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Abstract. We investigate a class of composite nonconvex functions, where the outer function 
is the sum of univariate extended-real-valued convex functions and the inner function is the 
limit of difference-of-convex functions. A notable feature of this class is that the inner function 
may fail to be locally Lipschitz continuous. It covers a range of important, yet challenging, 
applications, including inverse optimal value optimization and problems under value-at-risk 
constraints. We propose an asymptotic decomposition of the composite function that guaran
tees epi-convergence to the original function, leading to necessary optimality conditions for 
the corresponding minimization problem. The proposed decomposition also enables us to 
design a numerical algorithm such that any accumulation point of the generated sequence, if 
it exists, satisfies the newly introduced optimality conditions. These results expand on the 
study of so-called amenable functions introduced by Poliquin and Rockafellar in 1992, which 
are compositions of convex functions with smooth maps, and the prox-linear methods for 
their minimization. To demonstrate that our algorithmic framework is practically implemen
table, we further present verifiable termination criteria and preliminary numerical results.
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1. Introduction
We consider a class of composite optimization problems of the form:

(CP0) minimize
x∈Rn

Xm

p�1
[Fp(x) ¢ φp( fp(x))], 

where for each p � 1, : : : , m, the outer function φp : R→ R ∪ {+∞} is proper, convex, lower semicontinuous (lsc), 
and the inner function fp : Rn → R is not necessarily locally Lipschitz continuous.

If each inner function fp is continuously differentiable, then the objective in (CP0) belongs to the family of ame
nable functions under a constraint qualification (Poliquin and Rockafellar [25], Poliquin and Rockafellar [26]). For 
a thorough exploration of the variational theory of amenable functions, readers are referred to Rockafellar and 
Wets [30, chapter 10(F)]. The properties of amenable functions have also led to the development of prox-linear 
algorithms, where convex subproblems are constructed through the linearization of the inner smooth mapping 
(Burke [4] , Burke and Ferris [5], Drusvyatskiy and Paquette [14], Fletcher [16], Lewis and Wrght [19]).

However, there are various applications of composite optimization problem in the form of (CP0) where the 
inner function fp is nondifferentiable. In the following, we provide two such examples.

Example 1.1 (Inverse Optimal Value Optimization). For p � 1, : : : , m, consider the optimal value function

fp(x) ¢ inf
y∈Rd

(cp + Cpx)
⊤y +

1
2 y⊤Qp y

�
�
�
�A

px + Bpy ≤ bp
� �

x ∈ Rn, (1) 

with appropriate dimensional vectors bp and cp and matrices Ap, Bp, Cp, and Qp. The function fp is not smooth in 
general. The inverse (multi) optimal value problem (Ahmed and Guan [2], Paleologo and Takriti [24]) finds a 
vector x ∈ Rn that minimizes the discrepancy between observed optimal values {νp}

m
p�1 and true optimal values 
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{ fp(x)}
m
p�1 based on a prescribed metric, such as the ℓ1-error:

minimize
x∈Rn

Xm

p�1
|νp � fp(x) | : (2) 

If fp is real-valued for p � 1, : : : , m, one can express Problem (2) in the form of (CP0) by defining the outer function 
φp(t) � |νp � t | .

Example 1.2 (Portfolio Optimization Under a Value-at-Risk Constraint). The Value-at-risk (VaR) of a random variable Y 
at a confidence level α ∈ (0, 1) is defined as VaRα(Y) ¢ min{γ ∈ R |P(Y ≤ γ) ≥ α}. Let Z be the random return of 
investments and c(·, ·) be an lsc function representing the profit of Z parameterized by x ∈ Rn. An agent’s goal is 
to maximize the expected profit, denoted by E[c(x, Z)], while also controlling the risk via a constraint on 
VaRα[c(x, Z)] under a prescribed level r. The model can be written as

minimize
x∈Rn

�E[c(x, Z)] subject to VaRα[c(x, Z)] ≥ r: (3) 

Define δA as the indicator function of a set A, where δA(t) � 0 for t ∈ A and δA(t) � +∞ for t ∉ A. Problem (3) can then 
be put into the Framework (CP0) by setting φ1(t) � �t, f1(x) � E[c(x, Z)], φ2(t) � δ[r, +∞)(t), and f2(x) � VaRα[c(x, Z)]. 
We note that the function VaRα[c(·, Z)] can be nondifferentiable, even if the function c(·, z) is differentiable for every z.

Because of the nondifferentiablity of the inner function fp in (CP0), the overall objective is not amenable, and 
the prox-linear algorithm (Fletcher [16]) is not applicable to solve this composite optimization problem. In this 
paper, we develop an algorithmic framework for a subclass of (CP0), where each inner function fp, although non
differentiable, can be derived from difference-of-convex (DC) functions through a limiting process. We refer to 
this class of functions as approachable difference-of-convex (ADC) functions (see Section 2.1 for the formal definition). 
It is important to note that ADC functions are ubiquitous. In particular, we will show that the optimal value func
tion fp in (1) and VaRα[c(·, Z)] in (3) are instances of ADC functions under mild conditions. In fact, based on the 
result recently shown in Royset [31], any lsc function is the epi-limit of piecewise affine DC functions.

With this new class of functions in hand, we have made a first step to understand the variational properties of 
the composite ADC minimization problem (CP0), including an in-depth analysis of its necessary optimality condi
tions. The novel optimality conditions are defined through a handy approximation of the subdifferential mapping 
∂fp that explores the ADC structure of fp. Using the notion of epi-convergence, we further show that these optimality 
conditions are necessary conditions for any local solution of (CP0). Additionally, we propose a double-loop algo
rithm to solve (CP0), where the outer loop dynamically updates the DC functions approximating each fp, and the 
inner loop finds an approximate stationary point of the resulting composite DC problem through successive con
vex approximations. It can be shown that any accumulation point of the sequence generated by our algorithm 
satisfies the newly introduced optimality conditions.

Our strategy to handle the nondifferentiable and possibly discontinuous inner function fp through a sequence 
of DC functions shares certain similarities with the approximation frameworks in the existing literature. For 
instance, Ermoliev et al. [15] have designed smoothing approximations for lsc functions utilizing convolutions 
with bounded mollifier sequences, a technique akin to local “averaging.” Research has sought to identify condi
tions that ensure gradient consistency for the smoothing approximation of composite nonconvex functions 
(Burke and Hoheisel [6], Burke and Hoheisel [7], Burke et al. [8], Chen [10]). Notably, Burke and Hoheisel [6] 
have emphasized the importance of epi-convergence for the approximating sequence, a less stringent require
ment than the continuous convergence assumed in earlier works (Beck and Teboulle [3], Chen [10]). In recent 
work, Royset [32] has studied the consistent approximation of the composite optimization in terms of the global 
minimizers and stationary solutions, where the inner function is assumed to be locally Lipschitz continuous. Our 
notion of subdifferentials and optimality conditions for (CP0) takes inspiration from these works but adapts to 
accommodate nonsmooth approximating sequences that exhibit the advantageous property of being DC.

The rest of the paper is organized as follows. Section 2 presents a class of ADC functions and introduces a new 
associated notion of subdifferential. In Section 3, we investigate the necessary optimality conditions for Problem 
(CP0). Section 4 is devoted to an algorithmic framework for solving (CP0) and its convergence analysis to the newly 
introduced optimality conditions. We also discuss termination criteria for practical implementation in Section 4.3. 
Preliminary numerical experiments on the inverse optimal value problems are presented in the last section.

1.1. Notation and Terminology
Let ‖ · ‖ denote the Euclidean norm in Rn. We use the symbol B(x,δ) to denote the Euclidean ball {x ∈ Rn |

‖x � x ‖ ≤ δ}. The set of nonpositive and nonnegative are denoted by R� and R+, respectively, and the set of 
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nonnegative integers is denoted by N. We write N]
∞ ¢ {N ⊂ N |N infinite} and N∞ ¢ {N |N\N finite}. Notation 

{tk} is used to simplify the expression of any sequence {tk}k∈N, where the elements can be points, sets, or func
tions. By tk → t and tk →N t, we mean that the sequence {tk} and the subsequence {tk}k∈N indexed by N ∈ N]

∞ con
verge to t, respectively.

Given two sets A and B in Rn and a scalar λ ∈ R, the Minkowski sum and the scalar multiple are defined as 
A + B ¢ {a + b |a ∈ A, b ∈ B} and λA ¢ {λ a |a ∈ A}. We also define 0 · ∅ � {0} and λ · ∅ � ∅ whenever λ≠ 0. When A 
and B are nonempty and closed, we define the one-sided deviation of A from B as D(A, B) ¢ supx∈A dist(x, B), 
where dist(x, B) ¢ infy∈B ‖y � x‖ . The Hausdorff distance between A and B is given by H(A, B) ¢ max{D(A, B), 
D(B, A)}. The boundary and interior of A are denoted by bdry(A) and int(A). The topological closure and the con
vex hull of A are indicated by cl(A) and con A.

For a sequence of sets {Ck}, we define its outer limit as

Limsup
k→+∞

Ck ¢ {u |∃ N ∈ N]
∞, uk →N u with uk ∈ Ck}, 

and the horizon outer limit as

Limsup
k→+∞

∞ Ck ¢ {0} ∪ {u |∃ N ∈ N]
∞, λk ↓ 0, λkuk →N u with uk ∈ Ck}:

The outer limit of a set-valued mapping S : Rn ⇉ Rm is defined as

Limsup
x→x

S(x) ¢
[

xk→x
Limsup

k→+∞

S(xk) � {u |∃ xk → x, uk → u with uk ∈ S(xk)} x ∈ Rn:

We say S is outer semicontinuous (osc) at x ∈ Rn if Lim supx→x S(x) ⊂ S(x). Consider some index set N ∈ N]
∞. A 

sequence of sets {Ck}k∈N is equi-bounded if there exists a bounded set B such that Ck ⊂ B for all k ∈ N. Otherwise, 
the sequence is unbounded. If there is an integer K ∈ N such that {Ck}k∈N, k≥K is equi-bounded, then the sequence 
{Ck}k∈N is said to be eventually bounded. Interested readers are referred to Rockafellar and Wets [30, chapter 4] 
for a comprehensive study of set convergence.

The regular normal cone and the limiting normal cone of a set C ⊂ Rn at x ∈ C are given by
cNC(x) ¢ {v |v⊤(x � x) ≤ o(‖x � x ‖) for all x ∈ C} and NC(x) ¢ Lim sup

x(∈C)→x

cNC(x):

The proximal normal cone of a set C at x ∈ C is defined as N p
C (x) ¢ {λ(x � x) |x ∈ PC(x),λ ≥ 0}, where PC is the pro

jection onto C that maps any x to the set of points in C that are closest to x.
For an extended-real-valued function f : Rn → R¢R ∪ {6∞}, we write its effective domain as dom f ¢ {x ∈

Rn | f (x) < +∞} and the epigraph as epi f ¢ {(x,α) ∈ Rn+1 |α ≥ f (x)}. We say f is proper if dom f is nonempty and 
f (x) > �∞ for all x ∈ Rn. We adopt the common rules for extended arithmetic operations, and the lower and 
upper limits of a sequence of scalars in R (cf. Rockafellar and Wets [30, chapter 1(E)]).

Let f : Rn → R be a proper function. We write x →f x, if x → x and f (x) → f (x). The regular subdifferential and 
the limiting subdifferential of f at x ∈ dom f are, respectively, defined as

b∂f (x) ¢ {v | f (x) ≥ f (x) + v⊤(x � x) + o(‖x � x ‖) for all x} and ∂ f (x) ¢ Lim sup
x→f x

b∂f (x):

For any x ∉ dom f , we set b∂f (x) � ∂ f (x) � ∅. When f is locally Lipschitz continuous at x, con∂ f (x) equals to the 
Clarke subdifferential ∂C f (x). We further say f is subdifferentially regular at x ∈ dom f if f is lsc at x and b∂f (x) �

∂ f (x). When f is proper and convex, b∂f , ∂ f , and ∂C f coincide with the concept of the subdifferential in convex 
analysis.

Finally, we introduce the notion of function convergence. A sequence of functions { f k : Rn → R} is said to con
verge pointwise to f : Rn → R, written f k →

p
f , if limk→+∞ f k(x) � f (x) for any x ∈ Rn. The sequence { f k} is said to 

epi-converge to f, written f k →
e f , if for any x, it holds that

liminf
k→+∞

f k(xk) ≥ f (x) for every sequence xk → x,

limsup
k→+∞

f k(xk) ≤ f (x) for some sequence xk → x:

8
<

:

The sequence { f k} is said to converge continuously to f, written f k →
c f , if limk→+∞ f k(xk) � f (x) for any x and any 

sequence xk → x.
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2. Approachable Difference-of-Convex Functions
In this section, we formally introduce a class of functions that can be asymptotically approximated by DC func
tions. A new concept of subdifferential that is defined through the approximating functions is proposed. At the 
end of this section, we provide several examples that demonstrate the introduced concepts.

2.1. Definitions and Properties
An extended-real-valued function can be approximated by a sequence of functions in various notions of conver
gence, as comprehensively investigated in Rockafellar and Wets [30, chapter 7(A-C)]. Among these approaches, 
epi-convergence has a notable advantage in its ability to preserve the global minimizers (Rockafellar and Wets 
[30, theorem 7.31]). Our focus lies on a particular class of approximating functions, wherein each function exhi
bits a DC structure.

Definition 1. A function f is said to be DC on its domain if there exist proper, lsc, and convex functions g, h : Rn → R 
such that dom f � [dom g ∩ domh] and f (x) � g(x) � h(x) for any x ∈ dom f .

With this definition, we introduce the concept of ADC functions.

Definition 2 (ADC Functions). Let f : Rn → R be a proper function. 
a. f is said to be pointwise approachable DC (p-ADC) if there exist proper functions { f k : Rn → R}, DC on their 

respective domains, such that f k →
p

f .
b. f is said to be epigraphically approachable DC (e-ADC) if there exist proper functions { f k : Rn → R}, DC on their 

respective domains, such that f k →
e f .

c. f is said to be continuously approachable DC (c-ADC) if there exist proper functions { f k : Rn → R}, DC on their 
respective domains, such that f k →

c f .

A function f is said to be ADC associated with { f k} if { f k} confirms one of these convergence properties. By a 
slight abuse of notation, we denote the DC decomposition of each f k as f k � gk � hk, although the equality may 
only hold for x ∈ dom f k.

A p-ADC function may not be lsc. An example is given by f (x) � 1{0}(x) + 2 · 1(0, +∞)(x), where for a set C ⊂ Rn, 
we write 1C(x) � 1 if x ∈ C and 1C(x) � 0 if x ∉ C. In this case, f is not lsc at x � 0. However, f is p-ADC associated 
with f k(x) � max( 0, 2kx + 1 ) � max( 0, 2kx � 1 ). In contrast, any e-ADC function must be lsc (Rockafellar and 
Wets [30, proposition 7.4(a)]), and any c-ADC function is continuous (Rockafellar and Wets [30, theorem 7.14]).

The relationships among different notions of function convergence, including the unaddressed uniform con
vergence, have been thoroughly examined in Rockafellar and Wets [30]. Generally, pointwise convergence and 
epi-convergence do not imply one another, but they coincide when the sequence { f k} is asymptotically equi-lsc 
everywhere (Rockafellar and Wets [30, theorem 7.10]). In addition, { f k} converges continuously to f if and only if 
both f k →

e f and (�f k) →
e

(�f ) are satisfied (Rockafellar and Wets [30, theorem 7.11]). Although verifying epi- 
convergence is often challenging, it becomes simpler for a monotonic sequence { f k} that converges pointwise to f 
(Rockafellar and Wets [30, proposition 7.4(c-d)]).

2.2. Subdifferentials of ADC Functions
Characterizing the limiting and Clarke subdifferentials can be challenging when dealing with functions that 
exhibit complex composite structures. Our focus in this subsection is on numerically computable approximations 
of the limiting subdifferentials. We begin with the definitions.

Definition 3 (Approximate Subdifferentials). Consider an ADC function f : Rn → R associated with { f k � gk � hk}. 
The approximate subdifferential of f (associated with { f k � gk � hk}) at x ∈ Rn is defined as

∂A f (x) ¢
[

xk→x
Lim sup

k→+∞

[∂gk(xk) � ∂hk(xk)]:

The approximate horizon subdifferential of f (associated with { f k � gk � hk}) at x ∈ Rn is defined as

∂
∞
A f (x) ¢

[

xk→x
Lim sup

k→+∞

∞ [∂gk(xk) � ∂hk(xk)]:

Unlike the limiting subdifferential which requires xk →f x, ∂A f (x) is defined using all the sequences xk → x with
out necessitating the convergence of function values. It follows directly from the definitions that the mappings 
x ⊢→ ∂A f (x) and x ⊢→ ∂

∞
A f (x) are osc. The following proposition presents a sufficient condition for ∂A f (x) �

∂ f (x) � ∅ at any x ∉ dom f .

Li and Cui: Variational Theory for Asymptotically Approachable Problems 
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Proposition 1. Let x ∉ dom f . Then, ∂A f (x) � ∅ if for any sequence xk → x, we have xk ∉ dom f k for all sufficiently large 
k. The latter condition is particularly satisfied whenever dom f is closed and dom f k ⊂ dom f for all sufficiently large k.

Proof. Note that for any xk → x ∉ dom f , we have [∂gk(xk) � ∂hk(xk)] � ∅ for all sufficiently large k due to xk ∉ 
dom f k � [domgk ∩ dom hk]. Thus, ∂A f (x) � ∅ for any x ∉ dom f . w

In the subsequent analysis, we restrict our attention to x ∈ dom f . Admittedly, the set ∂A f (x) depends on the 
approximating sequence { f k} and the DC decomposition of each f k, which may contain irrelevant information 
concerning the local geometry of epi f . In fact, for a given ADC function f, we can make the set ∂A f (x) arbitrarily 
large by adding the same nonsmooth functions to both gk and hk. By Attouch’s theorem (see, for example, Rocka
fellar and Wets [30, theorem 12.35]), for proper, lsc, convex functions f and { f k}, if f k →

e f , we immediately have 
∂A f � ∂ f when taking gk � f k and hk � 0. In what follows, we further explore the relationships among ∂A f and 
other commonly employed subdifferentials in the literature beyond the convex setting. As it turns out, with 
respect to an arbitrary DC function f k that is lsc, ∂A f (x) contains the limiting subdifferential of f at any x ∈ dom f 
whenever f k →

e f .

Theorem 1 (Subdifferentials Relationships). Consider an ADC function f : Rn → R. The following statements hold for any 
x ∈ dom f . 

a. If f is e-ADC associated with { f k} and f k is lsc, then ∂ f (x) ⊂ ∂A f (x) and ∂∞f (x) ⊂ ∂
∞
A f (x).

b. If f is locally Lipschitz continuous and bounded from below, then there exists a sequence of DC functions { f k} such that 
f k →

c f , ∂ f (x) ⊂ ∂A f (x) ⊂ ∂C f (x), and ∂∞
A f (x) � {0}. Consequently, con ∂A f (x) � ∂C f (x), the set ∂A f (x) is nonempty and 

bounded, and ∂ f (x) � ∂A f (x) when f is subdifferentially regular at x.

