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1. Introduction
We consider a class of composite optimization problems of the form:

miniﬁ}ize i[l—" H(x) £ o, (fr(x))], (CPo)
xe =

where for each p =1,...,m, the outer function ¢, : R — R U {+0co} is proper, convex, lower semicontinuous (Isc),
and the inner function f, : R" — R is not necessarily locally Lipschitz continuous.

If each inner function f, is continuously differentiable, then the objective in (CPp) belongs to the family of ame-
nable functions under a constraint qualification (Poliquin and Rockafellar [25], Poliquin and Rockafellar [26]). For
a thorough exploration of the variational theory of amenable functions, readers are referred to Rockafellar and
Wets [30, chapter 10(F)]. The properties of amenable functions have also led to the development of prox-linear
algorithms, where convex subproblems are constructed through the linearization of the inner smooth mapping
(Burke [4] , Burke and Ferris [5], Drusvyatskiy and Paquette [14], Fletcher [16], Lewis and Wrght [19]).

However, there are various applications of composite optimization problem in the form of (CPy) where the
inner function f, is nondifferentiable. In the following, we provide two such examples.

Example 1.1 (Inverse Optimal Value Optimization). For p =1,...,m, consider the optimal value function

filx) 'ng{<cp +CP)Ty+ 2y QY
yeR

APx+BPy < b”} xeR", 1)

with appropriate dimensional vectors b? and c” and matrices A?,B?,CF, and Q. The function f, is not smooth in
general. The inverse (multi) optimal value problem (Ahmed and Guan [2], Paleologo and Takriti [24]) finds a
vector x € R" that minimizes the discrepancy between observed optimal values {1/,,}1,"1=1 and true optimal values


mailto:hanyang_li@berkeley.edu
https://orcid.org/0009-0006-9319-6736
mailto:yingcui@berkeley.edu
https://orcid.org/0000-0003-4173-5647
https://doi.org/10.1287/moor.2023.0202

Downloaded from informs.org by [128.32.10.230] on 29 March 2025, at 15:27 . For personal use only, all rights reserved.

Li and Cui: Variational Theory for Asymptotically Approachable Problems
2 Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2025 INFORMS

{ fp(x)};,":1 based on a prescribed metric, such as the ¢;-error:
m
minimize vy, — fp(x)]. 2
imize 31 < 0] @

If f, is real-valued for p = 1,...,m, one can express Problem (2) in the form of (CPy) by defining the outer function
(Pp(t) = |V}fi - tl

Example 1.2 (Portfolio Optimization Under a Value-at-Risk Constraint). The Value-at-risk (VaR) of a random variable Y
at a confidence level a € (0,1) is defined as VaR,(Y) £ min{y € R|P(Y < y) > a}. Let Z be the random return of
investments and c(-,-) be an Isc function representing the profit of Z parameterized by x € R". An agent’s goal is
to maximize the expected profit, denoted by E[c(x,Z)], while also controlling the risk via a constraint on
VaR,[c(x, Z)] under a prescribed level r. The model can be written as

miniﬂr{?ize —E[c(x,Z)] subject to VaR,[c(x,Z)] >r. 3)
.XE n

Define 64 as the indicator function of a set A, where 64(t) =0 for t € A and 6(t) = +co for t ¢ A. Problem (3) can then
be put into the Framework (CP) by setting ¢, (t) = —t, f1(x) = E[c(x, Z)], ¢,(t) = O, +00)(t), and f2(x) = VaR,[c(x, Z)].
We note that the function VaR,[c(-, Z)] can be nondifferentiable, even if the function c(-, z) is differentiable for every z.

Because of the nondifferentiablity of the inner function f, in (CPp), the overall objective is not amenable, and
the prox-linear algorithm (Fletcher [16]) is not applicable to solve this composite optimization problem. In this
paper, we develop an algorithmic framework for a subclass of (CPy), where each inner function f,, although non-
differentiable, can be derived from difference-of-convex (DC) functions through a limiting process. We refer to
this class of functions as approachable difference-of-convex (ADC) functions (see Section 2.1 for the formal definition).
It is important to note that ADC functions are ubiquitous. In particular, we will show that the optimal value func-
tion f, in (1) and VaR,[c(+, Z)] in (3) are instances of ADC functions under mild conditions. In fact, based on the
result recently shown in Royset [31], any Isc function is the epi-limit of piecewise affine DC functions.

With this new class of functions in hand, we have made a first step to understand the variational properties of
the composite ADC minimization problem (CPy), including an in-depth analysis of its necessary optimality condi-
tions. The novel optimality conditions are defined through a handy approximation of the subdifferential mapping
df, that explores the ADC structure of f,. Using the notion of epi-convergence, we further show that these optimality
conditions are necessary conditions for any local solution of (CPy). Additionally, we propose a double-loop algo-
rithm to solve (CPy), where the outer loop dynamically updates the DC functions approximating each f,, and the
inner loop finds an approximate stationary point of the resulting composite DC problem through successive con-
vex approximations. It can be shown that any accumulation point of the sequence generated by our algorithm
satisfies the newly introduced optimality conditions.

Our strategy to handle the nondifferentiable and possibly discontinuous inner function f, through a sequence
of DC functions shares certain similarities with the approximation frameworks in the existing literature. For
instance, Ermoliev et al. [15] have designed smoothing approximations for lsc functions utilizing convolutions
with bounded mollifier sequences, a technique akin to local “averaging.” Research has sought to identify condi-
tions that ensure gradient consistency for the smoothing approximation of composite nonconvex functions
(Burke and Hoheisel [6], Burke and Hoheisel [7], Burke et al. [8], Chen [10]). Notably, Burke and Hoheisel [6]
have emphasized the importance of epi-convergence for the approximating sequence, a less stringent require-
ment than the continuous convergence assumed in earlier works (Beck and Teboulle [3], Chen [10]). In recent
work, Royset [32] has studied the consistent approximation of the composite optimization in terms of the global
minimizers and stationary solutions, where the inner function is assumed to be locally Lipschitz continuous. Our
notion of subdifferentials and optimality conditions for (CP) takes inspiration from these works but adapts to
accommodate nonsmooth approximating sequences that exhibit the advantageous property of being DC.

The rest of the paper is organized as follows. Section 2 presents a class of ADC functions and introduces a new
associated notion of subdifferential. In Section 3, we investigate the necessary optimality conditions for Problem
(CPyp). Section 4 is devoted to an algorithmic framework for solving (CP) and its convergence analysis to the newly
introduced optimality conditions. We also discuss termination criteria for practical implementation in Section 4.3.
Preliminary numerical experiments on the inverse optimal value problems are presented in the last section.

1.1. Notation and Terminology
Let || - || denote the Euclidean norm in R". We use the symbol B(x,0) to denote the Euclidean ball {x € R"|
|lx —X|| < 6}. The set of nonpositive and nonnegative are denoted by R_ and R,, respectively, and the set of
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nonnegative integers is denoted by N. We write N?, £ {N ¢ N|N infinite} and N, £ {N|N\N finite}. Notation
{t*} is used to simplify the expression of any sequence {t‘},y, where the elements can be points, sets, or func-
tions. By #* — t and t* —yt, we mean that the sequence {t*} and the subsequence {t'};cy indexed by N € N?, con-
verge to t, respectively.

Given two sets A and B in R" and a scalar A € R, the Minkowski sum and the scalar multiple are defined as
A+B2{a+blacAbeByand AA £ {Aa|a€ A}. We also define 0-0 = {0} and A -0 = ) whenever A # 0. When A
and B are nonempty and closed, we define the one-sided deviation of A from B as D(A, B) & sup,, dist(x, B),
where dist(x, B) £ inf,eg ||y — x||. The Hausdorff distance between A and B is given by H(A, B) £ max{ID(A, B),
D(B,A)}. The boundary and interior of A are denoted by bdry(A) and int(A). The topological closure and the con-
vex hull of A are indicated by cl(A) and con A.

For a sequence of sets {C'}, we define its outer limit as

Limsup C* £ {u|3IN e N*, uF —yu with u* € C*},

k—+o0

and the horizon outer limit as

Limsup® CF £ {0} U {u|IN € N¢,, At | 0, Ajuf —y u with uf e CF}.

k—+00

The outer limit of a set-valued mapping S : R" = R" is defined as

Limsup S(x) £ U LimsupS(x*) = {u| 3" - ¥, uf — u with u* € S(x*)} ¥ eR"
X—X oy koo
We say S is outer semicontinuous (osc) at ¥ € R" if Limsup,_ - S(x) C S(¥). Consider some index set N € N°. A
sequence of sets {C*}, .y is equi-bounded if there exists a bounded set B such that C* c B for all k € N. Otherwise,
the sequence is unbounded. If there is an integer K € N such that {C"};cy ;s is equi-bounded, then the sequence
{CF}ien is said to be eventually bounded. Interested readers are referred to Rockafellar and Wets [30, chapter 4]
for a comprehensive study of set convergence.
The regular normal cone and the limiting normal cone of a set C C R" at X € C are given by

ﬁc(f) £ {v|v"(x—%) < o(||lx—%||) forallx e C} and Nc(X) £ Limsup j/\/'\c(x).
x(eC)—x
The proximal normal cone of a set C at x € C is defined as Ng (%) £ {A(x —X)|x € Pc(x), A > 0}, where P is the pro-
jection onto C that maps any x to the set of points in C that are closest to x.

For an extended-real-valued function f: R” — R £ R U {*oo}, we write its effective domain as domf £ {x €
R"| f(x) < +oo} and the epigraph as epif £ {(x,a) € R""!|a > f(x)}. We say f is proper if dom f is nonempty and
f(x) > —oo for all xe R". We adopt the common rules for extended arithmetic operations, and the lower and
upper limits of a sequence of scalars in R (cf. Rockafellar and Wets [30, chapter 1(E)]).

Let f : R" — R be a proper function. We write x —¢%, if x — ¥ and f(x) — f(x). The regular subdifferential and
the limiting subdifferential of f at ¥ € dom f are, respectively, defined as

(%) 2 {v|f(x) > f®) + v (x—X) +o(||x —%||) forall x} and If(x) 2 Limsup If(x).

x—yf

For any x ¢ dom f, we set §f (X) = df(x) = 0. When f is locally Lipschitz continuous at X, condf(X) equals to the
Clarke subdifferential dc f(x). We further say f is subdifferentially regular at X € domf if fis Isc at X and Jf(x) =
df(xX). When f is proper and convex, df, df, and dc f coincide with the concept of the subdifferential in convex
analysis.

Finally, we introduce the notion of function convergence. A sequence of functions { f* : R" — R} is said to con-

verge pointwise to f : R" — R, written f* 5 f, if limy_, o f¥(x) = f(x) for any x € R". The sequence { f*} is said to
epi-converge to f, written f* 5 f, if for any x, it holds that

k

likm inf f*(x*) > f(x)  for every sequence x — x,
—+00

limsup f*(x*) < f(x) for some sequence x* — x.
k—+o00

The sequence { f*} is said to converge continuously to f, written ¥ f, if limy_, o f*(x¥) = f(x) for any x and any
sequence x* — x.
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2. Approachable Difference-of-Convex Functions

In this section, we formally introduce a class of functions that can be asymptotically approximated by DC func-
tions. A new concept of subdifferential that is defined through the approximating functions is proposed. At the
end of this section, we provide several examples that demonstrate the introduced concepts.

2.1. Definitions and Properties

An extended-real-valued function can be approximated by a sequence of functions in various notions of conver-
gence, as comprehensively investigated in Rockafellar and Wets [30, chapter 7(A-C)]. Among these approaches,
epi-convergence has a notable advantage in its ability to preserve the global minimizers (Rockafellar and Wets
[30, theorem 7.31]). Our focus lies on a particular class of approximating functions, wherein each function exhi-
bits a DC structure.

Definition 1. A function fis said to be DC on its domain if there exist proper, Isc, and convex functions ¢,/ : R" — R
such that dom f = [dom g N dom ] and f(x) = g(x) — h(x) for any x € dom f.
With this definition, we introduce the concept of ADC functions.

Definition 2 (ADC Functions). Let f : R" — R be a proper function.

a. fis said to be pointwise approachable DC (p-ADC) if there exist proper functions { f*: R” — R}, DC on their
respective domains, such that f* — f.

b. fis said to be epigraphically approachable DC (e-ADC) if there exist proper functions { f* : R" — R}, DC on their
respective domains, such that /£ f.

c. fis said to be continuously approachable DC (c-ADC) if there exist proper functions {f*: R" — R}, DC on their
respective domains, such that f* S f.

