 is
isotopic to 12, and an isotopy to 12 produces a homotopy from d( � ]( to the identity map on L?8 :82( .
Similar homotopies yield the statements about maps in parts (b) and (c), from which the statements
about the induced maps are immediate. ⇤
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Corollary 2.12. Let < � 1, 1  ?1, . . . , ?<  = � 3, and 8 � 0. Let S be any set of subsets of
{1, . . . ,<}. Then

c8L=
?1 ,...,?< �

Ÿ
(2S

ker(d()⇤ �
’
(2S

im(]()⇤. (2.5)

Proof. The left-hand side is an abelian group for all 8 � 0 because every ? 9  = � 3. By Proposition
2.11 (a), for any ( ⇢ {1, . . . ,<}, ]( gives a splitting of the long exact sequence in homotopy of the
fibration d( and hence c8L=

?1 ,...,?< � ker(d()⇤ � im(]()⇤. Repeatedly applying this decomposition for
every ( 2 S shows that c8L=

?1 ,...,?< is the sum of the intersection and the sum on the right-hand side.
One can show that this sum is direct by using induction on the cardinality of S and all three parts of
Proposition 2.11. ⇤

Corollary 2.13. For < = 2, the restriction fibration

Emb2 (R?
, R= � R@) n�! L=

?, @
d2�! K=

@ (2.6)

induces an isomorphism

c8L=
?, @ � c8Emb2 (R?

, R= � R@) � c8K=
@ (2.7)

where the inclusion of c8Emb2 (R?
, R= � R@) is induced by the inclusion n of the fiber of d2 and the

inclusion of c8K=
@ is induced by the section ]2 of d2. In addition,

c8L=
?, @ � (ker(d1)⇤ \ ker(d2)⇤) � c8K=

? � c8K=
@ (2.8)

where the inclusions of the last two summands are induced by ]1 and ]2.

Proof. The decomposition (2.7) follows from Corollary 2.13 with S = {{2}}. We obtain the decom-
position (2.8) from Corollary 2.13 with S = {{1}, {2}}, using the fact that im(]1)⇤ \ im(]2)⇤ = 0. The
latter fact holds because (d 9 � ] 9 )⇤ is the identity and (d 9 � ]: )⇤ = 0 if 9 < : , by Proposition 2.11 (a)
and (b) respectively. ⇤

The graphing, restriction, and inclusion maps are maps of H-spaces, whereas the maps that join
components are not. Graphing commutes with both restriction and inclusion. Analogues of the stacking,
joining, restriction, and inclusion maps for closed links appear in work of Haefliger [Hae62a], where
they are respectively called addition, contraction, projection, and inclusion.

3. Injectivity of graphing for spaces of 2-component long links

We now prove Theorem 3.2 (a.k.a. Theorem A), the injectivity of graphing into spaces of 2-component
links, which produces elements of homotopy groups in arbitrarily high degrees.

Recall that there is a di�eomorphism

⌘ = ⌘=@ : R= � 0=�@ ⇥ R@ = (R=�@ � 0=�@) ⇥ R@ ! (
=�@�1 ⇥ R@+1

(C1, . . . , C=) 7!
✓ (C1, . . . , C=�@)
| (C1, . . . , C=�@) |

, ln | (C1, . . . , C=�@) |, C=�@+1, . . . , C=

◆
.

(3.1)

We can use it to define a homotopy equivalence

(
=�@�1 ! R= � 0=�@ ⇥ R@

B 7! ⌘
�1 (B, 0@+1)

(3.2)
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We can similarly define a based homotopy equivalence (=�@�1 ! R= � 42 (R@), where 41 (0) is the
basepoint in the codomain, by post-composing by the appropriate a�ne-linear map in the first coordinate.
By taking the one-point compactification of R=, we obtain from ⌘ a di�eomorphism

(
= � (@ ! (

=�@�1 ⇥ R@+1
. (3.3)

We will now show there is a homotopy retraction from a space of long links to a wedge of spheres.
This next lemma can be viewed as an adaptation to long links of the _-invariant given in Definition A.2
below.

Lemma 3.1. Let < � 2 and 1  ?1  · · ·  ?<  = � 1. Then ⌦?1
�‘<

:=2 (
=�?:�1� is a retract up to

homotopy of Emb2
�
R?1

, R= �›<
:=2 R

?:
�
, and a section of it is given by ⌦?1

9 followed by the graphing
map ⌧ ?1 , where 9 :

‘<
:=2 (

=�?:�1 ! R= �›<
:=2 R

?: is a homotopy equivalence.

Proof. First, there is a map

A : Emb2

 
R?1

, R= �
<fi
:=2

R?:

!
! ⌦?1

 
R=�?1 �

<fi
:=2

R?:�?1

!
(3.4)

given by viewing an embedding as a smooth map and projecting onto the first = � ?1 coordinates. As in
Definition 2.9, R?: and R?:�?1 are shorthand for their images under the standard embeddings 4: . We
claim that graphing gives a section of A. Indeed, by a slight abuse of notation, consider the map

⌧
?1 : ⌦?1

 
R=�?1 �

<fi
:=2

R?:�?1

!
! Emb2

 
R?1

, R= �
<fi
:=2

R?:

!

given by first viewing a point in ⌦?1
- as a ?1-fold loop in Emb2 ({⇤}, -) and then applying the ?1-fold

graphing map. Then A � ⌧ ?1 is the identity:

5

⌧7��!
⇣
(C1, . . . , C?1 ) 7!

�
5 (C1, . . . , C?1 ), C=�?1+1, . . . , C=

�
2 R=

⌘
A7�!

�
(C1, . . . , C?1 ) 7! 5 (C1, . . . , C?1 )

�
.

Thus ⌦?1
�
R=�?1 �›<

:=2 R
?:�?1

�
is a homotopy retract of Emb2

�
R?1

, R= �›<
:=2 R

?:
�
. A based

homotopy equivalence 9 :
‘<

:=2 (
=�?:�1 '�! R=�?1 �›<

:=2 R
?:�?1 , where 41 (0) is the basepoint in the

codomain, can be obtained along similar lines to formula (3.2), though an explicit formula is not as
easily obtained for < > 2 as for < = 2. Pre-composing ⌧ ?1 by ⌦?1 ( 9) yields the desired section, since
post-composing A by the ?1-fold looping of the homotopy inverse of 9 gives its one-sided inverse. ⇤

Theorem 3.2. If 0  ?  @  =�1 and 8 � 0, then c8Emb2 (R?tR@ , R=) contains a direct summand of
c8+?(=�@�1. An inclusion of it is given by composing maps induced by a based homotopy equivalence 9 :
(
=�@�1 ! R=�? � 42 (R@�?), the inclusion n : Emb2 (⇤,R=�? � 42 (R@�?)) õ! Emb2 (⇤tR@�? , R=�?),

and the ?-fold graphing map ⌧ ?: ⌦?Emb2 (⇤ t R@�? , R=�?) ! Emb2 (R? t R@ , R=).
Here the basepoint for R=�? � 42 (R=�@) is defined to be (C⇤1, 0, . . . , 0).

Proof. There is a commutative square

⌦?Emb2 (⇤, R=�? � 42 (R=�@)) �
� n

//

⌧?

✏✏

⌦?Emb2 (⇤ t R@�? , R=�?)

⌧?

✏✏

Emb2 (R?
, R= � 42 (R@)) �

� n
// Emb2 (R? t R@ , R=)

(3.5)

so we may consider n � ⌧ ? � ⌦?
9 instead of ⌧ ? � n � ⌦?

9 . By Corollary 2.13, for each row of the
square, the inclusion n of the fiber of the restriction d2 induces an inclusion of the homotopy groups of
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the left-hand side as a direct summand of those of the right-hand side. The theorem follows from the
fact that by Lemma 3.1, ⌧ ? �⌦?

9 induces the inclusion of a direct summand on homotopy groups. ⇤

Example 3.3 (Generalized linking numbers). One of the simplest cases of Theorem 3.2 and A.4 is
when ? = @ = 1, = = 3, and 8 = 0, where the theorem reduces to the injection of c1 ((1) � Z, the
group of 2-strand classical pure braids, into the monoid of isotopy classes of classical 2-component
long, or closed, links. More generally, if 8 + ? + @ = = � 1, then a generator of the resulting copy of Z in
c8Emb2 (R? tR@ ,R8+?+@+1) is dual to the linking number of manifolds of dimensions say 8 + ? and @ in
R8+?+@+1, by combining the domain of an element of c8 and the source manifold R? into an embedded
(8 + ?)-dimensional manifold.

4. B�ectivity of graphing in a range

We will now give a complete calculation, at least up to knotting, of homotopy groups of spaces of long
links in a certain range. We will consider spaces of long (knots and) links, such as K=

? and L=
?, @ , as well

as spaces of pseudoisotopy embeddings, such as P=
? and P=

?, @ . The key ingredients, given in Section
4.1, are a fibration sequence involving spaces of long links and a space of pseudoisotopy embeddings,
together with a lower bound on the connectivity of the latter space. In Section 4.2, we prove Theorem 4.4
(a.k.a. Theorem B), establishing bÚectivity in a range for graphing of 2-component links. In this range,
we will see in Theorem 4.8 (a.k.a. Theorem C) that this determines the homotopy groups of any space
of long links. The main result of Section 4.3 is Theorem 4.11, which extends the bÚectivity result to one
degree higher for equidimensional links by starting with 2-dimensional rather than 0-dimensional links.
This requires the identification in Lemma 4.9 of isotopy classes between spherical links and long links.

4.1. Lemmas on pseudoisotopy embedding spaces

Restriction of a 2-component pseudoisotopy embedding R? t R@ õ! R= to the hyperplanes
{(C1, . . . , C?) 2 R? : C? = 1} t {(C1, . . . , C@) 2 R@ : C@ = 1} gives the following fibration:

L=
?, @

8
// P=

?, @
d
// L=�1

?�1, @�1

In turn, this leads to the sequence

⌦L=�1
?�1, @�1

m
// L=

?, @
8
// P=

?, @

which up to homotopy is a fibration. To be somewhat explicit, we review the general construction of the
connecting map m for a fibration in this special case. It comes from the following homotopy-commutative
diagram:

⌦L=�1
?�1, @�1

m
// L=

?, @
8
// P=

?, @

hofib(8) 9
//

? '

OO

eL=
?,@

c '

OO

:
// P=

?, @

(4.1)

The space eL=
?,@ is defined by

eL=
?,@ :=

�
( 5 , W) : 5 2 L=

?, @ , W : [�1, 1] ! P=
?, @ , W(1) = 8( 5 )

 
.
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The homotopy equivalence c : eL=
?,@ ! L=

?, @ is the projection c : ( 5 , W) 7! 5 . The map : : eL=
?,@ !

P=
?, @ is given by : : ( 5 , W) 7! W(�1), and it is homotopic to 8 � c. One defines hofib(8) as its fiber, i.e.,

hofib(8) :=
�
( 5 , W) : 5 2 L=

?, @ , W : [�1, 1] ! P=
?, @ , W(�1) = 4, W(1) = 8( 5 )

 
.

The homotopy equivalence ? : hofib(8) ! ⌦L=�1
?�1, @�1 is given by ( 5 , W) 7! d � W, and for ⌘ homotopy

inverse to ?, we can define m := c � 9 � ⌘.

Lemma 4.1. The graphing map ⌧ : ⌦L=�1
?�1, @�1 ! L=

?, @ agrees with m.

Proof. We will specify a map ⌘ : ⌦L=�1
?�1, @�1 ! hofib(8) homotopy inverse to ? so that with m = c� 9�⌘,

we get⌧ = m. We thus need to construct out of a loop of long links a path of pseudoisotopy embeddings
in one dimension higher, which starts at the standard embedding 4 and ends at a long link. Write a map
5 2 ⌦L=�1

?�1, @�1 as

5 = ( 51, 52) : R ⇥ (R?�1 t R@�1) ! R=�1

51 : (B, (C1, . . . , C?)) 7! 51 (B) (C1, . . . , C?�1)
52 : (B, (C1, . . . , C@)) 7! 52 (B) (C1, . . . , C@�1)

by identifying R ⇥ (R?�1 t R@�1) with (R ⇥ R?�1) t (R ⇥ R@�1). We define ⌘ by the formula

⌘( 5 ) = (⌘( 5 )1, ⌘( 5 )2) : [�1, 1] ⇥ (R? t R@) ! R=

⌘( 5 )1 : (B, (C1, . . . , C?)) 7!
�
51 (6(B, C?)) (C1, . . . , C?�1), C?

�
⌘( 5 )2 : (B, (C1, . . . , C@)) 7!