Proof. (a) Let gk � hk be a DC decomposition of f k. Because f is e-ADC, it must be lsc (Rockafellar and Wets [30, 
proposition 7.4(a)]). Using epi-convergence of { f k} to f, we know from Rockafellar and Wets [30, corollary 8.47(b) 
and proposition 8.46(e)] that any element of ∂ f (x) can be generated as a limit of regular subgradients at xk with 
xk →N x and f k(xk) →N f (x) for some N ∈ N∞. Indeed, we can further restrict xk ∈ dom f k because f k(xk) →N f (x)

and x ∈ dom f . Then, we have

∂ f (x) ⊂
[

xk(∈dom f k)→x
Lim sup

k→+∞

b∂ f k(xk)

⊂
[

xk(∈dom f k)→x
Limsup

k→+∞

[∂gk(xk) � ∂hk(xk)]

⊂ ∂A f (x) , 

where the second inclusion can be verified as follows: Firstly, because of the lower semicontinuity of f k and hk, 
and xk ∈ dom f k ⊂ dom gk, it follows from the sum rule of regular subdifferentials (Rockafellar and Wets [30, corol
lary 10.9]) that b∂gk(xk) ⊃ b∂f k(xk) + b∂hk(xk). Consequently, b∂f k(xk) ⊂ b∂gk(xk) � b∂hk(xk) � ∂gk(xk) � ∂hk(xk) because gk 

and hk are proper and convex (Rockafellar and Wets [30, proposition 8.12]). Similarly, by Rockafellar and Wets 
[30, corollary 8.47(b)], we have

∂
∞f (x) ⊂

[

xk(∈dom f k)→x
Lim sup

k→+∞

∞ b∂f k(xk)

⊂
[

xk(∈dom f k)→x
Lim sup

k→+∞

∞[∂gk(xk) � ∂hk(xk)]

⊂ ∂
∞
A f (x):

(b) For a locally Lipschitz continuous function f, consider its Moreau envelope eγ f (x) ¢ infz{ f (z) + ‖z � x‖2=

(2γ)} and the set-valued mapping Pγf (x) ¢ arg minz{ f (z) + ‖z � x‖2=(2γ)}. For any sequence γk ↓ 0, we demon
strate in the following that { f k ¢ eγk

f } is the desired sequence of approximating functions. Firstly, because f is 
bounded from below, it must be prox-bounded, and, thus, each f k is continuous and f k(x) ↑ f (x) for all x (cf. Rockafel
lar and Wets [30, theorem 1.25]). By the continuity of f and f k, we have f k →

c f from Rockafellar and Wets [30, proposi
tion 7.4(c–d)]. It then follows from part (a) that ∂ f (x) ⊂ ∂A f (x). Consider the following DC decomposition of each f k:

f k(x) �
‖x‖2

2γk|ffl{zffl}
¢gk(x)

� sup
z∈Rn

�f (z) �
‖z‖2

2γk
+

z⊤x
γk

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢hk(x)

x ∈ Rn:

Li and Cui: Variational Theory for Asymptotically Approachable Problems 
Mathematics of Operations Research, Articles in Advance, pp. 1–34, © 2025 INFORMS 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.3

2.
10

.2
30

] o
n 

29
 M

ar
ch

 2
02

5,
 a

t 1
5:

27
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



It is clear that f (z) + ‖z‖2=(2γk) + z⊤x=γk is level-bounded in z locally uniformly in x, because for any r ∈ R and 
any bounded set X ⊂ Rn, the set

z ∈ Rn
�
�
�
�x ∈ X, f (z) +

‖z‖2

2γk
�

z⊤x
γk

≤ r
� �

⊂ z
�
�
�x ∈ X, ‖z � x‖2 ≤ ‖x‖2 + 2γk r � inf

z
f (z)

h in o
, 

is bounded. Because of the level-boundedness condition, we can apply the subdifferential formula of the para
metric minimization (Rockafellar and Wets [30, theorem 10.13]) to get

∂(�hk)(x) ⊂
[

z∈Pγk f (x)

y
�
�
�
�(0, y) ∈ ∂(z, x) f (z) +

‖z‖2

2γk
�

z⊤x
γk

� �� �

⊂
[

z∈Pγk f (x)

∂ f (z) �
x
γk

� �

, 

where the last inclusion is due to the calculus rules (Rockafellar and Wets [30, proposition 10.5 and exercise 
8.8(c)]). Because hk is convex, we have �∂hk(x) � ∂C(�hk)(x) � con ∂(�hk)(x) by Rockafellar and Wets [30, theorem 
9.61], which further yields that

[∂gk(x) � ∂hk(x)] ⊂ con
[

{∂ f (z) |z ∈ Pγk f (x)} ∀x ∈ Rn, k ∈ N: (4) 

For any xk → x and any zk ∈ Pγk f (xk), we have
1

2γk
‖zk � xk ‖2 + inf

x
f (x) ≤

1
2γk

‖zk � xk ‖2 + f (zk) ≤
1

2γk
‖x � xk ‖2 + f (x):

Then, ‖zk � xk ‖ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‖x � xk ‖2 + 2γk[ f (x) � infx f (x)]

q

→ 0 due to the assumption that f is bounded from below 
and, therefore, zk → x. By the local Lipschitz continuity of f, it follows from Rockafellar and Wets [30, theorem 9.13] 
that the mapping ∂ f : x ⊢→ ∂ f (x) is locally bounded at x. Thus, there is a bounded set S such that 

[

{∂ f (zk) |zk ∈

Pγk f (xk)} ⊂ S for all sufficiently large k. It follows directly from Rockafellar and Wets [30, example 4.22] and the def
inition of the approximate horizon subdifferential that ∂∞

A f (x) � {0}.
Next, we will prove ∂A f (x) ⊂ ∂C f (x). For any u ∈ ∂A f (x), from (4), there exist sequences of vectors xk → x and 

uk → u with each uk taken from the convex hull of a bounded set ∪ {∂ f (zk) |zk ∈ Pγk f (xk)}. By Carathéodory’s 
Theorem (see, e.g. Rockafellar [27, theorem 17.1]), for each k, we have uk �

Pn+1
i�1 λk, i vk, i for some nonnegative sca

lars {λk, i}
n+1
i�1 with 

Pn+1
i�1 λk, i � 1 and a sequence {vk, i ∈ ∂ f (zk, i)}n+1

i�1 with {zk, i ∈ Pγk f (xk)}
n+1
i�1 . It is easy to see that the 

sequences {λk, i}k∈N and {vk, i}k∈N are bounded for each i. We can then obtain convergent subsequences λk, i →N λi ≥ 0 
with 

Pn+1
i�1 λi � 1 and vk, i →N v i for each i. Because zk, i → x, we have v i ∈ ∂ f (x) by using the outer semicontinuity of 

∂ f . Thus, uk →N u �
Pn+1

i�1 λi v i ∈ con ∂ f (x) � ∂C f (x). This implies that ∂A f (x) ⊂ ∂C f (x). The rest of the statements in 
(b) follows from the fact that ∂C f (x) is nonempty and bounded whenever f is locally Lipschitz continuous (Rockafel
lar and Wets [30, theorem 9.61]). w

Under suitable assumptions, Theorem 1(b) guarantees the existence of an ADC decomposition that has its 
approximate subdifferential contained in the Clarke subdifferential of the original function. Notably, this decom
position may not always be practically useful due to the necessity of computing the Moreau envelope for a gen
erally nonconvex function. Another noteworthy remark is that the assumptions and results of Theorem 1 can be 
localized to any specific point x. This can be accomplished by defining a notion of “local epi-convergence” at x 
and extending the result of Rockafellar and Wets [30, corollary 8.47] accordingly.

2.3. Examples of ADC Functions
In this subsection, we provide examples of ADC functions, including functions that are discontinuous relative to 
their domains, with explicit and computationally tractable approximating sequences. Moreover, we undertake 
an investigation into the approximate subdifferentials of these ADC functions.

Example 2.1 (Implicitly Convex-Concave Functions). The concept of implicitly convex-concave (icc) functions is intro
duced in the monograph Cui and Pang [13] and is further generalized to extended-real-valued functions in Li 
and Cui [20]. A proper function f : Rn → R is icc if there exists a lifted function f : Rn × Rn → R such that the fol
lowing three conditions hold: 

i. f (z, x) � +∞ if z ∉ dom f , x ∈ Rn, and f (z, x) � �∞ if z ∈ dom f , x ∉ dom f ;
ii. f (·, x) is convex for any fixed x ∈ dom f , and f (z, ·) is concave for any fixed z ∈ dom f ;

iii. f (x) � f (x, x) for any x ∈ dom f .

Li and Cui: Variational Theory for Asymptotically Approachable Problems 
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A notable example of icc functions is the optimal value function fp in (1), which is associated with the lifted 
function defined by (the subscripts/superscripts p are omitted for brevity):

f (z, x) ¢ inf
y∈Rd

(c + Cx)
⊤y +

1
2 y⊤Q y | Az + By ≤ b

� �

(x, z) ∈ dom f × dom f : (5) 

Let ∂1 f (·, x) and ∂2(�f )(z, ·) denote the subdifferentials of the convex functions f (·, x) and (�f )(z, ·), respectively, 
for any (x, z) ∈ dom f × dom f . For any γ > 0, the partial Moreau envelope of an icc function f associated with f is 
given by

inf
z∈Rn

f (z, x) +
1

2γ ‖z � x‖2
� �

�
‖x‖2

2γ
|ffl{zffl}
¢gγ(x)

� sup
z∈Rn

�f (z, x) �
‖z‖2

2γ +
z⊤x
γ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢hγ(x)

x ∈ dom f : (6) 

This decomposition, established in Li and Cui [20], offers computational advantages compared with the standard 
Moreau envelope, as the maximization problem defining hγ is concave in z for any fixed x. In what follows, we 
present new results on the conditions under which the icc function f is e-ADC and c-ADC based on the partial 
Moreau envelope. Additionally, we explore a relationship between ∂A f (x) and ∂1 f (x, x) � ∂2(�f )(x, x), where the 
latter is known to be an outer estimate of ∂C f (x) (Cui and Pang [13, proposition 4.4.26]. The proof is deferred to 
Appendix A.

Proposition 2. Let f : Rn → R be a proper, lsc, icc function associated with f , where dom f is closed and f is lsc on 
Rn × dom f , bounded below on dom f × dom f , and continuous relative to int(dom f ) × int(dom f ). Given a sequence of 
scalars γk ↓ 0, we have: 

a. f is e-ADC associated with { f k}, where each f k(x) ¢ gγk
(x) � hγk

(x) + δdom f (x). In addition, if dom f � Rn, then f is 
c-ADC associated with { f k}.

b. ∂A f (x) ⊂ ∂1 f (x, x) � ∂2(�f )(x, x) and ∂∞
A f (x) � {0} for any x ∈ int(dom f ).

Example 2.2 (VaR for Continuous Random Variables). Given a continuous random variable Y : Ω → R, its condi
tional value-at-risk (CVaR) at a confidence level α ∈ (0, 1) is defined as CVaRα(Y) ¢E[ Y |Y ≥ VaRα(Y)], where 
VaRα is the value-at-risk given in Example 1.2 (see, e.g., Rockafellar and Uryasev [29]). For any α ∈ (0, 1) and 
k > 1=α, we define

gk(x) ¢ [k(1 � α) + 1] CVaRα�1=k[c(x, Z)], hk(x) ¢ k(1 � α) CVaRα[c(x, Z)] x ∈ Rn: (7) 

The following properties of VaR for continuous random variables hold, with proofs provided in Appendix A.

Proposition 3. Let c : Rn × Rm → R be an lsc function and Z : Ω → Rm be a random vector. Suppose that c(·, z) is convex 
for any fixed z ∈ Rm, and c(x, Z) is a random variable having a continuous distribution induced by that of Z for any fixed 
x ∈ Rn. Additionally, assume that E[ |c(x, Z) | ] < +∞ for any x ∈ Rn. For any given constant α ∈ (0, 1), the following prop
erties hold. 

a. VaRα[c(·, Z)] is lsc and e-ADC associated with { gk � hk} (with the definitions of gk and hk in (7)). Additionally, if c(·, ·)

is continuous, then VaRα[c(·, Z)] is continuous and c-ADC associated with { gk � hk}.
b. If there exists a measurable function κ : Rm → R+ such that E[κ(Z)] < +∞ and |c(x, z) � c(x′, z) | ≤ κ(z)‖x � x′ ‖ for 

all x, x′ ∈ Rn and z ∈ Rm, then for any x ∈ Rn,

∂AVaRα[c(·, Z)](x) �
[

xk→x
Lim sup

k→+∞

E[∂1c(xk, Z) | VaRα�1=k[c(xk, Z)] < c(xk, Z) < VaRα[c(xk, Z)] ], 

where E[A(Z) |B] for a random set-valued mapping A and an event B is defined as the set of conditional expectations 
E[a(Z) |B] for all measurable selections a(Z) ∈ A(Z).

3. The Convex Composite ADC Functions and Minimization
This section aims to derive necessary optimality conditions for (CP0), particularly focusing on the inner function 
fp that lacks local Lipschitz continuity. Throughout the rest of this paper, we assume that φp : R→ R ∪ {+∞} is 
proper, convex, lsc, and fp : Rn → R is real-valued for all p � 1, : : : , m. Depending on whether φp is nondecreasing 
or not, we partition {1, : : : , m} into two categories:

I1 ¢ { p ∈ {1, : : : , m} |φp nondecreasing} and I2 ¢ {1, : : : , m}\I1: (8) 
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We do not specifically address the case where φp is nonincreasing, as one can always redefine eφp(t) � φp(�t) and 
efp(x) � �fp(x), enabling the treatment of these indices in the same manner as those in I1. Therefore, the set I2 
should be viewed as the collection of indices p where φp is not monotone. We further make the following 
assumptions on the functions φp and fp.

Assumption 1. For each p, we have 
a. fp is e-ADC associated with { f k

p � gk
p � hk

p}k∈N, and dom gk
p � domhk

p � Rn;
b. �∞ < lim infx′→x, k→+∞ f k

p (x′) ≤ lim supx′→x, k→+∞ f k
p (x′) < +∞ for all x ∈ Rn;

c. [Fk
p ¢ φp ◦ f k

p ] →
e Fp.

From Assumption 1(a), each f k
p is locally Lipschitz continuous because any real-valued convex function is locally 

Lipschitz continuous. Obviously, f k
p →

c fp is sufficient for Assumption 1(b) to hold. Because f k
p →

e fp, we have 
lim infx′→x, k→+∞ f k

p (x′) ≥ fp(x) > �∞ for each p at any x ∈ Rn. However, limsupx′→x, k→+∞
f k
p (x′) < +∞ does not 

hold trivially. For example, consider a continuous function f and

f k(x) �

f (x) + k2x + k if x ∈ [�1=k, 0]

f (x) � k2x + k if x ∈ (0, 1=k]

f (x) otherwise,

8
><

>:

which results in f k →
e f but lim supk→+∞

f k(0) � +∞. Additionally, Assumption 1(b) ensures that at each point x 
and for any sequence xk → x, the sequence { f k

p (xk)}k∈N must be bounded.
It follows from Rockafellar and Wets [30, exercise 7.8(c)] and Royset [32, theorem 2.4] that there are several suf

ficient conditions for Assumption 1(c) to hold, which differ based on the monotonicity of each φp: (i) For p ∈ I1, 
either φp is real-valued or f k

p ≤ fp; (ii) for p ∈ I2, fp is c-ADC and for all x with fp(x) ∈ bdry(domφp), there exists a 
sequence xk → x with f (xk) ∈ int(domφp). In addition, according to Rockafellar and Wets [30, proposition 7.4(a)], 
Assumption 1(c) implies that Fp � φp ◦ fp is lsc. We also note that Assumption 1(c) doesn’t necessarily imply 
Pm

p�1 Fk
p →

e Pm
p�1 Fp. To maintain epi-convergence under addition of functions, one may refer to the sufficient con

ditions in Rockafellar and Wets [30, theorem 7.46].

3.1. Asymptotic Stationarity Under Epi-Convergence
In this subsection, we introduce a novel stationarity concept for problem (CP0), grounded in a monotonic decom
position of univariate convex functions. We demonstrate that under certain constraint qualifications, epi- 
convergence of approximating functions ensures this stationarity concept as a necessary optimality condition. 
Alongside the known fact that epi-convergence also ensures the consistency of global optimal solutions (Rocka
fellar and Wets [30, theorem 7.31(b)]), this highlights the usefulness of epi-convergence as a tool for studying the 
approximation of problem (CP0).

The following lemma is an extension of Cui and Pang [13, lemma 6.1.1] from real-valued univariate convex 
functions to extended-real-valued univariate convex functions.

Lemma 1 (Monotonic Decomposition of Univariate Convex Functions). Let φ : R→ R be a proper, lsc, and convex function. 
Then, there exists a proper, lsc, convex, and nondecreasing function φ↑, as well as a proper, lsc, convex, and nonincreasing 
function φ↓, such that φ � φ↑ + φ↓. In addition, if int(domφ) ≠ ∅, then ∂φ(z) � ∂φ↑(z) + ∂φ↓(z) for any z ∈ domφ.

Proof. From the convexity of φ, dom φ is an interval on R, possibly unbounded. In fact, we can explicitly con
struct φ↑ and φ↓ in following two cases.

Case 1. If φ has no direction of recession—that is, there does not exist d ≠ 0 such that for any z, φ(z +λd) is a 
nonincreasing function of λ > 0—it follows from Rockafellar [27, theorem 27.2] that φ attains its minimum at 
some z∗ ∈ domφ. Define

φ↑(z) �
φ(z∗) if z ≤ z∗

φ(z) if z > z∗
and φ↓(z) �

φ(z) � φ(z∗) if z ≤ z∗

0 if z > z∗:

��

Observe that ∅ ≠ int(domφ) ⊂ [int(dom φ↑) ∩ int(domφ↓)]. Consequently, from Rockafellar [27, theorem 23.8], 
we have ∂φ(z) � ∂φ↑(z) + ∂φ↓(z) for any z ∈ R.

Case 2. Otherwise, there exists d ≠ 0 such that for any z ∈ R, φ(z +λd) is a nonincreasing function of λ > 0. Con
sequently, dom φ must be an unbounded interval on R. Let d � 1 (or –1) be such a recession direction; then, φ is 
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nonincreasing (or nondecreasing) on R. We can set φ↑ � 0 and φ↓ � φ (or φ↑ � φ and φ↓ � 0). In this case, it is 
obvious that ∂φ(z) � ∂φ↑(z) + ∂φ↓(z) for any z ∈ R. The proof is thus completed. w

In the subsequent analysis, we use φ↑ and φ↓ to denote the monotonic decomposition of any univariate, proper, 
lsc, and convex function φ constructed in the proof of Lemma 1, and, in particular, we take φ↓ � 0 whenever φ is 
nondecreasing. We are now ready to present the definition of asymptotically stationary points.

Definition 4 (Asymptotically Stationary Points). Let each fp be an ADC function associated with { f k
p � gk

p � hk
p}k∈N. For 

each p, define
Tp(x) ¢ {tp |∃ N ∈ N]

∞, xk → x with f k
p (xk) →N tp} x ∈ Rn: (9) 

We say that x is an asymptotically stationary (A-stationary) point of problem (CP0) if for each p, there exists yp ∈

∪ {∂φp(tp) | tp ∈ Tp(x)} such that

0 ∈
Xm

p�1
({yp ∂A fp(x)} ∪ [6∂

∞
A fp(x)\{0}]): (10) 

We say that x is a weakly asymptotically stationary (weakly A-stationary) point of problem (CP0) if for each p, there 
exist tp ∈ Tp(x), yp, 1 ∈ ∂φ↑

p(tp) and yp, 2 ∈ ∂φ↓
p(tp) such that

0 ∈
Xm

p�1
({yp, 1 ∂A fp(x) + yp, 2 ∂A fp(x)} ∪ [6∂

∞
A fp(x)\{0}] ):

Remark 1. (i) Given that the approximate subdifferential ∂A fp is determined by the approximating sequence 
{ f k

p }k∈N and their corresponding DC decompositions, the notion of (weak) A-stationarity also depends on these 
sequences and decompositions. (ii) It follows directly from Lemma 1 that an A-stationary point must be a weakly 
A-stationary point if int(dom φp) ≠ ∅ for each p � 1, : : : , m. (iii) When each φp is nondecreasing or nonincreasing, 
the concepts of weak A-stationarity and A-stationarity coincide. (iv) Given a point x, we can rewrite (10) as

0 ∈
X

p∈I
[6∂

∞
A fp(x)\{0}] +

X

p∈{1, : : : ,m}\I
{yp ∂A fp(x)}, 

for some index set I ⊂ {1, : : : , m} that is potentially empty. For each p ∈ I, although the scalar yp does not explicitly 
appear in this inclusion, its existence implies that 

[

{∂φp(tp) | tp ∈ Tp(x)} ≠ ∅, which plays a role in ensuring x ∈ dom 
(φp ◦ fp). For instance, if f k

p →
c fp for some p ∈ I, then Tp(x) � { fp(x)}, and the existence of yp ∈

[

{∂φp(tp) |tp ∈ Tp(x)} �

∂φp( fp(x)) yields x ∈ dom (φp ◦ fp).