A function f is said to be ADC associated with { f¥} if { f*} confirms one of these convergence properties. By a
slight abuse of notation, we denote the DC decomposition of each f* as f* = ¢k — Ii¥, although the equality may
only hold for x € dom f*.

A p-ADC function may not be Isc. An example is given by f(x) = 1(py(x) + 2 1(g,4o0)(x), where for a set C CR",
we write 1¢(x) =1 if x € C and 1¢(x) = 0 if x ¢ C. In this case, f is not Isc at x = 0. However, f is p-ADC associated
with f¥(x) = max(0, 2kx + 1) — max(0, 2kx — 1). In contrast, any e-ADC function must be Isc (Rockafellar and
Wets [30, proposition 7.4(a)]), and any c-ADC function is continuous (Rockafellar and Wets [30, theorem 7.14]).

The relationships among different notions of function convergence, including the unaddressed uniform con-
vergence, have been thoroughly examined in Rockafellar and Wets [30]. Generally, pointwise convergence and
epi-convergence do not imply one another, but they coincide when the sequence { f*} is asymptotically equi-lsc
everywhere (Rockafellar and Wets [30, theorem 7.10]). In addition, {f*} converges continuously to fif and only if
both fk —f and ( fk)—>( —f) are satisfied (Rockafellar and Wets [30, theorem 7.11]). Although verifying epi-
convergence is often challenging, it becomes simpler for a monotonic sequence { f} that converges pointwise to f
(Rockafellar and Wets [30, proposition 7.4(c-d)]).

2.2. Subdifferentials of ADC Functions

Characterizing the limiting and Clarke subdifferentials can be challenging when dealing with functions that
exhibit complex composite structures. Our focus in this subsection is on numerically computable approximations
of the limiting subdifferentials. We begin with the definitions.

Definition 3 (Approximate Subdifferentials). Consider an ADC function f : R” — R associated with { f* = ¢ — ht}.
The approximate subdifferential of f (associated with { f¥ = ¢¥ — i¥}) at ¥ € R" is defined as

onf(x) £ U Lim sup [9g"(x) — Ink(x9)).
Yoy kot

The approximate horizon subdifferential of f (associated with { f* = ¢F — I*}) at X € R" is defined as
T 2 | Limsup®™ [9g"() — ().

xk—x k—+o0

Unlike the limiting subdifferential which requires x* —¢X, ds f(x) is defined using all the sequences x* — ¥ with-

out necessitating the convergence of function values. It follows directly from the definitions that the mappings
X+ daf(x) and x+— dy f(x) are osc. The following proposition presents a sufficient condition for ds f(X) =
Jdf(x) =0 atany x ¢ dom f.
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Proposition 1. Let X & dom f. Then, da f(x) = 0 if for any sequence x* — X, we have x* & dom f* for all sufficiently large

k. The latter condition is particularly satisfied whenever dom f is closed and dom f* C dom f for all sufficiently large k.

Proof. Note that for any x* — X ¢ domf, we have [dg"(x¥) — Ih*(x¥)] = 0 for all sufficiently large k due to x* ¢
dom f* = [domg¢* N dom K*]. Thus, d4 f(X) = 0 for any X ¢ dom f. [

In the subsequent analysis, we restrict our attention to ¥ € dom f . Admittedly, the set da f(X) depends on the
approximating sequence { f} and the DC decomposition of each f*, which may contain irrelevant information
concerning the local geometry of epif. In fact, for a given ADC function f, we can make the set d4 f(X) arbitrarily
large by adding the same nonsmooth functions to both ¢ and /*. By Attouch’s theorem (see, for example, Rocka-
fellar and Wets [30, theorem 12.35]), for proper, Isc, convex functions f and { f*}, if fk — f, we immediately have
daf = df when taking ¢F = f* and h* = 0. In what follows, we further explore the relationships among ds f and
other commonly employed subdifferentials in the literature beyond the convex setting. As it turns out, with
respect to an arbitrary DC function f¥ that is Isc, da f(¥) contains the limiting subdifferential of f at any ¥ € dom f
whenever fk —f.

Theorem 1 (Subdifferentials Relationships). Consider an ADC function f : R" — R. The following statements hold for any
X edomf.

a. Iffis e-ADC associated with { f*} and f* is Isc, then df (X) C da f(X) and I°f(X) I f(X).

b. If fis locally Lipschitz continuous and bounded from below, then there exists a sequence of DC functions { f*} such that
f* N f,0f(X) Caaf(x) CIcf(X), and I5 f(x) = {0}. Consequently, con da f(X) = dc f(X), the set da f(X) is nonempty and
bounded, and Jf (X) = da f(X) when f is subdifferentially reqular at X.

Proof. (a) Let ¢ — ¥ be a DC decomposition of f*. Because f is e-ADC, it must be Isc (Rockafellar and Wets [30,
proposition 7.4(a)]). Using epi-convergence of { f} to f, we know from Rockafellar and Wets [30, corollary 8.47(b)
and proposition 8.46(e)] that any element of df(¥) can be generated as a limit of regular subgradients at x* with
xF -y x and f¥(x*) >y f(¥) for some N € N, Indeed, we can further restrict x* € dom f* because f*(x*) -y (%)
and x € domf. Then, we have

df(x) c U Limsup gfk(xk)
xk(edom fH)—x koo

c U Limsup [9g"(x*) — on*(x")]

xk(edom fr)—x  k—+eo
C daf(x),

where the second inclusion can be verified as follows: Firstly, because of the lower semicontinuity of f* and 1",
and x* € dom ¥ ¢ dom gF, it follows from the sum rule of regular subdifferentials (Rockafellar and Wets [30, corol-
lary 10.9]) that dg¥(x*) o df*(x*) + IH(x¥). Consequently, IfF(x¥) c dgk(x¥) — IHF(x¥) = 9gF(x¥) — I (x¥) because ¢*
and K" are proper and convex (Rockafellar and Wets [30, proposition 8.12]). Similarly, by Rockafellar and Wets
[30, corollary 8.47(b)], we have

Ff@c | Limsup®dff()
xk(edom fk)—x koo
c |J Limsup™[9g"(x*) — ark(xh)]

xk(edom fr)—x k—teo
c Iy f(%).

(b) For a locally Lipschitz continuous function f, consider its Moreau envelope e, f(x) £ inf.{f(z) + ||z — x||*/
(2y)} and the set-valued mappmg Py(x) £ argmin.{f(z) + [z — x||/(2y)}. For any sequence y, | 0, we demon-
strate in the following that {f* £ e, f} is the desired sequence of approximating functions. Firstly, because f is
bounded from below, it must be prox-bounded, and, thus, each f is continuous and f*(x) T f(x) for all ¥ (cf. Rockafel-
lar and Wets [30, theorem 1.25]). By the continuity of fand f*, we have f S f from Rockafellar and Wets [30, prop031-
tion 7.4(c—-d)]. It then follows from part (a) that df(¥) C d4 f(¥). Consider the following DC decomposition of each f*:

f"()—M {f()—w ﬂ} xR,
y ZER”

k Vi Yk

£85(x) L 1k(x)
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It is clear that f(z) + ||z[|?/(2y,) +z"x/y, is level-bounded in z locally uniformly in x, because for any r € R and
any bounded set X c R”, the set

{ZER”

is bounded. Because of the level-boundedness condition, we can apply the subdifferential formula of the para-
metric minimization (Rockafellar and Wets [30, theorem 10.13]) to get

o-hme | {ulomnedos(sa- ”Z”ZZT")}c U {aﬂz);‘k},

zeP, f(x) 2)/k Vi z€P), £(x)

T

IzIl> zTx

xeX,f(z)+ Yo r} c {z‘xeX, Iz — x| < [|x]|> +2y, [r—irzlff(z)] }

Y Vi

where the last inclusion is due to the calculus rules (Rockafellar and Wets [30, proposition 10.5 and exercise
8.8(c)]). Because K" is convex, we have —dh*(x) = dc(—H*)(x) = con d(—h¥)(x) by Rockafellar and Wets [30, theorem
9.61], which further yields that

[8gj‘(x) — JHF(x)] € con U {9f(2)|z€ P, f(x)} VxeR", keN. 4)

For any x* — ¥ and any z* € P, ¢(x"), we have

1 1 1
— |2 = xF|IP +inf f(x) < |2 = K+ () < X — |17+ ().
2y, x f 2y / 2y, /

Then, ||ZF— k|| < \/ |X — xk||2 + 2y, [ f(X) — inf, f(x)] = 0 due to the assumption that f is bounded from below

and, therefore, z — X. By the local Lipschitz continuity of f, it follows from Rockafellar and Wets [30, theorem 9. 13]
that the mapping df : x +— df(x) is locally bounded at X. Thus, there is a bounded set S such that U{df (zM))F e
P, f(x )} € S for all sufficiently large k. It follows directly from Rockafellar and Wets [30, example 4.22] and the def-

inition of the approximate horizon subdifferential that d;" f(¥) = {0}.

Next, we will prove daf(X) Cdc f(X). For any u € da f(¥), from (4), there exist sequences of vectors x* — ¥ and

¥ — u with each u* taken from the convex hull of a bounded set U {df(z")|z" € P, Ve f(xk)} By Carathéodory’s

u
Theorem (see, e.g. Rockafellar [27, theorem 17.1]), for each k, we have uk = Z”H Ak, i 0 k1 for some nonnegative sca-
lars {Ar }1%! with 3214 ;= 1 and a sequence {0%' € df (251} with {z¢ € f(xk)}”Jrl It is easy to see that the

sequences {Ay i}y and {0F7} .y are bounded for each i. We can then obtain convergent subsequences Ay ; —n A; > 0
with 714 = 1 and oo —>N 54 for each i. Because z“' — ¥, we have 7' € df(¥) by using the outer semicontinuity of
df . Thus, uk —>yu =Y ' 1,5 € con df(x) = dc f(¥). This implies that d4 f(¥) C d¢ f(X). The rest of the statements in
(b) follows from the fact that dc f(x) is nonempty and bounded whenever f is locally Lipschitz continuous (Rockafel-

lar and Wets [30, theorem 9.61]). O

Under suitable assumptions, Theorem 1(b) guarantees the existence of an ADC decomposition that has its
approximate subdifferential contained in the Clarke subdifferential of the original function. Notably, this decom-
position may not always be practically useful due to the necessity of computing the Moreau envelope for a gen-
erally nonconvex function. Another noteworthy remark is that the assumptions and results of Theorem 1 can be
localized to any specific point x. This can be accomplished by defining a notion of “local epi-convergence” at X
and extending the result of Rockafellar and Wets [30, corollary 8.47] accordingly.

2.3. Examples of ADC Functions

In this subsection, we provide examples of ADC functions, including functions that are discontinuous relative to
their domains, with explicit and computationally tractable approximating sequences. Moreover, we undertake
an investigation into the approximate subdifferentials of these ADC functions.

Example 2.1 (Implicitly Convex-Concave Functions). The concept of implicitly convex-concave (icc) functions is intro-
duced in the monograph Cui and Pang [13] and is further generalized to extended-real-valued functions in Li
and Cui [20]. A proper function f : R” — R is icc if there exists a lifted function f : R” x R" — R such that the fol-
lowing three conditions hold:

i. j?(z,x) =+4ocoifz¢ domf,x eR”, andj?(z,x) =—cifzedomf,x ¢domf;
ii. f(-,x) is convex for any fixed x € dom f, and f (z, -) is concave for any fixed z € dom f;
iii. f(x) =f(x,x) for any x € dom f.
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A notable example of icc functions is the optimal value function f, in (1), which is associated with the lifted
function defined by (the subscripts/superscripts p are omitted for brevity):

flz,x) & inf{(c+Cx)Ty+;yTQy|Az+By < b} (x,z) € dom f x dom f. (5)

yeR?

Let d; f(-,x) and d2(—f)(z,-) denote the subdifferentials of the convex functions f(:,x) and (—f)(z, "), respectively,
for any (x,z) € dom f x dom f. For any y > 0, the partial Moreau envelope of an icc function f associated with f is
given by

= 1 2\ _ Nxli? z lIz]I> 2"«

Zler}an{f(z,x)+EI|z—x|| }_W_igi —f(z,x)— 2 +7 xedomf. (6)
——
£g,(%) 21, (x)

This decomposition, established in Li and Cui [20], offers computational advantages compared with the standard
Moreau envelope, as the maximization problem defining /4, is concave in z for any fixed x. In what follows, we
present new results on the conditions under which the icc function f is e-ADC and ¢-ADC based on the partial
Moreau envelope. Additionally, we explore a relationship between d4 f(X) and J; f(f, X) — 82(—]7)@, X), where the
latter is known to be an outer estimate of dc f(X) (Cui and Pang [13, proposition 4.4.26]. The proof is deferred to
Appendix A.