�
52 (6(B, C@)) (C1, . . . , C@�1), C@

�
where 6(B, C) = (B + 1)d(C) � 1 and d : R! R is a smooth cuto� function that is �1 for C  �1/2 and
1 for C � 1/2. We conclude the proof by noting that the function 6 : R2 ! R satisfies the following
properties:

• 6 is a smooth function of C for all B 2 [�1, 1],
• 6(�1, C)  �1, so that ⌘( 5 ) starts at 4,
• 6(B, C)  �1 if C  �1, so that at every time B, ⌘( 5 ) is a pseudoisotopy embedding (standard on the

bottom face of � ? t �@ and all slices of (� ?�1 t �@�1) ⇥ R below it),
• 6(1, C) � 1 if C � 1, so that ⌘( 5 ) ends at a long knot,
• 6(B, C) is independent of C for all C � 1, so that at every time B, ⌘( 5 ) is a pseudoisotopy embedding

(given by the same long knot on the top face of � ?t �@ and all slices of (� ?�1t �@�1)⇥R above it), and
• 6(B, 1) = B, so that c � 9 � ⌘ = ⌧.

⇤

Lemma 4.2. If 1  ?  @  = � 3, then the space P=
?, @ is (2= � 2@ � 5)-connected.

Proof. Consider the square

P=
?, @

//

✏✏

P=
?

✏✏

P=
@

// ⇤

(4.2)

where the maps with domain P=
?, @ are obtained by restricting an embedding to each of the two

components. This square is (2= � ? � @ � 4)-cartesian. This fact is the improved version of Morlet’s
disjunction lemma due to Goodwillie [Goo90b, p. 6], who further generalized this result [Goo90b, p. 12,
Theorem D] [GK15, Lemma 7.4]. One can see that the statement about the square (4.2) is equivalent to
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the improved version of Morlet’s disjunction lemma by considering the connectivity of the map between
the fibers of the rows or columns. This property of the square means the map from P=

?, @ to the homotopy
limit of the rest of the square is (2=�?�@�4)-connected. This homotopy limit consists of a point inP=

? , a
point inP=

@ , and a path�1 ! ⇤ joining their images, hence it is homeomorphic toP=
?⇥P=

@ . Another result
of Goodwillie implies that the space P=

? is (2=�2?�5)-connected [Goo90b, pp. 9-10] [Goo90a, Lemma
3.16]. Thus P=

?, @ has connectivity at least min{2=� ?�@�5, 2=�2?�5, 2=�2@�5} = 2=�2@�5. ⇤

Lemma 4.3. If 1  ?  = � 3, then the space P=
?,?,? is (2= � 2? � 6)-connected.

Proof. Consider the 3-cube of spaces

P=
?,?

//

%%

P=
?

##P=
?,?,?

77

//

''

P=
?,?

99

%%

P=
?

// ⇤

P=
?,?

//

99

P=
?

;;

This cube is (3= � 3? � 6)-cartesian [GK15, Lemma 7.4], i.e., the map from P=
?,?,? to the homotopy

limit - of the rest of the cube is (3=� 3? � 6)-connected. The space - consists of three points in P=
?, ? ,

three paths �1 ! P=
? joining pairs of images of these points, and a map �2 ! ⇤ whose three faces are

the images of the three paths. The last piece of data is superfluous, so - fibers over (P=
?,?)3 with fiber

(⌦P=
?)3. Since both P=

? and P=
?,? are (2=� 2? � 5)-connected (by [Goo90a, Lemma 3.16] and Lemma

4.2), - is (2= � 2? � 6)-connected, hence so is P=
?,?,? . ⇤

4.2. B�ectivity of graphing and homotopy groups of spaces of long links in a range

We now calculate homotopy groups of 2-component long links, at least up to knotting, in a certain range.

Theorem 4.4. If 1  ?  @  = � 3 and 0  8  2= � ? � 2@ � 4, then in the sequence of maps

c8+?L=�?
0, @�?

⌧⇤�! c8+?�1L=�?+1
1, @�?+1

⌧⇤�! . . .

⌧⇤�! c8L=
?, @

⌧⇤�! . . .

⌧⇤�! c0L8+=
8+?, 8+@ (4.3)

induced by graphing, each map except possibly the first is an isomorphism. The first map is always a
surjection, and it is an isomorphism if 8  2= � ? � 2@ � 5 or ? = @.

The inequality involving 8, ?, @, and = is precisely the condition that c8+?(=�@�1 lies within the stable
range of the homotopy groups of (=�@�1.

Proof. The maps of spaces underlying the sequence (4.3) are

⌦8+?L=�?
0, @�? ! ⌦8+?�1L=�?+1

1, @�?+1 ! . . .! ⌦8L=
?, @ . . .! ⌦L8+=�1

8+?�1, 8+@�1 ! L8+=
8+?, 8+@ . (4.4)

We are interested in the maps they induce on c0. By Lemma 4.1, each such graphing map ⌧ fits into a
fibration

⌦ 9+1L8+=� 9�1
8+?� 9�1, 8+@� 9�1

⌧�! ⌦ 9L8+=� 9
8+?� 9 , 8+@� 9 ! ⌦ 9P8+=� 9

8+?� 9 , 8+@� 9 (4.5)

where 0  9  8 + ? � 1. By Lemma 4.2, the connectivity 2 of the base space in this case satisfies

2 � (2(8 + = � 9) � 2(8 + @ � 9) � 5) � 9 = 2= � 2@ � 9 � 5 � 2= � 8 � ? � 2@ � 4

If 8  2=� ?�2@�5, then 2 � 1. Thus each map in the sequence (4.4) is 1-connected and hence induces
isomorphisms on c0. If 8 = 2= � ? � 2@ � 4, then 9 = 8 + ? � 1 yields 2 � 0, while 9  8 + ? � 2 yields
2 � 1. Hence in this case, the first map in the sequence (4.4) induces a surjection in c0 and the remaining
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maps induce isomorphisms on c0. Finally, if ? = @, then the first instance of ⌧⇤ is the graphing map
from c8+?L=�?

0, 0 � c8+?(
=�?�1 to c8+?�1L=�?+1

1, 1 , which by Theorem 3.2 is also injective. ⇤

We will see in Remark 5.5 that if ? = @, the range of values for 8 in Theorem 4.4 is sharp, even
if one ignores knotting. That is, the map c2=�3?�3⌦?

(
=�?�1 ! c2=�3?�3L=

?, ? does not surject even
onto the factor that does not come from knotting. However, the sequence of graphing maps involving
c2=�3?�3L=

?, ? consists of isomorphisms if one starts with 2-dimensional instead of 0-dimensional links,
as we will see in Theorem 4.11.

Corollary 4.5. If 1  ?  @  = � 3 and 0  8  2= � ? � 2@ � 4, then

c8L=
?, @ � c8+?(

=�@�1 � c0K 8+=
8+@ (4.6)

where the inclusion of the first summand is given by the composite

c8+?(
=�@�1 9⇤

� c8+? (R=�? � R@�?)
n⇤
õ�! c8+?L=�?

0, @�?
⌧?
⇤�!c8L=

?, @ (4.7)

with 9 and n as in Theorem 3.2, and where the projection onto the second summand is given by the
composite

c8L=
?, @ � c0⌦8L=

?, @

⌧8
⇤�!c0L8+=

8+?, 8+@
(d2)⇤����! c0K 8+=

8+@ . (4.8)

For the case where ? = @, we have c8L=
?, ? � c8+?(=�?�1 for all 8  2= � 3? � 4.

Proof. By Corollary 2.13, the restriction fibration d2 and the inclusion n of its fiber yield a direct sum
decomposition of c0 of each space in the sequence (4.4), starting with

c8+?L=�?
0, @�? � c8+?Emb2 ({⇤}, R=�? � R@�?) � c8+?K=�?

@�?

� c8+?(=�@�1 � c8+?K=�?
@�?

(4.9)

and ending with

c0L8+=
8+?, 8+@ � c0Emb2 (R8+? , R8+= � R8+@) � c0K 8+=

8+@ . (4.10)

Each graphing map ⌧⇤ preserves the direct sum decomposition and hence can be written as ⌧⇤ =
⌧
0
⇤ � ⌧ 00⇤ . We now apply Theorem 4.4. If 8  2= � ? � 2@ � 5, each instance of ⌧ 0⇤ and ⌧ 00⇤ is an

isomorphism, so we can decompose c8L=
?, @ as the first summand of (4.9) plus the second summand of

(4.10). If 8 = 2= � ? � 2@ � 4, the last ? instances of ⌧ 00⇤ are still isomorphisms because ? � 1, and all
but the first instance of ⌧ 0⇤ are isomorphisms. The first instance of ⌧ 0⇤ is surjective, and by Theorem
3.2, it is also injective, so we obtain the direct-sum decomposition in this case too. The claim about the
maps in (4.7) and (4.8) is immediate from this direct-sum decomposition.

The simplification of the group for ? = @ holds because c8K=
? = 0 if 8  2= � 3? � 4 [Bud08,

Proposition 3.9 (2)]. (This fact, together with the assumption on 8, also explains the absence of a
summand of c8K=

? in the decomposition (4.6)). ⇤

One can easily extend Corollary 4.5 to the case where 0 = ?  @  = � 2, while still assuming
0  8  2= � ? � 2@ � 4. In that case, the splitting (2.6) gives c8L=

0, @ � c8(
=�@�1 � c8K=

@ .
Here is a variation on Theorem 4.4 and Corollary 4.5. It allows a higher upper bound on 8 at the cost

of not addressing the graphing map on the factor that comes from knotting. The proof similarly relies
on a disjunction result. The upper bound on 8 here and the one in Corollary 4.5 coincide for ? = @.

Proposition 4.6 (Improved range of graphing isomorphisms on the linking summands). If 8  2= �
2? � @ � 4, then c8L=

?, @ � c8+?(=�@�1 � c8K=
@ , where an inclusion of the first summand is given by a

composite involving the graphing map ⌧ ?
⇤ , as in (4.7).
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Proof. A result of Klein and Williams [KW07, Theorem 11.1], proven in further generality by
Goodwillie and Klein [GK15, Theorem E], states that the square

Emb(%, # �&) //

✏✏

Emb(%, #)

✏✏

Map(%, # �&) // Map(%, #)

is (2= � 2? � @ � 3)-cartesian. We apply it to long links (or maps) of % t & = R? t R@ in # = R=,
where Map(%, #) ' ⇤. Proceeding as in the proof of Lemma 4.2, we get that for 8  2= � 2? � @ � 4

c8Emb2 (R?
, R= � R@) � c8(=�@�1 � c8K=

? � c8(
=�@�1

where c8K=
? = 0 because 8  2= � 3? � 4. An application of the splitting (2.7) yields the desired direct

sum. The left-hand map in the square above is the map A from formula (3.4), of which ⌧ ? is a section.
This verifies the claim about the inclusion of the first summand. ⇤

Remark 4.7 (Isotopy classes of links). Lemma 4.9 below implies that for 8 = 0, Theorem 4.4 reduces
to the result of Haefliger [Hae67] and M. Skopenkov [Sko09]. Their result applies in a larger range,
namely 3= � 2? � 2@ � 6 � 0 (roughly, the quadruple-point-free range), in which the group is a direct
sum of four factors. There is one factor for knotting of each of the components, a third factor c?(=�@�1,
and a fourth factor c?+@+2�=+" (R"+=�?�1) where +" (R"+: ) is the Stiefel manifold of "-frames in
R"+: and " is large enough for this group to be stable (or more precisely, " � 2? + @ + 5� 2=). In the
range 2=� ? � 2@ � 4 � 0 of Theorem 4.4, there is no knotting of the R? component, and the homotopy
group of the Stiefel manifold is zero.

Putting ✓ = 2 in the next result shows that Theorem 4.4 describes the homotopy groups of any space
of long links with < components in a certain range. If ?1 = · · · = ?< = ?, this range coincides with the
range in Theorem 4.4 when @ = ?.

Theorem 4.8. Suppose that 0  ✓  <, 1  ?1  · · ·  ?<  =�3, and 0  8 < 1� ?1+
Õ<

:=<�✓+1 (=�
?: � 2). Then every class in c8L=

?1 ,...,?< is in
’

(⇢{1,...,<}, |( |✓
im(]()⇤, where ]( is as in Definition 2.10.

Proof. We proceed by induction on <, with < = ✓ as the basis case. Suppose we know the theorem to
be true for links with < � 1 components. Consider the restriction fibration d( , ( = {2, . . . ,<}:

Emb2

 
R?1

, R= �
<fi
:=2

R?:

!
! L=

?1 ,...,?<

d(��! L=
?2 ,...,?< .

By the direct-sum decomposition from Corollary 2.12 (with S = {(}) and the induction
hypothesis, it su�ces to prove the analogue of the theorem where L=

?1 ,...,?< is replaced by
Emb2

�
R?1

, R= �›<
:=2 R

?:
�
.

Our strategy for proving the latter statement is to first separate knotting and braiding phenomena,
and then translate braiding phenomena into Whitehead products on wedges of spheres. From Lemma
3.1, we have a retraction

A : Emb2

 
R?1

, R= �
<fi
:=2

R?:

!
! ⌦?1

 
R=�?1 �

<fi
:=2

R?:�?1

!
.