In the following, we take a detour to compare the A-stationarity with the stationarity defined in Royset [32], 
where the author has focused on a more general composite problem

minimize
x∈Rn

φ( f (x)), 

where φ : Rm → R is proper, lsc, convex, and f ¢ ( f1, : : : , fm) : Rn → Rm is a locally Lipschitz continuous mapping. 
Consider the special case where φ(z) �

Pm
p�1 φp(zp) with z � (z1, : : : , zm). Under this setting, a vector x is called a 

stationary point in Royset [32] if there exist y and z such that

0 ∈ S(x, y, z) ¢ {( f1(x), : : : , fm(x)) � z} × {∂φ(z) � y} ×
Xm

p�1
yp ∂C fp(x)

0

@

1

A, (11) 

which can be equivalently written as

0 ∈
Xm

p�1
yp ∂C fp(x) for some yp ∈ ∂φp( fp(x)) p � 1, : : : , m: (12) 

For any fixed k ∈ N, a surrogate set-valued mapping Sk can be defined similarly as S in (11) by substituting fp and 
φp with f k

p and φk
p for each p. The cited paper provides sufficient conditions to ensure Lim supk→+∞(gphSk

) ⊂ gphS, 
which asserts that any accumulation point (x, y, z) of a sequence {(xk, yk, zk)} with 0 ∈ Sk(xk, yk, zk) yields a stationary 
point x. Our study on the asymptotic stationarity differs from Royset [32] in the following aspects: 

1. Our outer convex function φ is assumed to have the separable form 
Pm

p�1 φp, whereas Royset [32] allows a 
general proper, lsc, convex function. In addition, each φp is fixed in our approximating problem, whereas Royset 
[32] considers a sequence of convex functions {φk

p}k∈N that epi-converges to φp.
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2. We do not require the inner function fp to be locally Lipschitz continuous.
If each fp is locally Lipschitz continuous and bounded from below, it then follows from Theorem 1 that fp is 

c-ADC associated with { f k
p � gk

p � hk
p}k∈N such that ∂fp(x) ⊂ ∂A fp(x) ⊂ ∂C fp(x) and ∂

∞
A fp(x) � {0} for any x. More

over, by f k
p →

c fp, one has Tp(x) � { fp(x)}. Thus, for any A-stationary point x induced by these ADC decomposi
tions, there exists yp ∈ ∂φp( fp(x)) for each p such that

0 ∈
Xm

p�1
{yp ∂A fp(x)} ⊂

Xm

p�1
{yp ∂C fp(x)}: (13) 

Hence, x is also a stationary point defined in (12). Indeed, A-stationarity here can be sharper than the latter one, 
as the last inclusion in (13) may not hold with equality.

When fp fails to be locally Lipschitz continuous for some p, it is not known if (11) is still a necessary condition 
for a local solution of (CP0). This situation further complicates the fulfillment of conditions outlined in Royset 
[32, theorem 2.4], especially the requirement of f k

p →
c fp, due to the potential discontinuity of fp. As will be shown 

in Theorem 2 below, despite these challenges, weak A-stationarity continues to be a necessary optimality condi
tion under Assumption 1.

To proceed, for each p and any x ∈ dom (φp ◦ fp), we define Sp(x) to be a collection of sequences:

Sp(x) ¢ {{xk
p}k∈N |xk

p → x with φp( f k
p (xk

p)) → φp( fp(x))}: (14) 

Theorem 2 (Necessary Conditions for Optimality). Let x ∈
\m

p�1domFp be a local minimizer of problem (CP0). Suppose that 
Assumption 1 and the following two conditions hold: 

i. For each p and any sequence {xk
p}k∈N ∈ Sp(x), there is a positive integer K such that

0 ∉ ∂C f k
p (xk

p) or Ndom φp
( f k

p (xk
p)) � {0} ∀k ≥ K, (15) 

and

0 ∈ yp ∂A fp(x), yp ∈
[

{Ndom φp
(tp) |tp ∈ Tp(x)}

h i
⇒ yp � 0, p � 1, : : : , m: (16) 

ii. One has
Xm

p�1
wp � 0, wp ∈ ∂

∞
(φp ◦ fp)(x)

2

4

3

5 ⇒ w1 � ⋯ � wm � 0: (17) 

Then, x is an A-stationary point of (CP0). Additionally, x is a weakly A-stationary point of (CP0) if int(domφp) ≠ ∅ for each 
p � 1, : : : , m.

Proof. By using Fermat’s rule (Rockafellar and Wets [30, theorem 10.1]) and the sum rule of the limiting subdif
ferentials (Rockafellar and Wets [30], corollary 10.9]) due to the Condition (17), we have

0 ∈ ∂
Xm

p�1
(φp ◦ fp)(x)

2

4

3

5 ⊂
Xm

p�1
∂(φp ◦ fp)(x)

⊂
(i)Xm

p�1

[

{xk
p}k∈N∈Sp(x)

Lim sup
k→+∞

∂(φp ◦ f k
p )(xk

p)

⊂
(ii)Xm

p�1

[

{xk
p}k∈N∈Sp(x)

Lim sup
k→+∞

∪ {∂(yk
p f k

p )(xk
p) | yk

p ∈ ∂φp( f k
p (xk

p))}

⊂
(iii)Xm

p�1

[

{xk
p}k∈N∈Sp(x)

Lim sup
k→+∞

{yk
p vk

p | yk
p ∈ ∂φp( f k

p (xk
p)), vk

p ∈ ∂C f k
p (xk

p)}

⊂
(iv)Xm

p�1

[

{xk
p}k∈N∈Sp(x)

Lim sup
k→+∞

{yk
p vk

p | yk
p ∈ ∂φp( f k

p (xk
p)), vk

p ∈ [∂gk
p(xk

p) � ∂hk
p(xk

p)]}: (18) 

The inclusion (i) is due to φp ◦ f k
p →

e
φp ◦ fp in Assumption 1(c) and approximation of subgradients under epi- 

convergence (Rockafellar and Wets [30, corollary 8.47 and proposition 8.46(e)]); (ii) follows from the nonsmooth 
Lagrange multiplier rule (Rockafellar and Wets [30, exercise 10.52]) due to the local Lipschitz continuity of f k

p 
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(Rockafellar and Wets [30, example 9.14]) and the Condition (15); (iii) and (iv) use the calculus rules of the Clarke 
subdifferential (Clarke [12, chapter 2.3]). For each p, any sequence {xk

p}k∈N ∈ Sp(x) and any element

wp ∈ Lim sup
k→+∞

{yk
p vk

p |yk
p ∈ ∂φp( f k

p (xk
p)), vk

p ∈ [∂gk
p(xk

p) � ∂hk
p(xk

p)]}, 

there is a subsequence wk
p →N wp with wk

p � yk
p vk

p for some N ∈ N]
∞. Next, we show the existence of yp ∈

[

{∂φp(tp) |tp ∈ Tp(x)} for each p such that
wp ∈ { yp ∂A fp(x) } ∪ [6∂

∞
A fp(x)\{0} ]: (19) 

By Assumption 1(b), the subsequence { f k
p (xk

p)}k∈N is bounded. Taking a subsequence if necessary, we can suppose 
that f k

p (xk
p) →N zp ∈ Tp(x). If {yk

p}k∈N is unbounded, then {vk
p}k∈N has a subsequence converging to zero, and, thus, 

0 ∈ ∂A fp(x). Additionally, there exists eyp ≠ 0 such that yk
p=‖yk

p ‖ →N eyp with

eyp ∈ Lim sup
k(∈N)→+∞

∞ ∂φp( f k
p (xk

p)) �
(v) Lim sup

k(∈N)→+∞

∞ b∂φp( f k
p (xk

p)) ⊂
(vi)

∂
∞

φp(zp) �
(vii)

Ndom φp
(zp): (20) 

The equation (v) follows from Rockafellar and Wets [30, proposition 8.12] by the convexity of φp. From {xk
p}k∈N ∈

Sp(x) and x ∈ dom Fp, we must have f k
p (xk

p) ∈ dom φp for sufficiently large k ∈ N. Because φp is lsc, it holds that 
φp(zp) ≤ lim infk(∈N)→+∞ φp( f k

p (xk
p)) � φp( fp(x)) and, thus, zp ∈ dom φp. Also, notice that φp is continuous relative to 

its domain as it is univariate convex and lsc (Rockafellar [27, theorem 10.2]). This continuity implies φp( f k
p (xk

p))

→N φp(zp). The inclusion (vi) follows directly from the definition of the horizon subdifferential. Lastly, (vii) is 
due to the lower semicontinuity of the proper convex function φ and Rockafellar and Wets [30, proposition 8.12]. 
Therefore, we have (0 ≠)eyp ∈

S
{Ndomφp

(tp) |tp ∈ Tp(x)} with 0 ∈ eyp∂A fp(x) due to 0 ∈ ∂A fp(x), contradicting (16). So 
far, we conclude that {yk

p}k∈N is a bounded sequence. Suppose that yk
p →N yp and, thus, yp ∈ ∂φp(zp) by the outer 

semicontinuity of ∂φp (Rockafellar and Wets [30, proposition 8.7]).
Case 1. If yp � 0, Inclusion (19) holds trivially for wp � 0, and for wp ≠ 0 we can find a subsequence { |yk

p | }k∈N′ ↓ 0 
such that { |yk

p |vk
p}k∈N′ converges to wp or �wp(≠ 0) with vk

p ∈ [∂gk
p(xk

p) � ∂hk
p(xk

p)] for all k ∈ N′. Therefore, (19) fol
lows from

wp ∈ 6Limsup
k→+∞

∞ [∂gk
p(xk

p) � ∂hk
p(xk

p)]

 !

\{0}

" #

⊂ [6∂
∞
A fp(x)\{0}]:

Case 2. Otherwise, ‖vk
p ‖ →N ‖wp ‖= |yp | . This means that {vk

p}k∈N is bounded. Suppose vk
p →N vp. Then, vp ∈

Lim supk→+∞
[∂gk

p(xk
p) � ∂hk

p(xk
p)] ⊂ ∂A fp(x), and (19) is evident from wp � yp vp.

In either case, we have proved (19). Combining (18) with (19), for some yp ∈ ∪ {∂φp(tp) |tp ∈ Tp(x)}, we know 
that x is an A-stationary point of (CP0). The final assertion follows from Remark 1(ii). w

3.2. An Example of A-Stationarity
We present an example to illustrate the concept of A-stationarity and to study its relationship with other known 
optimality conditions.

Example 3.1 (Biparametrized Two-Stage Stochastic Programs). Consider the following biparametrized two-stage 
stochastic program with fixed scenarios described in Liu et al. [21]:

minimize
x∈Rn

θ(x) +
1

m1

Xm1

p�1
fp(x) subject to φp(x) ≤ 0, p � 1, : : : , m2, (21) 

where θ,φp : Rn → R are convex, continuously differentiable for p � 1, : : : , m2, and fp, as defined in (1), is real-valued 
for p � 1, : : : , m1. At x � x, let Yp(x) and Λp(x) represent the optimal solutions and multipliers for each Second-Stage 
Problem (1). Suppose that Yp(x) and Λp(x) are bounded. Note that θ and φp are ADC functions because they are con
vex. Example 2.1 shows that fp is an ADC function, and, therefore, Problem (21) is a specific case of the Composite 
Model (CP0). Given an A-stationary point x of (21), under the assumptions of Example 2.1, we have

0 ∈ ∇θ(x) +
1

m1

Xm1

p�1
({∂A fp(x)} ∪ [6∂

∞
A fp(x)\{0}]) +

Xm2

p�1
µ m1+p ∇φp(x)

⊂ ∇θ(x) +
1

m1

Xm1

p�1
{∂1 fp(x, x) � ∂2(�fp)(x, x)} +

Xm2

p�1
µ m1+p ∇φp(x), (22) 
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where µm1+p ∈ N (�∞, 0](φp(x)) for p � 1, : : : , m2 and fp is defined in (5) for p � 1, : : : , m1. By assumptions, both Λp(x)

and Yp(x) are nonempty, bounded, and

Λp(x) × Yp(x) � ( yp, µp)

�
�
�
�

cp + Cpx + Qp yp + (Bp)
⊤

µp � 0,
0 ≤ (bp � Apx � Bpyp) ⊥ µp ≥ 0

( )

:

It then follows from Danskin’s Theorem (Clarke [11, theorem 2.1]) that

∂1 fp(x, x) � con {(Ap)
⊤

µp | µp ∈ Λp(x)} � {(Ap)
⊤

µp | µp ∈ Λp(x)},
∂2(�fp)(x, x) � con {�(Cp)

⊤yp | yp ∈ Yp(x)} � {�(Cp)
⊤yp | yp ∈ Yp(x)}:

Combining these expressions with (22), we obtain

0 � ∇θ(x) +
1

m1

Xm1

p�1
[(Cp)

⊤yp + (Ap)
⊤

µp] +
Xm2

p�1
µm1+p ∇φp(x),

c p + Cpx + Qp yp + (Bp)
⊤

µp � 0, 0 ≤ bp � Apx � Bpyp ⊥ µp ≥ 0, p � 1, : : : , m1,
0 ≤ φp(x) ⊥ µ m1+p ≥ 0, p � 1, : : : , m2,

8
>>>><

>>>>:

which are the Karush-Kuhn-Tucker conditions for the deterministic equivalent of (21).

4. A Computational Algorithm
In this section, we consider a double-loop algorithm for solving Problem (CP0). The inner loop finds an approxi
mate stationary point of the perturbed composite optimization problem

minimize
x∈Rn

Xm

p�1
[Fk

p(x) ¢ φp( f k
p (x))], (23) 

by solving a sequence of convex subproblems, while the outer loop drives k → +∞. It is important to note the 
potential infeasibility in (23) because [Fk

p � φp ◦ f k
p ] →

e Fp in Assumption 1(c), together with dom (φp ◦ fp) ≠ ∅, does not 
guarantee dom (φp ◦ f k

p ) ≠ ∅ for all k ∈ N. This can be seen from the example of φ(t) � δ(�∞, 0](t), f (x) � max{x, 0} �

1=10 and f k(x) � max{x, 0} + 1=k � 1=10. Obviously, dom (φ ◦ f ) � (�∞, 1=10] and φ ◦ f k →
e

φ ◦ f by Royset [32, theo
rem 2.4(d)], but we have dom (φ ◦ f k) � ∅ for k � 1, : : : , 9. Even though dom (φp ◦ f k

p ) ≠ ∅ for all k ∈ N and each p, this 
does not imply the feasibility of convex subproblems used in the inner loop to approximate (23).

For simplicity of the analysis, we assume that in problem (CP0), φp is real-valued for p � 1, : : : , m1, and φp �

δ(�∞, 0] for p � m1 + 1, : : : , m. Namely, the problem takes the following form: 

(CP1) minimize
x∈Rn

Xm1

p�1
[Fp(x) � φp( fp(x))] subject to fp(x) ≤ 0, p � m1 + 1, : : : , m:

For p � 1, : : : , m1, the convexity of each real-valued function φp implies its continuity by Rockafellar [27, corollary 
10.1.1]. Consequently, the composite function Fk

p � φp ◦ f k
p is also continuous for p � 1, : : : , m1 and k ∈ N due to the 

continuity of each approximating function f k
p . It is important to note that Model (CP1) still covers discontinuous 

objective functions because each fp can be discontinuous, even though the approximating sequence { f k
p }k∈N only 

consists of locally Lipschitz continuous functions.

4.1. Assumptions and Examples
Firstly, we make an assumption to address the feasibility issue outlined at the start of this section. For all k ∈ N 
and p � m1 + 1, : : : , m, define

αk
p ¢ sup

x∈Xk
[ f k+1

p (x) � f k
p (x)]+ with Xk ¢ {x ∈ Rn | f k

p (x) ≤ 0, p � m1 + 1, : : : , m}:

Based on these auxiliary sequences, we need an initial point x0 that is strictly feasible to the constraints f 0
p (x) ≤ 0 

for each p � m1 + 1, : : : , m.

Assumption 2 (Strict Feasibility). There exist x0 and nonnegative sequences {cαk
p}k∈N for p � m1 + 1, : : : , m, such that αk

p ≤
cαk

p for all k ∈ N and
X+∞

k′�0

cαk′

p < +∞, f 0
p (x0) ≤ �

X+∞

k′�0

cαk′

p , p � m1 + 1, : : : , m:
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To streamline our notation and analysis, we extend the definitions of αk
p and introduce cαk

p for p � 1, : : : , m1 by set
ting αk

p �cαk
p � 0 for all k ∈ N and p � 1, : : : , m1. Because the quantity αk

p depends on the sequence { f k
p }k∈N, Assump

tion 2 poses a condition for this approximating sequence. Consider a fixed index p ∈ {m1 + 1, : : : , m}. One can use 
the following way to construct {αk

p}k∈N. Suppose that there exist a function efp : Rn × [0, 1] → R and a nonnegative 
sequence γk ↓ 0 such that

efp(x,γk) � f k
p (x) and efp(x, 0) � fp(x):

Additionally, assume that for any fixed x, the function efp(x, ·) is continuous on [0, 1] and differentiable on (0, 1), 
and there exists a constant Cp such that |∇γ efp(x,γ) | ≤ Cp for any x and γ ∈ (0, 1). For any fixed x, by the mean 
value theorem, there exists a point γk ∈ (γk+1,γk) such that f k+1

p (x) � f k
p (x) � (γk+1 � γk)∇γ

efp(x,γk). Thus,
X+∞

k′�0
αk′

p ≤
X+∞

k′�0
(γk′ � γk′+1) sup

x∈Rn
|∇γ

efp (x,γk′ ) | ≤
X+∞

k′�0
[cαk′

p ¢ Cp(γk′ � γk′+1)] � Cpγ0 < +∞:

Two more assumptions on the approximating sequences {f k
p }k∈N are needed.

Assumption 3 (Smoothness of gk
p or hk

p). For each k ∈ N, there exists ℓk > 0 such that

min{H(∂gk
p(x), ∂gk

p(x′)), H(∂hk
p(x), ∂hk

p(x′)) } ≤ ℓk ‖x′ � x‖ ∀x, x′ ∈ Rn, p � 1, : : : , m:

Assumption 4 (Level-Boundedness). For each k ∈ N, the function Hk ¢
Pm

p�1 Fk
p is level-bounded—that is, for any r ∈ R, 

the set

x ∈ Rn

�
�
�
�
�

Xm1

p�1
φp( f k

p (x)) +
Xm

p�m1+1
δ(�∞, 0]( f k

p (x)) ≤ r

8
<

:

9
=

;
� x ∈ Rn

�
�
�
�
�

Xm1

p�1
φp( f k

p (x)) ≤ r

8
<

:

9
=

;
∩ Xk, 

is bounded.