Proposition 2. Let f: R" — R be a proper, Isc, icc function associated with f, where dom f is closed and f is Isc on
R" x dom f, bounded below on dom f X dom f, and continuous relative to int(dom f) X int(dom f). Given a sequence of
scalars y, | 0, we have:

a. fis e-ADC associated with { f*}, where each f*(x) £ g,, (x) — hy, (x) + ddom £(x). In addition, if dom f = R", then f is
c-ADC associated with { f*}.

b. daf(¥) C 1 f(x,X) — da(—f)(X,X) and 95 f(xX) = {0} for any ¥ € int(dom f).

Example 2.2 (VaR for Continuous Random Variables). Given a continuous random variable Y : Q — R, its condi-
tional value-at-risk (CVaR) at a confidence level a € (0,1) is defined as CVaR,(Y) £ E[Y|Y > VaR,(Y)], where
VaR, is the value-at-risk given in Example 1.2 (see, e.g., Rockafellar and Uryasev [29]). For any a € (0,1) and
k>1/a, we define

g (x) £ [k(1—a)+1]CVaR,_1/lc(x,2)], H(x) £ k(1 —a)CVaR,[c(x,Z)] xeR". (7)
The following properties of VaR for continuous random variables hold, with proofs provided in Appendix A.

Proposition 3. Let ¢ : R" X R" — R be an Isc function and Z : Q0 — R™ be a random vector. Suppose that c(:,z) is convex
for any fixed z € R", and c(x, Z) is a random variable having a continuous distribution induced by that of Z for any fixed
x € R". Additionally, assume that E[|c(x,Z)|] < +oo for any x € R". For any given constant a € (0,1), the following prop-
erties hold.

a. VaR,[c(-,Z)] is Isc and e-ADC associated with {g* — h*} (with the definitions of ¢* and W* in (7)). Additionally, if c(-,-)
is continuous, then VaR,[c(:, Z)] is continuous and c-ADC associated with { ¢ — h*}.

b. If there exists a measurable function x : R™ — Ry such that E[k(Z)] < +o0 and |c(x,z) — c(x’,z)| < x(z)||x — x’|| for
all x,x' e R" and z e R™, then for any X e R”,

daVaR,[c(-, 2)|(x) = | ) LimsupE[d1c(x', Z) | VaR,_1/[c(x", Z)] < c(x*,Z) < VaR,[c(x',Z)]],

xkox kotoo

where E[A(Z)|B] for a random set-valued mapping A and an event B is defined as the set of conditional expectations
E[a(Z)|B] for all measurable selections a(Z) € A(Z).

3. The Convex Composite ADC Functions and Minimization

This section aims to derive necessary optimality conditions for (CP), particularly focusing on the inner function
fp that lacks local Lipschitz continuity. Throughout the rest of this paper, we assume that ¢, : R — R U {+co} is
proper, convex, Isc, and f, : R" — R is real-valued for all p =1, ...,m. Depending on whether ¢, is nondecreasing
or not, we partition {1,...,m} into two categories:

L2{pe{l,.. .,m}|p, nondecreasing} and I £10,...,m\L. 8)
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We do not specifically address the case where ¢, is nonincreasing, as one can always redefine (pp(t) ¢,(—1t) and
fp(x) —fy(x), enabling the treatment of these indices in the same manner as those in I,. Therefore, the set I,
should be viewed as the collection of indices p where ¢, is not monotone. We further make the following
assumptions on the functions ¢, and f,.

Assumption 1. For each p, we have
a. f, is e-ADC associated with { f, = g — I }ery, and dom gy = dom i = R”;
b. —co < liminfy_; 4o f;‘(x’) < limsup, , 1, o f;f(x’) < oo forall x e R";
C. [Fk é(ppofk i>F .

From Assumption 1(a), each fk is locally Lipschitz continuous because any real-valued convex functlon is locally
Lipschitz continuous. Obviously, fp S fp is sufficient for Assumption 1(b) to hold. Because f 5 fy» we have

liminfy Ly k4o f (') 2 fy(x) > —co for each p at any x € R". However, limsup,,_, ;.. fk(x) < 400 does not
hold trivially. For example, consider a continuous function f and

fx)+kx+k  ifxe[-1/k,0]
@) =X f)—Kx+k ifxe(0,1/k]
fx) otherwise,

which results in f* 5 f but limsup, ., f*(0) = +co. Additionally, Assumption 1(b) ensures that at each point x
and for any sequence x* — x, the sequence { f; (xF)}1exy must be bounded.

It follows from Rockafellar and Wets [30, exercise 7.8(c)] and Royset [32, theorem 2.4] that there are several suf-
ficient conditions for Assumption 1(c) to hold, which differ based on the monotonicity of each ¢,: (i) For p € I,
either ¢, is real-valued or fk < fps (ii) for p € I, f, is c-ADC and for all x with f,(x) € bdry(dom,), there exists a
sequence x* — x with f (xk) € mt(domqo ). In addition, according to Rockafellar and Wets [30, proposmon 7.4(a)],
Assumptlon 1(c) implies that F, = ¢, o fp is Isc. We also note that Assumption 1(c) doesn’t necessarily imply

Zp 1Fy kS, Zp 1 Fp. To maintain epi-convergence under addition of functions, one may refer to the sufficient con-
ditions in Rockafellar and Wets [30, theorem 7.46].

3.1. Asymptotic Stationarity Under Epi-Convergence
In this subsection, we introduce a novel stationarity concept for problem (CPy), grounded in a monotonic decom-
position of univariate convex functions. We demonstrate that under certain constraint qualifications, epi-
convergence of approximating functions ensures this stationarity concept as a necessary optimality condition.
Alongside the known fact that epi-convergence also ensures the consistency of global optimal solutions (Rocka-
fellar and Wets [30, theorem 7.31(b)]), this highlights the usefulness of epi-convergence as a tool for studying the
approximation of problem (CPy).

The following lemma is an extension of Cui and Pang [13, lemma 6.1.1] from real-valued univariate convex
functions to extended-real-valued univariate convex functions.

Lemma 1 (Monotonic Decomposition of Univariate Convex Functions). Let ¢ : R — R be a proper, Isc, and convex function.
Then, there exists a proper, Isc, convex, and nondecreasing function @, as well as a proper, Isc, convex, and nonincreasing

function @', such that ¢ = @' + @l. In addition, if int(dom @) # 0, then dp(z) = dp!(z) + dpl(z) for any z € dom ¢.

Proof. From the convexity of ¢, dom ¢ is an interval on R, possibly unbounded. In fact, we can explicitly con-
struct ¢! and ¢! in following two cases.

Case 1. If ¢ has no direction of recession—that is, there does not exist d # 0 such that for any z, p(z + Ad) is a

nonincreasing function of A > 0—it follows from Rockafellar [27, theorem 27.2] that ¢ attains its minimum at
some z* € dom ¢. Define

(z) ifz<z

do={0) sl

pz) ifz>z

o) —pz) ifz<z
if z>z".

and ¢l(z) = {

Observe that () # int(dom¢) C [int(dom ') N int(dom ¢')]. Consequently, from Rockafellar [27, theorem 23.8],
we have do(z) = dp'(z) + dpt(z) for any z € R.

Case 2. Otherwise, there exists d # 0 such that for any z € R, ¢(z + Ad) is a nonincreasing function of A > 0. Con-
sequently, dom ¢ must be an unbounded interval on R. Let 4 = 1 (or —1) be such a recession direction; then, ¢ is
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nonincreasing (or nondecreasing) on R. We can set ¢! =0 and ¢! = ¢ (or ¢! = ¢ and ¢! =0). In this case, it is
obvious that dp(z) = dp(z) + dp!(z) for any z € R. The proof is thus completed. O

In the subsequent analysis, we use @' and ¢! to denote the monotonic decomposition of any univariate, proper,
Isc, and convex function ¢ constructed in the proof of Lemma 1, and, in particular, we take (pl =0 whenever ¢ is
nondecreasing. We are now ready to present the definition of asymptotically stationary points.

Definition 4 (Asymptotically Stationary Points). Let each f, be an ADC function associated with { f; = ¢ — Iy }ey. For
each p, define
Ty(x) 2 {t,|IN e N?, x —>xw1thfp(xk)—>th} x €R". 9)

We say that x is an asymptotically stationary (A-stationary) point of problem (CPy) if for each p, there exists y, €
U {8(pp(tp) |t, € Ty(x)} such that

0€ ({yp dnfy@} U [=I3fE\0}D). (10)
p=1

We say that x is a weakly asymptotically stationary (weakly A-stationary) point of problem (CPy) if for each p, there
exist t, € Ty(X), yp,1 € 8(p; (tp) and yp,2 € 8(plp (tp) such that

0€ > ({Yp10afp(X) +p,204 fp(X)} U [£7 f(X)\{0}])
p=1
Remark 1. (i) Given that the approximate subdifferential da f, is determined by the approximating sequence
{ f;]f}keN and their corresponding DC decompositions, the notion of (weak) A-stationarity also depends on these
sequences and decompositions. (ii) It follows directly from Lemma 1 that an A-stationary point must be a weakly
A-stationary point if int(dom¢,) # 0 for each p=1,...,m. (iii) When each ¢, is nondecreasing or nonincreasing,
the concepts of weak A- statlonarlty and A- statlonarlty c01nc1de (iv) Given a point X, we can rewrite (10) as

0e Y[+ AN+ S {ypaaf®)

pel pe{1,...,mN\I
for some index set I C {1,...,m} that is potentially empty. For each p € I, although the scalar y, does not explicitly
appear in this inclusion, its ex1stence implies that U {a(p (tp) |ty € Ty(x)} # 0, which plays a role in ensuring x € dom
(¢, °fp)- For instance, if fp S fp for some p € I, then T,,(x) = {fp(x)}, and the existence of y, € U{dp,(t,)t, € Ty(X)} =
99, (fy(x)) yields x € dom (¢, © fp).

In the following, we take a detour to compare the A-stationarity with the stationarity defined in Royset [32],
where the author has focused on a more general composite problem

minimize ¢(f(x)),
xeR"
where ¢ : R — R is proper, Isc, convex, and f £ (fi,...,fn) : R" — R™ is a locally Lipschitz continuous mapping.
¢ prop y Lip pping

Consider the special case where ¢(z) = ZZLl (pp(zp) with z = (z1,...,2zu). Under this setting, a vector X is called a
stationary point in Royset [32] if there exist i and z such that

0€S®,7,2) 2 {(fi(®),.. ful®) — 2} X {9p(2) ~ 7} X (Zyp acfpm), (1)
p=1
which can be equivalently written as
0e Zyp dc f(x) for some y, € dp,(f,(X)) p=1,...,m. (12)
p=1

For any fixed k € N, a surrogate set-valued mapping S* can be defined similarly as S in (11) by substltutmg fp and
¢, with fk and d for each p. The cited paper provides sufficient conditions to ensure Lim supk_) +m(gphS ) C gphS,
Whlch asserts that any accumulation point (¥,7,Z) of a sequence {(x*,,z¥)} with 0 € S*(x¥, ¥, z¥) yields a stationary
point x. Our study on the asymptotic stationarity differs from Royset [32] in the following aspects:

1. Our outer convex function ¢ is assumed to have the separable form Z 19, whereas Royset [32] allows a
general proper, Isc, convex function. In addition, each ¢, is fixed in our approxunatlng problem, whereas Royset
[32] considers a sequence of convex functions {(d( }ren that epi-converges to @,
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2. We do not require the inner function f, to be locally Lipschitz continuous.
If each f, is locally Lipschitz continuous and bounded from below, it then follows from Theorem 1 that f, is
c-ADC assoc1ated with { fk gk - }keN such that df,(x) C da fo(x) C dc f,(x) and J, f,(x) = {0} for any x. More-
over, by f S fp, one has T, () = { fp(x)} Thus, for any A-stationary point X induced by these ADC decomposi-
tions, there exists y, € &(p ( f,,(x)) for each p such that

0€> (7,4 f,@} € S {7, 9cf,(T)). (13)
p=1 p=1

Hence, x is also a stationary point defined in (12). Indeed, A-stationarity here can be sharper than the latter one,
as the last inclusion in (13) may not hold with equality.