Because A and its section induce a splitting of homotopy groups, it su�ces to show that classes in the

codomain and homotopy fiber of A are in im
⇣…

|( |✓ (]()⇤
⌘
=

Õ
|( |✓ im(]()⇤.
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Let � be the homotopy fiber of A , which consists of pairs ( 5 , W) such that 5 is in the domain of A and W
is a path from A ( 5 ) to the standard embedding 4?1 . Similarly define � 0 as the homotopy fiber of the map

A
0 : Emb2 (R?1

, R=) ! ⌦?1 (R=�?1 ) .

There is a homotopy equivalence � ! �
0 induced by the inclusion R= �›<

:=2 R
?: ! R= and the

a�ne-linear map that sends (C⇤1, 0, . . . , 0) to 0=. Its inverse is induced by an a�ne-linear inclusion
R= ! R=�›<

:=2 R
?: whose image lies in (�1, C⇤2)⇥R=�1. (Recall that C⇤1, . . . , C

⇤
< are the first coordinates

of the components 41, . . . , 4< of the standard long link.) Since the codomain of A 0 is contractible, we
have homotopy equivalences Emb2 (R?1

, R=) ! �
0 ! �. In particular, any element in c⇤� comes

from knots, i.e., is in the image of ]1.
The codomain of A is homotopy equivalent to ⌦?1

�‘<
:=2 (

=�?:�1� . By the Hilton–Milnor theorem
[Hil55] (which we may apply since = � ?: � 3) and the assumed upper bound on 8, any element of c8
of the latter space is in the image of the map

 
(⇢{2,...,<}, |( |✓�1

c8+?1

 ‹
:2(

(
=�?:�1

!
! c8+?1

 
<‹
:=2

(
=�?:�1

!
;

indeed, if a Whitehead product of classes from ✓ di�erent summands lies in c8+?1 , then 8 + ?1 �
1 +Õ<

:=<�✓+1 (= � ?: � 2). A wedge-sum of ✓ � 1 spheres corresponds to a link with ✓ components, so
the proof is complete. ⇤

4.3. Spherical links and further calculations for long links

Theorem 4.11, the last result of this Section, extends the range of Theorem 4.4, provided we start with
2-dimensional links. The graphing sequence ends with isotopy classes of long links, so we first digress
to relate those to isotopy classes of spherical links, which are known in the range we will consider.

Lemma 4.9. If 1  ?  = � 3, then the closure map

b· : L=
<·? ! Emb

 
<fi
1

(
?
, (

=

!

induces a bÚection on path components.

Proof. We first check that closure induces a surjection on path components. Given a spherical embedding
5 , let 5+ be its restriction to

›<
1 ⇡

? , where ⇡ ? is the upper hemisphere of (? . Find an isotopy
�+ = �+(G, C) of 5+ to the embedding used to construct the closure of a long link (called 6 = (61, . . . , 6<)
in Definition 2.5). By the isotopy extension theorem, �+ extends to an isotopy � of spherical embeddings
starting at 5 . Then � (�, 1) is in the image of the closure map and is isotopic to 5 , sob· is surjective on c0.

For injectivity, we will use an intermediate space, which we will show has the same path components
as L=

<·? . Fix a di�eomorphism i :
›<

1 ⇡
? !

�›<
8=1{(C⇤8 , 0=�?�1)} ⇥ ⇡ ?

�
, where each summand of

⇡
? in the domain is the upper hemisphere of (? . We define the space DbEmb

�›<
1 (

?
, (

=
�

of disk-

based embeddings as the space of pairs ( 5 , 6) where 5 2 Emb
�›<

1 (
?
, (

=
�

and 6 : ⇡= ! (
= is a

smooth, orientation-preserving embedding such that

• 6i is the restriction of 5 to
›<

1 ⇡
? , and

• 6(⇡=) \ im 5 = 5

�›<
1 ⇡

?
8

�
.

We topologize it as a subspace of Emb
�›<

1 (
?
, (

=
�
⇥ Emb(⇡=

, (
=). This definition is motivated by

the 3-based links used by Habegger and Lin [HL90, Definition 2.1] for link maps with ? = 1 and = = 3.
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We start by establishing a bÚection on isotopy classes between disk-based embeddings and long
links. The projection ( 5 , 6) 7! 6 to the second factor is a fibration

L=
<·? ! DbEmb

 
<fi
1

(
?
, (

=

!
! Emb+(⇡=

, (
=) (4.11)

where Emb+(⇡=
, (

=) is the space of orientation-preserving embeddings ⇡= ! (
=. (The fact that this

projection and (4.12) below satisfy the homotopy lifting property can be seen by lifting a homotopy to
the space of embeddings of the =-manifold with boundary obtained from a neighborhood of 6(⇡=) [
5

�›<
1 (

?
�
.) The inclusion of the fiber over 6 is 5 7! ( b5 , 6), where b

5 is the closure obtained via the
images of ⇡ ? under 6. The base space is homotopy equivalent to ($ (=+1) by shrinking and linearizing.
In particular, it is path-connected.

It now su�ces to check that the boundary map c1($ (= + 1) ! c0L=
? ·< in the long exact sequence

of the fibration (4.11) is trivial. Find a neighborhood of 6(⇡=) homeomorphic to ⇡=�1 ⇥ � such that
the induced inclusion ⇡= ! ⇡

=�1 ⇥ � is the standard one. The generator of c1($ (= + 1) in this context
can be represented by a loop of rotations of the ⇡=�1 factor through an angle of 2c. The e�ect on a long
link 5 in the fiber is to send it to (the isotopy class of) the long link obtained by rotating the factor of �=

in �= = �=�1 ⇥ � by 2c, that is, to 5 itself. Thus the action is trivial on c0, so the inclusion of the fiber
in (4.11) is a bÚection on c0.

We now connect to isotopy classes of spherical links. The projection ( 5 , 6) 7! 5 of a disk-based
embedding to the first factor is a fibration

DbEmb

 
<fi
1

(
?
, (

=

!
! Emb

 
<fi
1

(
?
, (

=

!
. (4.12)

We will show that it is injective on c0 by showing that its fibers are path connected. Since the closure
map factors through the map (4.12), this will establish injectivity on c0 of the closure map.

Because = � ? � 3, c0 of the base space in (4.12) is a group, so its path components are homotopy
equivalent to each other. Therefore it su�ces to consider the fiber � over a standard trivial link. By
considering a small neighborhood of the interval [C⇤1, C⇤<] ⇥ 0=�1 =

–<
8=2 [C⇤8�1, C

⇤
8 ] ⇥ 0=�1 in ⇡=, we see

that � is homotopy equivalent to the space of framed embeddings of < � 1 intervals with interiors lying
in " := ⇡= �

�›<
1 (

?
�

and prescribed values and ?-frames at the endpoints. In turn, � fibers over the
space ⇢ of unframed such embeddings in " , with fiber e� given by the space of such framings. By a
linearization argument again, c0 e� is (c1 ($ (= � 1),$ (= � ? � 1)))<, which is trivial since = � ? � 3.

It remains to show that ⇢ is path-connected. Note that " has a handle decomposition with one =-
disk and < handles of index = � ? � 1. Let � 2 ⇢ . Since = � ? � 1 � 2, we can perform an isotopy of
each sub-arc of � that lies in a handle, fixing its endpoints, so that it ends up in the =-disk. Since = � 4,
we can take each such isotopy to be an isotopy of �, i.e., we can avoid self-intersections. By a similar
argument using that = � 4, we can find a further isotopy to a fixed standard arc in the =-disk. Thus ⇢ is
path-connected. Hence so is �, so the map (4.12) is injective on c0, and the closure map is bÚective on
c0. ⇤

The work of Budney [Bud08, Proposition 3.9 (3)] gives a stronger analogue of Lemma 4.9 for K=
? ,

namely that the closure map is (= � ? � 2)-connected.

Remark 4.10 (Closure of classical long links). For ? = 1 and = = 3, the closure map is not injective
on isotopy classes for < � 2. For example, long links di�ering by conjugation by a pure braid have the
same closure. In the proof above, we would accordingly have c0⇢ < {⇤}, i.e., multiple isotopy classes
of based embeddings of arcs in (3 �

�›<
1 (

1� , including for < � 3 distinct classes lying in the image
of a 2-disk. (For such an embedding of arcs �1 [ · · · [ �<�1 = � in ⇡2 � {@1, . . . , @<} with < � 3, a
corresponding pure braid V can be found by “thickening” �8 to an unbased loop !8 enclosing both of its
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endpoints. Then take V to be any preimage in Aut(�<) of the element of Out(�<) that sends G8G8+1 to
!8 .) For < = 2, conjugation by pure braids is trivial, but the failure of injectivity of closure can be seen
from the fact that c0 e� would be nontrivial. One need only look at long links with 2 and 3 crossings to
find an example of two non-isotopic long links with isotopic closure that arises in this way.

Theorem 4.11. Suppose 1  ?  = � 3.

(a) For 2-component links, consider the sequence of maps induced by graphing:

c2=�3?�3L=
?, ? ! c2=�3?�4L=+1

?+1, ?+1 ! . . .! c0L3=�3?�3
2=�2?�3, 2=�2?�3.

If ? � 2, then all the maps are isomorphisms, and these groups are isomorphic to

Z3 � c2=�2?�3(
=�?�1 if = � ? is odd

(Z/2)3 � c2=�2?�3(
=�?�1 if = � ? is even,

with im(] 9 )⇤ � Z (respectively Z/2)for each 9 2 {1, 2} if = � ? is odd (respectively even).
If ? = 1, then the first map is surjective, and the remaining maps are isomorphisms.

(b) For 3-component links, consider the sequence of maps induced by graphing:

c2=�3?�3L=
3·? ! c2=�3?�4L=+1

3· (?+1) ! . . .! c0L3=�3?�3
3· (2=�2?�3) .

If ? � 3, then all the maps are isomorphisms, and these groups are isomorphic to

Z7 �
�
c2=�2?�3(

=�?�1�3
if = � ? is odd

Z � (Z/2)6 �
�
c2=�2?�3(

=�?�1�3
if = � ? is even,

with im(] 9 )⇤ � Z (respectively Z/2) for each 9 2 {1, 2, 3} if = � ? is odd (respectively even)
and

—
|( |2 ker(d()⇤ � Z.

If ? = 2, then the first map is surjective, and the remaining maps are isomorphisms.

We will see in Theorem 5.3 that the first graphing map is not an isomorphism for ? = 1. Conjecture
5.11 suggests how to complete these descriptions for ? = 1 and ? = 2.

Proof. We use the fibration

⌦L=+ 9�1
?+ 9�1, ?+ 9�1 ! L=+ 9

?+ 9 , ?+ 9 ! P=+ 9
?+ 9 , ?+ 9

where 1  9  2= � 3? � 3. By Lemma 4.2, the pseudoisotopy embedding space P=+ 9
?+ 9 , ?+ 9 is (2= �

2? � 5)-connected. Thus

c8L=+ 9�1
?+ 9�1, ?+ 9�1 ! c8�1L=+ 9

?+ 9 , ?+ 9

is an isomorphism if 8  2= � 2? � 5 and surjective if 8 = 2= � 2? � 4. The claims about the sequence
itself follow because ? � 2 implies 2=�3?�3  2=�2?�5, and ? = 1 yields 2=�3?�3 = 2=�2?�4.

By Lemma 4.9, c0L3=�3?�3
2=�2?�3, 2=�2?�3 � c0Emb

⇣›2
1 (

2=�2?�3
, (

3=�3?�3
⌘
. The proof of the statement

for 2-component links is completed using the calculation of the latter group from Haefliger’s results
[Hae67, Théorème 10.7] [Hae66, Corollary 8.14]. Each 3-fold direct sum comes from two summands of
c0Emb((2=�2?�3

, (
3=�3?�3) � c0K3=�3?�3

2=�2?�3 and one summand of c=�?�1+" (R"+=�?�1) where" � 2.
This also proves the claim about im(] 9 )⇤.

In the setting of 3 components, we have an analogous fibration

⌦L=+ 9�1
3· (?+ 9�1) ! L=+ 9

3· (?+ 9) ! P=+ 9
3· (?+ 9) .
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By Lemma 4.3, the base space is (2= � 2? � 6)-connected. Thus

c8L=+ 9�1
3· (?+ 9�1) ! c8�1L=+ 9

3· (?+ 9)

is an isomorphism if 8  2= � 2? � 6 and surjective if 8 = 2= � 2? � 5. If ? � 3, then 2= � 3? � 3 
2= � 2? � 6, while if ? = 2, then 2= � 3? � 3 = 2= � 2? � 5. By Lemma 4.9, c0L3=�3?�3

3· (2=�2?�3) �

c0Emb
⇣›3

1 (
2=�2?�3

, (
3=�3?�3

⌘
. Finally, since 4(2= � 2? � 3) < 3((3= � 3? � 3) � 2), we can apply

another result of Haefliger [Hae67, Théorème 9.4], which says that the latter group is given by the direct
sum of isotopy classes of knots and links with fewer than 3 components together with one summand
of c3=�3?�3(

3=�3?�3. The remaining 6 summands of Z or Z/2 come from knots on each of the 3
components and links on each of the 3 pairs of components, and the 3 summands of c2=�2?�3(

=�?�1

come from links on each of the 3 pairs of components. This yields the claimed groups in both parities
as well as the claims about im(] 9 )⇤ and

—
|( |<3 ker(d()⇤. ⇤

The following rational result of other authors is for comparison with Theorem 4.11 and for later use
in Section 5 in the case where ? = 1.