Assumption 3 imposes conditions on the Lipschitz continuity of the subdifferential mapping ∂gk
p or ∂hk

p, which will 
be used to determine the termination rule of the inner loop. A straightforward sufficient condition for this assumption 
is that, for each p and k, at least one of the functions gk

p and hk
p is ℓk-smooth—that is, ‖∇gk

p(x) � ∇gk
p(x′)‖ ≤ ℓk ‖x � x′ ‖

or ‖∇hk
p(x) � ∇hk

p(x′)‖ ≤ ℓk ‖x � x′ ‖ for any x, x′ ∈ Rn. We also remark that Assumption 3 can hold, even though 
both gk

p and hk
p are nondifferentiable. This can be seen from the following univariate example: gk

p(x) � |x | and hk
p(x) �

|x � 1 | for any x ∈ R. It is not difficult to verify that Assumption 3 holds for ℓk � 2. Assumption 4 is a standard condi
tion to ensure the boundedness of the generated sequences for each k ∈ N.

In addition, we need a technical assumption to ensure the boundedness of the multiplier sequences in our 
algorithm.

Assumption 5 (Asymptotic Constraint Qualification). For any x ∈
\m

p�1dom Fp, if there exists {yp}
m
p�1 satisfying 

0 �
Pm

p�1 yp vp, where for each p (with the definition of Tp(x) in (9)),

(yp, vp) ∈
[

{Ndomφp
(tp) |tp ∈ Tp(x)} × con ∂A fp(x)

� �
∪ (R × [ ∂

∞
A fp(x)\{0} ]), (24) 

then we must have y1 � ⋯ � ym � 0.

The normal cone Ndom φp
(tp) in (24) reduces to {0} for p � 1, : : : , m1 and N (�∞, 0](tp) for p � m1 + 1, : : : , m. Accord

ing to the definitions of ∂A fp(x) and ∂∞
A fp(x), Assumption 5 depends on the approximating sequences { f k

p }k∈N for 
p � 1, : : : , m. It holds trivially if each φp is real-valued and ∂∞

A fp(x) � {0}. By Theorem 1(b), the condition ∂∞
A fp(x) � {0}

holds when the ADC decompositions are constructed using the Moreau envelope, provided that fp is locally Lipschitz 
continuous and bounded from below. However, in general, Assumption 5 is not easy to verify. For Example 3.1, the 
assumption translates into

Xm2

p�1
λp∇φp(x) � 0, λp ∈ N (�∞, 0](φp(x)), p � 1, : : : , m2

2

4

3

5 ⇒ λ1 � ⋯ � λm2 � 0:

This is equivalent to the Mangasarian-Fromovitz constraint qualification for Problem (21) by Rockafellar and 
Wets [30, example 6.40]; see also Rockafellar [28].
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Furthermore, if each fp is c-ADC associated with { f k
p � gk

p � hk
p}k∈N such that con ∂A fp(x) � ∂C fp(x), and ∂

∞
A 

fp(x) � {0}, Assumption 5 states that

0 ∈
Xm

p�1
yp ∂C fp(x), yp ∈ Ndomφp

( fp(x)), p � 1, : : : , m

2

4

3

5 ⇒ y1 � ⋯� ym � 0:

This condition aligns with the constraint qualification for the composite optimization problem in Royset [32, 
proposition 2.1] and is stronger than the condition in the nonsmooth Lagrange multiplier rule (Rockafellar and 
Wets [30, exercise 10.52]). Finally, Assumption 5 implies the Constraint Qualifications (15)–(17) in Theorem 2. We 
formally present this conclusion in the following proposition. The proof of Proposition 4 is given in Appendix B.

Proposition 4 (Consequences of Assumption 5). Suppose that Assumptions 1 and 5 hold, and f k
p →

e fp for each p. If 
sup φp � +∞ for p ∈ I1, and fp is locally Lipschitz continuous for p ∈ I2 (with the definitions of I1 and I2 in (8)), then Conditions 
(15), (16), and (17) hold at any feasible point x of (CP1). Consequently, any local solution of (CP1) is a (weakly) A-stationary 
point of (CP1).

In the following, we use two examples to further illustrate Assumption 3 and the computation of {cαk
p}k∈N in 

Assumption 2.

Example 4.1 (Implicitly Convex-Concave Constraints). Let fp be real-valued and icc associated with fp, where fp(·, x) is 
Lipschitz continuous with modulus L for any x. For the sequence { f k

p }k∈N in Example 2.1, it follows from gk
p(x) �

‖x‖2=(2γk) that Assumption 3 holds for ℓk � 1=γk. To construct the quantities cαk
p in Assumption 2, we notice that

αk
p ≤ sup

x∈Rn
[ f k+1

p (x) � f k
p (x)]+ ≤ sup

x∈Rn
[ fp(x) � f k

p (x)]+ ≤
γk L2

2 ¢ cαk
p ∀k ∈ N, (25) 

where the second inequality is due to f k+1
p (x) ≤ fp(x) for any x, and the last one uses the bound between the partial 

Moreau envelope and the original function (Li and Cui [20, lemma 3]). Thus, the sequence {cαk
p}k∈N satisfies 

P+∞
k′�0

cαk′

p < +∞ if {γk} is summable.

Alternatively, we can construct the quantities cαk
p as follows. Let the partial Moreau envelope in (6) be the function 

efp jointly defined for (x,γ) ∈ Rn × (0, 1], and efp(x, 0) � fp(x) for any x. We claim that efp(x, ·) is continuous on [0, 1] and 
differentiable on (0, 1) for any fixed x. Continuity in γ can be simply checked by a standard argument (Rockafellar 
and Wets [30, theorem 1.17(c)]), noting that the optimal value is achieved at a unique point as the function fp(·, x) +

‖ · �x‖2=(2γ) is strongly convex for any fixed x. Differentiability follows from the Danskin’s Theorem (Clarke [11, 
theorem 2.1]) that ∇γ efp(x,γ) � �‖z � x‖2=(2γ2) with z satisfying (x � z)=γ ∈ ∂1 f (z, x) for any (x,γ) ∈ Rn × (0, 1]. It 
then follows from the Lipschitz continuity of fp(·, x) that |∇γ

efp(x,γ) | ≤ L2=2 ¢ Cp for any (x,γ) ∈ Rn × (0, 1]. There
fore, αk

p ≤ Cp(γk � γk+1) ¢cαk
p and 

P+∞
k′�0

cαk′

p � Cpγ0 < +∞ for any sequence {efp(·,γk)}k∈N defined by the partial 
Moreau envelope with γk ↓ 0.

Example 4.2 (VaR Constraints for Log-Normal Distributions). Consider fp(x) � VaRα[c(x, Z)] with c(x, Z) � exp(x⊤Z)

for some random vector Z ~ Normal(µ,Σ), where Σ is a positive definite covariance matrix. We have 
c(x, Z) ~ Lognormal(x⊤µ,

ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
). The variable x is restricted to a compact set X ⊂ Rn. Denote the α-quantile of 

the standard normal distribution by qα and the cumulative distribution function of the standard normal distribu
tion by Φ(·). By direct calculation (cf. Norton et al. [23, section 3.2]), we have

VaRα[c(x, Z)] � exp(x⊤µ + qα
ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
),

CVaRα[c(x, Z)] �
1

1 � α
exp x⊤µ +

1
2 x⊤Σx

� �

Φ(
ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
� qα):

Hence, fp(x) � VaRα[c(x, Z)] is neither convex nor concave if qα < 0. For the sequence { f k
p }k∈N in Example 2.2, we 

can derive that

hk
p(x) � k(1 � α) CVaRα[c(x, Z)] � k exp x⊤µ +

1
2 x⊤Σx

� �

Φ(
ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
� qα):

Because Σ is positive definite, it is easy to see that hk
p is twice continuously differentiable. Consequently, hk

p is 
ℓk-smooth relative to the compact set X for some ℓk, and Assumption 3 holds (relative to X). Next, we define 
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efp(x,γ) � 1
γ

R α
α�γVaRt[c(x, Z)] dt for any (x,γ) ∈ Rn × (0, α2] and efp(x, 0) � fp(x) for any x. Obviously, efp(x, ·) is continu

ous on [0, α2] and differentiable on (0, α2) for any fixed x. By using the Leibniz rule for differentiating the paramet
ric integral, for γ ∈ (0, α2), we have

|∇γ efp(x,γ) | �
1
γ2

Z α

α�γ
(VaRt[c(x, Z)] � VaRα�γ[c(x, Z)]) dt

≤
1
γ

(VaRα[c(x, Z)] � VaRα�γ[c(x, Z)])

� exp(x⊤µ)
exp(qα

ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
) � exp(qα�γ

ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
)

γ

� exp(x⊤µ)[exp(qα′

ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
)
ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
∇αqα′ ], 

for some α′ ∈ (α� γ,α) by the mean-value theorem. By using the fact ∇αqα �
ffiffiffiffiffiffi
2π

√
exp(q2

α=2), the monotonicity 
qα=2 < qα′ < qα, and the compactness of X, we further have

sup
x∈X

|∇γefp(x,γ) | ≤ exp 1
2 max{q2

α, q2
α=2}

� �

· sup
x∈X

{exp(x⊤µ + qα
ffiffiffiffiffiffiffiffiffiffiffi
x⊤Σx

√
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2π) x⊤Σx

p
}

¢ Cp < +∞:

Therefore, αk
p ≤ Cp(γk � γk+1) ¢cαk

p and 
P∞

k′�0
cαk

p � Cpγ0 < +∞ for any sequence {efp(·,γk)}k∈N with γk ↓ 0.

4.2. The Algorithmic Framework and Convergence Analysis
We now formalize the algorithm for solving (CP1). For p � m1 + 1, : : : , m, recall the nonnegative sequences {cαk

p}k∈N 

introduced in Assumption 2, and observe that 
P+∞

k′�k
cαk′

p → 0 as k → +∞. For consistency of our notation, we also 
set cαk

p ≡ 0 for all k ∈ N and p � 1, : : : , m1. At the k-th outer iteration and for p � 1, : : : , m, consider the upper and 
lower approximation of f k

p at a point y by taking some ak
p ∈ ∂hk

p(y), bk
p ∈ ∂gk

p(y) and incorporating sequences 
{cαk

p}k∈N:

f k, upper
p (x; y) ¢ gk

p(x) � hk
p(y) � (ak

p)
⊤

(x � y) +
X+∞

k′�k

cαk′

p ,

f k, lower
p (x; y) ¢ gk

p(y) + (bk
p)

⊤
(x � y) � hk

p(x): (26) 

Observe that, for fixed y, the upper approximation f k, upper
p (· ; y) is convex, whereas the lower approximation 

f k, lower
p (· ; y) is concave. For p � 1, : : : , m1, consider the following function

cFk
p(x; y) ¢ φ↑

p( f k, upper
p (x; y)) + φ↓

p( f k, lower
p (x; y)), (27) 

which is a convex majorization of Fk
p at a point y by the fact that φ↑

p is nondecreasing and φ↓
p is nonincreasing. For 

p � m1 + 1, : : : , m, consider the convex constraint f k, upper
p (x; y) ≤ 0 as an approximation for f k

p (x) ≤ 0.
We summarize the properties of all the surrogate functions as follows. Note that (28(a)) and (28(b)) hold for 

p � 1, : : : , m, whereas (28(c)) holds only for p � 1, : : : , m1.

f k, upper
p (x; y) ≥ f k

p (x) +
X∞

k′�k

cαk′

p ≥ f k
p (x), f k, upper

p (x; x) � f k
p (x) +

X∞

k′�k

cαk′

p , (28(a)) 

f k, lower
p (x; y) ≤ f k

p (x), f k, lower
p (x; x) � f k

p (x), (28(b)) 
cFk

p(x; y) ≥ Fk
p(x), cFk

p(x; x) � Fk
p(x): (28(c)) 

The proposed method for solving problem (CP1) is outlined in Algorithm 1. The inner loop of the algorithm 
(indexed by i) is terminated when the following conditions are satisfied:

f k, upper
p (xk, i+1; xk, i) ≤ f k

p (xk, i+1) +
X+∞

k′�k

cαk′

p + ɛk, p � 1, : : : , m,

f k, lower
p (xk, i+1; xk, i) ≥ f k

p (xk, i+1) � ɛk, p ∈ I2,

‖xk, i+1 � xk, i ‖ ≤ δk=(λ + ℓk):

8
>>>><

>>>>:

(29) 
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Algorithm 1 (The Prox-ADC Method for Solving (CP1))
Input: Given x0 and {cαk

p}k∈N satisfying Assumption 2. Let {ℓk} be a sequence satisfying Assumption 3. Choose 
λ > 0, a positive sequence (ɛk,δk) ↓ 0 such that δk=(λ+ ℓk) ↓ 0. Set k � 0. 
1: while a prescribed stopping criterion is not met do
2: xk, 0 � xk

3: for i � 0, 1, : : : do
4: Take ak, i

p ∈ ∂ gk
p(xk, i) for p � 1, : : : , m and bk, i

p ∈ ∂hk
p(xk, i) for p � 1, : : : , m1

5: Solve the strongly convex subproblem:

xk, i+1 �
argmin

x∈Rn

Xm1

p�1

cFk
p(x; xk, i) +

λ

2 ‖x � xk, i ‖2

subject to f k, upper
p (x; xk, i) ≤ 0, p � m1 + 1, : : : , m

2

6
4

3

7
5 (30) 

6: if the Conditions (29) hold for λ, ℓk, ɛk,δk, and 
P+∞

k′�k
cαk′

p then
7: Break the for-loop
8: else
9: i ← i + 1

10: end if
11: end for
12: xk+1 � xk, i

13: k ← k + 1
14: end while

In contrast to the prox-linear algorithm that is designed to minimize amenable functions and adopts complete 
linearization of the inner maps, the prox-ADC method retains more curvature information inherent in these 
maps (see Figure 1). We emphasize that the prox-ADC method differs from Cui and Pang [13, algorithm 7.1.2] 
that is designed for solving a problem with a convex composite DC objective and DC constraints. Central to the 
prox-ADC method is the double-loop structure, where, in contrast to Cui and Pang [13, algorithm 7.1.2], the DC 
sequence f k

p is dynamically updated in the outer loop rather than remaining the same. This adaptation necessi
tates Specialized Termination Criteria (29) and the incorporation of cαk

p to maintain feasibility with each update of 
f k
p . In the following, we demonstrate the well-definedness of the prox-ADC method. Specifically, we establish 

that for each iteration k, the criteria detailed in (29) are attainable in finitely many steps.

Theorem 3 (Convergence of Inner Loop). Suppose that Assumptions 1–4 hold. Then, the following statements hold. 
a. Problem (30) is feasible for any k, i ∈ N.
b. The stopping rule of the inner loop is achievable in finitely many steps—that is, the smallest integer i satisfying Condi

tions (29), denoted by ik, is finite for any k ∈ N.

Proof. We prove (a) and (b) by induction. For k � 0, notice from Assumption 2 and (28(a)) that f 0, upper
p (x0; x0) �

f 0
p (x0) +

P+∞
k′�0

cαk′

p ≤ 0 for p � m1 + 1, : : : , m. Thus, Problem (30) is feasible for k � i � 0. Assume that (30) is feasible 

Figure 1. (Color online) Illustrations of the prox-ADC method. (a) A comparison of the prox-ADC and the prox-linear method 
for minimizing an amenable function. (b) Asymptotic approximations of a discontinuous composite function F1 � φ1 ◦ f1 that are 
constructed by an epi-convergent sequence {Fk

1 � φ1 ◦ f k
1 } and a convex majorization cFk

1 (· ; y) for Fk
1. 

(a) (b)
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for k � 0 and some i � i (∈ N). Consequently, x0, i+1 is well-defined and for p � m1 + 1, : : : , m,

f 0, upper
p (x0, i+1; x0, i+1) �

(28(a)) f 0
p (x0, i+1) +

X+∞

k′�0

cαk′

p ≤
(28(a))

f 0, upper
p (x0, i+1; x0, i) ≤ 0, 

which yields the feasibility of (30) for k � 0, i � i + 1. Hence, by induction, Problem (30) is feasible for k � 0 and 
any i ∈ N. To proceed, recall the function Hk defined in Assumption 4. From the update of x0, i+1, we have

H0(x0, i+1) �
Xm1

p�1
F0

p(x0, i+1) ≤
(28(c)) Xm1

p�1

cF0
p(x0, i+1; x0, i) ≤ H0(x0, i) �

λ

2 ‖x0, i+1 � x0, i ‖2 ∀i ∈ N: (31) 

The last inequality follows from the definition of x0, i+1 and the second relation in (28(c)) that cF0
p(x0, i; x0, i) � F0

p(x0, i)

for p � 1, : : : , m1. Observe that H0 is bounded from below by the continuity of F0
p � φp ◦ f 0

p for p � 1, : : : , m1 (see the 
discussion following Model (CP1)) and the level-boundedness of H0. Suppose for contradiction that the stopping 
rule of the inner loop is not achievable in finitely many steps. Then, from (31), {H0(x0, i)} converges and 
P∞

i�0 ‖x0, i+1 � x0, i ‖2 < +∞. The latter further yields ‖x0, i+1 � x0, i ‖ → 0, and, thus, the last condition in (29) is 
achievable in finitely many iterations. Next, to derive a contradiction, it suffices to prove that the first two condi
tions in (29) can also be achieved in finitely many steps. We only show the first one because the other can be 
done with similar arguments. By the level-boundedness of H0, the set S0 ¢ {x |H0(x) ≤ H0(x0, 0)} is compact. 
Notice that x0, i ∈ S0 for all i ∈ N due to (31). For p � 1, : : : , m, we then have

0 ≤ f 0, upper
p (x0, i+1; x0, i) � f 0

p (x0, i+1) �
X+∞

k′�0

cαk′

p

� h0
p(x0, i+1) � h0

p(x0, i) � (a0, i
p )

⊤
(x0, i+1 � x0, i) → 0, 

because h0
p is uniformly continuous on the compact set S0 and {a0, i

p }i∈N ⊂ ∪ {∂h0
p(x) |x ∈ S0} is bounded by Rocka

fellar [27, theorem 24.7]. Therefore, for a fixed ɛ0 > 0, there exists some i0 such that f 0, upper
p (x0, i0+1; x0, i0 ) ≤

f 0
p (x0, i0+1) +

P+∞
k′�0

cαk′

p + ɛ0 holds for p � 1, : : : , m. Thus, (a) and (b) hold for k � 0.
Now assume that (a) and (b) hold for some k � k (∈ N) and, hence, ik is finite. It then follows from xk+1, 0 �

xk , ik ∈ Xk and f k , upper
p (xk , ik ; xk , ik ) ≤ 0 that for each p � m1 + 1, : : : , m,

f k+1, upper
p (xk+1, 0; xk+1, 0) �

(28(a)) f k+1
p (xk+1, 0) +

X+∞

k′�k+1

cαk′

p

≤ f k
p (xk+1, 0) + sup

x∈Xk

[ f k+1
p (x) � f k

p (x)]+ +
X+∞

k′�k+1

cαk′

p

≤ f k
p (xk+1, 0) +

X+∞

k′�k

cαk′

p

�
(28(a)) f k , upper

p (xk+1, 0; xk , ik ) ≤ 0:

Thus, Problem (30) is feasible for k � k + 1 and any i ∈ N. Building upon this, we can now clearly see the validity 
of (b) for k � k + 1, as we have shown similar results earlier in the case of k � 0. By induction, we complete the 
proof of (a) and (b). w

For any k ∈ N, define the set of multipliers for Problem (30) as

Yk(xk+1) ¢

yk
1, 1

yk
1, 2

 
yk

m, 1

yk
m, 2

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

0 ∈
Xm

p�1
[yk

p, 1 ∂f k, upper
p (xk, ik+1; xk, ik ) + yk

p, 2 ∂f k, lower
p (xk, ik+1; xk, ik )]

+λ(xk, ik+1 � xk, ik ),

yk
p, 1 ∈ ∂φ↑

p( f k, upper
p (xk, ik+1; xk, ik )), p � 1, : : : , m,

yk
p, 2 ∈ ∂φ↓

p( f k, lower
p (xk, ik+1; xk, ik )), p � 1, : : : , m:

�
�
�
�
�
�
�
�
�
�
�
�
�
�

9
>>>>>>>>=

>>>>>>>>;

:

8
>>>>>>>><

>>>>>>>>:

Here, xk, ik+1 is uniquely determined by xk+1 � xk, ik as the minimizer of a Strongly Convex Problem (30). Notice 
that yk

p, 2 � 0 for p ∈ I1 because φp is nondecreasing and φ↓
p � 0 for p ∈ I1. Let {xk+1}k∈N be a subsequence that 
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converges to some point x. As we will see in the following lemma, the asymptotic constraint qualification in 
Assumption 5 implies the nonemptiness and the compactness of Yk(xk+1) for all sufficiently large k ∈ N and the 
eventual boundedness of {Yk(xk+1)}k∈N. These technical results play an important role in the convergence analysis 
of the prox-ADC method. However, a stronger property of equi-boundedness appears necessary for designing 
practical termination criteria for the algorithm. We will establish this strengthened property in Section 4.3 under 
nonasymptotic constraint qualifications.