When f, fails to be locally Lipschitz continuous for some p, it is not known if (11) is still a necessary condition
for a local solution of (CPy). This situation further complicates the fulfillment of conditions outlined in Royset
[32, theorem 2.4], especially the requirement of fk — fp, due to the potential discontinuity of f,. As will be shown
in Theorem 2 below, despite these challenges, weak A-stationarity continues to be a necessary optimality condi-
tion under Assumption 1.

To proceed, for each p and any x € dom (¢, o f,), we define S,(x) to be a collection of sequences:

Sp(x) 2 {xf ke x5 — x with ¢, (£(x)) = @, (f(¥)}- (14)

Theorem 2 (Necessary Conditions for Optimality). Let x € ﬂpmzldomF,, be a local minimizer of problem (CPy). Suppose that
Assumption 1 and the following two conditions hold:

i. For each p and any sequence {x’; ke € Sp(X), there is a positive integer K such that

0&dcf,(xy) or Naomg, (fy(x5) ={0} VK=K, (15)
and
10€Y,0 /), yp €| JNaomg, W1y € T,ER] = y,=0, p=1,...,m. (16)
ii. One has
{Z wy =0, wy €9 (¢, Ofp)(f)] = w;=--=w, =0. 17)
p=1

Then, x is an A-stationary point of (CPo). Additionally, X is a weakly A-stationary point of (CPo) if int(dom ¢, ) # 0 for each
p=1,...,m

Proof. By using Fermat'’s rule (Rockafellar and Wets [30, theorem 10.1]) and the sum rule of the limiting subdif-
ferentials (Rockafellar and Wets [30], corollary 10.9]) due to the Condition (17), we have

0€d [Z«p,, ofpxx)} <Y o, 0 £))
p=1 p=1

(i) Z U Lim sup 8(q)p o fk)(xk)

P=1{xh} s, @ Ko+

O | LimsupU GEHE | € g, (FEN)

=1 {2k }eneS, (@) Ko+ee

(iii) <
cY. |J Limsup{y,d; |y, € Ip,(f(x})), o) € dc f(x})}

P=1 (i nes, @) Kot

Y U Limsup (o} 1 < (£, o < (9505 — Iy o

=1 {xyues, @ ko+ee

The inclusion (i) is due to ¢, frf i(pp o f, in Assumption 1(c) and approximation of subgradients under epi-

convergence (Rockafellar and Wets [30, corollary 8.47 and proposition 8.46(e)]); (ii) follows from the nonsmooth
Lagrange multiplier rule (Rockafellar and Wets [30, exercise 10.52]) due to the local Lipschitz continuity of f;f
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(Rockafellar and Wets [30, example 9.14]) and the Condition (15); (iii) and (iv) use the calculus rules of the Clarke
subdifferential (Clarke [12, chapter 2.3]). For each p, any sequence {x’; ke € Sp(¥) and any element

@, € Limsup {5 0} |y} € I, (£5(x1)), 0 € [Agh () — sy,

k—+c0

there is a subsequence wf—yw, with w! =y;§ v;‘, for some NeN. Next, we show the existence of y,€

U {aqop(tp) |t, € T,(¥)} for each p such that ’
Wy €{Y,0afp(¥)} U [£dy f(X)\{0}]. (19)

By Assumption 1(b), the subsequence { f,f(x’;)}keN is bounded. Taking a subsequence if necessary, we can suppose
that f;‘(x’;) —nZp € Tp(X). If {y’;}keN is unbounded, then {v’;}keN has a subsequence converging to zero, and, thus,

0 € da f(x). Additionally, there exists i, # 0 such that y’; / ||y”§ | =ny, with
~ . o ). 3 Vi) Lo\ (vii) _
Y, € Limsup 8(pp(f§(x1;)) = Limsup 8(pp(ﬂ‘(x];)) cd ®y Zp) = /\/’dom%(zp). (20)
k(eN)—+co k(eN)—+co
The equation (v) follows from Rockafellar and Wets [30, proposition 8.12] by the convexity of ¢,. From {xf,}keN €
Sp(x) and X € domF,, we must have flf(x’;) € dom¢, for sufficiently large k € N. Because ¢, is Isc, it holds that
®, (zp) < liminfien)— oo gop( f;‘(x’;)) = (pp( fp(%)) and, thus, z, € dom @, Also, notice that ¢, is continuous relative to
its domain as it is univariate convex and Isc (Rockafellar [27, theorem 10.2]). This continuity implies (pp( f;‘(x’;))
—N (pp(Zp). The inclusion (vi) follows directly from the definition of the horizon subdifferential. Lastly, (vii) is
due to the lower semicontinuity of the proper convex function ¢ and Rockafellar and Wets [30, proposition 8.12].
Therefore, we have (0 ;&)yp e U{WV, dom%(tp) [t, € T,(X)} with 0 € ypaA fp(x) due to 0 € da f,(X), contradicting (16). So
far, we conclude that {y’;}keN is a bounded sequence. Suppose that y;‘] —NY, and, thus, §, € dp,(z,) by the outer
semicontinuity of qup (Rockafellar and Wets [30, proposition 8.7]).
Case 1. If y,=0, Inclusion (19) holds trivially for @), = 0, and for @), # 0 we can find a subsequence {|y;§ [Feeny 1 0
such that {|y;§ |05 heny converges to @, or —,(# 0) with v§ € [Qg’;(x’;) — dlys(xy)] for all k € N”. Therefore, (19) fol-
lows from
@y € [ <rumsup°° [950) - ah§<x§>]> \{0}] SEVENE
k—+o0

Case 2. Otherwise, ||v’; | = llwpll/ |yp |. This means that {vl;}keN is bounded. Suppose v’; —nN7p. Then, 7, €
Limsup,_, . [BgJ; (x;‘,) - 8h;§(x’;,)] C da f,(%), and (19) is evident from @, = Y, 0p-

In either case, we have proved (19). Combining (18) with (19), for some yp eV {a(pp(tp)ltp € T,(x)}, we know
that X is an A-stationary point of (CPp). The final assertion follows from Remark 1(ii). O

3.2. An Example of A-Stationarity
We present an example to illustrate the concept of A-stationarity and to study its relationship with other known
optimality conditions.

Example 3.1 (Biparametrized Two-Stage Stochastic Programs). Consider the following biparametrized two-stage
stochastic program with fixed scenarios described in Liu et al. [21]:

my
mh;gg}ize 6(x)+mi1p§:;fp(x) subject to (;Z)p(x) <0, p=1,...,m, (21)

where 0,¢ :R" — R are convex, continuously differentiable for p =1,...,my, and fp» as defined in (1), is real-valued
forp=1,...,my. At x =%, let Y,,(x) and A,(x) represent the optimal solutions and multipliers for each Second-Stage
Problem (1). Suppose that Y,(x) and A,(x) are bounded. Note that 6 and qi)p are ADC functions because they are con-
vex. Example 2.1 shows that f, is an ADC function, and, therefore, Problem (21) is a specific case of the Composite
Model (CPy). Given an A-stationary point x of (21), under the assumptions of Example 2.1, we have
. 1 nmy - - - my o .
0 € VOG)+-> ({00} U 05 fE®MO) + D"V, ()
p=1 p=1
_ 1 LG - - n o _
C VO(®)+ m—1§j{al FE®X) = ()X D} + > TPV, (%), 22)
p=1

p=1
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where g"* € N (,w,o](gbp(f)) forp=1,...,m andfp is defined in (5) for p =1,...,m;. By assumptions, both A, (¥)
and Y, (X) are nonempty, bounded, and

Ap(f) X Yp(f) = {(?”,#p)

?+CPx+QPy” + (BY) ' =0,
0< (b — APX —BPyP) Li" 20 |

It then follows from Danskin’s Theorem (Clarke [11, theorem 2.1]) that
91 f(X, %) = con {(AP) "W | ¥ € Ap(X)} = {(A") TP | ¥ € A(X)},
92(~fp)(%, %) = con {—(C") 7" | ¥ € Y,(X)} = {~(C") 7 | ¥ € Y,(%)}.

Combining these expressions with (22), we obtain

mq

0= Vo) + —Z[(CP) 7+ (AP) "] + Z Ve, (%),

p=1
cp+Cpx+Q7’y’”+(B”) =0 0<b —AX—-By L' 20, p=1,...,m,
OS(ij(Y)J_ﬁm””ZO, p=1,...,my,

which are the Karush-Kuhn-Tucker conditions for the deterministic equivalent of (21).

4. A Computational Algorithm
In this section, we consider a double-loop algorithm for solving Problem (CP). The inner loop finds an approxi-
mate stationary point of the perturbed composite optimization problem

minimize Z [Fy(x) £ @, (f(x)], (23)

by solving a sequence of convex subproblems, whlle the outer loop drives k — +oc0. It is important to note the
potential infeasibility in (23) because [Fk =@, f,] 15 Fy in Assumption 1(c), together with dom (¢, of,) # 0, does not

guarantee dom ((pp o fk) # 0 for all ke N This can be seen from the example of @(t) = 6(_c,0i(t), f(x) = max{x,0} —
1/10 and f*(x) = max{x, 0} + 1/k — 1/10. Obviously, dom (¢ o f) = (—c0,1/10] and @ o f* < ¢ o f by Royset [32, theo-
rem 2.4(d)], but we have dom (¢ o f¥) =0 for k=1,...,9. Even though dom (®, o f¥) # 0 for all k € N and each p, this
does not imply the feasibility of convex subproblems used in the inner loop to approximate (23).

For simplicity of the analy51s, we assume that in problem (CPy), ¢, is real-valued for p=1,...,m, and @, =
O(—co,0] for p =my +1,...,m. Namely, the problem takes the following form

minigize Z [Fp(x) = (pp(fp(x))] subject to f,(x) <0, p=my+1,...,m. (CPy)
xeR" =1

Forp=1,...,m, the convexity of each real-valued function ¢, implies its continuity by Rockafellar [27, corollary
10.1.1]. Consequently, the composite function P;j =@,0 f;‘ is also continuous for p =1,...,m; and k € N due to the
continuity of each approximating function frﬂ‘ . It is important to note that Model (CP;) still covers discontinuous

objective functions because each f, can be discontinuous, even though the approximating sequence { f,[}f}keN only
consists of locally Lipschitz continuous functions.

4.1. Assumptions and Examples

Firstly, we make an assumption to address the feasibility issue outlined at the start of this section. For all k € N
andp=m; +1,...,m, define

2 sup [ (x) —fr(0)], with X 2 {x e R"| f{(x) <O, p=m1 +1,...,m}.

(Xk
P
xeXk

Based on these auxiliary sequences, we need an initial point x° that is strictly feasible to the constraints fg (x)<0

foreachp=m; +1,...,m.

Assumption 2 (Strict Feasibility). There exist x° and nonnegative sequences {;E}keN forp=my+1,...,m, such that a’; <
ay for all k € N and
Zak < 400, fIx%) < Zak, p=m+1,...,m.

k=0 k=0
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To streamline our notation and analysis, we extend the definitions of a;‘, and introduce a”g forp=1,...,m by set-
ok = k= - o ok k

ting a), = a;‘, =0forallkeNand p=1,...,m;. Because the quantity a), depends on the sequence { f, };cy, Assump-

tion 2 poses a condition for this approximating sequence. Consider a fixed index p € {m; +1,...,m}. One can use

the following way to construct {a’; }ren- Suppose that there exist a function f; :R" % [0,1] — R and a nonnegative
sequence ¥, | 0 such that

Fxy)=fi@) and f,(x,0)=f ().

Additionally, assume that for any fixed x, the function ﬁ (x,-) is continuous on [0,1] and differentiable on (0, 1),
and there exists a constant C, such that |V, f,(x,y)| < C, for any x and y € (0,1). For any fixed x, by the mean
value theorem, there exists a point 7; € (y,,,,7;) such that £ (x) — £(x) = (v, — 7V, fy(x, 7). Thus,

400 +00 - +oo
kz(:)a;; < kzg(%« - 7/k'+1)§:1RB V) o, 70| < ;[a’;’ 2 C(ye — Vsl = Cpyg < +o0.

Two more assumptions on the approximating sequences {f;‘}keN are needed.

Assumption 3 (Smoothness of gkp or h’;). For each k € N, there exists € > 0 such that

min{ H(&g;‘,(x), QgJ;(x')), H(&h’;(x), Qh;‘,(x'))} < Cllx" —x|| Vx,x' eR", p=1,...,m.
Assumption 4 (Level-Boundedness). For each k € N, the function H* £ Z;”:l F’; is level-bounded—that is, for any r € R,
the set
my m mi
{x R QL)+ Y dwo(ff) < r} = {xeR” > o, (i) < r} n Xk,
p=1 p=mi+1 p=1
is bounded.