Theorem 4.12. [STT18a, FTW] If 1  ?  = � 3, then

c2=�3?�3L=
?, ? ⌦ Q �

8>><
>>:
Q4

= � ? odd,
Q3

= � ? even and ? = 1
0 else

Proof. This follows from a result of Fresse, Turchin, and Willwacher [FTW], a special case of which was
obtained by Songhafouo Tsopméné and Turchin [STT18a] in higher codimensions, including all cases
where 1 = ?  =�3. They describe these groups via a complex of graphs with leaves labeled by the link
components. It is roughly dual to the graph complex described below in Section 5.1, except that there
are no link strands, only labels by them, and the graphs are required to be connected. It generalizes work
of Arone and Turchin [AT15] from one component to multiple components. If all source components
have dimension ? and the target has dimension =, the degree of a graph is (=�1) |⇢ |�=|� |� ? |! |, where
|⇢ |, |� |, and |! | are the numbers of edges, internal (i.e., non-leaf) vertices, and leaves respectively.

From this, one can deduce that only two types of graphs can contribute to c2=�3?�3L=
?,? . One type is

the “tripod” graph (the trivalent tree with 3 leaves) in degree 2=�3?�3, with the 4 possible leaf-labelings
by {1, 2}, for =� ? odd. The other type is the “2-hair hedgehog” graph (the trivalent graph with 2 leaves
and one double edge) in degree 2= � 2? � 4, with the 3 possible leaf-labelings by {1, 2}, for = � ? even
and ? = 1. (Each of these graphs is 2-torsion in one parity of =� ?, due to certain orientation relations.)
These are the first two graphs shown in [AT15, Section 3.2, Table B]. (In addition, by [AT15, Theorem
3.1], these are the only graphs that contribute to c8L=

?,? ⌦ Q, 8  2= � 3? � 3, apart from a single edge
with distinct leaf-labels in degree = � 2? � 1, where we know c=�2?�1L=

?,? � Z by Corollary 4.5.) ⇤

5. Homotopy classes in spaces of long knots and links from joining pure braids

Our main purpose now is to prove the last main result, Theorem E. where we describe generators for the
homotopy groups of spaces of links that we have calculated. In it, we also relate the image of graphing
from spheres and configuration spaces to the previously known first nontrivial homotopy groups of
spaces of long knots.

In Section 5.1, we briefly review configuration space integrals, which produce cohomology classes
in spaces of links from a certain cochain complex of graphs (a.k.a. diagrams). We specify a handful of
graph cocycles in Section 5.2. In Section 5.3, we describe how to produce dual homology classes by
resolving singular links. The proof of Theorem 5.3 (a.k.a. Theorem E), given in Section 5.4, involves
identifying certain such homology classes with the homotopy classes in the Theorem statement, or
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more precisely their images under the Hurewicz map. It also relies on known results for long knots
of various dimensions and the compatibility of graphing and joining components. We discuss possible
future directions in Section 5.5.

5.1. Configuration space integrals for cohomology of spaces of long 1-dimensional links

The proof of the last result will use several cohomology classes in spaces of long links that we will
describe via configuration space integrals. We now digress for a brief overview of these integrals for long
<-component, 1-dimensional links. Full details are given in our previous joint work [KMV13], which
extended work of Cattaneo, Cotta-Ramusino, and Longoni [CCRL02] and Bott and Taubes [BT94] from
knots to long links.

The classes produced by this construction are indexed by linear combinations of link diagrams,
which are graphs on < oriented line segments, for example as in formulas (5.1) through (5.8) below.
Such a diagram � consists of a vertex set + (�) and an edge set ⇢ (�). The vertices are partitioned into
sets +seg (�) and +free (�) of segment vertices and free vertices. An edge joining two segment vertices is
called a chord. Diagrams where all the edges are chords, which play a somewhat special role, are called
a chord diagrams. A part of one of the < segments between two vertices is called an arc. All vertices
are required to have valence at least 3, where both edges and arcs count towards valence. For brevity,
we will say “graph” or “diagram” to mean “link diagram.”

For a smooth manifold - , the configuration space Conf (<, -) has a compactification Conf [<, -]
due to Fulton and Macpherson. It is a smooth manifold with corners homotopy equivalent to Conf (<, -).
For any graph �, one defines a bundle b� over the space L=

<·1 of <-component 1-dimensional links.
To be able to compactify at infinity, one uses a version of L=

<·1 where the standard link has all <
components approach infinity in di�erent directions. The total space of b� is the pullback of the diagram

L=
<·1 ⇥ Conf0

"
+seg (�),

<fi
1

R

#
! Conf

⇥
+seg (�),R=

⇤
 Conf [+ (�),R=] .

In the left-hand configuration space, the subscript 0 indicates that the segment vertices are required lie
on the components and in the order given by the graph �. Thus the fiber of b� over a link 5 is the subspace
Conf� of Conf [+ (�),R=] where the points in +seg (�) lie in the image of 5 , on certain components and
in the order determined by �. Each pair of vertices 8, 9 determines a map i8 9 : Conf(+ (�),R=) ! (

=�1

given by the unit vector from point 8 to point 9 . Let l be a unit volume form on (=�1. One sends a graph
� to a di�erential form via the map

� : � 7!
π

Conf�

€
42⇢ (�)

i
⇤
8 9l

where the integration is along the fiber Conf� of the bundle b� over the space of links.
To orient the configuration space over which one integrates and determine the sign of the form to be

integrated, one needs certain labelings on the graphs �, which depend on the parity of =. For = odd, one
needs an ordering of the vertices and an orientation of each edge. For = even, one needs an ordering of
the segment vertices and an ordering of the edges. Changing the labeling changes the integral only by a
sign, so if two labeled graphs � and �0 di�er by a permutationf of labels and (for = odd) A edge reversals,
one sets � = (�1)sign(f)+A�0, An equivalence class of labeling is viewed as an orientation of a graph.

There is a coboundary operator X on such graphs that makes the space of graphs into a cochain
complex. On a graph �, it is defined as the signed sum of edge contractions

X� :=
’
4

Y(4)�/4
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over all arcs 4 and all edges 4 that are not chords or self-loops. We first define the sign Y(4) for = odd.
If 4 is an edge or arc with endpoints 8 < 9 , then

Y(4) :=
⇢
(�1) 9 if 4 = (8 ! 9)
(�1) 9+1 if 4 = (8  9)

If = is even and 4 is an arc with endpoints 8 < 9 , define Y(4) as above (where the arc orientation comes
from the orientation of the segments). If = is even and 4 is an edge, set

Y(4) = (�1)4+1+|+B46 (�) |

where by abuse of notation 4 also denotes the label on this edge.
With this coboundary operator, the integration map � is a cochain map if = � 4. At the level of

cohomology, � is known to be injective on the subspace of trivalent graphs [CCRL02]. It produces all
of the real cohomology of the space of braids in dimension at least 4 [KKV20].

5.2. Some low-dimensional graph cocycles

We will focus on a handful of graph cocycles, which for < = 1, 2, 3 yield cohomology classes in
dimension 2= � 6 in the space of <-component 1-dimensional long links in R= for any = � 4.

The graphs below are oriented using the following shorthand: segment vertices are ordered first by
their order on the components (with e.g. all those on the first component coming first), a free vertex is
last, edges are oriented from smaller to larger label, and edges are ordered by the smallest label of an
endpoint. With this convention, some of the formulas giving cocycles are the same in both parities of =
except for some signs; for these classes (^, `, and the a8), we list the sign for = odd above the sign for
= even. For the other classes ([ and _), we separately list the formulas for the two parities (indicated by
subscripts), but we later use these symbols without the subscripts to refer to both parities at once.

^ := ⌥ . (5.1)

[odd := � (5.2)
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_odd := � � + + (5.3)

[even := + + + + (5.4)

_even := + � + � (5.5)

` := + + ⌥ (5.6)

a1 := ⌥ a2 := ⌥ (5.7)

a3 := ⌥ (5.8)

We will use these classes above to identify families of 1- , 2-, and 3-component long links. Recall the
restriction maps d8 : L=

1,1 ! K=
1 , 8 = 1, 2 and d8 9 : L=

1,1,1 ! L=
1,1, 1  8 < 9  3 from Definition 2.9.

Lemma 5.1.

(a) The space �2=�6 (K=
1 ; R) is spanned by � (^).
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(b) The class � ([) spans a subspace of �2=�6 (L=
1,1; R) which pulls back via the graphing map

⌦(=�2 ' ⌦Conf (2,R=�1) ! L=
1,1 isomorphically onto �2=�6 (⌦Conf (2,R=�1);R). If = is even, the

evaluation of � ([) on the image of this graphing map (pre-composed with the Hurewicz map) is up to
a sign the Hopf invariant of a class in c2=�5(

=�2.
(c) The set {� ([), � (_), d⇤1� (^), d⇤2� (^)} is a basis for �2=�6 (L=

1,1; R).
(d) The set {� (`), � (a1), � (a2), � (a3), d⇤12� ([), d⇤13� ([), d⇤23� ([)} is a basis for a subspace of

�
2=�6 (L=

1,1,1; R) that maps isomorphically onto �2=�6 (⌦Conf (3,R=�1); R) via the graphing map

⌦Conf (3,R=�1) ! L=
1,1,1.

Proof. The definition of the coboundary operator ensures that with our conventions for graph orienta-
tions, these cochains are cocycles. They lie in a dimension which admits no nonzero coboundary map,
so they represent nontrivial and moreover linearly independent cohomology classes.

Part (a) then follows from the fact that �2=�6 (K=
1 ; Z) � Z, established in work of Turchin [Tur07].

For parts (b) and (d), we use the description of �⇤ (⌦Conf (<,R=�1);R), due to Cohen and Gitler
[CG02, Theorem 2.3], as the space of horizontal chord diagrams modulo the 4T relations, where each
chord has degree = � 3. (The cohomology is thus isomorphic to Vassiliev invariants of pure braids.)
Write a horizontal chord between strand 8 and 9 as C8 9 , where 1  8 < 9  <, and write a horizontal
chord diagram as a product of C8 9 . A basis of horizontal chord diagrams in dimension 3 (= � 3) (before
the quotient by 4T) is given by all degree-3 monomials in the C8 9 , and we visualize the dual basis of
functionals by the same types of diagrams. The 4T relations are the homogeneous degree-2 elements
[C8 9 , C 9: + C8: ] with 8, 9 , : distinct. Thus �2=�6 (⌦Conf (<,R=�1);R) is isomorphic to the subspace of
functionals in span{(C8 9 C:✓)⇤}8< 9 ,:<✓ which vanish on all elements [C8 9 , C 9: + C8: ].

By a theorem on graphing braids in previous joint work [KKV20, Theorem 5.19], the graphing map
⌧ : ⌦Conf (<,R=�1) ! L=

<·1 induces a surjection⌧⇤ in cohomology. That theorem also implies that for
the link diagrams

Õ
28�8 in parts (b) and (d), ⌧⇤ � � (Õ 28�8) 2 �⇤ (⌦Conf (<,R=�1);R) corresponds to

the result of remembering only the (duals of) horizontal chord diagrams. Hence for< = 2, [ 7! (C12C12)⇤,
and (C12C12)⇤ forms a basis for �2=�6 (⌦Conf (2,R=�1);R). The fact that � ([) is the Hopf invariant is
established in our joint work [KKV, Example B.2]. Thus part (b) is proven.

For < = 3, there are the diagrams `, a1, a2, a3, d
⇤
12[, d

⇤
13[, and d

⇤
23[, where d⇤8 9[ is the result of

putting [ on strands labeled 8 and 9 with no edges incident to the remaining third component (so
d
⇤
8 9 � ([) = � (d⇤8 9[)). We have ` 7! (C12C13)⇤ + (C12C23)⇤ + (C13C23)⇤, a8 7! (C8 9 C8: )⇤ � (C8: C8 9 )⇤ (where
8, 9 , : are distinct), and d⇤8 9[ 7! (C8 9 C8 9 )⇤. By the theorem on graphing braids [KKV20, Theorem 5.19],
each of these must vanish on the 4T relations. One can directly check their linearly independence
in span{(C8 9 C:;)⇤}8< 9 ,:<✓ . We now check the dimension of the space of horizontal 2-chord diagrams
modulo 4T for < = 3. There are nine diagrams C8 9 C:✓ , with 1  8 < 9  3, 1  : < ✓  3. The three
4T relations (each determined by the pair 8 < 9) span a dimension-2 subspace, so the quotient by them
has rank 7. Thus for < = 3, our 7 cocycles form a basis for �2=�6 (⌦Conf (<,R=�1);R), and part (d) is
proven. (The class � (`) is an analogue of the triple linking number, while d⇤8 9 � ([) is an analogue of the
square the linking number between strands 8 and 9 , and � (a8) is an analogue of the product of the two
di�erent pairwise linking numbers involving strand 8.)