Lemma 2 (Nonemptiness and Eventual Boundedness of Multipliers). Let x be a feasible point of Problem (CP1). Suppose 
that Assumptions 1–5 hold. Consider any sequence {xk} generated by the prox-ADC method, with a subsequence {xk+1}k∈N 
converging to x. The following statements hold. 

a. The set of multipliers Yk(xk+1) is nonempty and compact for all sufficiently large k ∈ N.
b. Additionally, if ∂∞

A fp(x) � {0} for p ∈ I2 (with the definition of I2 in (8)), then the sequence {Yk(xk+1)}k∈N is eventually 
bounded.

Proof. (a) Observe that xk, ik+1 →N x because xk+1 � xk, ik →N x and ‖xk, ik � xk, ik+1 ‖ ≤ δk=(λ+ ℓk) ↓ 0 by Conditions 
(29). The nonemptiness and compactness of Yk(xk+1) for all sufficiently large k ∈ N is a direct consequence of the 
nonsmooth Lagrange multiplier rule (Rockafellar and Wets [30, exercise 10.52]) for Problem (30) if we can show 
that, for all sufficiently large k ∈ N, yk

m1+1 � ⋯� yk
m � 0 is the unique solution of the following system

0 ∈
Xm

p�m1+1
yk

p ∂f k, upper
p (xk, ik+1; xk, ik ),

yk
p ∈ N (�∞, 0]

�
f k, upper
p (xk, ik+1; xk, ik )

�
, p � m1 + 1, : : : , m:

8
>>><

>>>:

(32) 

Suppose that the above claim does not hold. Then, there exists a subsequence N′ ⊂ N such that yk
m1+1 � ⋯� yk

m � 0 
is not the unique solution of (32) for all k ∈ N′. Without loss of generality, suppose N′ � N and take {yk

p}k∈N for 
p � m1 + 1, : : : , m satisfying (32) and 

Pm
p�m1+1 |yk

p | � 1. For each p and k ∈ N, define

Ak
p ¢ {yk

p vk
p |vk

p ∈ {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )} ∪ {∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)}}:

Then, for all k ∈ N, we have

dist 0,
Xm

p�m1+1
Ak

p

0

@

1

A

≤
(i)

dist 0,
Xm

p�m1+1
yk

p[∂gk
p(xk, ik+1) � ∂hk

p(xk, ik )]

0

@

1

A

+
Xm

p�m1+1
D(yk

p[∂gk
p(xk, ik+1) � ∂hk

p(xk, ik )], Ak
p)

≤
(ii)

dist 0,
Xm

p�m1+1
yk

p ∂f k, upper
p (xk, ik+1; xk, ik )

0

@

1

A

+
Xm

p�m1+1
|yk

p |min{D(∂gk
p(xk, ik+1), ∂gk

p(xk, ik )), D(∂hk
p(xk, ik ), ∂hk

p(xk, ik+1))}

≤
(iii)

0 +
Xm

p�m1+1
|yk

p |min{H(∂gk
p(xk, ik+1), ∂gk

p(xk, ik )), H(∂hk
p(xk, ik+1), ∂hk

p(xk, ik ))}

≤
(iv) Xm

p�m1+1
|yk

p | ℓk ‖ xk, ik+1 � xk, ik ‖ ≤
(v)

δk, 

where (i) uses the inequalities D(A, C) ≤ D(A, B) +D(B, C) and D(A + B, A′ + B′) ≤ D(A, A′) +D(B, B′); the first 
term in (ii) is because of the construction of Upper Convex Majorization (26); and the second term in (ii) is due to 
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D(A, B ∪ C) ≤ min{D(A, B),D(A, C)} so that

D(yk
p[∂gk

p(xk, ik+1) � ∂hk
p(xk, ik )], Ak

p )

�|yk
p | D {∂gk

p(xk, ik+1) � ∂hk
p(xk, ik )},

{∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)}

∪ {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )}

 !

≤ |yk
p |min{D(∂gk

p(xk, ik+1), ∂gk
p(xk, ik )), D(∂hk

p(xk, ik ), ∂hk
p(xk, ik+1))}:

Inequality (iii) is due to (32) and D(A, B) ≤ H(A, B); (iv) is by Assumption 3; and (v) is implied by Conditions (29) 
and 

Pm
p�m1+1 |yk

p | � 1. Equivalently, for all k ∈ N and p � m1 + 1, : : : , m, there exist yk
p ∈ N (�∞, 0]( f k, upper

p (xk, ik+1; xk, ik ))

with 
Pm

p�m1+1 |yk
p | � 1 and

vk
p ∈ {∂gk

p(xk, ik ) � ∂hk
p(xk, ik )} ∪ {∂gk

p(xk, ik+1) � ∂hk
p(xk, ik+1)}, 

such that ‖
Pm

p�m1+1 yk
p vk

p ‖ ≤ δk. For p � m1 + 1, : : : , m, because the subsequence {f k
p (xk, ik+1)}k∈N is bounded by 

Assumption 1(b), we can assume without loss of generality that f k
p (xk, ik+1) converges to some zp ∈ Tp(x) as 

k(∈ N) → +∞. Furthermore, it can be easily seen from (28(a)) and (29) that f k, upper
p (xk, ik+1; xk, ik ) converges to the 

same limit point zp for p � m1 + 1, : : : , m. Notice that f k, upper
p (xk, ik+1; xi, ik ) ≤ 0 for all k ∈ N and p � m1 + 1, : : : , m from 

Theorem 3(a), and, thus, each zp must satisfy zp ≤ 0. Suppose that yk
p →N yp for each p. Then, by the outer semi

continuity of the normal cone (Rockafellar and Wets [30, proposition 6.6]),

yp ∈ N (�∞, 0](zp) ⊂
[

{Ndomφp
(tp) |tp ∈ Tp(x)}, p � m1 + 1, : : : , m:

Obviously, 
Pm

p�m1+1 |yp | � 1, and the sequence {yp}
m
p�m1+1 has at least one nonzero element. Consider two cases.

Case 1. If {vk
p}k∈N is bounded for p � m1 + 1, : : : , m, then there are vectors {vp}

m
p�m1+1 with vp ∈ ∂A fp(x) such that 

vk
p →N vp and 0 �

Pm
p�m1+1 yp vp ∈

Pm
p�m1+1 yp ∂A fp(x), contradicting Assumption 5 because ym1+1, : : : , ym are not all 

zeros.
Case 2. Otherwise, there exists some p such that {vk

p}k∈N is unbounded. Define the index sets

Iub ¢ { p ∈ {m1 + 1, : : : , m} |{vk
p}k∈N unbounded} (≠ ∅) and Ib ¢ {m1 + 1, : : : , m}\Iub:

Notice that {
P

p∈Ib
yk

p vk
p}k∈N is bounded. Without loss of generality, assume that this sequence converges to some 

w and, thus, 
P

p∈Iub
yk

p vk
p →N (�w). 

Step 1: Next, we prove by contradiction that, for each p ∈ Iub, the sequence {yk
p vk

p}k∈N is bounded. Suppose that 
the boundedness fails and 

P
p∈Iub

| |yk
p vk

p ‖ →N + ∞ by passing to a subsequence. Consider ewk
p ¢ yk

p vk
p=
P

p∈Iub
‖yk

p vk
p ‖

for p ∈ Iub. Then, 
P

p∈Iub
ewk

p →N 0. Because 
P

p∈Iub
| | ewk

p ‖ � 1 for all k ∈ N, we can assume that there exist p1 ∈ Iub and 
ewp1 ≠ 0 such that ewk

p1
→N ewp1 . It then follows from the construction of ewk

p that {ewk
p}k∈N has a subsequence converg

ing to some element of 6∂
∞
A fp(x) for each p ∈ Iub and, in particular, ewp1 ∈ [6∂

∞
A fp1 (x)\{0}]. From 

P
p∈Iub

ewk
p →N 0, we 

obtain
0 ∈ [ 6∂

∞
A fp1 (x)\{0} ] +

X

p∈Iub\{p1}

[6∂
∞
A fp(x) ], 

a contradiction to Assumption 5 because the coefficient of the term [ 6∂
∞
A fp1 (x)\{0} ] is nonzero. So far, we have 

shown the boundedness of {yk
p vk

p}k∈N for each p ∈ Iub.
Step 2: Now, suppose that yk

p vk
p →N wp for each p ∈ Iub with 

P
p∈Iub

wp � �w. Thus, yk
p →N 0 and wp ∈ [ 6∂

∞
A fp(x) ]

for each p ∈ Iub. Because Pm
p�m1+1 |yp | �

P
p∈Ib

|yp | � 1, there exists p2 ∈ Ib such that yp2
≠ 0. Then, 

Pm
p�m1+1 yk

p vk
p →N 0 

implies
0 ∈ yp2

∂A fp2 (x) +
X

p∈Ib\{p2}

yp ∂A fp(x) +
X

p∈Iub

[6∂
∞
A fp(x) ], 

which leads to a contradiction to Assumption 5. Thus, Yk(xk+1) is nonempty and compact for all sufficiently large 
k ∈ N.

(b) By part (a), assume from now on that Yk(xk+1) ≠ ∅ for all k ∈ N without loss of generality. We also assume that 
{f k

p (xk, ik+1)}k∈N converges to some point zp ∈ Tp(x) for p � 1, : : : , m. Then, by (28(a)), (28(b)), and (29), 
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f k, upper
p (xk, ik+1; xk, ik ) →N zp for p � 1, : : : , m and f k, lower

p (xk, ik+1; xk, ik ) →N zp for p ∈ I2. For any k ∈ N and any 
(yk

1, 1, yk
1, 2, : : : , yk

m, 1, yk
m, 2) ∈ Yk(xk+1), we have yk

p, 1 ∈ ∂φ↑
p( f k, upper

p (xk, ik+1; xk, ik )) and yk
p, 2 ∈ ∂φ↓

p( f k, lower
p (xk, ik+1; xk, ik )) for 

p � 1, : : : , m, satisfying

0 ∈
Xm

p�1
[yk

p, 1[∂gk
p(xk, ik+1) � ∂ hk

p(xk, ik )] + yk
p, 2[∂gk

p(xk, ik ) � ∂ hk
p(xk, ik+1)]] +λ(xk, ik+1 � xk, ik ): (33) 

Based on Assumption 3 and analogous arguments in the proof of part (a), the Optimality Condition (33) leads to 
the following bound:

�
�
�
�
�

�
�
�
�
�

Xm

p�1
(yk

p, 1 vk
p, 1 + yk

p, 2 vk
p, 2)

�
�
�
�
�

�
�
�
�
�

≤ λ+
Xm

p�1
( |yk

p, 1 | + |yk
p, 2 | )ℓk

2

4

3

5‖ xk, ik+1 � xk, ik ‖

≤ max 1,
Xm

p�1
( |yk

p, 1 | + |yk
p, 2 | )ℓk

8
<

:

9
=

;
δk, (34) 

where {(vk
p, 1, vk

p, 2)}
m
p�1 is a sequence that satisfies, for all p � 1, : : : , m, either

(vk
p, 1, vk

p, 2) ∈ {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )} × {∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)}, 

or

(vk
p, 1, vk

p, 2) ∈ {∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)} × {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )}:

Note that, for p ∈ I1, φp is nondecreasing—that is, φ↓
p � 0. Then, yk

p, 2 � 0 for all k ∈ N and p ∈ I1, and (34) further 
yields

�
�
�
�
�

�
�
�
�
�

X

p∈I1

yk
p, 1 vk

p, 1 +
X

p∈I2

(yk
p, 1 vk

p, 1 + yk
p, 2 vk

p, 2)

�
�
�
�
�

�
�
�
�
�

≤ max 1,
X

p∈I1

|yk
p, 1 | +

X

p∈I2

( |yk
p, 1 | + |yk

p, 2 | )

8
<

:

9
=

;
δk: (35) 

Observe that the sequences {vk
p, 1}k∈N and {vk

p, 2}k∈N must be bounded for p ∈ I2. Otherwise, we could assume 
‖vk

p, 1 ‖ →N +∞. Then, every accumulation point of the unit vectors {vk
p, 1=‖vk

p, 1 ‖}k∈N would be in the set ∂∞
A fp(x), 

contradicting our assumption that ∂∞
A fp(x) � {0} for each p ∈ I2.

For p ∈ I2 ⊂ {1, : : : , m1}, given that φ↑
p is convex, real-valued, and f k, upper

p (xk, ik+1; xk, ik ) →N zp, we can invoke Rocka
feller [27, theorem 24.7] to deduce the boundedness of {yk

p, 1}k∈N. A parallel reasoning applies to demonstrate the 
boundedness of {yk

p, 2}k∈N.
For p ∈ I1, we proceed by contradiction to establish the boundedness of {yk

p, 1}k∈N based on Assumption 5. Sup
pose that {

P
p∈I1

|yk
p, 1 | }k∈N is unbounded and 

P
p∈I1

|yk
p, 1 | →N +∞ by passing to a subsequence. Consider the nor

malized subsequences {eyk
p, 1 ¢ yk

p, 1=
P

p′∈I1
|yk

p′, 1 | }k∈N and {eyk
p, 2 ¢ yk

p, 2=
P

p′∈I1
|yk

p′, 1 | }k∈N for each p. Consequently, 
eyk

p, 1 →N 0 and eyk
p, 2 →N 0 for p ∈ I2. By the triangle inequality and (35), we have

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

X

p∈I1

eyk
p, 1 vk

p, 1

�
�
�
�
�

�
�
�
�
�

�

�
�
�
�
�

�
�
�
�
�

X

p∈I2

(eyk
p, 1 vk

p, 1 + eyk
p, 2 vk

p, 2)

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

≤

�
�
�
�
�

�
�
�
�
�

X

p∈I1

eyk
p, 1 vk

p, 1 +
X

p∈I2

(eyk
p, 1 vk

p, 1 + eyk
p, 2 vk

p, 2)

�
�
�
�
�

�
�
�
�
�

≤ max 1
P

p∈I1
|yk

p, 1 |
, 1 +

P
p∈I2

( |yk
p, 1 | + |yk

p, 2 | )
P

p∈I1
|yk

p, 1 |

( )

δk →N 0, 
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which further implies ‖
P

p∈I1
eyk

p, 1 vk
p, 1 ‖ →N 0 by the boundedness of {vk

p, 1}k∈N and {vk
p, 2}k∈N for p ∈ I2. Now, sup

pose that eyk
p, 1 →N eyp, 1 for p ∈ I1. Then, from a similar reasoning in (20), for p ∈ I1,

eyp, 1 ∈ Lim sup
k(∈N)→+∞

∞ ∂φ↑
p( f k, upper

p (xk, ik+1; xk, ik )) ⊂ ∂
∞

φ↑
p(zp) � Ndomφ

↑
p
(zp), 

and obviously, 
P

p∈I1
|eyp, 1 | � 1. The remaining argument to derive a contradiction to Assumption 5 follows the 

same steps as the proof of part (a) for the two cases, with the exception that the index set {m1 + 1, : : : , m} is 
replaced by I1. Thus, the sequences {yk

p, 1}k∈N for p ∈ I1 ∪ I2 and {yk
p, 2}k∈N for p ∈ I1 are bounded. We can conclude 

that ∪ {Yk(xk+1) |k ∈ N, k ≥ K} is bounded for sufficiently large integer K, because otherwise, we could extract a 
subsequence of multipliers from Yk(xk+1) whose norms diverge to +∞ as k(∈ N) → +∞, in contradiction to the 
result of boundedness that we have shown. Hence, the subsequence {Yk(xk+1)}k∈N is eventually bounded. w

We make a remark on Lemma 2(b) about the additional assumption. According to the proof of part (b), the 
assumption ∂∞

A fp(x) � {0} for p ∈ I2 ensures the boundedness of the set ∂A fp(x) for p ∈ I2. There are some sufficient 
conditions for ∂∞

A fp(x) � {0} to hold: (i) If fp is locally Lipschitz continuous and bounded from below, by Theorem 
1(b), we have ∂∞

A fp(x) � {0} at any x ∈ dom fp for the approximating sequence generated by the Moreau envelope. 
(ii) If fp is icc associated with fp, satisfying all assumptions in Proposition 2, it then follows from Proposition 2(b) 
that ∂∞

A fp(x) � {0} at any x ∈ int(dom fp) for the approximating sequence based on the partial Moreau envelope. It 
is worth mentioning that the icc function fp under condition (ii) is not necessarily locally Lipschitz continuous.

The main convergence result of the prox-ADC method follows.

Theorem 4. Suppose that Assumptions 1–5 hold. Let {xk} be the sequence generated by the prox-ADC method. Suppose 
that {xk} has an accumulation point x, and, in addition, ∂∞

A fp(x) � {0} for p ∈ I2. Then, x is a weakly A-stationary point of 
(CP1). Moreover, if for each p ∈ I2, the functions gk

p and hk
p are ℓk-smooth for all k ∈ N—that is, there exists a sequence {ℓk}

such that for all k ∈ N,

max{‖∇gk
p(x) � ∇gk

p(x′)‖ , ‖∇hk
p(x) � ∇hk

p(x′)‖} ≤ ℓk ‖x′ � x‖ ∀x, x′ ∈ Rn, p ∈ I2, (36) 

then x is also an A-stationary point of (CP1).

Proof. Let {xk+1}k∈N be a subsequence converging to x. By the Stopping Conditions (29) and xk, ik →N x, we also 
have xk, ik+1 →N x. First, we prove x ∈ ∩m

p�1 domFp. From Theorem 3(a), we have f k
p (xk, ik+1) ≤ 0 for p � m1 + 1, : : : , m 

and all k ∈ N. Because of epi-convergence in Assumption 1(c), it holds that

δ(�∞, 0]( fp(x)) ≤ lim inf
k(∈N)→+∞

δ(�∞, 0]( f k
p (xk, ik+1)) � 0, p � m1 + 1, : : : , m:

Thus, fp(x) ≤ 0 for p � m1 + 1, : : : , m and x ∈ ∩m
p�m1+1 domFp. By Assumption 1(a), domφp � Rn for all p � 1, : : : , m1. 