Assumption 3 imposes conditions on the Lipschitz continuity of the subdifferential mapping 8g’; or 8h;§, which will
be used to determine the termination rule of the inner loop. A straightforward sufficient condition for this assumption
is that, for each p and k, at least one of the functions g’; and h’; is {,-smooth—that is, || VgJ; (x) — Vg’;(x’) || < &llx—x||
or ||Vh’;(x) - Vh’;(x’)H < l|lx —x'|| for any x,x" € R". We also remark that Assumption 3 can hold, even though
both g’; and h”; are nondifferentiable. This can be seen from the following univariate example: gZ(x) = |x| and h’; (x)=
|x —1]| for any x € R. It is not difficult to verify that Assumption 3 holds for £, = 2. Assumption 4 is a standard condi-
tion to ensure the boundedness of the generated sequences for each k € N.

In addition, we need a technical assumption to ensure the boundedness of the multiplier sequences in our
algorithm.

m

Assumption 5 (Asymptotic Constraint Qualification). For any X € ﬂ;"zldoml-"p, if there exists {yy},, satisfying
0= Z;’f:l Yy Uy, where for each p (with the definition of T,(x) in (9)),

Wpr 2p) € ({J Waom, ()11 € T,(®)} x con 94 7)) U (R X [95 f,(EN0}]), 24)

then we must have y; =---= Yy, = 0.

The normal cone Ndom(pp(t,,) in (24) reduces to {0} forp=1,...,m; and N (_«,o)(t,) for p=my +1,...,m. Accord-
ing to the definitions of da f,(X) and d; f,(¥), Assumption 5 depends on the approximating sequences { f;‘}keN for
p=1,...,m. Itholds trivially if each @, is real-valued and dj’ f,(¥) = {0}. By Theorem 1(b), the condition d;’ f,(X) = {0}
holds when the ADC decompositions are constructed using the Moreau envelope, provided that f, is locally Lipschitz
continuous and bounded from below. However, in general, Assumption 5 is not easy to verify. For Example 3.1, the
assumption translates into

D AV, () =0, €N )@, (X)), p=1,...,m2| = Ay=-= Ay, =0.
p=1

This is equivalent to the Mangasarian-Fromovitz constraint qualification for Problem (21) by Rockafellar and
Wets [30, example 6.40]; see also Rockafellar [28].
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Furthermore, if each f, is c-ADC associated with { f;‘ = g’; - h’;}keN such that conda f,(X) = dc f,(X), and dy
fp(x) = {0}, Assumption 5 states that

Oe Zyp&Cfp(y)/ Yp ENdoqup(fp(Y))/ p= 1,...m| = n=-=Yn= 0.
p=1

This condition aligns with the constraint qualification for the composite optimization problem in Royset [32,
proposition 2.1] and is stronger than the condition in the nonsmooth Lagrange multiplier rule (Rockafellar and
Wets [30, exercise 10.52]). Finally, Assumption 5 implies the Constraint Qualifications (15)—(17) in Theorem 2. We
formally present this conclusion in the following proposition. The proof of Proposition 4 is given in Appendix B.

Proposition 4 (Consequences of Assumption 5). Suppose that Assumptions 1 and 5 hold, and f;’f 5 fp for each p. If
sup ¢, = +oo for p € Iy, and f,, is locally Lipschitz continuous for p € I, (with the definitions of I and I in (8)), then Conditions

(15), (16), and (17) hold at any feasible point x of (CP;). Consequently, any local solution of (CP4) is a (weakly) A-stationary
point of (CP).

In the following, we use two examples to further illustrate Assumption 3 and the computation of {a;; Yreny In
Assumption 2.

Example 4.1 (Implicitly Convex-Concave Constraints). Let f, be real-valued and icc associated with fp, where fp ,X) is
Lipschitz continuous with modulus L for any x. For the sequence { fp }ren in Example 2.1, it follows from gk(x)

l|x[1?/(2y,) that Assumption 3 holds for ¢ = 1/y,. To construct the quantltles ozk in Assumption 2, we notice that

) < sup @) £, < supl () —fi(]. < sz Lak  VkeN, (25)

where the second inequality is due to f;‘“(x) < fp(x) for any x, and the last one uses the bound between the partial
Moreau envelope and the original function (Li and Cui [20, lemma 3]). Thus, the sequence {a’; Hen satisfies

+00

=0 “f; < 400 if {y,} is summable.

Alternatively, we can construct the quantities a’; as follows. Let the partial Moreau envelope in (6) be the function

fp jointly defined for (x,y) € R" x (0,1], and f,(x,0) = f,(x) for any x. We claim that fp (x,) is continuous on [0,1] and
differentiable on (0, 1) for any fixed x. Continuity in y can be simply checked by a standard argument (Rockafellar
and Wets [30, theorem 1.17(c)]), noting that the optimal value is achieved at a unique point as the function f,(-,x) +
|| - —x]|?/(2y) is strongly convex for any fixed x. Differentiability follows from the Danskin’s Theorem (Clarke [11,

theorem 2.1]) that Vj,f;(x y) = —|lz = x||?/(2)%) with z satisfying (x —z)/y €91 f(z,x) for any (x,7) € R" x (0,1]. Tt
then follows from the L1psch1tz contlnulty of fp( x) that |V, fp (x,y)| <L*)2% C, for any (x,7) € R" x (0,1]. There-

fore, ay < Cp(yy = Vi) 2 ay and Srs a’}g’ =Cpy, < +oo for any sequence {f,,( Vi)hken defined by the partial

Moreau envelope with y, | 0.

Example 4.2 (VaR Constraints for Log-Normal Distributions). Consider f,(x) = VaR,[c(x, Z)] with c(x, Z) = exp(x"Z)
for some random vector Z~Normal(y,X), where X is a positive definite covariance matrix. We have
c(x,Z) ~ Lognormal(x" i1, VxT Xx). The variable x is restricted to a compact set X c R". Denote the a-quantile of
the standard normal distribution by g, and the cumulative distribution function of the standard normal distribu-
tion by @(-). By direct calculation (cf. Norton et al. [23, section 3.2]), we have

VaR,[c(x,Z)] = exp(x" pt + o VxT Xx),

CVaR,[c(x,Z2)] = i _exp (pr + % xTZx) O(VxTZx — g,).

Hence, f,(x) = VaR,[c(x, Z)] is neither convex nor concave if g, < 0. For the sequence { f;‘}keN in Example 2.2, we
can derive that

h’;(x) =k(1 — a)CVaR,[c(x,Z)] = kexp <xTy + % xTZx) DO(VXTEX — gq).

Because T is positive definite, it is easy to see that hf is twice continuously differentiable. Consequently, h;‘] is
{x-smooth relative to the compact set X for some ¢}, and Assumption 3 holds (relative to X). Next, we detine
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f; (x,y) = % fj_yVaRt[c(x, Z)]dt for any (x,) € R" x (0, §] and f; (x,0) = f,(x) for any x. Obviously, f; (x,) is continu-
ous on [0, §] and differentiable on (0, §) for any fixed x. By using the Leibniz rule for differentiating the paramet-
ric integral, for y € (0, ), we have

VR =5 [ (VaRiets 2)] - VaRo et 2))

< %(VaRa[c(x, Z)] - VaR,,[e(x, 2)])

exp(ga VXTLx) — exp(ga—y VXT LX)
Y
=exp(x" u)[exp(qu VxTEX)VXTEx Vogo ],

= exp(x )

for some &’ € (@ —y,a) by the mean-value theorem. By using the fact V,q, = V2mexp(q2/2), the monotonicity
Ga/2 < dar < qa, and the compactness of X, we further have

sup |V, p(x »| < exp( max{qa,qa/z}) -sup{exp(x  + g, VxTZx)\/(271) xT Lx}
xeX
£ C, < +oo.

Therefore, a’; <Gy — Vi) & @ and Y o, ;(E =Cpy, < +oo for any sequence {ﬁ(-,yk)}keN withy, | 0.

4.2. The Algorithmic Framework and Convergence Analysis e
We now formalize the algorithm for solving (CP;). For o p =y + 1,...,m, recall the nonnegative sequences {a Hren

introduced in Assumption 2, and observe that S ak/ — 0 as k — +o0. For consistency of our notation, we also

set ak =0forallkeNand p=1,...,m;. At the k-th outer 1terat10n and for p=1,...,m, consider the upper and
lower approximation of fk at a pomt y by taking some a, e&hk(y) bk e&gp(y) and incorporating sequences

{0( }keN

FRUPPE (o) & &) = Ii(y) — (@) T (x—y) + Z&k\ ’
K=k

fpk,lower(x; y) N g;(](y) + (b;(])T(x _ y) _ h];(x) (26)

Observe that, for fixed y, the upper approximation fk "UPPE(.;y) is convex, whereas the lower approximation

fk lower(.-4/) is concave. For p = 1,...,my, consider the following function

ﬁ(x; y) £ Gl P () + (O (), (27)

which is a convex majorization of F" at a point y by the fact that (pp is nondecreasing and (pl is nonincreasing. For
p=mi+1,...,m,consider the convex constraint f, ""P*'(x;) < 0 as an approximation for fk (x) <0.

We summarize the properties of all the surrogate functions as follows. Note that (28(a)) and (28(b)) hold for
p=1,...,m, whereas (28(c)) holds only forp=1,...,m;

B ) 2 0+ S A 2, o = @+ S aE, (28(@)
i =k k=k

f;c,lower(xl.y) < f;(x), frlic,lower(x; x) :frl;(x), (28(]3))

Fi(xy) 2 Fi(x),  Fi(xx) = Fi(), (28())

The proposed method for solving problem (CP,) is outlined in Algorithm 1. The inner loop of the algorithm
(indexed by i) is terminated when the following conditions are satisfied:

+00

frlf,upper(xk,z’ﬂ;xk,i) < frI]c(xk, i+1) + z :0‘5 +ep, p= 1L...m
k'=k
, , , (29)
f!]{,lower(xk, ’”;xk") Zf;;((xk' z+1) — €y, p c 12,

[l — 25 < 6/ (A + ).
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Algorithm 1 (The Prox-ADC Method for Solving (CP+))
Input: Given x° and {a’; Hren satisfying Assumption 2. Let {¢;} be a sequence satisfying Assumption 3. Choose
A >0, a positive sequence (ex, Ox) | 0 such that 6, /(A +€;) | 0. Setk = 0.
1: while a prescribed stopping criterion is not met do

2: a0 =xk
3: fori=0,1,... do
4: Takea'y' € dgy(¥*") forp=1,...,mand by’ € dhs(x") forp =1,...,m
5: Solve the strongly convex subproblem:
mo__ A
, argmin Fr(x; x60) + 2 | — 2|2
xk,l+l — xgER" p; p 2 (30)
subject to ;’uPper(x; )y <0, p=m+1,...,m
6: if the Conditions (29) hold for A, £k, €k, 6, and Z;cfk a;‘? then
7: Break the for-loop
8: else
9: i—i+1
10: end if
11:  end for
12: xk+1 — xk,i
130 k<—k+1

14: end while

In contrast to the prox-linear algorithm that is designed to minimize amenable functions and adopts complete
linearization of the inner maps, the prox-ADC method retains more curvature information inherent in these
maps (see Figure 1). We emphasize that the prox-ADC method differs from Cui and Pang [13, algorithm 7.1.2]
that is designed for solving a problem with a convex composite DC objective and DC constraints. Central to the
prox-ADC method is the double-loop structure, where, in contrast to Cui and Pang [13, algorithm 7.1.2], the DC
sequence f¥ is dynamically updated in the outer loop rather than remaining the same. This adaptation necessi-
tates Specialized Termination Criteria (29) and the incorporation of af to maintain feasibility with each update of
f;‘ . In the following, we demonstrate the well-definedness of the prox-ADC method. Specifically, we establish
that for each iteration k, the criteria detailed in (29) are attainable in finitely many steps.