Finally, for part (c), by Theorem 4.12 for ? = 1, we have that c2=�6L=
1, 1 ⌦ Q has dimension 3 or

4 according to whether = is odd or even. Since L=
1,1 is a homotopy-associative H-space, the Milnor–

Moore theorem [MM65] says that its rational homology is the universal enveloping algebra on its
rational homotopy. Let 0 denote a generator of c=�3L=

1,1 ⌦ Q as well as its image in rational homology
under the Hurewicz map. Under this map, the Whitehead product in homotopy corresponds, up to a
sign, to the graded commutator [�, �] under the Pontryagin product · in homology. If = is even, then
[0, 0] = ±20 · 0, while if = is odd, [0, 0] = 0 so 0 · 0 is not primitive. Thus in either parity, the rational
homology (or cohomology) in degree 2= � 6 is 4-dimensional. Hence the linearly independent set in
question is a basis. ⇤
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5.3. Homology classes dual to configuration space integrals

We now describe a process for constructing a family � of 1-dimensional links out of an immersion with
: double-points. Lemma 5.2 below will show that such a family � is dual to a certain chord diagram �
with : chords.

The family � is constructed as follows. Let 5 be an immersion 5 :
›<

1 R ! R= with a finite
number : of double-points and no intersections of higher multiplicity. We require that the tangent
vectors are linearly independent at each double-point of 5 . Suppose the double-points are given by
5 (B1) = 5 (C1), . . . , 5 (B: ) = 5 (C: ). The B8 may lie in di�erent components, as may the C8 , and we make
no assumptions on the order in which they lie even if some of them do lie on the same component. The
unit sphere in the orthogonal complement to the two tangent vectors at each double-point is (=�3. Build
a : (= � 3)-parameter family � of (nonsingular) <-component links by varying the strand on which C8
lies through a normal sphere (=�3

8 of a small radius within a small neighborhood #8 in R= of the 8-th
double-point for 8 = 1, . . . , : . More precisely, parametrize the family by (⇡=�3)⇥: and define it using
degree-1 maps (⇡=�3

, m⇡
=�3) ! ((=�3

8 , ⇤) around C8 for each 8. We can arrange for its support to lie in
neighborhoods of C1, . . . , C: , interpolating between the degree-1 maps and constant maps within these
neighborhoods.

Lemma 5.2. Let � be the family constructed out of a singular link 5 as just described, and let � be
a graph. Then h� (�), �i is nonzero if and only if � is the chord diagram with chords corresponding
exactly to the singularities in 5 .

For example, if 5 = ( 51, 52) has two double points, one where 51 (B1) = 52 (C1) and another where
51 (B2) = 52 (C2) , with B1 < B2 and C1 < C2, then � pairs nontrivially with the first graph in formula (5.2),
but trivially with the second graph in that formula. This � would also pair trivially with all the graphs
in formula (5.3), including the three chord diagrams in that formula.

Sketch of proof of Lemma 5.2. The proof is based on that of a result of Cattaneo, Cotta-Ramusino, and
Longoni [CCRL02, Theorem 6.1]. First, on the space of configurations where fewer than 2 points lie in
some neighborhood #8 , any integral vanishes because on that space, the variation of � through the 8-th
copy of (=�3 admits a homotopy back to the original singular link, thus yielding a degenerate family.
This implies that if � is not a chord diagram, then h� (�), �i = 0.

It remains to consider the integrals of chord diagrams on the space C of configurations where each
#8 contains exactly two points. The configuration points in a chord diagram can be identified by their
order on the link components, so there is only one way for each #8 to contain a pair of points, i.e., C is
connected. If points 9 and : do not lie in the same #8 , then i 9: restricted to C is nullhomotopic. Thus
for a chord diagram �, h� (�), �i < 0 only if the chords of � correspond exactly to the singularities
resolved in �.

Finally, consider a factor i⇤9:l in � (�). Its integral over the configuration space � ⇥ � of two points
on segments of the link in some #8 produces an (=� 3)-form. The pairing of this form with the (=� 3)-
parameter family coming from the resolution of the 8-th double point is the same as the linking number
of the sphere (=�2 obtained from the (= � 3)-parameter family that varies one segment and (a closure
of) the other segment. Then by construction, if the chords in � correspond to the resolved singularities
of �, h� (�), �i is product of factors ±1, hence is itself ±1.

This argument can be made more precise by taking the limit as the diameters of the neighborhoods
#8 and the spheres (=�3 inside them approaches zero. ⇤

5.4. Long Borromean rings, the Hopf map, and classes of long links and knots

In this section, we will use the map � from Definition 2.6 that joins the last two components of a
long link in L=

<·? . For ? = 1, we will use the following alternative description of �. Given 5 =
( 51, . . . , 5<) 2 L=

<·1, remove 5<�1 ((2,1)) and 5< ((�1,�2)). Then join 5<�1 (2) to 5< (�2) by an arc
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outside [�1, 1]=. Perform an isotopy of this arc and what remains of the image of 5<, and pre-compose
and post-compose the resulting embedding with di�eomorphisms of R and R= respectively so that the
required conditions for a long link are satisfied and so that the standard<-component link is taken to the
standard (< � 1)-component link. Although we will consider = � 4, the arc and isotopy may be taken
to lie in a 3-dimensional subspace of R=. One can show that this description agrees up to homotopy
with Definition 2.6 for a suitable choice of path W: the arc corresponds to W ⇥ 0=�2 ⇥ �1 in the framed
tubular neighborhood of W, and the restriction of the isotopy to the point C⇤< ⇥ 0=�2 ⇥ 1 corresponds to
W ⇥ 0=�2 ⇥ 1. Since we will assume = � ? � 3, Remark 2.8 implies that it su�ces for W to end on the
positive side of the (< � 1)-th component. We are now ready to prove our last main result, Theorem E:

Theorem 5.3. Suppose 1  ?  = � 3 and 2= � 3? � 3 � 0.

(a) If = � ? is odd, then the map c2=�2?�3(
=�?�1 ! c2=�3?�3K=

? (� Z) given by ?-fold graphing
followed by joining the two link components sends the Whitehead square [ =�?�1, =�?�1] of the
identity to twice a generator. Thus if = � ? = 3, 5, or 9, it sends the Hopf fibration to a generator.

(b) The map c2=�3?�3⌦?Conf (3,R=�?) ! c2=�3?�3K=
? (� Z or Z/2) induced by the composition of

?-fold graphing followed by joining the three components together maps the “parametrized long
Borromean rings” class [121, 131] to a generator.

(c) For ? = 1, there is a basis for c2=�6L=
1, 1 modulo torsion, consisting of the images of a generator of

c2=�6K=
1 under the inclusions ]1, ]2 : K=

1 ! L=
1, 1; the result of graphing and then joining two

components of [121, 131]; and for = � ? odd, the result of graphing [ =�2, =�2].
If ? � 2, then c2=�3?�3L=

?, ? is generated by the two inclusions of a generator of c2=�3?�3K=
?; the

result of graphing and then joining two components of [121, 131]; and the image of a generating set
of c2=�2?�3(

=�?�1 under graphing.
If ? � 3 and < � 3, then c2=�3?�3L=

<·? is generated by the < inclusions of a generator of
c2=�3?�3K=

?; the result of graphing and then joining two components of [121, 131] for every pair of
components (8, 9) with 1  8 < 9  <; the image under graphing of a generating set of
c2=�2?�3(

=�?�1 for every (8, 9) with 1  8 < 9  <; and the result of graphing [121, 131] for every
(8, 9 , :) with 1  8 < 9 < :  <.

Proof. The overall strategy is to first prove all the statements for ? = 1 and then use diagram (5.11) to
prove the statements for larger values of ?. The work of Budney will imply that the bottom row, which
involves only spaces of knots, consists almost entirely of isomorphisms; Theorems 3.2 and 4.11 give
crucial information about the rows of graphing maps involving multiple components.

To prove the statements for ? = 1, we will define families of 1-dimensional <-component long links,
for < = 1, 2, 3, by resolving singular links and joining components. These families will be called � and
�
0 (for < = 3), �, !, and ! 0 (for < = 2), and  (for < = 1). Via maps � that join components, we will

have (� ± � 0) 7! (! ± ! 0) 7!  and � 7!  by construction. Our first main task is to identify the
homology classes of these four cycles using Lemmas 5.1 and 5.2, which includes showing that � ± � 0
is (up to a sign) the image of [121, 131], � is (up to a sign) the image of the Hopf map, and  is a
generator of �2=�6K=

1 .
Families � and �

0
of 3-component 1-dimensional pure braids: Take a singular 3-strand braid

5 = ( 51, 52, 53) :
›3

1 R õ! R= with two double-points, given by 51 (B1) = 52 (C) and 51 (B2) = 53 (D) with
B1 < B2. One can construct 5 by starting with a singular braid in R3, for example as in Figure 2 and
taking its image under an inclusion of coordinates 8 : R3

õ! R=. Then construct a (2= � 6)-parameter
family � by resolving the singularities, as described before Lemma 5.2.

Next repeat this process, but with a singular 3-strand braid 5
0 = ( 5 01 , 5 02 , 5 03 ) with two double-points,

given by 5
0
1 (B1) = 5

0
3 (D) and 5

0
1 (B2) = 5

0
2 (C) with B1 < B2. Let � 0 be the (2= � 6)-parameter family

obtained by resolving the singularities of 5 0. We orient it by ordering the parameters as B1, B2, C, D and
ordering the spheres of resolution in the order that the double-points are listed.

Both � and � 0 can be taken to be families of pure braids, rather than arbitrary long links. As a result,
we can use Lemma 5.1 (d). There, we noted that the graphing map ⌦Conf (3,R=�1) ! L=

1,1,1 induces
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(a) (b)
Figure 2. (a) The singular 3-strand braid 5 = ( 51, 52, 53) used to build the family �. (b) The singular
3-strand braid 5

0 = ( 5 01 , 5 02 , 5 03 ) used to build the family � 0. .

an injection in homology [KKV20], and we gave a basis for the dual of its image. We apply Lemma
5.2 to the cycles � and � 0 and to the seven graph cocycles W in that basis. Only the first graph in the
expressions for ` and a1 pairs nontrivially with �, and the same is true for the second graph in the

expression for a1 and � 0. Diagrammatically, � is dual to and � 0 is dual to . That is, we have that

h� (`), �i = 1

h� (a1), �i = 1

h� (a8), �i = 0 for 8 = 2, 3

hd⇤8 9 � ([), �i = 0 for 1  8 < 9  3

h� (`), � 0i = 0

h� (a1), � 0i = ⌥1

h� (a8), � 0i = 0 for 8 = 2, 3

hd⇤8 9 � ([), � 0i = 0 for 1  8 < 9  3

(5.9)

where as before, the sign for = odd is shown above the sign for = even. The class [121, 131] is known
to generate c2=�6⌦Conf (3,R=�1) ⌦ Q. From our previous joint work [KKV, Example 4.8], we have
h� (`), [121, 131]i = 1 (possibly up to a sign) and h� (W), [121, 131]i = 0 for all the other graph cocycles
W appearing in (5.9). Hence �±� 0 (for = odd, respectively even) is homologous to [121, 131], as desired.

Families ! and !
0

of 2-component 1-dimensional long links by joining components: We next
define (2= � 6)-dimensional families ! and !

0 of 2-component long links as the images of � and
�
0 under the map that joins the second and third components, as described just before the Theorem

statement. We can also describe ! and ! 0 as the resolutions of the singular links ✓ and ✓0 obtained
by joining components of the singular links 5 and 5

0. (That is, joining components commutes with
resolving singularities.) These singular links are shown in Figures 3 and 4.

⇠ ⇠

Figure 3. The singular 2-component long link ✓ = (✓1, ✓2)obtained by joining strand 2 to strand 3 in the
singular braid 5 = ( 51, 52, 53). An isotopy takes this singular long link to a singular 2-strand pure braid..
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⇠

Figure 4. The singular 2-component long link ✓0 = (✓01, ✓02) obtained by joining strand 2 to strand 3 in
the singular braid 5

0 = ( 5 01 , 5 02 , 5 03 )..

Figure 5. The singular 2-component braid ⌘ = (⌘1, ⌘2) used to construct the family �. .

By Lemma 5.2

h� ([), !i = 1

h� (_), !i = 0

hd⇤8 � (^), !i = 0 for 8 = 1, 2

h� ([), ! 0i =
⇢
�1 if = is odd
0 if = is even

h� (_), ! 0i = 1

hd⇤8 � (^), ! 0i = 0 for 8 = 1, 2.

Indeed, ! pairs nontrivially with only the first diagram in formulas (5.2) and (5.4) for [, and ! 0 pairs
nontrivially with only the first diagram in formulas (5.3) and (5.5) for _. Diagrammatically, ! is dual to

and ! 0 is dual to .
A family � of 2-component 1-dimensional pure braids: Next, we construct a (2= � 6)-parameter

family � of 2-component 1-dimensional long links. Start with an immersion ⌘ = (⌘1, ⌘2) which is
an embedding except at two double-points, where the double-points are given by ⌘1 (B1) = ⌘2 (C1) and
⌘1 (B2) = ⌘2 (C2) where B1 < B2 and C1 < C2. See Figure 5. Resolve the singularities to obtain a (2= � 6)-
parameter family � out of ⌘. We orient it by ordering the parameters as B1, B2, C1, C2 and ordering the
resolution spheres in the order that the double-points are listed. By Lemma 5.2

h� ([),�i = 1

h� (_),�i = 0

hd⇤8 � (^),�i = 0 for 8 = 1, 2.