This implies x ∈ ∩m1
p�1 domFp, and we can conclude that x ∈ ∩m

p�1 dom Fp.
By Lemma 2(a), for all sufficiently large k ∈ N, we have that Yk(xk+1) ≠ ∅, and, consequently, there exist yk

p, 1 ∈

∂φ↑
p( f k, upper

p (xk, ik+1; xk, ik )) and yk
p, 2 ∈ ∂φ↓

p( f k, lower
p (xk, ik+1; xk, ik )) for p � 1, : : : , m such that

0 ∈
Xm

p�1
[yk

p, 1(∂gk
p(xk, ik+1) � ∂hk

p(xk, ik )) + yk
p, 2(∂gk

p(xk, ik ) � ∂hk
p(xk, ik+1))] +λ(xk, ik+1 � xk, ik ): (37) 

Recalling (35), we have the following bound by the Optimality Condition (37) and Assumption 3:
�
�
�
�
�

�
�
�
�
�

X

p∈I1

yk
p, 1 vk

p, 1 +
X

p∈I2

(yk
p, 1 vk

p, 1 + yk
p, 2 vk

p, 2)

�
�
�
�
�

�
�
�
�
�

≤ max 1,
X

p∈I1

|yk
p, 1 | +

X

p∈I2

( |yk
p, 1 | + |yk

p, 2 | )

8
<

:

9
=

;
δk, (38) 

where {(vk
p, 1, vk

p, 2)}
m
p�1 is a sequence that satisfies, for all p � 1, : : : , m, either

(vk
p, 1, vk

p, 2) ∈ {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )} × {∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)}, 
or

(vk
p, 1, vk

p, 2) ∈ {∂gk
p(xk, ik+1) � ∂hk

p(xk, ik+1)} × {∂gk
p(xk, ik ) � ∂hk

p(xk, ik )}:

It follows from Lemma 2(b) that the subsequences {yk
p, 1}k∈N and {yk

p, 2}k∈N are bounded for p � 1, : : : , m. Suppose 
that yk

p, 1 →N yp, 1 and yk
p, 2 →N yp, 2 for p � 1, : : : , m. Recall that the subsequence { f k

p (xk, ik+1)}k∈N is bounded by 
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Assumption 1(b) for p � 1, : : : , m. Without loss of generality, assume that {f k
p (xk, ik+1)}k∈N converges to some point 

zp ∈ Tp(x) for p � 1, : : : , m. Then, by (28(a)), (28(b)), and (29), f k, upper
p (xk, ik+1; xk, ik ) →N zp for p � 1, : : : , m and 

f k, lower
p (xk, ik+1; xk, ik ) →N zp for p ∈ I2. From the outer semicontinuity of ∂φ↑

p and ∂φ↓, we have yp, 1 ∈ ∂φ↑
p(zp) for p �

1, : : : , m and yp, 2 ∈ ∂φ↓
p(zp) for p ∈ I2.

To proceed, we prove by contradiction that the sequence {yk
p, 1 vk

p, 1}k∈N is bounded for p ∈ I1. Suppose that 
P

p∈I1
‖yk

p, 1 vk
p, 1‖ →N +∞. For each p ∈ I2, the boundedness of {vk

p, 1}k∈N and {vk
p, 2}k∈N follows from the assumption 

∂
∞
A fp(x) � {0}; otherwise, any accumulation point of the unit vectors {vk

p, 1=‖vk
p, 1 ‖}k∈N would be in ∂∞

A fp(x), leading 
to a contradiction. Because {yk

p, 1}k∈N and {yk
p, 1}k∈N for p ∈ I2 are also bounded, we conclude that the subsequence 

{
P

p∈I2
(yk

p, 1 vk
p, 1 + yk

p, 2 vk
p, 2)}k∈N is bounded. Thus, we can assume that

X

p∈I2

(yk
p, 1 vk

p, 1 + yk
p, 2 vk

p, 2) →N w ∈
X

p∈I2

(yp, 1 ∂A fp(x) + yp, 2 ∂A fp(x)): (39) 

By (38), it follows that 
P

p∈I1
yk

p, 1 vk
p, 1 →N (�w). Consider ewk

p ¢ yk
p, 1 vk

p, 1=
P

p′∈I1
‖yk

p′, 1 vk
p′, 1‖ for p ∈ I1, and then, 

P
p∈I1
ewk

p →N 0. Given 
P

p∈I1
‖ ewk

p ‖ � 1 for all k ∈ N, there must exist p1 ∈ I1 such that ewk
p1

→N ewp1 ≠ 0. For each 
p ∈ I1, it then follows from yk

p, 1=
P

p′∈I1
‖yk

p′, 1vk
p′, 1‖ →N 0 that {ewk

p}k∈N has a subsequence converging to some ele
ment in ∂∞

A fp(x). In particular, ewp1 ∈ ∂
∞
A fp1 (x)\{0}. Because 

P
p∈I1
ewk

p →N 0, this implies that

0 ∈ [ ∂
∞
A fp1 (x)\{0}] +

X

p∈I1\{p1}

∂
∞
A fp(x), 

which contradicts Assumption 5. Hence, {yk
p, 1 vk

p, 1}k∈N is bounded for p ∈ I1.
We are now ready to prove that x is a weakly A-stationary point. Suppose that yk

p, 1 vk
p, 1 →N wp for p ∈ I1 with 

P
p∈I1

wp � �w. Based on (39), it remains to show that for each p ∈ I1, there exists yp, 1 ∈ ∪{∂φ↑
p(tp) |tp ∈ Tp(x)} such 

that
wp ∈ { yp, 1 ∂A fp(x)} ∪ [ ∂

∞
A fp(x)\{0}], 

which can be derived similarly as the proof of (19) in Theorem 2. Summarizing these arguments, we conclude 
that x is a weakly A-stationary point of (CP1).

Under the additional assumption of the theorem, there exist yk
p, 1 ∈ ∂φ↑

p( f k, upper
p (xk, ik+1; xk, ik )), yk

p, 2 ∈ ∂φ↓
p( f k, lower

p (xk, ik+1; xk, ik ))

for p � 1, : : : , m, and

vk
p, 1 ∈ {∂gk

p(xk, ik ) � ∂hk
p(xk, ik )} ∪ {∂gk

p(xk, ik+1) � ∂hk
p(xk, ik+1)} for p ∈ I1, 

such that
�
�
�
�
�

�
�
�
�
�

X

p∈I1

yk
p, 1 vk

p, 1 +
X

p∈I2

(yk
p, 1 + yk

p, 2)[∇gk
p(xk, ik ) � ∇hk

p(xk, ik )]

�
�
�
�
�

�
�
�
�
�

≤
(vi)X

p∈I1

|yk
p, 1 |min{H(∂gk

p(xk, ik+1), ∂gk
p(xk, ik )), H(∂hk

p(xk, ik+1), ∂hk
p(xk, ik ))}

+
X

p∈I2

( |yk
p, 1 | ‖∇gk

p(xk, ik ) � ∇gk
p(xk, ik+1)‖ + |yk

p, 2 | ‖∇hk
p(xk, ik+1) � ∇hk

p(xk, ik )‖)

+λ‖ xk, ik+1 � xk, ik ‖

≤
(vii)

λ+
X

p∈I1

|yk
p, 1 | +

X

p∈I2

( |yk
p, 1 | + |yk

p, 2 | )

0

@

1

Aℓk

2

4

3

5‖ xk, ik+1 � xk, ik ‖

≤
(viii)

max 1,
X

p∈I1

|yk
p, 1 | +

X

p∈I2

( |yk
p, 1 | + |yk

p, 2 | )

8
<

:

9
=

;
δk ∀k ∈ N, 

where (vi) is implied by the Optimality Condition (37), (vii) employs (36) and Assumption 3, and (viii) follows 
from Conditions (29). This inequality is a tighter version of (35) in the sense that, for each p ∈ I2 and k ∈ N, vk

p, 1 
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and vk
p, 2 are elements taken from the single-valued mapping ∇gk

p(·) � ∇hk
p(·) evaluated at the same point xk, ik . A 

straightforward adaptation of the preceding argument confirms that x is an A-stationary point of (CP1). w

4.3. Termination Criteria
The previous subsection demonstrates the asymptotic convergence of the algorithm, showing that any accumula
tion point of the sequence generated by the prox-ADC method is weakly A-stationary. This subsection is dedi
cated to the nonasymptotic analysis of verifiable termination criteria for practical implementation.

Assumption 6 (Nonasymptotic Constraint Qualification). Let λ be the parameter in Algorithm 1. For all k ∈ N and any pair 
(x′, x′′) satisfying

x′′ �
arg min

x∈Rn

Xm1

p�1

cFk
p(x; x′) +

λ

2 ‖x � x′ ‖2

subject to f k, upper
p (x; x′) ≤ 0, p � m1 + 1, : : : , m

2

6
4

3

7
5, 

if there exist yk
p ∈ N (�∞, 0]( f k, upper

p (x′′; x′)) for p � m1 + 1, : : : , m such that

0 ∈
Xm

p�m1+1
yk

p ∂f k, upper
p (x′′; x′), 

then we must have yk
m1+1 �⋯� yk

m � 0.

A direct consequence of Assumption 6 and the nonsmooth Lagrange multiplier rule (Rockafellar and Wets [30, 
exercise 10.52]) is that the set of multipliers Yk(xk+1) is nonempty and compact for any fixed k ∈ N. This is in con
trast with Lemma 2(a), where the results only hold for sufficiently large k ∈ N. We will show below that the result 
on the eventual boundedness of the subsequence {Yk(xk+1)}k∈N can be strengthened to the equi-boundedness 
under this assumption.

Proposition 5 (Equi-Boundedness of Multipliers). Suppose that Assumptions 1–6 hold. Consider any sequence {xk} gener
ated by the prox-ADC method. The following statements hold. 

a. If there is a subsequence {xk+1}k∈N converging to some x and ∂
∞
A fp(x) � {0} for p ∈ I2, then the subsequence 

{Yk(xk+1)}k∈N is equi-bounded.
b. If {xk} is bounded and ∂

∞
A fp(x) � {0} for any x ∈ ∩m

p�1 domFp and p ∈ I2, then the sequence {Yk(xk+1)} is equi- 
bounded—that is,

D ¢ sup
k∈N

sup
y∈Yk(xk+1)

‖y‖ < +∞: (40) 

Proof.
a. We know from Lemma 2(b) that the subsequence {Yk(xk+1)}k∈N is eventually bounded. This implies the exis

tence of an index K ∈ N such that ∪ {Yk(xk+1) |k ∈ N, k ≥ K} is bounded. On the other hand, it follows from Assump
tion 6 that Yk(xk+1) is nonempty and compact for any fixed k ∈ N. Thus, ∪ {Yk(xk+1) |k ∈ N} is bounded, and 
{Yk(xk+1)}k∈N is equi-bounded.

b. Suppose for contradiction that {Yk(xk+1)} is not equi-bounded. Then, for any nonnegative integer j, there is an 
index kj ∈ N such that ‖ykj ‖ ≥ j for some multiplier ykj ∈ Ykj (xkj+1). Observe that the nonnegative sequence of indices 
{kj}j∈N is either bounded or unbounded. It suffices to consider these two cases separately.

Suppose first that {kj}j∈N is bounded. There must be an index k ∈ N that appears infinitely many times in 
{kj}j∈N. Consequently, the set Yk (xk+1) is unbounded, a contradiction to Assumption 6.

Suppose next that {kj}j∈N is unbounded. For some index set N′ ∈ N]
∞, we have kj → +∞ as j(∈ N′) → +∞. Notice 

that the subsequence {xkj }j∈N′ is bounded because {xk} is bounded. By passing to a subsequence if necessary, we 
assume that {xkj }j∈N′ converges to some ex. Using epi-convergence in Assumption 1(c) and following the same 
procedure as in the proof of Theorem 4, we can obtain that ex ∈ ∩m

p�1 dom Fp. Then, by the assumption in (b), 
∂

∞
A fp(ex) � {0} for p ∈ I2. Henceforth, there is a subsequence {xkj }j∈N′ ⊂ {xk} converging to some ex with a corre

sponding subsequence of multipliers {ykj ∈ Ykj (xkj+1)}j∈N′ such that ‖ykj ‖ → +∞ as j(∈ N′) → +∞, which is a con
tradiction to the result of part (a).

We have obtained contradictions for the two cases where {kj}j∈N is bounded or unbounded. Then, we conclude 
that {Yk(xk+1)} is equi-bounded, and the quantity D defined in (40) is finite. w
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After obtaining the equi-boundedness of the multipliers, we next introduce a relaxation of the weakly 
A-stationary point for preparation of the termination criteria. For a proper and convex function f and any β > 0, 
we denote ∂βf (x) ¢ ∪ {∂ f (x) |x ∈ B(x,β)}, which is related to the Goldstein’s β-subdifferential (Goldstein [18]).

Definition 5. Given any η > 0, β > 0 and k ∈ N, we say a point x is a (η,β, k)-weakly A-stationary point of Problem 
(CP0) if there exists a nonnegative integer k ≥ k such that

dist 0,
Xm

p�1

[ yp, 1[∂
βgk

p(x) � ∂
βhk

p(x)]

+yp, 2[∂
βgk

p(x) � ∂
βhk

p(x)]

yp, 1 ∈ ∂
β
φ↑

p( f k
p (x)),

yp, 2 ∈ ∂
β
φ↓

p( f k
p (x))

�
�
�
�
�
�

9
=

;

8
<

:

1

A ≤ η:

0

@

We remark that, if each outer function φp is an identity function—that is, φp(t) � t for any t ∈ R—and each inner 
function fp is DC rather than ADC, the above definition in the context of a DC program is independent of k and 
says about nearness to a η-critical point (Yao et al. [35, definition 2]. For nonsmooth optimization problem, simi
lar definitions based on the idea of small nearby subgradients, together with the termination criteria, have 
appeared in the literature (Burke et al. [9], Goldstein [18]).

The following proposition reveals the relationship between a (η,β, k)-weakly A-stationary point and a weakly 
A-stationary point.

Proposition 6. Let x ∈ ∩m
p�1 domFp be a feasible point of (CP0). Suppose that Assumption 1 holds and ∂∞

A fp(x) � {0} for 
each p � 1, : : : , m. For any nonnegative sequence (ηk,βk) ↓ 0 and some index set N ∈ N]

∞, if each xk is a (ηk,βk, k)-weakly A- 
stationary point of (CP0) for k ∈ N and xk →N x, then x is a weakly A-stationary point of (CP0).

Proof. By Assumption 1(b), the subsequence {f k
p (xk)}k∈N is bounded for each p. Then, there is an index set N′(⊂

N) ∈ N]
∞ such that {f k

p (xk)}k∈N′ converges to some tp ∈ Tp(x) for each p. Using the outer semicontinuity of the sub
differential mapping of a convex function, we have

Limsup
k(∈N′)→+∞

∂
βk φ↑

p( f k
p (xk)) ⊂ ∂φ↑

p(tp), Lim sup
k(∈N′)→+∞

∂
βk φ↓

p( f k
p (xk)) ⊂ ∂φ↓

p(tp), 

and

Lim sup
k(∈N′)→+∞

[∂
βk gk

p(xk) � ∂
βk hk

p(xk)] ⊂ ∂A fp(x):

Thus, by taking an outer limit of the subdifferentials involved in the condition that xk is (ηk,βk, k)-weakly 
A-stationary for all k ∈ N, we know that x is a weakly A-stationary point of (CP0). w

We conclude this section with our main result on the termination criteria.

Proposition 7 (Termination Criteria). Suppose that Assumptions 1–6 hold. Let {xk} be the sequence generated by the prox- 
ADC method. Suppose that {xk} is bounded and ∂∞

A fp(x) � {0} for any x ∈ ∩m
p�1 domFp and p ∈ I2. For any η > 0, β > 0 

and k ∈ N, there exists a nonnegative integer k0 ≥ k such that

max
1 ≤ p ≤ m

X+∞

k′�k0

cαk′

p + ɛk0 ≤ β, δk0

λ+ ℓk0

≤ β, δk0 ≤ η: (41) 

Consequently, xk0, ik0 +1 is a (max{1,
ffiffiffiffiffiffiffi
2m

√
D}η, β, k)-weakly A-stationary point of Problem (CP1), where D is the constant 

defined in (40).

Proof. The existence of k0 ≥ k satisfying (41) is a direct consequence of 
P+∞

k′�0
cαk′

p < +∞, (ɛk,δk) ↓ 0, and 
δk=(λ+ ℓk) ↓ 0. By Assumption 6, the set of multipliers Yk0 (xk0+1) is nonempty. For any (yk0

1, 1, yk0
1, 2, : : : , yk0

m, 1, yk0
m, 2)

∈ Yk0 (xk0+1), we have yk0
p, 1 ∈ ∂φ↑

p( f k0, upper
p (xk0, ik0 +1; xk0, ik0 )), yk0

p, 2 ∈ ∂φ↓
p( f k0, lower

p (xk0, ik0 +1; xk0, ik0 )) for p � 1, : : : , m and the 
following bound from (36):

�
�
�
�
�

�
�
�
�
�

Xm

p�1
(yk0

p, 1 vk0
p, 1 + yk0

p, 2 vk0
p, 2)

�
�
�
�
�

�
�
�
�
�

≤ max 1,
Xm

p�1
( |yk0

p, 1 | + |yk0
p, 2 | )

8
<

:

9
=

;
δk0 , 

where {(vk
p, 1, vk

p, 2)}
m
p�1 is a sequence that satisfies, for all p � 1, : : : , m, either

(vk
p, 1, vk

p, 2) ∈ {∂gk0
p (xk0, ik0 ) � ∂hk0

p (xk0, ik0 )} × {∂gk0
p (xk0, ik0 +1) � ∂hk0

p (xk0, ik0 +1)}, 
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or
(vk0

p, 1, vk0
p, 2) ∈ {∂gk0

p (xk0, ik0 +1) � ∂hk0
p (xk0, ik0 +1)} × {∂gk0

p (xk0, ik0 ) � ∂hk0
p (xk0, ik0 )}:

Thus, at the point x∗ � xk0, ik0 +1, we have

dist 0,
Xm

p�1

[ yp, 1[∂
βgk0

p (x∗) � ∂
βhk0

p (x∗)]

+yp, 2[∂
βgk0

p (x∗) � ∂
βhk0

p (x∗)]

yp, 1 ∈ ∂
β
φ↑

p( f k0
p (x∗)),

yp, 2 ∈ ∂
β
φ↓

p( f k0
p (x∗))

�
�
�
�
�
�

9
=

;

8
<

:

1

A ≤ η,

0

@

where the parameters β and η are given by

β � max

max
1 ≤ p ≤ m

[f k0, upper
p (x∗ ; xk0, ik0 ) � f k0

p (x∗)],

max
1 ≤ p ≤ m

[f k0
p (x∗) � f k0, lower

p (x∗ ; xk0, ik0 )],

‖x∗ � xk0, ik0 ‖

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

≤
(29)

max
max

1 ≤ p ≤ m

X+∞

k′�k0

cαk′

p + ɛk0 ,

δk0 =(λ+ ℓk0 )

8
>><

>>:

9
>>=

>>;

≤
(41)

β,

η � max 1,
Xm

p�1
( |yk0

p, 1 | + |yk0
p, 2 | )

8
<

:

9
=

;
δk0 ≤

(40)

max{1,
ffiffiffiffiffiffiffi
2m

√
D}δk0 ≤

(41)

max{1,
ffiffiffiffiffiffiffi
2m

√
D}η:

Henceforth, for k0 satisfying (41), x∗ � xk0, ik0 +1 is a (max{1,
ffiffiffiffiffiffiffi
2m

√
D}η, β, k)-weakly A-stationary point of problem 

(CP1). w

5. Numerical Examples
We present some preliminary experiments to illustrate the performance of our algorithm on the inverse optimal 
value optimization with or without constraints. The first experiment aims to demonstrate the practical perfor
mance of the prox-ADC method under the termination criteria in Section 4.3, by varying different approximating 
sequences and initial points. To demonstrate the computation of ADC-constrained problems, especially the 
choice of the quantity cαk

p and a feasible initial point in Assumption 2, we further consider the constrained inverse 
optimal value optimization. These experiments were tested on a MacBook Air laptop with an Apple M1 chip 
and 16 GB of memory using Julia 1.10.2.