Theorem 3 (Convergence of Inner Loop). Suppose that Assumptions 1-4 hold. Then, the following statements hold.

a. Problem (30) is feasible for any k,i € N.

b. The stopping rule of the inner loop is achievable in finitely many steps—that is, the smallest integer i satisfying Condi-
tions (29), denoted by iy, is finite for any k € N.
Proof. We prove (a) and (b) by induction. For k = 0, notice from Assumption 2 and (28(a)) that f;,) THPPEL (0, x0) =
0+ S ak’ < 0for p=my+1,...,m. Thus, Problem (30) is feasible for k =i = 0. Assume that (30) is feasible

Figure 1. (Color online) Illustrations of the prox-ADC method. (a) A comparison of the prox-ADC and the prox-linear method
for minimizing an amenable function. (b) Asymptotic approximations of a discontinuous composite function F; = ¢, o f; that are
constructed by an epi-convergent sequence {F} = ¢, o ff} and a convex majorization F¥(-;y) for F}.
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for k = 0 and some i =i (€ N). Consequently, x*! is well-defined and for p =m1 +1,...,m,
+00
T - T — 28(3)) < s
0,upper ,_0,7+1. ..0,7+1\ 28@) 0. 0,7+1 o ¢ 0,upper ;_0,i+1. .0,
fr () = )+Zap < f (a7 <0,
k=0

which yields the feasibility of (30) for k = 0, i =i + 1. Hence, by induction, Problem (30) is feasible for k = 0 and

any i € N. To proceed, recall the function H* defined in Assumption 4. From the update of X071 we have
) m . (28(c)) My ~ . ) A ) )
HO(xO,I+1) — ZFg(xO,H—l) < ZFg (x0,1+1l.x0,1) < HO(xO,t) _ E ||x0,z+1 _ 0 ||2 VieN. (31)
p=1 p=1

The last inequality follows from the definition of x**! and the second relation in (28(c)) that I/-“g(xo'f;xo'i) = F)(x%)
forp=1,...,m;. Observe that H? is bounded from below by the continuity of Fg =@,0 f£ forp=1,...,m; (see the
discussion following Model (CP;)) and the level-boundedness of H. Suppose for contradiction that the stopping
rule of the inner loop is not achievable in finitely many steps. Then, from (31), {H’(x"?)} converges and
S2ollx% it — 30712 < too. The latter further yields [|x%™*! —x%/|| — 0, and, thus, the last condition in (29) is
achievable in finitely many iterations. Next, to derive a contradiction, it suffices to prove that the first two condi-
tions in (29) can also be achieved in finitely many steps. We only show the first one because the other can be
done with similar arguments. By the level-boundedness of H’, the set S° £ {x|H%x) < H°(x*?)} is compact.
Notice that x% € S° for all i € N due to (31). For p = 1,...,m, we then have

+o00 _—
0< fﬁ,upper(xo,m;xo,z‘) —f,?(xo'i“) o Za;;
k=0
— 100,41y _ 7000,y _ (0,NT (20,i+1 _ . 0,i
= B0 — B — (0T (01 — x) — 0,
because 1) is uniformly continuous on the compact set S° and {agfi},-eN cu {&hg (x)|x € S°} is bounded by Rocka-
fellar [27, theorem 24.7]. Therefore, for a fixed €y >0, there exists some i, such that f;,) PHPPEL (0, i0+ 1 0,0y <
f;)(xofi[)“) +5005 af’ +e€g holds for p=1,...,m. Thus, (a) and (b) hold for k = 0.
_Now assume that (a) and (b) hold for some k = k (e N) and, hence, iz is finite. It then follows from x
K e X* andf;’upper(xk"i;xk’?) < 0 that foreachp=m; +1,...,m,

k+1,0 —

_ +00
T 7 28 T T -
f:ﬂ,upper(xkﬂ,o;xk+1,0)( =(a))f;‘”(xk”'o)+ Z Oé];,

k=k+1
_ _ _ _ +oo
k(1 k+1, k k ,
< FEE) +sup [0 — WL+ Y af
xexk k'=k+1
_ +oo
< f;(xk+1/0)+za§,
k'=k

(28_(a))fF,upper(xE+l,0. X]?’ i;) <0
= fp ’ -

Thus, Problem (30) is feasible for k = k +1 and any i € N. Building upon this, we can now clearly see the validity
of (b) for k =k +1, as we have shown similar results earlier in the case of k = 0. By induction, we complete the
proof of (a) and (b). O

For any k € N, define the set of multipliers for Problem (30) as

k m
k/ . . . .
yl,l 0e Z[yﬁ,l &fp upper(xk,1k+1,.xk, lk) +yf,,z8f;’lower(xk’lk+1;Xk’l")]
k —
Vi p=1
Yk(xk+l) N +/\(xkrik+1 _ xk,ik)/
k, i i
Vi Y1 €9 (fp TP OM AT A )), p =1, m,
k . .
ym,2 y];;,2 c &(pr(f;,lower(xk,zkH;xk,zk)), p= 1[ .

Here, x**1 is uniquely determined by x*! = x*/ as the minimizer of a Strongly Convex Problem (30). Notice

that 3/;5,2 =0 for pel, because ¢, is nondecreasing and (plp =0 for pel;. Let {x**'},.y be a subsequence that
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converges to some point X. As we will see in the following lemma, the asymptotic constraint qualification in
Assumption 5 implies the nonemptiness and the compactness of Y*(x**1) for all sufficiently large k € N and the
eventual boundedness of {Y*(x**1)},y. These technical results play an important role in the convergence analysis
of the prox~-ADC method. However, a stronger property of equi-boundedness appears necessary for designing
practical termination criteria for the algorithm. We will establish this strengthened property in Section 4.3 under
nonasymptotic constraint qualifications.

Lemma 2 (Nonemptiness and Eventual Boundedness of Multipliers). Let X be a feasible point of Problem (CP,). Suppose
that Assumptions 1-5 hold. Consider any sequence {x*} generated by the prox-ADC method, with a subsequence {x**'} .y
converging to X. The following statements hold.

a. The set of multipliers Y*(x**1) is nonempty and compact for all sufficiently large k € N.

b. Additionally, if 9y f,(x) = {0} for p € I (with the definition of I in (8)), then the sequence {Y*(x**1)}oy is eventually
bounded.

Proof. (a) Observe that xF#*!1 —y\ X because x! = ¥ -y x and |[x*#* — xF4*1|| < 6, /(A +¢) | 0 by Conditions
(29). The nonemptiness and compactness of Y*(x**1) for all sufficiently large k € N is a direct consequence of the
nonsmooth Lagrange multiplier rule (Rockafellar and Wets [30, exercise 10.52]) for Problem (30) if we can show
that, for all sufficiently large k € N, y%, ; =---=y;, = 0 is the unique solution of the following system

m
0 € Z y;lg af:rupper(xk,ikﬂ;xk,ik),
p=my+1 (32)
y;]; c N(_oo,()] (fl})c,upper(xk,ik+ll.xk,ik)>, p=my+ 1,...,m.
Suppose that the above claim does not hold. Then, there exists a subsequence N’ C N such that y’,;l ==y =0

is not the unique solution of (32) for all k € N’. Without loss of generality, suppose N’ = N and take {yf,}keN for
p=my+1,...,msatisfying (32) and E;"ZmlH |y”§| =1. For each p and k € N, define

A8 & s oy |0y € {dgh () — Il ()} U {agh (" HT) — ol ()}
Then, for all k € N, we have

m
dist (o, Z A’;)

p=my1+1

Y g (0, > y:[agzwv—Bhﬁx"”"”)

p=m+1

£ 37 DA ) — mb( )], AL)

p=my+1
(E)d' 0 . k9 k,upper /& i,+1. ki
<dist| 0, Zyp fy (a2 )
p=m1+1

+ ) Iy Imin{D@gh ), gh (), DR, (+))}

p=my+1
(iii) m ) ) ) )
< 0+ > |y, lmin{H(Igh (), agh(x ™)), H(Ihs (1), ohy(x" 1))}

p=my+1
iv) ™ . . v)
< 3 Il k| < s,
p=my+1

where (i) uses the inequalities ID(A,C) < D(A,B)+D(B,C) and D(A+B,A’+B’) < D(A,A’) + D(B,B’); the first
term in (ii) is because of the construction of Upper Convex Majorization (26); and the second term in (ii) is due to
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D(A,BUC) < min{D(A, B), D(A, C)} so that
D(y5[9gy (") — Al ()], Ay)

4 . 0 xk,ik+1 —8hk xk,ik+1
=|y§|D({ag;;(xk*k“)—ah,’xxkﬂk)}, Ogla ) = ohl ”)

U {Qg"p(xk'ik) - &’h’;(xk' i)}
< |y min{D(9gs (1), agy(x"*)), D(@hy(x"*), I (" +1))}.
Inequality (iii) is due to (32) and D(A, B) < H(A, B); (iv) is by Assumptlon 3; and (V) is implied by Conditions (29)

and Y7L, .1 lyy| = 1. Equivalently, for all k € N and p = m1 +1,...,m, there exist y5 € N, (fp UPPEE (it 1 ki)

with 357, |yp| =1and

0 € {OA() — OR(E)) U (DA ) — I (1),

such that [|370, . yy©
Assumption 1(b), we can assume without loss of generality that fk(xk i*+1) converges to some zp € Ty(X) as
k(e N) — 4o0. Furthermore, it can be easily seen from (28(a)) and (29) that . upper(xk it
same limit point z, for p =m; +1,...,m. Notice thatf; UPPET (ki1 xlhik) < 0 for all keNandp=m;+1,...,m from

Theorem 3(a), and, thus, each z, must satisfy z, < 0. Suppose that y’; —NY, for each p. Then, by the outer semi-

k|| < &. For p=my+1,...,m, because the subsequence {fk(xk i+ v is bounded by

xki) converges to the

continuity of the normal cone (Rockafellar and Wets [30, proposition 6.6]),

7, €N w0(@) C U Neome, (b))t € T,(®)}, p=m+1,...,m
Obviously, >

p=m+11¥,| =1, and the sequence {yp}p —
Case 1. If {U;I;}keN is bounded for p =my +1,...,m, then there are vectors {5,,};":,111 +1 with 7, € da f,(%) such that
v;‘, —NTp and 0 = Z;”:ml AV, 0p€ ZZ’:ml AYpoa fp(f), contradicting Assumption 5 because y/,, ,4,---,¥,, are not all
zeros.

Case 2. Otherwise, there exists some p such that {v;‘]}keN is unbounded. Define the index sets

has at least one nonzero element. Consider two cases.

Ip2{pe{m+1,.. .,m}l{v;‘,}keN unbounded}(#0) and I £ {m +1,...,m\Ip.

Notice that {Zpelby’; v;‘,}keN is bounded. Without loss of generality, assume that this sequence converges to some
@ and, thus, 3,1 ys vl —n (—10).
Step 1: Next, we prove by contradiction that, for each p € I, the sequence {yp vp}keN is bounded. Suppose that
ok Lk ok
the boundedness fails and ¢, ||yp vp | =~ + oo by passing to a subsequence. Consider w), £ YpUp/ D pely ||yp vp I

for p € I,. Then, Zpe,ubw —n 0. Because ZPEIub ||w p k|| =1 for all k € N, we can assume that there exist p1 € I, and

P
wp, # 0 such that zT;zl —N Wy, . It then follows from the construction of zT)’; that {ZTJ]; }ren has a subsequence converg-

wk—N0, we

ing to some element of +J,’f,(¥) for each p € I, and, in particular, w,, € [*d,’f,, (x)\{0}]. From }°, ., wy,

obtain
[£anfu OO+ D [Zdrf(@)],
pel\{p1}
a contradiction to Assumption 5 because the coefficient of the term [ =d}’f,, (X)\{0} ] is nonzero. So far, we have
shown the boundedness of {y; 0§}y for each p € Lyp.

Step 2: Now, suppose that yy vy —n @), for each p € Ly, with 3° ;. @, = —@. Thus, y; —n 0 and @, € [ £J; f,,(x)]

pEI b

for each p € Ip. Because 37, 1 17,1 =3 ,¢, |V, =1, there exists p; € I, such that j, # 0. Then, S ok —n0

p=my+1 yp
implies

0€7,,0afu®+ Y F,0fp(®+ Y [+I5fE)],

pel\{p2} el
which leads to a contradiction to Assumption 5. Thus, Y*(x*1) is nonempty and compact for all sufficiently large
keN.