(5.10)

Diagrammatically, � is dual to and ! 0 is dual to . Thus !± ! 0 and � represent linearly independent
elements of �2=�6 (L=

1, 1; Z), though ! and � represent the same element.
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We now identify � with the image of a better known element in the homotopy groups of spheres.
Recall that if = is even, then the free part of c2=�5 ((=�2) maps isomorphically onto �2=�6 (⌦(=�2),
which via graphing injects into �2=�6 (L=

1, 1). Lemma 5.1 (b) and the pairings in (5.10) show that if
= � 2 = 2, 4, or 8, then � represents (up to a sign) the class of the pure braid coming from the Hopf
fibration. More generally, this shows that 2� and ±[ =�2, =�2] represent the same class, since the
Whitehead square of an even-dimensional identity map has Hopf invariant ±2.

A family  of 1-dimensional long knots: Finally, we define a (2= � 6)-dimensional family  of
long knots in R= as the image of the family � of 2-component pure braids under the map � : L=

1, 1 !
K=

1 described just before the Theorem statement. As noted earlier, joining commutes with resolving
singularities. Thus we can alternatively define  by applying an obvious extension of the map � to the
singular link ⌘ to get a singular knot : , as shown in Figure 6(b), and then resolving the singularities
of : . One could also obtain  without reference to multiple-component links, defining : directly as a

singular knot prescribed by (or dual to) the first diagram in formula (5.1). Thus  generates c2=�6K=
1

because the latter definition matches the construction of a generator of c2=�6K=
1 in Budney’s work

[Bud08], where a quadrisecant counting argument is used to prove that it is a generator. (By Lemma
5.2, h� (^), i = 1, but this implies only that  is nonzero in �2=�6 (K=

1 ; Z) � c2=�6K=
1 , so we need to

use Budney’s result.)

⇠

Figure 6. The singular knot : obtained by joining the two components of the singular 2-component
braid ⌘..

Since � 7!  and 2� was identified with ±[ =�2, =�2], part (a) is proven in the case that ? = 1.
In particular, if the ambient dimension = is 4,6, or 10, graphing the pure braid associated to the Hopf
fibration gives a generator of the first nontrivial homotopy group of the space of long knots in R=.

We next prove part (b) for ? = 1. We just have to consider the result of joining the two components
in the cycle ! ± ! 0. We saw that ! is homologous to � and hence maps to  , so it remains to check that
the result  0 of joining the components of ! 0 pairs trivially with ^. Indeed, the singularities of  0 do
not coincide with the chords of ^, so by Lemma 5.1 (a) and Lemma 5.2,  0 is zero in homology, and
part (b) is proven for ? = 1. A picture of  0 is shown in Figure 7.

We now prove the statement for ? = 1 in part (c). Recall that for 9 = 1, 2, we have sections
] 9 : K=

1 ! L=
1, 1, as in Definition 2.10, of the restrictions d 9 : L=

1, 1 ! K=
1 from Definition 2.9. The

classes (]1)⇤ ( ), (]2)⇤ ( ), and ! ± ! 0 are all in the image of the Hurewicz map because they are the
images of [121, 131] under maps induced by maps of spaces. For = even, we likewise identified � with
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⇠

Figure 7. The singular knot obtained by joining the two components of the singular link ✓0 = (✓01, ✓02). .

the image of an element in a homotopy group. Next, it is easy to see that

hd⇤9 � (^), (]8)⇤ ( )i = X8 9 for 1  8, 9  2

h� ([), (]8)⇤ ( )i = 0

h� (_), (]8)⇤ ( )i = 0.

Thus for = odd (respectively even) these 3 (respectively 4) classes are linearly independent. Recall
from Theorem 4.12 dim c⇤ (L=

1, 1) ⌦ Q is 3 (respectively 4) for = odd (respectively even). Furthermore,
(]1)⇤ ( ), (]2)⇤ ( ), and ! ± ! 0 cannot be proper multiples of other classes because each one maps to
a generator of c2=�6K=

1 . The same is true for � because by Theorem 3.2, graphing from a sphere is a
split injection. So part (c) is proven for ? = 1.

To prove parts (a), (b), and (c) in the case of arbitrary ?, we use diagram (5.11) below. Each horizontal
arrow is a graphing map, and each vertical arrow is given by joining two components. By Proposition
2.7, each square commutes.

c2=�3?�3⌦?Conf (3,R=�?) ⌧⇤
//

c2=�2?�4L=�?+1
1,1,1

⌧⇤
//

�⇤
✏✏

c2=�2?�5L=�?+2
2,2,2

⌧⇤
//

�⇤
✏✏

. . .

⌧⇤
//

c2=�3?�3L=
?,?,?

�⇤

✏✏

c2=�3?�3⌦?Conf (2,R=�?) ⌧⇤
//

c2=�2?�4L=�?+1
1, 1

⌧⇤
//

�⇤
✏✏

c2=�2?�5L=+2
2, 2

⌧⇤
//

�⇤
✏✏

. . .

⌧⇤
//

c2=�3?�3L=
?, ?

�⇤

✏✏

c2=�2?�4K=�?+1
1

⌧⇤
// //

c2=�2?�5K=+2
2 �

⌧⇤
//

. . . �
⌧⇤
//

c2=�3?�3K=
?

(5.11)
By work of Budney [Bud08], the horizontal maps in the bottom row are isomorphisms except possibly

the first one. For odd codimension = � ?, all the groups in the bottom row are Z and all the maps there
are isomorphisms. For even codimension =� ?, the first group is Z, while the remaining groups are Z/2,
and the first map is surjective while the rest are isomorphisms. By commutativity, the compositions
from the groups c2=�3?�3⌦?Conf (<,R=�?) (with < = 2, 3) to c2=�3?�3K=

? through c2=�2?�4K=�?+1
1

are equal to the compositions through c2=�3?�3L=
?, ? and c2=�3?�3L=

?,?,? respectively. Thus we obtain
parts (a) and (b) in the case of arbitrary ? from the case of ? = 1.
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To prove the statement for ? � 2 in part (c), recall that by Theorem 4.11 (a), the graphing maps
c2=�2?�4L=�?+1

1, 1 ! c2=�3?�3L=
?,? take the form of surjections

Z4 � ) (c2=�2?�3(
=�?�1) � � ! Z4 � ) (c2=�2?�3(

=�?�1), = � ? odd, (5.12)

Z3 � c2=�2?�3(
=�?�1 � � 0 ! (Z/2)3 � c2=�2?�3(

=�?�1
, = � ? even, (5.13)

where) (�) denotes the torsion subgroup of �, and where � and � 0 are possibly nontrivial finite abelian
groups. We just need to check that their restrictions to the summands complementary to � and � 0 are
also surjective, since by diagram (5.11) and part (c) for ? = 1, the claimed generators are the images of
generators for the domains of these restrictions.

By Theorem 3.2, the restriction of graphing to c2=�2?�3(
=�?�1 is injective, as is the restriction to its

torsion subgroup. From this fact, it is easy to deduce the desired surjectivity for = � ? odd.
For = � ? even, note that ) (c2=�2?�4L=�?+1

1, 1 ) � c2=�2?�3(
=�?�1 maps to zero in c2=�3?�3K=

?

because it factors through c2=�2?�4K=�?+1
1 � Z. By part (b), each of [121, 131], (]1)⇤ ( ), and (]2)⇤ ( )

maps downward to the generator of c2=�3?�3K=
? � Z/2 in diagram (5.11). Thus the image of the Z3

summand under the map (5.13) is complementary to the image of c2=�2?�3(
=�?�1. The 3 generators

under consideration are linearly independent because they lie in distinct summands in the decomposition
(2.8). Considering the minimal cardinality of the image of their span gives the desired surjectivity.

We now prove the statement for ? � 3 in part (c). By Theorem 4.8, any class in c2=�3?�3L=
<·? is inÕ

|( |3 im(]()⇤. By Corollary 2.12, the subgroup
—

|( |2 ker(d()⇤ of c2=�3?�3L=
3·? is complementary toÕ

|( |2 im(]()⇤ (which we just described for ? � 2), and by Theorem 4.11 (b),
—

|( |2 ker(d()⇤ � Z. The
image of [121, 131] under the map c2=�3?�3⌦?Conf (3,R=�?) ! c2=�3?�3L=

3·? lies in this subgroup.
By part (b), it maps to a generator of c2=�3?�3K=

? , so it must generate this subgroup. ⇤

Remark 5.4 (Sharpness of Theorem 5.3 (a)). We cannot extend part (a) of Theorem 5.3 on graphing
spheres, joining 2-component links, and knots to the case where = � ? is even. In that case, although
the target is Z/2 for ? � 2, we deduce the failure of this extension from the facts (used in the proof of
Theorem 5.3 (c)) that c2=�2?�3(

=�?�1 is finite, c2=�2?�4K=�?+1
1 � Z, and diagram (5.11) commutes.

Remark 5.5 (Sharpness of Theorem 4.4 for ? = @). Theorem 5.3 (c) shows that Theorem 4.4 does not
extend to c2=�6L=

1, 1, even modulo knotting. Indeed, the class !±! 0, obtained by joining two components
of the parametrized long Borromean rings, comes neither from c2=�5(

=�2 nor from knots. Relatedly,
Budney’s description of the bottom row of diagram (5.11) and the splitting (2.6) shows that the graphing
map from c2=�6L=

0, 1 is not an isomorphism, and hence Theorem 4.4 is also sharp when ? = @ � 1.

Remark 5.6 (Other ways of joining long Borromean rings). We may join a pair of the three components
of � ±� 0 = [121, 131] 2 c2=�6⌦Conf (3,R=�1) in any other of the six possible ways and ask whether we
get di�erent classes for !±! 0 2 c2=�6L=

1, 1. Arguments as in the proof of Theorem 5.3 show that in even
codimension (= odd), we get the same class for !+! 0. In odd codimension (= even), the resulting classes
! � ! 0 all yield ±1 when paired with � ([) or � (_). Since � yields 1 and 0 respectively when paired with
these classes, Theorem 5.3 holds for any of these joining maps, though one may obtain di�erent bases.

The next result has been independently obtained in forthcoming work of Gauniyal and Turchin.

Theorem 5.7. For any : � 2, let ⌫ be the high-dimensional spherical Borromean rings
›3

1 (
2:�1

õ!
(

3: , defined by

ÆG = Æ0 and |ÆH |2/4 + |ÆI |2 = 1,

ÆH = Æ0 and |ÆI |2/4 + |ÆG |2 = 1,

and ÆI = Æ0 and |ÆG |2/4 + |ÆH |2 = 1,
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where (ÆG, ÆH, ÆI) = (G1, . . . , G: , H1, . . . , H: , I1, . . . , I: ) are coordinates on R3: and where (3: is its one-
point compactification. Up to a sign, ⌫ is isotopic to the image of (a representative of) [121, 131] under
the composition of the (2: � 1)-fold graphing map ⌦2:�1Conf (3,R:+1) ! L3:

3· (2:�1) followed by the
closure map.

Proof. Put ? = 3 and = = : + 4. By Theorem 4.11 (b), graphing maps c2=�3?�3L=
?,?,? iso-

morphically onto c0L3:
3· (2:�1) . By Lemma 4.9, closure takes the latter group isomorphically onto

c0Emb
⇣›3

1 (
2:�1

, (
3:

⌘
. As noted in the last paragraph of the proof of Theorem 5.3, iterated graphing

maps [121, 131] to a generator of the subgroup given by the intersections of the kernels of the restrictions

d( to fewer than 3 components. Since ⌫ generates this subgroup of c0Emb
⇣›3

1 (
2:�1

, (
3:

⌘
[Mas69],

the result follows. ⇤

It is known that for : even, c0Emb((2:�1
, (

3: ) is generated by the Haefliger trefoil, which is defined
as the result of joining all three components of the high-dimensional Borromean rings ⌫ [Hae62b].
For : odd, where this group is Z/2, the Manifold Atlas Project website [Skob, §2] suggests that the
analogous question is open. Theorem 5.7 allows us to answer it a�rmatively:

Corollary 5.8. For : odd, the Haefliger trefoil generates the group c0Emb((2:�1
, (

3: ) � Z/2.