5.1. Inverse Optimal Value Optimization with Simple Constraints
Based on the setting in (2), we aim to find a vector x ∈ [�1, 1]

n to minimize the errors between the observed opti
mal values {νp}

m
p�1 and true optimal values {fp(x)}

m
p�1:

minimize
x∈[�1, 1]

n
F(x) ¢

Xm

p�1
|νp � fp(x) | , (42) 

where each fp is the optimal value function as defined in (1). We fix n � 10, m � 11, d � 10, and the number of 
inequality constraints ℓ � 5 in the Minimization Problem (1). Vectors bp and cp and matrices Ap, Bp, Cp are ran
domly generated with each entry independent and normally distributed with mean µ � 0 and variance σ � 1. For 
numerical stability, we then normalize matrices Cp and Ap by a factor of 

ffiffiffi
n

√
. We also generate a positive definite 

matrix Qp and a random solution x∗ � u=‖u‖ with u ~ Normal(0, In). We set νp � fp(x∗) for each p and, therefore, 
F(x∗) � 0.

We adopt the ADC decomposition in (6), denoted by f k
p � (gp)γk

� (hp)γk 
with a sequence {γk � 1=(k + 1)

ρ
} for 

some exponent ρ > 0. Consequently, ℓk � 1=γk � (k + 1)
ρ. We apply the prox-ADC algorithm to solve this example 

with ɛk � δk � 1=(k + 1)
ρ and λ � 5. In this example, the Strongly Convex Subproblem (30) can be easily reformu

lated to a problem with linear objective and convex quadratic constraints, which is solved by Gurobi in our 
experiments.

We first investigate the performance of our algorithm under the termination criteria with different values of 
parameters. Figure 2 displays the logarithm of the objective values against the number of outer iterations and the 
total number of inner iterations. We mark three different points on the curve where the Termination Criteria (41) 
with η � β � 10�1, 10�2, 10�3, and k � 10, 20, 40 are satisfied.

We have also experimented with various values of exponent ρ that determine the convergence rate of the 
approximating sequence and various initial points. In both cases, we terminate the algorithm under the 
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Conditions (41) with η � β � 10�2 and k � 10. In Figure 3, we observe that setting different values of ρ under the 
same termination criteria leads to candidate solutions with similar objective values, and there are roughly two 
phases of convergence in terms of the total number of iterations. Initially, the objective value decreases faster for 
smaller ρ, corresponding to poorer approximation. When the objective value is sufficiently small (10�3 on this par
ticular instance), larger ρ results in faster convergence to high accuracy. We remark that for ρ � 0:5, the algorithm 
reaches the maximum number of outer iterations and does not output a (10�2, 10�2, 10)-weakly A-stationary point. 
Figure 4 demonstrates the influence of using various initial points that are uniformly distributed on [�1, 1]

n. On 
this instance, two of the initial points find (10�2, 10�2, 10)-weakly A-stationary points with large objective values. 
For these two initial points, we rerun the algorithm with η � β � 10�3, and the algorithm still terminates with large 
objective values.

5.2. Inverse Optimal Value Optimization with ADC Constraints
We consider a variant of the inverse optimal value optimization that is defined as follows:

minimize
x∈[�1, 1]

n
F(x) �

Xm1

p�1
|νp � fp(x) |

subject to
νp � fp(x)

max{1, |νp | }
≤ ε,

fp(x) � νp

max{1, |νp | }
≤ ε, p � m1 + 1, : : : , m:

(43) 

Figure 2. (Color online) Performance of the prox-ADC method for Problem (42), under the Termination Criteria (41) with η �

β � 10�1, 10�2, 10�3 and k � 10, 20, 40, for a fixed exponent ρ � 1:5 and a fixed initial point. 

Figure 3. (Color online) Performance of the prox-ADC method for Problem (42) using different values of exponent ρ, under the 
Termination Criteria (41) with η � β � 10�2 and k � 10, for a fixed initial point. 
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In this formulation, the observations of the optimal values {νp}
m
p�1 are divided into two groups indexed by 

{1, : : : , m1} and {m1 + 1, : : : , m}. We aim to minimize the errors for the first group while ensuring that the relative 
errors for the second group do not exceed a specified feasibility tolerance, denoted by ε. In our experiment, we 
fix n � 10, m � 11, m1 � 8, ε � 10�1, d � 10, and the number of inequality constraints ℓ � 5 in the Minimization 
Problem (1). The solution x∗ and the data, including {νp}

m
p�1, are randomly generated in the same way as in Sec

tion 5.1. We can see that x∗ is feasible to (43) and attains the minimal objective value F(x∗) � 0.
Similar to the first example, we adopt the ADC decomposition in (6), denoted by f k

p � (gp)γk
� (hp)γk 

with a 
sequence {γk � 1=(k +ek)

ρ
} for some positive integer ek and ρ > 0. Because of the feasibility problem in Assumption 

2, we introduce the additional parameter ek to control the approximating sequences, which will be explained in 
details later. We also note that treating νp�fp(x)

max{1, |νp | }
≤ ε and fp(x)�νp

max{1, |νp | }
≤ ε as two separate constraints for p �

m1 + 1, : : : , m leads to the failure of the asymptotic constraint qualification in Assumption 5 because the approxi
mate subdifferentials of the ADC functions fp and �fp are linearly dependent. This issue can be resolved by 
rewriting the constraints in a composite ADC form |νp�fp(x) |

max{1, | νp | }
≤ ε and assuming a corresponding version of 

Assumption 5. We omit this technical detail because the main focus of this section is to illustrate the practical 
implementation of our algorithm.

To verify Assumption 2 that states the existence of a strictly feasible point, we first follow the discussion after 
Assumption 2 to construct the quantity cαk

p � (γk � γk+1)L2
p=(2 max{1, |νp | }), where Lp is the Lipschitz constant of 

fp(·, x) for all x ∈ [�1, 1]
n. We can derive the Lipschitz constant Lp by characterizing the subdifferential ∂1fp(·, x) for 

a fixed x based on Danskin’s Theorem (Clarke [11, theorem 2.1] and then upper bounding the norm of this sub
differential over x ∈ [�1, 1]

n. The extra denominator max{1, |νp | } in the expression of cαk
p is due to the scaling of 

the constraints in (43). Then, consider the following problem:

minimize
x∈[�1, 1]

n
V(x) ¢

Pm

p�m1+1
max

(

0, |νp � f 0
p (x) | � ε�

P+∞

k′�0

cαk′

p

� �

max{1, |νp | }

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¢ sp (constant)

)

, (Feas) 

where the objective is the sum of the compositions of univariate convex functions φp(t) � max{0, |νp � t | � sp}

and DC functions f 0
p . Notice that Problem (Feas) takes the same form as (23). Thus, we can apply the inner loop 

of the prox-ADC method to solve it approximately. If solving this problem gives a solution x0 with V(x0) � 0, 
then

|νp � f 0
p (x) |

max{1, |νp | }
≤ ε�

X+∞

k′�0

cαk′

p � ε�
(Lp)

2

2 k̃ρ · max{1, |νp | }
, (44) 

and x0 is a strictly feasible point satisfying Assumption 2. We emphasize that using the inner loop of the prox- 
ADC method for solving Problem (Feas) to obtain a strictly feasible point is merely a heuristic. Although this 

Figure 4. (Color online) Performance of the prox-ADC method for Problem (42) using five initial points uniformly distributed 
on [�1, 1]

n, under the Termination Criteria (41) with η � β � 10�2 and k � 10, for a fixed exponent ρ � 1:5. 
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approach works well in our experiments, it is generally not easy to verify Assumption 2. We make a final remark 
on the role of ek. For small values of ρ and ek, it is possible that ε <

(Lp)
2

2 ek
ρ
·max{1, |νp | }

, and, from (44), there is no strictly 

feasible point satisfying Assumption 2 for this fixed approximating sequence. Henceforth, the flexibility of the 
parameter ek is necessary to ensure the validity of Assumption 2.

We implement the above procedure to find an initial point and then apply the prox-ADC method with 
ɛk � δk � 1=(k + 1)

ρ and λ � 5. On most of the randomly generated instances, we observe that the point given 
by solving (Feas) is also feasible to the original Problem (43) along the iterations, although this result can
not be implied by Assumption 2. In Figure 5, we again plot the logarithm of the objective values against 
the total number of iterations, using various combination of ek and ρ and various initial points. It is worth 
mentioning that for this constrained problem, the random initial point is not directly utilized in the prox- 
ADC method. Instead, it is first used in Problem (Feas) to generate a strictly feasible point satisfying 
Assumption 2, and the candidate solution for (Feas) then becomes the initial point of the prox-ADC method 
for solving (43).
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Appendix A. Proofs of Proposition 2 and Proposition 3
Proof of Proposition 2.

a. We first generalize the convergence result of the classical Moreau envelopes when γk ↓ 0 (see, e.g., Rockafellar and Wets 
[30, theorem 1.25]) to the partial Moreau envelopes. Fixing any γ0 > 0, we consider the function ψ(z, x,γ) ¢ f (z, x) + δdom f (x) +

ψ0(z, x,γ) with

ψ0(z, x,γ) ¢

‖z � x‖2=(2γ) if γ ∈ (0,γ0],
0 if γ � 0, z � x,
∞ otherwise:

8
><

>:

Notice that f k(x) � gγk
(x) � hγk

(x) + δdom f (x) � infzψ(z, x,γk). It is easy to verify that ψ is proper and lsc based on our assump
tions. Under the assumption that f is bounded from below on dom f × dom f , we can also show by contradiction that ψ(z, x,γ)

is level-bounded in z locally uniformly in (x,γ). Consequently, it follows from Rockafellar and Wets [30, theorem 1.17] that 
f k(x) � infzψ(z, x,γk) ↑ f (x) for any fixed x and each f k is lsc.

Hence, f k →
e f is a direct consequence of Rockafellar and Wets [30, proposition 7.4(d)] by f k(x) ↑ f (x) for all x and the lower 

semicontinuity of f k. If dom f � Rn, then f is continuous, and, thus, f k →
c f by Rockafellar and Wets [30, proposition 7.4(c-d)]. We 

then complete the proof of (a).

Figure 5. (Color online) Performance of the prox-ADC method for Problem (43) under the Termination Criteria (41) with η �

β � 2 × 10�2 and k � 5. (a) Using different sequences {γk} for a fixed initial point. (b) Using five initial points uniformly distrib
uted on [�1, 1]

n for a fixed sequence {γk � 1=(k + 10)
2:5

}. 

(a) (b)
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b. For any x ∈ int(dom f ),

∂A f (x)

�
[

xk→x
Lim sup

k→+∞

{∂gγk
(xk) � ∂hγk

(xk)}

�
(i′) [

xk→x
Lim sup

k→+∞

xk

γk
� ∂2(�f )(zk, xk) �

zk

γk

�
�
�
�
�
zk � argmin

z∈Rn
f (z, xk) +

1
2γk

‖z � xk ‖2
� �( )

⊂
(ii′) [

(xk,zk)→(x,x)

Lim sup
k→+∞

[∂1 f (zk, xk) � ∂2(�f )(zk, xk)]

�
(iii′)

∂1 f (x, x) � ∂2(�f )(x, x), 

where (i′) follows from the convexity of (�f )(z, ·) for any z ∈ dom f and Danskin’s Theorem (Clarke [11, theorem 2.1]; (ii′)

is due to the optimality condition for zk, and zk → x is obtained by similar arguments in the proof of Theorem 1(b), due to 
our assumption that f is bounded from below on dom f × dom f ; and (iii′) uses the outer semicontinuity of ∂1 f and 
∂2(�f ) at (x, x) (Li and Cui [20, lemma 5]). Therefore, for any x ∈ int(dom f ), ∂ f (x) ⊂ ∂A f (x) ⊂ ∂1 f (x, x) � ∂2(�f )(x, x). 
Moreover, because of the local boundedness of the mappings ∂1 f and ∂2(�f ) at (x, x) (Li and Cui [20, lemma 5], it follows 
from Rockafellar and Wets [30, example 4.22] that ∂∞

A f (x) � {0}. w

Proof of Proposition 3.
a. Note that for any x ∈ Rn, CVaRα[ c(x, Z) ] is well-defined and takes finite value due to E[ |c(x, Z) | ] < +∞. Because c(x, Z) fol

lows a continuous distribution for any x ∈ Rn, we know from Rockafellar and Uryasev [29, theorem 1] and Acerbi [1] that CVaR 
has the following equivalent representations:

CVaRα[c(x, Z) ] � inf
t∈R

t +
1

1 �α
E[ max{c(x, Z) � t, 0}]

� �

�
1

1 �α

Z 1

α
VaRt[c(x, Z) ] dt:

Moreover, CVaRα[c(·, Z) ] is convex by the convexity of c(·, z) for any fixed z ∈ Rm (cf. Rockafellar and Uryasev [29, theorem 2]). 
Therefore, both gk and hk defined in (7) are convex. By the definitions of gk and hk, we have

gk(x) � hk(x) � [k(1 �α) + 1] CVaRα�1=k[c(x, Z)] � k(1 �α) CVaRα[c(x, Z)]

�
k(1 �α) + 1

1 � (α� 1=k)

Z 1

α�1=k
VaRt[c(x, Z)] dt �

k(1 �α)

1 �α

Z 1

α
VaRt[c(x, Z)] dt

� k
Z 1

α�1=k
VaRt[c(x, Z)] dt � k

Z 1

α
VaRt[c(x, Z)] dt

� k
Z α

α�1=k
VaRt[c(x, Z)] dt:

Note that VaRt[c(x, Z)] is nondecreasing as a function of t for any fixed x ∈ Rn. Namely,

Z α

α�1=k
VaRα�1=k[c(x, Z)] dt ≤

Z α

α�1=k
VaRt[c(x, Z)] dt ≤

Z α

α�1=k
VaRα[c(x, Z)] dt:

Thus, VaRα�1=k[ c(x, Z) ] ≤ gk(x) � hk(x) ≤ VaRα[ c(x, Z) ] for any x ∈ Rn and k > 1=α. Because VaRt[ c(x, Z) ] as a function of t on (0, 
1) is left-continuous, it follows that [gk(x) � hk(x)] ↑ VaRα[ c(x, Z) ] for all x. Observe that

{x |VaRα[ c(x, Z) ] ≤ r} � {x |P(c(x, Z) ≤ r) ≥ α}:

Based on our assumptions and van Ackooij [34, proposition 2.2], for any r ∈ R, the probability function x ⊢→ �P(c(x, Z) ≤ r) is 
lsc, which implies the closedness of the level set {x |P(c(x, Z) ≤ r) ≥ α} for any (r,α) ∈ R × (0, 1). Hence, VaRα[ c(·, Z)] is lsc for any 
given α ∈ (0, 1) and is continuous if c(·, ·) is further assumed to be continuous. Then (a) is a direct consequence of Rockafellar 
and Wets [30, proposition 7.4(c–d)] by the monotonicity [gk(x) � hk(x)] ↑ VaRα[ c(x, Z)] and the continuity of VaRα[ c(·, Z)].

b. We use L1(Ω,F ,P) to denote the space of all random variables X : Ω → R with E[ |X(ω) | ] < +∞. According to Shapiro et al. 
[33, example 6.19], the function CVaRα : L1(Ω,F ,P) → R is subdifferentiable (see Shapiro et al. [33, (9.281)] for the definition). 
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Consider any fixed x ∈ Rn. Given that c(x, Z) is a continuous random variable in L1(Ω,F ,P), it follows from Shapiro et al. [33, 
(6.81)] that the subdifferential of CVaRα[·] at c(x, Z), denoted by ∂(CVaRα[ · ])[c(x, Z)], is

φ ∈ L∞(Ω,F ,P)

�
�
�
�
�
�
�
�
�
�

φ(ω) � (1 �α)
�1 if c(x, Z(ω)) > VaRα[c(x, Z)]

φ(ω) ∈ [0, (1 � α)
�1

] if c(x, Z(ω)) � VaRα[c(x, Z)]

φ(ω) � 0 if c(x, Z(ω)) < VaRα[c(x, Z)]

8
>>>><

>>>>:

9
>>>>=

>>>>;

: (A.1) 

We would like to mention that the event {ω ∈ Ω |c(x, Z(ω)) � VaRα[c(x, Z)]} has zero probability and, thus, E[φ ] �

(1 � α)
�1

· (1 �α) � 1 for every random variable φ ∈ ∂(CVaRα[ · ]) [c(x, Z)]. Let PZ denote the probability measure associated 
with Z. By using Shapiro et al. [33, theorem 6.14], we obtain the subdifferential of the convex function CVaRα[ c(·, Z) ] at x:

∂(CVaRα[c(·, Z) ])(x)

� cl
[

φ∈∂(CVaRα[ · ]) [c(x,Z)]

Z

∂1 c(x, Z(ω))φ(ω) dPZ(ω)

0

@

1

A

�
(iv′)cl

Z

∂1 c(x, Z(ω))φ(ω) dPZ(ω)

� �

∀φ ∈ ∂(CVaRα[ · ]) [c(x, Z)]

�
(v′)
Z

∂1 c(x, Z(ω))φ(ω) dPZ(ω) ∀φ ∈ ∂(CVaRα[ · ]) [c(x, Z)]: (A.2) 

To see (iv′), it suffices to show that, for arbitrary two elements φ1 and φ2 in the set ∂(CVaRα[ · ]) [c(x, Z)], we have
Z

∂1 c(x, Z(ω))φ1(ω) dPZ(ω) �

Z

∂1 c(x, Z(ω)) φ2(ω) dPZ(ω): (A.3) 

To this end, we take any measurable selection a(x, Z(ω)) ∈ ∂1c(x, Z(ω)). By the assumption that |c(x, z) � c(x′, z) | ≤

κ(z)‖x � x′ ‖ for all x, x′ ∈ Rn and z ∈ Rm, it holds that ‖a(x, Z)‖ ≤ κ(Z) because subgradients of a convex function are uni
formly bounded in norm by the Lipschitz constant. Consequently, both a(x, Z(ω))φ1(ω) and a(x, Z(ω))φ2(ω) are integrable 
as |φ1(ω) | ≤ (1 � α)

�1 and |φ2(ω) | ≤ (1 � α)
�1 for any ω by (A.1) and E[‖a(x, Z)‖] ≤ E[κ(Z)] < +∞ by our assumption. 

Observing that a(x, Z(ω))φ1(ω) � a(x, Z(ω))φ2(ω) almost surely, we can conclude from Folland [17, proposition 2.23] that 
Z

a(x, Z(ω))φ1(ω) dPZ(ω) �

Z

a(x, Z(ω)) φ2(ω) dPZ(ω). This completes the proof of (A.3).

Next, we will explain why the closure can be removed in (A.2). By the convexity of c(·, z) for any fixed z ∈ Rm and the 
existence of a measurable function κ, it follows from Clarke [12, theorem 2.7.2] that

Z

∂1c(x, Z(ω))φ(ω) dPZ(ω) � ∂

Z

c(·, Z(ω))φ(ω) dPZ(ω)

� �

(x), 

where the right-hand side is the subdifferential of a convex function and, thus, is a closed set. Then, we can omit the clo
sure to obtain the equation (v′) in (A.2).