(b) By part (a), assume from now on that Y*(x¥*1) # @ for all k € N without loss of generality. We also assume that
{f;‘(xk'ik”)}keN converges to some point z,€T,(X) for p=1,...,m. Then, by (28(a)), (28(b)), and (29),
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f;’upper(xk"'k”;x"'ik) —nZp for p=1,...,m and fgflower(xk'ik+1;xk'ik)—>pr for pel. For any ke N and any
k’ . . o .
(yllc,lfyllc,zf"'/ylrcn,llyl;;,z) e Yk(xk+1), we have y];,l c &(P;( ’ UPPer(xk,zkH;xk,zk)) and yf;,z c aqoip(féc,lower(xk,zwl;xk,zk)) for

p=1,...,m, satisfying
0 ez;[y;l[ag';(xk’ W) — QRS + s H[9gh () — IR (] + AT — 2, (33)
p:

Based on Assumption 3 and analogous arguments in the proof of part (a), the Optimality Condition (33) leads to
the following bound:

m
< A+ Dyl + 12Dl | 15T — x5
p=1

m

k k k k
2(3/;7,1 Up,l + yp,Z vp,z)
p:

< maxq 1,Y (1yh1 ]+ ¥4 21D por (34)
p=1

where {(v’;,l,v’;,z)}f:1 is a sequence that satisfies, forallp=1,...,m, either
(1)1, 2) € (OG5 — AME( )} x {Oh(HeT) — M+,
or

(01,0, ) € {Ogh (1) — MG} ¢ {Igh(h ) — IS (1)),

Note that, for p €4, @, is nondecreasing—that is, (pﬁ =0. Then, y;’;,z =0 for all ke N and p €], and (34) further
yields

<maxq LY vy [+ > (Y] + ¥y 00) ook (35)

th pEIz

k k k k k k
Zyp,l vp,l + Z(yp,l vp,l +yp,20p,2)

peh peh

Observe that the sequences {U;/l}keN and {v’;,Z}keN must be bounded for p € I. Otherwise, we could assume
||ZJI;,1 || =N +oo. Then, every accumulation point of the unit vectors {U;’j’1 / ||v;§/1 [l }eny Would be in the set d’f, (%),
contradicting our assumption that dy f,(¥) = {0} for each p € I.

Forpel, c{l,...,m}, given that (p; is convex, real-valued, and f;’f PP (ki it ykik) ) 7, we can invoke Rocka-
feller [27, theorem 24.7] to deduce the boundedness of {y;l}keN. A parallel reasoning applies to demonstrate the
boundedness of {y; , }ien-

For p € I;, we proceed by contradiction to establish the boundedness of {y’;ll}keN based on Assumption 5. Sup-
pose that {3, | y’;/l | }en is unbounded and >,/ | y’;/ll —N +00 by passing to a subsequence. Consider the nor-
malized subsequences {y]p(,l éy,};,l/ Dpen |y],§f,1|}keN and {1/,};,2 = yfy,z/ dpel, |y§’,1|}keN for each p. Consequently,
y;/l —n0and y];,z —n 0 for p € I. By the triangle inequality and (35), we have

D ptpr + 2 G0 +Tp270)

~k k
> P 19,1 ‘
pEIl pEIz

pEIl
1 (9511 + 1yp 2 1)
< max X 11+Zp€lz yp,l P yp,Z 6k —N 0,
Zpeh |yp,1 | Zpeh |yp,1 |

~k k ~k k
Z(yp,l U + ]/p,z Up,Z)
pEIz

<
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which further implies |3 g’;/l v;‘]/l || =~ 0 by the boundedness of {U’;J}keN and {Uf;,z}keN for p € I,. Now, sup-

pGIl
pose that y’;l —N ynl for p € I;. Then, from a similar reasoning in (20), for p € I,

Y, € Limsup® &(p;(f;’ur’per(xk'i’f”;xk’ ) CI”PlZ) = Nyl &),
k(EN)—+co0
and obviously, 3¢, |y, 1| = 1. The remaining argument to derive a contradiction to Assumption 5 follows the
same steps as the proof of part (a) for the two cases, with the exception that the index set {m; +1,...,m} is
replaced by I;. Thus, the sequences {y’;,l}keN forpel; UL, and {]/f;,z}keN for p € I; are bounded. We can conclude

that U {Y*(x**1)|k € N,k > K} is bounded for sufficiently large integer K, because otherwise, we could extract a
subsequence of multipliers from Y*(x**!) whose norms diverge to +co as k(€ N) — +oo, in contradiction to the
result of boundedness that we have shown. Hence, the subsequence {Y*(x¥*1)},_y is eventually bounded. O

We make a remark on Lemma 2(b) about the additional assumption. According to the proof of part (b), the
assumption d;’f,(X) = {0} for p € I ensures the boundedness of the set da f,(¥) for p € I. There are some sufficient
conditions for dy f,(X) = {0} to hold: (i) If f, is locally Lipschitz continuous and bounded from below, by Theorem
1(b), we have dy f,(x) = {0} at any x € domf, for the approximating sequence generated by the Moreau envelope.
(ii) If £, is icc associated with f,, satisfying all assumptions in Proposition 2, it then follows from Proposition 2(b)
that d, f,(x) = {0} at any x € int(dom,) for the approximating sequence based on the partial Moreau envelope. It
is worth mentioning that the icc function f, under condition (ii) is not necessarily locally Lipschitz continuous.

The main convergence result of the prox-ADC method follows.

Theorem 4. Suppose that Assumptions 1-5 hold. Let {x*} be the sequence generated by the prox-ADC method. Suppose
that {x*} has an accumulation point X, and, in addition, 9y f,(x) = {0} for p € L. Then, X is a weakly A-stationary point of
(CP4). Moreover, if for each p € I, the functions g;‘] and hl’j are L-smooth for all k € N—that is, there exists a sequence {(i}
such that for all k € N,

max{[[Vgh(x) — VEE ), IIVIEG) — VRGO < Gl =2l V¥ €R", pel, (36)
then X is also an A-stationary point of (CP,).

Proof. Let {x*"1},.\ be a subsequence converging to X. By the Stopping Conditions (29) and x* —y ¥, we also
have xb i1 -\ . First, we provex € ﬂ;,”zl dom F,,. From Theorem 3(a), we have f;‘(xk’ 1y <O0forp=m +1,...,m
and all k € N. Because of epi-convergence in Assumption 1(c), it holds that

v : : k(A i+1 — —
6<7m,01(fp(x))Sk(lgzrvr)lglfmégm,m(fp(x N=0, p=m+1,...,m

Thus, f,(X) < Oforp=m; +1,...,mand X € OZLmlH domF,. By Assumption 1(a), dom(pp =R"forallp=1,...,m.
This implies x € 021:11 domFy, and we can conclude that X € N, domF,,.
By Lemma 2(a), for all sufficiently large k € N, we have that Y*(x**") # 0, and, consequently, there exist y; , €
8(p;( f,i(’uljper(xk'"kJr1 ;xKik)) and ]/]1;,2 € a@rl,( flf’1"‘”"’r(3ck""<+1 ;x5i)) for p=1,...,m such that
m
03 1o A1) = M) + 1} (O ) — DM+ Al = 250, 37)
p:

Recalling (35), we have the following bound by the Optimality Condition (37) and Assumption 3:

< max$ 1LY Ay L+ D> (s 11+ 195 20) pok (38)

p€I1 pEIz

k k k k k k
Zyp,l vp,l + Z(yp,l vp,l + yp,Z Up,z)

peh pel

where {(U’;J,vf,,z)};”:l is a sequence that satisfies, forallp=1,...,m, either
(1)1, 2) € {Og5(E) — WS )} x {Ogh(HeT) — M+,
or

(01,0 ) € (AgE( 1) — A 1)) ¢ (g () — Al ).

It follows from Lemma 2(b) that the subsequences {y;l}keN and {yl’;z}keN are bounded fpr p=1,...,m. Suppose
that v ; —n7,; and y5,—nY,, for p=1,...,m. Recall that the subsequence {f(x*"")}cy is bounded by
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Assumption 1(b) for p =1,...,m. Without loss of generality, assume that {f;‘ (xk 1)}, converges to some point
z, € Ty(x) for p=1,...,m. Then, by (28(a)), (28(b)), and (29), . ) PP (it L iy > Z, for p=1,...,m and
f;"k’wer(xk' i1, xki) >z, for p € L. From the outer semicontinuity of 8(p; and dp!, we have Yy € 8(,0;(2;7) forp=
1,...,mand 37}7/2 € 8@%(2,3) forpel.

To proceed, we prove by contradiction that the sequence {yfa,lv];,l}keN is bounded for p € I;. Suppose that
> pels ||y’l;1 v”j,lll —n +00. For each p € I, the boundedness of {vl;;,l}keN and {v’;, 2 }ren follows from the assumption

Iy fy(x) = {0}; otherwise, any accumulation point of the unit vectors {v’rﬁll /l v;‘,/l [ }1en would be in dy f,(X), leading
to a contradiction. Because {v/* and {1/ for p € I, are also bounded, we conclude that the subsequence
yp,l keN yp,l keN p q

2 pen, (]/1;7,1 U};J + yf,,z v’;, 2)}ren is bounded. Thus, we can assume that
D WV Y20 ) ONTEY (7,194 fp(X) +7, 504 f,(T)). (39)
pel pel

By (38), it follows that 3 .
wk —x50. Given lwX|| =1 for all ke N, there must exist p; € I; such that w* —yw,, # 0. For each
pel *p peh p P 21 P1

ypl v} =~ (~W). Consider @k éy];l pl/Zp dlllyp 1Yy, 1|| for pely, and then,

p €Iy, it then follows from y’; /> ||y’; 10", Il —n0 that {zTJk }ren has a subsequence converging to some ele-

14 el

ment in d;’f,(¥). In particular, w,, € dy f,, (¥)\{0}. Because ) w —n 0, this implies that

pely

0€[df @O+ > IhHE),
pel\{p1}
which contradicts Assumption 5. Hence, {y’; 1 ’; 1 }ken is bounded for p € I;.

We are now ready to prove that X is a weakly A-stationary point. Suppose that yp 1 p 1 —=NWy for p € I; with
Zpel w, = —w. Based on (39), it remains to show that for each p € I, there exists Yy1€ U{&(pp(tp)lt € T,(x)} such
that

Wy €4{Y,,194f,(X)} U [ fp(X)\{0}],

which can be derived similarly as the proof of (19) in Theorem 2. Summarizing these arguments, we conclude
that x is a weakly A-stationary point of (CP,).

Under the additional assumption of the theorem, there exist y; ; € dg]( i MR (o it ), Yy 2 € 0L (fiy1omer(ah it o))
forp=1,...,m,and

v’;,l € {8gf7(xk'ik) — 8h’;(xk'ik)} U {&g;‘,(xk”’k“) — 8h§(xk'ik+])} forpel,

such that

Zy]];,l vfx,l + Z(y’;,l + yf,,z)[Vg’;(xkrik) — Vh];(xk,ik)]

peh pel,
(v1)
< D 111 Imin{H(9g, (1), agy (1)), B9, (), ol ()}
pel;
+ D (1 1 I VEEEEH) = Vb )| + [y o | I VAE ) — VI ) )
pel

+ /\” xk,z'k+1 . xk,ik ”

(vii) . .
S A 1 S o) | | it e

pely pel,

(viii)

< maxy 1, Z|yp1|+2(|yp1|+|ypzl) o  VkeN,
pely pel,

where (vi) is implied by the Optimality Condition (37), (vii) employs (36) and Assumption 3, and (viii) follows
from Conditions (29). This inequality is a tighter version of (35) in the sense that, for each pe I, and k€N, vf,/l
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and U};J are elements taken from the single-valued mapping Vg§(~) - Vh;g(') evaluated at the same point xF%. A
straightforward adaptation of the preceding argument confirms that X is an A-stationary point of (CP;). O

4.3. Termination Criteria

The previous subsection demonstrates the asymptotic convergence of the algorithm, showing that any accumula-
tion point of the sequence generated by the prox-ADC method is weakly A-stationary. This subsection is dedi-
cated to the nonasymptotic analysis of verifiable termination criteria for practical implementation.

Assumption 6 (Nonasymptotic Constraint Qualification). Let A be the parameter in Algorithm 1. For all k € N and any pair
(x", x"") satisfying

my A
argmin > FEnx) +5 llx— x|
X' = . P 2
xeR p=1 s
subject to :’upper(x;x’) <0, p=m+1,....,m
k, upper

if there exist y’; €N (Ceo,01(f (x";x") forp=my+1,...,m such that

m
0 3 ap )

p=m1+1
then we must have y%, , == yk = 0.

A direct consequence of Assumption 6 and the nonsmooth Lagrange multiplier rule (Rockafellar and Wets [30,
exercise 10.52]) is that the set of multipliers Y*(x**!) is nonempty and compact for any fixed k € N. This is in con-
trast with Lemma 2(a), where the results only hold for sufficiently large k € N. We will show below that the result
on the eventual boundedness of the subsequence {Y*(x¥*1)}, .y can be strengthened to the equi-boundedness
under this assumption.