Proof. By Theorem 5.3 (b), �⇤�⇤⌧2:�1
⇤ [121, 131] represents a generator of c0K3:

2:�1 :=
c0Emb2 (R2:�1

,R3: ), where � and ⌧ are joining and graphing maps. By Lemma 4.9, the closure of
this long link thus represents a generator of c0Emb((2:�1

, (
3: ). Joining components commutes with

closure, so this class is the result of joining components in the closure of ⌧2:�1
⇤ [121, 131]. By Theorem

5.7, that closed link is isotopic to the result of joining together all three components of ⌫. ⇤

Remark 5.9 (Knots, links, and braids in R3 and Vassiliev invariants). The constructions in the proof of
Theorem 5.3 can be applied when = = 3. In fact, for the specific cocycles considered, the configuration
space integral map � gives link invariants in this setting. The dual families are parametrized by ((0)2,
so each of the classes � + � 0, ! + ! 0, �, and  in �0L3

<·1 is an alternating sum of four links.
More generally, one can view a link with 8 double points as an alternating sum of 28 links. Now
�0 (L3

<·1; R) = R[c0L3
<·1] fits into the Vassiliev–Goussarov filtration

R[c0L3
<·1] = �0 � �1 � · · · � �8 � . . .

where �8 is the ideal generated by singular <-component links with at least 8 double-points. A Vassiliev
invariant of type A is a link invariant which vanishes on �A+1. A similar setup applies to pure braids, in
which case �8 is the 8-th power of the augmentation ideal in the group ring on the pure braid group.

The only invariants of type 1 are linking numbers `8 9 of strands 8 and 9 . There is one knot invariant
of type 2, called the Casson knot invariant (corresponding to ^). The only invariants of type 2 for pure
braids are triple linking numbers (corresponding to `) and 2-fold products of pairwise linking numbers
(corresponding to [ and the a8). There is an invariant of 2-component long links of type 2 corresponding
to _. For any < the dual space (R[c0L3

<·1]/�3)⇤ can be given a basis consisting of the appropriate
collection of these invariants.

One extends link invariants linearly to linear combinations of links. Then for any <, one can obtain
a basis for R[c0L3

<·1]/�3 by choosing the appropriate elements out of � + � 0, ! + ! 0, �, and  and
their images under including components. The classes � + � 0, ! + ! 0 and  are equivalent to classes
in c0L3

<·1 ⇢ �0L3
<·1 in this stage of the Goussarov–Vassiliev filtration. (We neglect signs in what

follows.) A long trefoil is equivalent to  , as it has Casson invariant 1. A nontrivial 3-component pure
braid commutator, whose closure will be the Borromean rings, is equivalent to � + � 0, since it has the
same type-2 invariants. A long Whitehead link is equivalent to ! + ! 0. The class of � 2 �0 (⌦(1) is
not primitive because there is of course no 2-strand pure braid (or long link) which has zero pairwise
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linking number but a nonzero square of its pairwise linking number. This mirrors what happens for
other odd values of =.

5.5. Conjectured extensions and questions

We now turn to some conjectures and questions. We begin with extensions of Theorem 5.3 (c). Recall
Theorem 4.12 and the description of generators in its proof as “tripod” and “2-hair hedgehog” graphs.

Conjecture 5.10.

(a) For = � ? even and ? = 1, the class in c2=�3?�3L=
?, ? obtained by graphing and joining 2 components

of [121, 131] corresponds, up to sign, to the 2-hair hedgehog graph with leaves labeled 1, 2.
(b) For = � ? odd, the class in c2=�3?�3L=

?, ? obtained by graphing and joining 2 components of
[121, 131] corresponds, up to a sign, to the di�erence of two tripods with leaves labeled 1, 1, 2 and
1, 2, 2 respectively. The class in c2=�3?�3L=

?, ? obtained by graphing [ =�?�1, =�?�1] corresponds,
up to a sign, to the sum of two tripods with leaves labeled 1, 1, 2 and 1, 2, 2 respectively.

The two classes in part (a) agree up to a scalar multiple, since they both generate the 1-dimensional
Q-vector space ker(d1)⇤ \ ker(d2)⇤. Similarly, in part (b), the two tripods and the two classes coming
from graphing generate the 2-dimensional Q-vector space ker(d1)⇤ \ ker(d2)⇤.

To calculate c2=�3?�3L=
?, ? for all ? and = with ?  = � 3, one would just need to calculate the

torsion subgroup for ? = 1. To calculate c2=�3?�3L=
<·? for all ? and = with ?  = � 3, it su�ces by

Theorem 4.8 to calculate c2=�9L=
2,2,2, and by Theorem 4.12 it remains only to calculate the torsion

subgroup. (Indeed, that result and the proof of Theorem 5.3 (c) imply that the non-torsion generators
that we described for c2=�3?�3L=

<·? , ? � 3, generate the corresponding rational homotopy group for
all ? � 1.) Theorem 3.2 says that the torsion subgroup contains at least c2=�2?�3(

=�?�1 in both cases,
and we suspect that this lower bound is sharp:

Conjecture 5.11. If < � 2 and 1  ?  = � 3, then a minimal generating set for c2=�3?�3L=
<·? is

given by the < inclusions of a generator of c2=�3?�3K=
?; the result of graphing and then joining two

components of [121, 131] for every pair of components (8, 9) with 1  8 < 9  <; the image under
graphing of a minimal generating set of c2=�2?�3(

=�?�1 for every pair (8, 9) with 1  8 < 9  <; and
if < � 3, the result of graphing [121, 131] for every triple (8, 9 , :) with 1  8 < 9 < :  <.

Potential future work includes studying the realization of classes of long links and long knots by
graphing braids and joining components.

Question 5.12. (a) Can all classes in c8L=
<·? be obtained by graphing and then joining components

of pure braids, i.e., representatives of elements in c8⌦?Conf (@,R=�?) for some @ � <? (b) If so, how
does one find such a representative?

An a�rmative answer to part (a) would be a higher-dimensional analogue of a theorem of Alexander
[Ale23, CG01] that any knot can be obtained by joining components of a pure braid. It would also be an
analogue of a result of Stanford [Sta]. His result says that knots are equivalent in the Vassiliev filtration
quotient �0/�A (described in Remark 5.9) if and only if they di�er by a pure braid in the A-th stage of
the lower central series of the pure braid group.

In higher dimensions, results on embedding spaces and graph complexes [FTW] suggest that the
rational homology groups of spaces of links with codimension at least 3 can be viewed as generalizations
of terms �A�1/�A , with larger values of A corresponding to homology groups in higher degrees and with
the homotopy groups consisting of the primitive elements. The following facts also support this analogy:
for a space of embeddings of codimension at least 3, the Taylor tower converges to that space, while for
classical knots the Taylor tower is conjectured to be a universal Vassiliev invariant over Z [BCSS05].
Indeed, after some progress in previous joint work [BCKS17], the conjecture was proven over Q by
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Kosanovi∆ [Kosa] and up to ?-torsion for (roughly) small primes ? by Boavida de Brito and Horel
[BdBH21].

However, a negative answer to part (a) seems likely. Elements with cycles in the graph complex
computing rational homotopy (such as the “2-hair hedgehog” mentioned in the proof of Theorem 4.12)
lie in degrees incompatible with the graphing map. Indeed, Turchin conjectures that the graphing map is
rationally zero on graphs with cycles. (Theorem 5.3 (c) implies that graphing sends the hedgehog class
to a nontrivial class, but it is torsion.) Together with Proposition 2.7, this suggests a negative answer to
part (a).

On the other hand, one could restrict Question 5.12 to 8 = 0. Over Q, isotopy classes are given
by trivalent trees modulo the Jacobi relation [STT18b]. Our previous joint work [KKV] shows that
graphing realizes a proper subspace of these groups, though we did not check that our identification
in terms of trees agrees with that of [STT18b]. Here we conjecture that all elements of c0L=

<·? ⌦ Q
can be obtained by graphing elements of c8⌦?Conf (@,R=�?) and joining components. Over Z, isotopy
classes are less tractable, but perhaps our question can be answered without a full description of these
groups. It would also be interesting to compare any progress on this question to the work of Kosanovi∆
on realizing isotopy classes of knots via graspers [Kosb].

In contrast to joining components of braids, one can also build <-component links out of links with
fewer than < components. One type of such map is given by the inclusion maps ]( from Definition 2.10.
In the classical setting where ?1 = · · · = ?< = 1 and = = 3, an element in im(]( � ]) ) for some proper,
nonempty ( ⇢ {1, . . . ,<} with ) := {1, . . . ,<} � (, is called a split link. For < = 2 or 3, Theorems
4.11 and 5.3 (c) implement the decompositions (2.5) and (2.8) in terms of split links, and the latter
further decomposes the first summand in terms of braids and another type of link. Our methods may
extend to arbitrary ?1, . . . , ?<, though we focused on equidimensional source manifolds for simplicity.

Another map that increases the number of components is cabling, where parallel components are
added to a knot. We omit a precise space-level definition of a cabling map. Clearly such a map, like
the inclusion maps, cannot produce braids out of knots, and in the classical case, there are links that
are neither split, nor cables, nor braids. Thus it is too much to ask for a decomposition in terms of just
split links and cables. Batelier and Ducoulombier [BD] used the Swiss cheese operad to decmopose the
space of 2-component long links in R3 in terms of cables, split links, braids, and a remaining subspace,
extending our previous work on 2-component long links [BK15, BBK15]. In higher dimensions, one
could consider families of links obtained by split links, cables, and pure braids, where these classes no
longer form distinct components but instead subspaces.

Question 5.13. Is there a systematic decomposition of the space of links L=
?1 ,...,?< , = � 4, in terms

of the following: pure braids, split links, cables, and/or the results of graphing them and (in the case of
pure braids) joining their components?

Such a decomposition could lead to constructions of explicit geometric representatives of homotopy
and homology classes in those spaces of links. The example of the 2-hair hedgehog class, which suggested
a negative answer to Question 5.12, does not immediately suggest a negative answer to Question 5.13;
from a purely dimensional viewpoint, it could be the cabling a knot class corresponding to the same
graph but with the same label on both leaves.

Remark 5.14. Preliminary computations similar to the ones in the proof of Theorem 5.3 suggest that
in the bases given in part (c), one can use a cable of the generator in c2=�6K=

1 to replace �⇤ [121, 131]
for = odd. However, for = even, this cable spans the same subgroup as the image under graphing of
[ =�2, =�2] so in this parity, �⇤ [121, 131] is neither split, nor a cable, nor a braid.

A. Injectivity of graphing for other spaces of 2-component links

We now cover some variants of Theorem A, the injectivity of graphing for spaces of 2-component links.
In Section A.1, we prove Theorem A.4, an analogue of Theorem A for spaces of spherical links in a
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sphere. In Section A.2, we prove Theorem A.6, which is the analogue for spaces of long link maps,
using the U-invariant. Injectivity in the latter setting applies only to homotopy groups in a range.

A.1. Injectivity of graphing for spherical links

For Theorem A.4, the analogue of Theorem 3.2 for spherical links in a sphere, we need to define the
following subspace of links. This is because for spherical links, the restriction to one component does
not in general admit a section. (For example, for ? = @ = 1 and = = 3, the component of the Hopf
link is homotopy equivalent to ($ (4) [HK21, Corollary 4.4(e)], while the component of the unknot
is homotopy equivalent to ($ (4)/($ (2) [Hat83]. The long exact sequence in homotopy at c2 and c1

shows that the projection ($ (4) ! ($ (4)/($ (2) admits no section.)

Definition A.1. Define the space of Brunnian long links BrEmb2
�›<

1 R
?8
, R=

�
as the the subspace

of links 5 in Emb2
�›<

1 R
?8
, R=

�
such that the restriction of 5 to any<�1 of its components is isotopic

to a standard link (41, . . . , 4<�1). Define the space BrEmb
�›<

1 (
?8
, (

=
�

of Brunnian spherical links

in a sphere as the subspace of spherical links 5 in Emb
�›<

1 (
?8
, (

=
�

such that 5 is isotopic to a trivial
link, where a spherical link is trivial if each component (?8 bounds a disk ⇡ ?8+1 in (=.

Thus BrEmb2
�›<

1 R
?8
, R=

�
is a union of path components of Emb2

�›<
1 R

?8
, R=

�
. In many of the

cases we consider, the latter space is path-connected, in which case all embeddings are Brunnian. The
graphing and closure maps preserve the Brunnian property.

A version of the next map, sometimes called the linking coe�cient, appears at least as far back
as work of Zeeman [Zee60, Zee62] and Haefliger [Hae62a]. In fact, the section given by graphing is
sometimes called the Zeeman map.

Definition A.2. For ?  @ < =, define a map

c0BrEmb((? t (@ , (=) _�! c?(
=�@�1

as follows. Denote an element of the domain by 1 = (11, 12). Take any isotopy of 12 to the standard
embedding b42, and extend it to an isotopy from 1 to a link 10 = (101,b42). Define _(1) as the composite

(
?

101�! (
= � (@ �! (

=�@�1 ⇥ R@+1 �! (
=�@�1

where the second map is the di�eomorphism (3.3) and the third map is projection onto the first factor.

Lemma A.3. [Hae67, Théorème 7.1] The map _ is well defined.

Proof. We need to show that _(1) is independent of the choice of isotopy from 12 to b42 and the choice
of an extension of it to the first component. Suppose 10 and 100 are the endpoints of two such isotopies
starting at 1. Then 10 and 100 are isotopic links, each restricting to b42 on (@ (though the links throughout
the isotopy need not satisfy this property).