Now, we use the expression of ∂(CVaRα[c(·, Z) ])(x) to characterize ∂AVaRα[c(·, Z)](x). For any k > 1=α, taking any φ3 ∈

∂(CVaRα�1=k[ · ]) [c(x, Z)] and φ4 ∈ ∂(CVaRα[ · ]) [c(x, Z)], we have

∂gk(x) � ∂hk(x)

� [k(1 �α) + 1] ∂ CVaRα�1=k[c(·, Z)](x) � k(1 �α) ∂ CVaRα[c(·, Z)](x)

�
(A:2)

Z

∂1c(x, Z(ω))([k(1 � α) + 1]φ3(ω) � k(1 �α)φ4(ω)) dPZ(ω)

�
(A:1)

Z

∂1c(x, Z(ω))φ(ω) dPZ(ω), 

with

φ(ω) ¢

0 if c(x, Z(ω)) > VaRα[c(x, Z)] or c(x, Z(ω)) < VaRα�1=k[c(x, Z)]

[0, k] if c(x, Z(ω)) � VaRα[c(x, Z)] or c(x, Z(ω)) � VaRα�1=k[c(x, Z)]

k if VaRα�1=k[c(x, Z)] < c(x, Z(ω)) < VaRα[c(x, Z)]:

8
>><

>>:
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Because the event {ω ∈ Ω |c(x, Z(ω)) � VaRα[ c(x, Z)]or VaRα�1=k[ c(x, Z)]} has zero probability, we have

∂gk(x) � ∂hk(x)

�

Z

∂1c(x, Z(ω)) k 1{VaRα�1=k[c(x, Z)] < c(x, Z) < VaRα[c(x, Z)]} dPZ(ω)

�

Z

∂1c(x, Z(ω))
1{VaRα�1=k[c(x, Z)] < c(x, Z) < VaRα[c(x, Z)]}

P(VaRα�1=k[c(x, Z)] < c(x, Z) < VaRα[c(x, Z)])
dPZ(ω)

�E[∂1c(x, Z) | VaRα�1=k[c(x, Z)] < c(x, Z) < VaRα[c(x, Z)] ]:

By the definition of the approximate subdifferential, the proof is then completed. w

Appendix B. Proof of Proposition 4
We start with the chain rules for ∂(φ ◦ f ) and ∂∞

(φ ◦ f ), where the inner function f is merely lsc. These results are exten
sions of the nonlinear rescaling (Rockafellar and Wets [30, proposition 10.19(b)]) to the case where φ may lack the strictly 
increasing property at a given point. One can also derive the same results through a general chain rule of the coderiva
tive for composite set-valued mappings (Mordukhovich [22, theorem 5.1]. However, to avoid the complicated computa
tions accompanied by the introduction of the coderivative, we give an alternative proof below that is more 
straightforward. To prepare for the chain rules, we need a technical lemma about the proximal normal cone.

Lemma B.1. Let f : Rn → R be an lsc function. For α > f (x), it holds that

N
p

epi f (x,α) ⊂ N
p

epi f (x, f (x)):

Proof of Lemma B.1. For α > f (x). By Rockafellar and Wets [30, example 6.16], we have

N
p

epi f (x,α) � {λ[(x,α) � (x,α)] | (x,α) ∈ Rn+1 such that (x,α) ∈Πepi f (x,α),λ ≥ 0}, 

where Πepi f : Rn+1 → epi f is the projection operator. For any (x,α) ∈ Rn+1 with (x,α) ∈Πepi f (x,α), we have

(x,α) ∈ argmin
(u, t)∈epi f

‖(u, t) � (x,α)‖2, 

which can be equivalently written as

(x, f (x)) ∈ argmin
(u, t+α�f (x))∈epi f

‖(u, t) � (x,α� α + f (x))‖2:

Then, restrict the feasible region of the above problem to a subset {(u, t) | (u, t) ∈ epi f }. Because (x, f (x)) is still a feasible point 
in this subset, we have (x, f (x)) ∈Πepi f (x,α� α + f (x)). Hence, (x,α) ∈Πepi f (x,α) implies (x, f (x)) ∈Πepi f (x,α� α + f (x)). 
Using this result and the expression of N p

epi f (x,α), we conclude that N p
epi f (x,α) ⊂ N

p
epi f (x, f (x)) for α > f (x). w

We present the chain rules with a self-contained proof in the following lemma.

Lemma B.2 (Chain Rules for the Limiting Subdifferential). Let φ : R→ R be proper, lsc, convex, and nondecreasing with 
sup φ � +∞, and f : Rn → R be lsc. Consider x ∈ dom (φ ◦ f ). If the only scalar y ∈ Lim supx→(φ◦f )x Ndom φ( f (x)) with 0 ∈

y Lim supx→x ∂f (x) is y � 0, then

∂(φ ◦ f )(x) ⊂
[

y Lim sup
x→x

∂ f (x)

�
�
�
�y ∈ Lim sup

x→(φ◦ f ) x
∂φ(f (x))

( )

∪ Lim sup
x→x

∞∂ f (x)

 !

\{0}

" #

, 

and

∂
∞

(φ ◦ f )(x) ⊂
[

y Limsup
x→x

∂ f (x)

�
�
�
�y ∈ Limsup

x→(φ◦ f ) x
Ndomφ(f (x))

( )" #

∪ Limsup
x→x

∞∂ f (x)

 !

\{0}

" #

:

Proof of Lemma B.2. The basic idea is to rewrite φ ◦ f as a parametric minimization problem and apply Rockafellar and 
Wets [30, theorem 10.13]. Note that φ(f (x)) � infα [g(x,α) ¢δepi f (x,α) + φ(α)] for x ∈ dom (φ ◦ f ). Define the corresponding 
set of optimal solutions as M(x) for any x ∈ dom (φ ◦ f ). Then, we have f (x) ∈ M(x) and φ(α) � φ(f (x)) for any α ∈ M(x). By 
our assumptions, it is obvious that dom φ ∈ {(�∞, b), (�∞, b]} for some b ∈ R ∪ {+∞}. Based on our assumption that 
supφ � +∞ and f is lsc, it is easy to verify that g is proper, lsc, and level-bounded in α locally uniformly in x. Then, we 
apply Rockafellar and Wets [30, theorem 10.13] to obtain

∂(φ ◦ f )(x) ⊂ { v | (v, 0) ∈ ∂g(x,α),α ∈ M(x)},

∂
∞

(φ ◦ f )(x) ⊂ { v | (v, 0) ∈ ∂
∞g(x,α),α ∈ M(x)}: (B.1) 
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Step 1: We will show that for any α ∈ M(x),

Nepi f (x,α) ∩ ({0} × [�Ndom φ(α)] ) � {0}: (B.2) 

We divide the proof of (B.2) into two cases.
Case 1. If M(x) is a singleton { f (x)}, we can characterize Nepi f (x, f (x)) by using the result in Rockafellar and Wets [30, 
theorem 8.9]. Because ∂ f (x) ⊂ Lim supx→x∂f (x) and Ndom φ( f (x)) ⊂ Lim supx→(φ◦f ) x Ndom φ( f (x)), it follows from our assump
tion that either 0 ∉ ∂ f (x) or Ndom φ( f (x)) � {0}. Hence, based on the characterization of Nepi f (x, f (x)), (B.2) is satisfied.
Case 2. Otherwise, there exists αmax ∈ (f (x), +∞) such that M(x) � [f (x),αmax] because φ is lsc, nondecreasing and 
sup φ � +∞. Thus, from (B.1),

∂(φ ◦ f )(x) ⊂ [{v | (v, 0) ∈ ∂g(x, f (x))} ∪ {v | (v, 0) ∈ ∂g(x,α), f (x) < α ≤ αmax}],
∂

∞
(φ ◦ f )(x) ⊂ [{v | (v, 0) ∈ ∂

∞g(x, f (x))} ∪ {v | (v, 0) ∈ ∂
∞g(x,α), f (x) < α ≤ αmax}]: (B.3) 

Let M1(x) ¢ {α ∈ (f (x),αmax] |∃ xk → x with f (xk) → α} and M2(x) ¢ M(x)\M1(x). In the following, we characterize Nepi f (x,α)

and verify (B.2) separately for α ∈ M1(x) and α ∈ M2(x).
Case 2.1. For any α ∈ M1(x), we first prove the inclusion:

Nepi f (x,α) ⊂ λ(v, �1)

�
�
�
�v ∈ Lim sup

x→x
∂ f (x),λ > 0

( )

∪ (v, 0)

�
�
�
�v ∈ Lim sup

x→x

∞∂ f (x)

( )" #

: (B.4) 

Observe that for any α ∈ M1(x), it holds that

Nepi f (x,α) ⊂ Lim sup
(x,α)(∈epi f )→(x,α)

N
p

epi f (x,α)

⊂ Lim sup
x→x

N
p

epi f (x, f (x))

⊂ Lim sup
x→x

Nepi f (x, f (x)), (B.5) 

where the first inclusion is because any normal vector is a limit of proximal normals at nearby points (Rockafellar and 
Wets [30, exercise 6.18]); the second one uses Lemma B.1; the last inclusion follows from the fact that the proximal normal 
cone is a subset of the limiting normal cone (Rockafellar and Wets [30, example 6.16]). Based on the result of Rockafellar 
and Wets [30, theorem 8.9] that

Nepi f (x, f (x)) � {λ(v, �1) |v ∈ ∂ f (x),λ > 0} ∪ {(v, 0) |v ∈ ∂
∞f (x)}, 

we conclude that Nepi f (x,α) ⊂ Rn × R� for any α ∈ M1(x). For any (v, �1) ∈ Nepi f (x,α) with α ∈ M1(x), there exist xk →

x, vk → v with vk ∈ ∂ f (xk). Then, v ∈ Limsupx→x ∂f (x).
To prove (B.4), it remains to show that v ∈ Lim sup∞

x→x ∂f (x) whenever (v, 0) ∈ Nepi f (x,α). It follows from (B.5) that (v, 0)

is a limit of proximal normals of epi f at (xk, f (xk)) for some sequence xk → x. (i) First consider the case (vk, 0) → (v, 0) with 
(vk, 0) ∈ N

p
epi f (x

k, f (xk)). Following the argument in the proof of Rockafellar and Wets [30, theorem 8.9], we can derive 
vk ∈ ∂

∞f (xk). Therefore,

v ∈ Lim sup
k→+∞

∂
∞f (xk) ⊂ Lim sup

k→+∞

[

xk, i →f xk

Lim sup
i→+∞

∞∂ f (xk, i)

0

@

1

A ⊂
[

xj→x
Lim sup

j→+∞

∞ ∂ f (xj), 

where the first inclusion is due to the definition of the horizon subdifferential, and the last inclusion follows from a stan
dard diagonal extraction procedure. (ii) In the other case, we have λk(vk, �1) → (v, 0) with λk ↓ 0 and vk ∈ ∂ f (xk) for all 
k ∈ N. It is easy to see v ∈ Limsup∞

x→x ∂f (x). So far, we obtain Inclusion (B.4). Because α ∈ M1(x), we have Ndomφ(α) ⊂

Limsupx→(φ◦f )x Ndom φ(f (x)), and our assumption implies that λ � 0 is the unique solution satisfying 0 ∈ λ · Limsupx→x ∂f (x)

with λ ∈ Ndomφ(α). Combining this with (B.4), we immediately obtain (B.2).
Case 2.2. For any α ∈ M2(x), consider any sequence {(xk,αk)} ⊂ epi f converging to (x,α). Then, αk > f (xk) for all suffi
ciently large k because α ∉ M1(x). It is easy to see that N p

epi f (x
k,αk) ⊂ Rn × {0}, which gives us Nepi f (xk,αk) ⊂ Rn × {0} due 

to Rockafellar and Wets [30, exercise 6.18]. By following a similar pattern as the final part of Case 2.1, it is not difficult to 
obtain, for any α ∈ M2(x),

Nepi f (x,α) ⊂ (v, 0)

�
�
�
�v ∈ Lim sup

x→x

∞∂ f (x)

( )

: (B.6) 

In this case, (B.2) holds trivially. Hence, we have verified (B.2) for Cases 1 and 2. 
Step 2. Based on (B.2) in step 1, we can now apply the sum rule (Rockafellar and Wets [30, corollary 10.9]) for ∂g(x,α) to obtain

∂g(x,α) ⊂ Nepi f (x,α) + {0} × ∂φ(α), ∂
∞g(x,α) ⊂ Nepi f (x,α) + {0} × Ndom φ(α): (B.7) 
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Case 1. For M(x) � { f (x)}, by combining (B.7) with (B.1), we can derive the stated results for ∂(φ ◦ f )(x) and ∂
∞

(φ ◦ f )(x)

based on the observations that ∂φ( f (x)) ⊂ Lim supx→(φ◦f )x φ(f (x)) and ∂∞f (x) ⊂ Lim sup∞
x→x ∂f (x).

Case 2. Otherwise, by (B.7), we have

{v | (v, 0) ∈ ∂g(x,α), f (x) < α ≤ αmax}

⊂
(B:4) (B:6)

∪ y Lim sup
x→x

∂ f (x)

�
�
�
� y ∈ ∂φ(α),α ∈ M1(x)

( )" #

∪ ∪ Lim sup
x→x

∞∂ f (x)

�
�
�
� 0 ∈ ∂φ(α), f (x) < α ≤ αmax

( )" #

⊂ ∪ y Lim sup
x→x

∂ f (x)

�
�
�
� y ∈ Lim sup

x→(φ◦ f ) x
∂φ(f (x))

( )" #

∪ Lim sup
x→x

∞∂ f (x)

 !

\{0}

" #

, 

where the last inclusion is because 0 will be included in the first set if 0 ∈ ∂φ(α) for some α ∈ (f (x),αmax], and the second 
set will be empty otherwise. Similarly,

{v | (v, 0) ∈ ∂g∞(x,α), f (x) < α ≤ αmax}

⊂ ∪ y Limsup
x→x

∂ f (x)

�
�
�
�
�
y ∈ Limsup

x→(φ◦ f ) x
Ndomφ(f (x))

( )" #

∪ Limsup
x→x

∞∂ f (x)

 !

\{0}

" #

:

We then complete the proof by using the inclusions in (B.3). w

Equipped with the chain rules, we are now ready to prove Proposition 4.

Proof of Proposition 4. Let x be any feasible point—that is, x ∈ ∩m
p�1 dom Fp. Suppose for contradiction that (15) does not 

hold at x. Thus, there exist p1 ∈ {1, : : : , m}, {xk} ∈ Sp1 (x), and an index set N ∈ N]
∞ such that 0 ∈ ∂Cf k

p1
(xk) and Ndom φp1 

( f k
p1

(xk)) ≠ {0} for all k ∈ N. Take an arbitrary nonzero scalar yk ∈ Ndom φp1
( f k

p1
(xk)) for all k ∈ N. Let ey be any accumulation 

point of the unit scalars {yk= |yk | }k∈N. Then, we have (0 ≠)ey ∈ ∪ {Ndom φp1
(tp1 ) | tp1 ∈ Tp1 (x)} and 0 ∈ con ∂A fp1 (x), contradict

ing Assumption 5. This proves Condition (15).
For any fixed p � 1, : : : , m, let yp′ � 0 for any p′ ∈ {1, : : : , m}\{p} in Assumption 5. Then, the only scalar yp ∈ ∪ {Ndom φp

(tp)

| tp ∈ Tp(x)} with 0 ∈ yp con ∂A fp(x) is yp � 0, which completes the proof of (16).
To derive the Constraint Qualification (17), we consider two cases.

Case 1. For p ∈ I2, we have Ndom φp
( fp(x)) ⊂ ∪ {Ndom φp

(tp) | tp ∈ Tp(x)} due to f k
p →

e fp and ∂(yfp)(x) ⊂ y ∂C fp(x) ⊂ y con ∂A fp(x)

for any y by Theorem 1(a). Together with Assumption 5, we deduce that the only scalar y ∈ Ndom φp
( fp(x)) with 0 ∈

∂(yfp)(x) is y � 0. From this condition and the local Lipschitz continuity of fp for p ∈ I2, we can apply the chain rule (Rock
afellar and Wets [30, theorem 10.49]) to get

∂
∞

(φp ◦ fp)(x) ⊂
[

{y con ∂A fp(x) |y ∈ Ndom φp
(tp), tp ∈ Tp(x)}: (B.8) 

Case 2. For p ∈ I1, to utilize the chain rules (Lemma B.2) for ∂
∞

(φp ◦ fp), we must first confirm the validity of the 
condition:

0 ∈ y Lim sup
x→x

∂fp(x), y ∈ Lim sup
x→Fp x

Ndom φp
( fp(x))

2

4

3

5 ⇒ y � 0: (B.9) 

Indeed, it suffices to consider the case of dom φ↑
p � (�∞, rp) or (�∞, rp] for some rp ∈ R, because the statement holds trivi

ally when φ↑
p is real-valued. For any element y ∈ Lim supx→Fp x Ndom φp

( f p(x)), there exist (xk, yk) → (x, y) with yk ∈

Ndom φp
( fp(xk)) and Fp(xk) → Fp(x). Because x ∈ dom Fp, we must have xk ∈ dom Fp for all sufficiently large k—that is, 

fp(xk) ∈ dom φ↑
p—and { fp(xk)}k∈N is bounded from above due to dom φ↑

p � (�∞, rp) or (�∞, rp]. The sequence {fp(xk)}k∈N is 
also bounded from below because fp is lsc as a consequence of f k

p →
e fp. Then, we can assume that the bounded sequence 

{fp(xk)}k∈N converges to some zp. Note that zp ∈ dom φp due to Fp(x) � lim infk→+∞φp( fp(xk)) ≥ φp(zp). Thus, by the outer 
semicontinuity, yk → y ∈ Ndom φp

(zp). By f k
p →

e fp, each fp(xk) can be expressed as the limit of a sequence {f i
p(xk, i)}i∈N with 

xk, i → xk for any fixed k ∈ N. Using a standard diagonal extraction procedure, one can extract a subsequence f ik
p (xk, ik ) → zp 

with xk, ik → x. Hence, zp ∈ Tp(x) and

Lim sup
x→Fp x

Ndom φp
( fp(x)) ⊂

[
{Ndom φp

(tp) | tp ∈ Tp(x)}: (B.10) 
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Using the subdifferentials relationships in Theorem 1 and the outer semicontinuity of ∂A fp, we have

Lim sup
x→x

∂fp(x) ⊂ Lim sup
x→x

∂A fp(x) � ∂A fp(x): (B.11) 

By (B.10), (B.11), and Assumption 5, we immediately get (B.9). Thus, we can apply the chain rule in Lemma B.2 and use 
(B.10), (B.11) again to obtain

∂
∞

(φp ◦ fp)(x) ⊂
[

{y ∂A fp(x) | y ∈ Ndom φp
(tp), tp ∈ Tp(x)} ∪ Lim sup

x→x

∞∂fp(x)

 !

\{0}

⊂
[

{y ∂A fp(x) | y ∈ Ndom φp
(tp), tp ∈ Tp(x)} ∪ [ ∂

∞
A fp(x)\{0} ]: (B.12) 

For the last inclusion, we use Lim sup∞
x→x ∂fp(x) ⊂ Lim sup∞

x→x ∂A fp(x) ⊂ ∂
∞
A fp(x) by Theorem 1(a) and using a standard 

diagonal extraction procedure. Combining Inclusions (B.8) and (B.12) for two cases with Assumption 5, we derive (17) 
and complete the proof. w
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