An isotopy from 1
0 to 100 can be extended to a path of di�eomorphisms of (= starting at the identity.

Restrict this path to a disk ⇡= which contains 101 ((?) and which intersects b42 ((@) in a disk ⇡@ ⇢ ⇡=.
The endpoints 60 and 61 of this path lie in the space Emb+(⇡=

, (
=; ⇡@) of orientation-preserving

embeddings ⇡=
õ! (

= which agree with the fixed inclusion on ⇡@ . By a shrinking and linearization
argument, Emb+(⇡=

, (
=; ⇡@) ' ($ (= � @). In particular, it is path-connected, so there is a path in

Emb+(⇡=
, (

=; ⇡@) from 60 to 61.
Lift this path to the space Di�+((=; b42 ((@)) of di�eomorphisms of (= which fix b42 ((@) pointwise.

We can do so by the isotopy extension theorem [Hir76, Theorem 8.1.3] or more generally the fact that the
restriction Di�+((=;b42 ((@)) ! Emb+(⇡=

, (
=;⇡@) is a fibration [Pal60, Lim64]. Restricting the latter

path to the image of 10 gives an isotopy from 1
0 to 100 which leaves the second component fixed. ⇤
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Theorem A.4. Let 1  ?  @  = � 2, and let 8 � 0. Then c8Emb((? t (@ , (=) has a direct summand
of c8+?(=�@�1, the inclusion of which is induced by a based homotopy equivalence 9 : (=�@�1 !
'
=�? � R@�? , the inclusion Emb2 (⇤, R=�? � R@�?) õ! Emb2 (⇤ t R@�? , R=�?) and the composition

⌦?Emb2 (⇤ t R@�? , R=�?) ! Emb2 (R? t R@ , R=) ! Emb2 ((? t (@ , (=) of the graphing map
followed by the closure map.

Theorem A.4 is valid for @ = = � 1 but trivial because we assume ? � 1. We impose that hypothesis
because we defined the closure map only for codimension at least 2.

Proof. To prove the theorem, it su�ces to prove the analogous statement where Emb((? t (@ , (=) is
replaced by BrEmb((? t (@ , (=) because the former space is a union of path components of the latter
space. We will show that the following composition of maps is the identity:

c8+?(
=�@�1 ��!

⌦? ( 9)⇤
c8⌦? (R=�? � 0=�@ ⇥ R@�?) ��! c8⌦?BrEmb2 ({⇤} t R@�? , R=�?)

⌧?
⇤�! c8BrEmb2 (R? t R@ , R=)
b·�! c8BrEmb((? t (@ , (=)
⌧8
⇤�! c0BrEmb((8+? t (8+@ , (8+=)

_�! c8+?(
=�@�1

(A.1)

The first map comes from a homotopy equivalence as in formula (3.2). The arrow just above⌧⇤? involves
an a�ne-linear map to obtain the required behavior at the boundary of (�1, 1)=. The map denoted ⌧8

(by abusing notation already used for long links) is the composition of 8 maps, starting with

⌦BrEmb((? t (@ , (=) ! BrEmb((?+1 t (@+1
, (

=+1).

To obtain this first map, start by graphing a loop restricted to � to get an embedding (?⇥�t(@⇥� ! (
=⇥�.

Then attach two disks ⇡=+1 to (=⇥ � using di�eomorphisms m⇡=+1 ! (
=⇥ {±1}. In each copy of ⇡=+1,

fix smooth proper embeddings of ⇡ ?+1 and ⇡@+1 and glue two copies of each of these to the embeddings
of (? ⇥ � and (@ ⇥ � to obtain smooth embeddings of (?+1 and (@+1. We can use fixed embeddings of
⇡

?+1 and ⇡@+1 independent of the embeddings of (? and (@ because the loop of embeddings is based
at the standard trivial link b4. The remaining 8 � 1 maps needed to obtain ⌧8 are defined similarly.

We next apply the Pontryagin–Thom correspondence to c8+?(=�@�1. A homotopy class is identified
with a bordism class of framed manifolds by taking the preimage of a regular value of a smooth
representative R8+? ! (

=�@�1. Recall from Definition 2.5 that the closure map uses disks of radii
p
=

contained in C⇤8 ⇥ R=�1 and that C⇤2 � C⇤1 = 2/3. We fix a regular value H 2 (=�@�1 far from the first
coordinate axis and more specifically in the neighborhood of vectors whose angle with (0, 1, 0, . . . , 0)
is less than arctan(1/(3p=)). This guarantees that the disks used in the closure do not contribute to the
bordism class, or more precisely that the framed submanifold representing a bordism class in the target
copy of c8+?(=�@�1 lies in R8 ⇥ ⇡ ? ⇢ R8+? .

By this choice of regular value, we need only consider the restrictions ⇡8+? t ⇡8+@ ! ⇡
8+= of

elements of BrEmb((8+? t (8+@ , (8+=) to evaluate their image under _. This allows us to essentially
reduce the composite (A.1) to a composite of maps involving long links. In this setting, _ is homotopic
to the composite of the homotopy left-inverse A to ⌧8+? from formula (3.4) followed by an iterated
looping of the homotopy inverse to 9 . Thus the composite (A.1) is indeed the identity. ⇤
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A.2. Injectivity of graphing for link maps in a range

Our next main result is proven using the U-invariant of spherical links in Euclidean space. It is essen-
tially a Gauss map and appears at least as early as the work of Massey and Rolfsen [MR85]. Further
developments on it include work of Koschorke [Kos88, Kos97] and A. Skopenkov [Sko00].

Definition A.5. We define U as the map

U : Link⇤ ((? t (@ , R=) �! Map⇤ ((? ⇥ (@ ,Conf (2,R=))
6 = (61, 62) 7�! ((C, D) 7! (61 (C), 62 (D))).

Now Conf (2,R=) ' (=�1, so if ?, @  =� 2, then the restriction of any map (? ⇥ (@ ! Conf (2,R=)
to (? _ (@ is nullhomotopic. Thus the map induced by U on c8 for any 8 � 0 can be written as

U⇤ : c8Link⇤ ((? t (@ , R=) ! c8Map⇤ (((? ⇥ (@)/((? _ (@), Conf (2,R=))
� c8+?+@Conf (2,R=)
� c8+?+@(=�1

Theorem A.6. Suppose 1  ?  @  =� 2 and 8 � 0. Consider the map c8+?(=�@�1 ! c8Link2 (R? t
R@ , R=) induced by a based homotopy equivalence 9 : (=�@�1 ! '

=�? � R@�? , the inclusion n :
Link2 (⇤, R=�? � R@�?) õ! Link2 (⇤ t R@�? , R=�?), and graphing ⌧ ? : Link2 (⇤ t R@�? , R=�?) !
Link2 (R? t R@ , R=). Let ⇢@ : c8+?(=�@�1 ! c8+?+@(=�1 be the @-fold suspension map. Then (⌧ ? �
n �⌦? ( 9))⇤ is injective, nonzero, or split injective if the @-fold suspension map is respectively injective,
nonzero, or an isomorphism.

Putting 8 = 0 above gives a result of Scott [Sco68], which was improved upon by Massey and Rolfsen
[MR85], Koschorke [Kos90], and Habegger and Kaiser [HK98]. Like Theorem A.4, Theorem A.6 is
valid for @ = = � 1 but trivial because we assume ? � 1. Again, we impose that hypothesis because we
defined the closure map only for codimension at least 2.

Proof. The main idea is to check that the composite c8+?(=�@�1 ! c8+?+@(=�1, shown below in the
composite (A.2), agrees with the @-fold iterated suspension ⇢@ . For notational ease, we will suppress
⌦? ( 9)⇤ and n⇤ from the notation and write b

⌧
? to denote the ?-fold graphing⌧ ? followed by the closure

map b· . Thus we write the composite below as [ 5 ] 7! U⇤b⌧ ?
⇤ [ 5 ].

c8+?(
=�@�1 ��! c8⌦? (R=�? � R@�?) �! c8⌦?Link2 ({⇤} t R@�? , R=�?)

⌧?
⇤��! c8Link2 (R? t R@ , R=)

( b· )⇤�! c8Link⇤ ((? t (@ , R=)
U⇤�! c8+?+@(

=�1

(A.2)

All of the above maps are homomorphisms, even if 8 = 0, because ⌧ ? is a map of H-spaces.
We will use the Pontryagin–Thom theorem to identify elements of the first and last homotopy groups

in the composite (A.2) with bordism classes of manifolds. In particular, we will identify [ 5 ] with a
bordism class of framed submanifold of R8+? of dimension 8 + ? + @ � = + 1, and we will identify
U⇤b⌧ ?

⇤ [ 5 ] with a class of framed submanifold of R8+?+@ , also of dimension 8 + ? + @ � = + 1. As in the
proof of Theorem A.4, let H 2 (=�@�1 be a regular value of 5 that lies in the neighborhood of vectors
making an angle of less than arctan(1/(3p=)) with (0, 1, 0, . . . , 0). This will simplify a consideration
related to the closure map. Let - := 5

�1{H} be the framed bordism class corresponding to [ 5 ].
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The result of applying the first map in the composite (A.2) to a map 5 : R8+? ! (
=�@�1 is more

explicitly written as the composition

R8 ⇥ R? 5
//

(
=�@�1 � � 8

'
//

(
=�@�1 ⇥ R@�?+1 ⌘�1

�
// R=�? � R@�?

where 8 maps (=�@�1 to (=�@�1 ⇥ 0@�?+1. Above ⌘ is the di�eomorphism (3.1). Note that ⌘�1
8((=�@�1)

is the unit sphere in R=�@ ⇥ 0@�? ⇢ R=�? .
The second arrow in the composite (A.2) comes from mappingR=�?�R@�? homeomorphically onto

the subspace of Link2 ({⇤} t R@�? , R=�?) where the R@�? component is standard. Thus the restriction
to the first component of the image of [ 5 ] in c8Link2 (R? t R@ , R=) is represented by the map

R8 ⇥ R? �! (R=�? � R@�?) ⇥ R?

(B, C) 7�! (⌘�1
8 5 (B, C), C).

Hence on the subspace ⇡ ? ⇥ ⇡@ ⇢ (? ⇥ (@ , the class U⇤ (b⌧ ?
⇤ [ 5 ]) is represented by the composite

R8 ⇥ ⇡ ? ⇥ ⇡@
// Conf (2,R=) '

//

(
=�1

(B, C, D) � //

�
(⌘�1

8 5 (B, C), C), (0=�@ , D)
� (A.3)

One can check that (H, 0@) 2 (=�1 ⇢ R= is a regular value of the composite (A.3). Because of Definition
2.5 of the closure map and our choice of regular value H, the preimage of (H, 0@) under Ub

⌧
?
5 is

contained in R8 ⇥ ⇡ ? ⇥ ⇡@ ⇢ R8 ⇥ (@ ⇥ (@ . Let / := (Ub
⌧

?
5 )�1{(H, 0@)}. From the formula in (A.3)

and the fact that ⌘�1
8((=�@�1) is the unit sphere in R=�@ ⇥ 0@�? ⇢ R=�? , we deduce that

/ = {(B, C, 0@�? , C) : ⌘�1
8 5 (B, C) = ⌘�1

8(H)}
= {(B, C, 0@�? , C) : 5 (B, C) = H}

where the second equality comes from the fact that ⌘�1
8 is injective.

The iterated suspension ⇢
@ [ 5 ] corresponds to the image of - under the inclusion ]R8+? ,R8+?+@ :

R8+? õ! R8+?+@ of the first 8 + ? coordinates. Now

]R8+? ,R8+?+@ (-) = {(B, C, 0@) : 5 (B, C) = H}.

This submanifold (with its induced framing) is bordant to / (with its induced framing) via the ambient
isotopy

R8+?+@ ⇥ [0, 1] ! R8+?+@

((C1, . . . , C8+?+@), A) 7! (C1, . . . , C8+@ , C8+@+1 + AC8+1, . . . C8+@+? + AC8+?).

Thus the composition c8+?(=�@�1 ! c8+?+@(=�1 shown in (A.2) is the @-fold suspension ⇢@ , so
the map ⌧ ?

⇤ : c8+?(=�@�1 ! c8Link2 (R? t R@ , R=) is injective or nonzero if ⇢@ is, and if ⇢@ is an
isomorphism, ⌧ ?

⇤ maps isomorphically onto a direct summand. ⇤

One can immediately adapt Example 3.3 on linking number classes from Theorem 3.2 to Theorem
A.6, i.e., from embeddings to link maps.

Remark A.7 (Spaces of based spherical link maps in Euclidean space). An analogue of Theorem A.6
also holds for the space Link⇤ ((? t (@ , R=). Indeed, the proof applies to b

⌧
?
⇤ just as well as it does to

⌧
?
⇤ .
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Remark A.8 (Spaces of embeddings and the U-invariant). Theorem A.6 and its proof are equally valid
for spaces of embeddings rather than link maps. However, for spaces of embeddings, Theorem 3.2
already gives a stronger result.
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