Proposition 5 (Equi-Boundedness of Multipliers). Suppose that Assumptions 1-6 hold. Consider any sequence {x*} gener-
ated by the prox-ADC method. The following statements hold.

a. If there is a subsequence {x**'};.y converging to some X and 5 f,(x)={0} for p€l,, then the subsequence
{YR(M 1) e is equi-bounded.

b. If {x*} is bounded and 95f,(x) = {0} for any x € ", domF, and p €I, then the sequence {Y*(x**")} is equi-
bounded—that is,

AN

D £ sup sup |ly]l < +oo. (40)
keN yEYk(xk*'l)

Proof.

a. We know from Lemma 2(b) that the subsequence {Y*(x**1)},.y is eventually bounded. This implies the exis-
tence of an index K € N such that U {Y*(x**1)|k € N,k > K} is bounded. On the other hand, it follows from Assump-
tion 6 that Y*(x**1) is nonempty and compact for any fixed k € N. Thus, U {Y*(x**1)|k € N} is bounded, and
{Y*(xF1)} ey is equi-bounded.

b. Suppose for contradiction that {Y*(x*1)} is not equi-bounded. Then, for any nonnegative integer j, there is an
index k; € N such that ||/ || > j for some multiplier 1/ € Y*(x*1). Observe that the nonnegative sequence of indices
{k;} e is either bounded or unbounded. It suffices to consider these two cases separately.

Suppose first that {k;};cy is bounded. There must be an index k € N that appears infinitely many times in
{kj}jen- Consequently, the set Y*(x¥*1) is unbounded, a contradiction to Assumption 6.

Suppose next that {k;} ¢y is unbounded. For some index set N’ € N, we have ki — +o0 as j(€ N’) — +oo. Notice

that the subsequence {x* }ien is bounded because {x*} is bounded. By passing to a subsequence if necessary, we
assume that {x¥ }ens converges to some x. Using epi-convergence in Assumption 1(c) and following the same
procedure as in the proof of Theorem 4, we can obtain that x € Nj; domF,. Then, by the assumption in (b),
d5fp(x) = {0} for p € L. Henceforth, there is a subsequence {x" Henr C {x*} converging to some X with a corre-
sponding subsequence of multipliers {y% € Y% (xkl“)}jeN/ such that ||y%|| — +o0 as j(€ N’) — +o0, which is a con-
tradiction to the result of part (a).

We have obtained contradictions for the two cases where {k;}c is bounded or unbounded. Then, we conclude

that {Y*(x**1)} is equi-bounded, and the quantity D defined in (40) is finite. O



Downloaded from informs.org by [128.32.10.230] on 29 March 2025, at 15:27 . For personal use only, all rights reserved.

Li and Cui: Variational Theory for Asymptotically Approachable Problems
24 Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2025 INFORMS

After obtaining the equi-boundedness of the multipliers, we next introduce a relaxation of the weakly
A-stationary point for preparation of the termination criteria. For a proper and convex function f and any § >0,
we denote 8ﬁf (x) £ U {df(x)|x € B(x, B)}, which is related to the Goldstein’s f-subdifferential (Goldstein [18]).

Definition 5. Given any 77 >0, >0 and k € N, we say a point x is a (7], , k)-weakly A-stationary point of Problem
(CPy) if there exists a nonnegative integer k > k such that
Yp1 € aﬁ(P;(frl;{(x))/ })

7 el @) - PR | vz € P00

We remark that, if each outer function ¢, is an identity function—that is, ¢, () =  for any ¢ € R—and each inner
function f, is DC rather than ADC, the above definition in the context of a DC program is independent of k and
says about nearness to a 7)-critical point (Yao et al. [35, definition 2]. For nonsmooth optimization problem, simi-
lar definitions based on the idea of small nearby subgradients, together with the termination criteria, have
appeared in the literature (Burke et al. [9], Goldstein [18]).

The following proposition reveals the relationship between a (7, §, k)-weakly A-stationary point and a weakly
A-stationary point.

Proposition 6. Let X € Ny_; domF), be a feasible point of (CPo). Suppose that Assumptzon 1 holds and 9y f,(x) = {0} for
eachp=1,...,m. For any nonnegatzve sequence (1, B,) L 0 and some index set N € N?, if each x* is a (1, B, k)-weakly A-
stationary pomt of (CPy) for k € N and x* —\ X, then X is a weakly A-stationary point of (CPy).

Proof. By Assumption 1(b), the subsequence {f (")} is bounded for each p. Then, there is an index set N’(C
N) € N, such that {fk (x*)}en converges to some £, € T,(¥) for each p. Using the outer semicontinuity of the sub-
differential mapping of a convex function, we have

Limsup %gl( £5(x))  9g](E,), Limsup Sl (fE()) C Igh(Ey),

k(eN’)—>+o0 k(eN’)—>+o0
and

Limsup [0%gh(x*) — 9" ()] € 4 £, ().

k(EN")—+00
Thus, by taking an outer limit of the subdifferentials involved in the condition that x* is (N, By, k)-weakly
A-stationary for all k € N, we know that X is a weakly A-stationary point of (CPy). O

We conclude this section with our main result on the termination criteria.

Proposition 7 (Termination Criteria). Suppose that Assumptions 1-6 hold. Let {x*} be the sequence generated by the prox-
ADC method. Suppose that {x*} is bounded and 9;f,(x) = {0} for any x € My, domF,, and p € I. For any 71>0, >0
and k € N, there exists a nonnegative integer ko > k such that

+00

max » ak +e, < B,
1<p<m
k' =ko

A+€k <B, O <T. (41)

Consequently, ¥*%*! is a (max{1, V2mD}7, B,k)-weakly A-stationary point of Problem (CP,), where D is the constant
defined in (40).
Proof. The existence of ko >k satisfying (41) is a direct consequence of > ;= aF < +00, (ek,ék) 10, and

P
Ok/(A+4€) L 0. By Assumptlon 6, the set of rnult1p11ers Yko (xfo*1) is nonempty For any (y1 1,y1 2res 3/];3,1/ yfﬁ/z)

& Yio(xho*T), we have y, € dg] (£ PP (xf0ria 1 0 ), 0, € Qipl( flolower (it i) for p=1,...,m and the
following bound from (36):

Z(ﬁl p1+yp2 pZ)

< max{l Z(h/ |+ M;(,)zn}éko/

where {(v’;,l,v;‘,lz)}fz1 is a sequence that satisfies, forallp =1,...,m, either

(01,05 ) € (B (¥ o) — A3 (o)) x {9gho (oo™ — ho (koo +1)),



Downloaded from informs.org by [128.32.10.230] on 29 March 2025, at 15:27 . For personal use only, all rights reserved.

Li and Cui: Variational Theory for Asymptotically Approachable Problems
Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2025 INFORMS 25

or

(6§ 1,0f) € {0 (3400 ) — OB (i 1)} {9 () — Ol ().

koiky 1 e have

Yp a8 (x) = PO (] | ypr € PGl (x)),

Thus, at the point x* = x

dist| O, zm: U

1,
p=1 +yp,2[0°g50 (') — PO ()] | 2 € P b (fR0(x))
where the parameters § and 1 are given by
max [fko upper(x xkg 1k0) fko (x )]
1<p<m
(29) max Zak + €kyr 41y _
ﬁ = max max [fko(x ) fk() lower(x xko ik, )] < max 1Sp<mk,_ < ‘B,

1<p<
v — o | /)
X —Xxr

U (40) (41)
n=max$ 1, (lyiy | + [y 1) pok, < max{l, V2mD}s, < max{1, V2mD}1.
p=1

Henceforth, for k, satisfying (41), x* = X% *1 is a (max{1, V2mD} 7, B,k)-weakly A-stationary point of problem
(CPy). O

5. Numerical Examples

We present some preliminary experiments to illustrate the performance of our algorithm on the inverse optimal
value optimization with or without constraints. The first experiment aims to demonstrate the practical perfor-
mance of the prox-ADC method under the termination criteria in Section 4.3, by varying different approximating
sequences and initial points. To demonstrate the computation of ADC-constrained problems, especially the

choice of the quantity Zv% and a feasible initial point in Assumption 2, we further consider the constrained inverse
optimal value optimization. These experiments were tested on a MacBook Air laptop with an Apple M1 chip
and 16 GB of memory using Julia 1.10.2.

1. Inverse Optimal Value Optimization with Simple Constraints
Based on the setting in (2), we aim to find a vector x € [-1,1]" to minimize the errors between the observed opti-
mal values {vp}?=1 and true optimal values {f, (x)}m_

mlr[u{nll]ze F(x) & Z vy —fo ()], (42)

where each f, is the optimal value function as defined in (1). We fix n = 10, m = 11, d = 10, and the number of
inequality constraints ¢ =5 in the Minimization Problem (1). Vectors b” and c? and matrices A¥, B¥,C" are ran-
domly generated with each entry independent and normally distributed with mean u = 0 and variance ¢ = 1. For
numerical stability, we then normalize matrices C” and A” by a factor of y/n. We also generate a positive definite
matrix Q” and a random solution x* = u/||u|| with u ~ Normal(0,I,). We set v, = f,(x") for each p and, therefore,
F(x) =

We adopt the ADC decomposition in (6), denoted by fk (8p) ” —(h )}, with a sequence {y, =1/(k+1)"} for
some exponent p > 0. Consequently, & =1/y, = (k+1). We apply the prox-ADC algorithm to solve this example
with e, = 6, =1/(k+1)” and A = 5. In this example, the Strongly Convex Subproblem (30) can be easily reformu-
lated to a problem with linear objective and convex quadratic constraints, which is solved by Gurobi in our
experiments.

We first investigate the performance of our algorithm under the termination criteria with different values of
parameters. Figure 2 displays the logarithm of the objective values against the number of outer iterations and the
total number of inner iterations. We mark three different points on the curve where the Termination Criteria (41)
with7=p5=10",10"%,10">, and k = 10,20, 40 are satisfied.

We have also experimented with various values of exponent p that determine the convergence rate of the
approximating sequence and various initial points. In both cases, we terminate the algorithm under the
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Figure 2. (Color online) Performance of the prox-ADC method for Problem (42), under the Termination Criteria (41) with 77 =
B= 107',1072,107% and k = 10,20, 40, for a fixed exponent p = 1.5 and a fixed initial point.
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Conditions (41) with 7 = =102 and k = 10. In Figure 3, we observe that setting different values of p under the
same termination criteria leads to candidate solutions with similar objective values, and there are roughly two
phases of convergence in terms of the total number of iterations. Initially, the objective value decreases faster for
smaller p, corresponding to poorer approximation. When the objective value is sufficiently small (10> on this par-
ticular instance), larger p results in faster convergence to high accuracy. We remark that for p = 0.5, the algorithm
reaches the maximum number of outer iterations and does not output a (1072,10"%,10)-weakly A-stationary point.
Figure 4 demonstrates the influence of using various initial points that are uniformly distributed on [-1,1]". On
this instance, two of the initial points find (1072,10"2,10)-weakly A-stationary points with large objective values.
For these two initial points, we rerun the algorithm with 77 = = 1073, and the algorithm still terminates with large
objective values.

5.2. Inverse Optimal Value Optimization with ADC Constraints
We consider a variant of the inverse optimal value optimization that is defined as follows:

minimize F(x) = Zlvp —fp ()]

xe[-1,1]"
fri(x) < Sr() = vy
{1 lvpl} “ max{1, [v,|}

(43)

subjectto <e¢ p=m+l,...,m

Figure 3. (Color online) Performance of the prox-ADC method for Problem (42) using different values of exponent p, under the
Termination Criteria (41) with77 = = 102 and k = 10, for a fixed initial point.
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Figure 4. (Color online) Performance of the prox-ADC method for Problem (42) using five initial points uniformly distributed
n [—1,1]", under the Termination Criteria (41) with 77 = = 102 and k = 10, for a fixed exponent p = 1.5.
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In this formulation, the observations of the optimal values {1/,,},';1=1 are divided into two groups indexed by
{1,...,m} and {m; +1,...,m}. We aim to minimize the errors for the first group while ensuring that the relative
errors for the second group do not exceed a specified feasibility tolerance, denoted by ¢. In our experiment, we
fix n=10,m =11, m; =8, ¢=10"", d = 10, and the number of inequality constraints £ =5 in the Minimization
Problem (1). The solution x* and the data, including {v, }:f:l, are randomly generated in the same way as in Sec-
tion 5.1. We can see that x* is feasible to (43) and attains the minimal objective value F(x*) = 0.

Similar to the first example, we adopt the ADC decomposition in (6), denoted by fk &p)y, — (hp),, with a
sequence {y, = 1/(k +k)"} for some positive integer k and p > 0. Because of the feasibility problem in Assumptlon
2, we introduce the additional parameter k to control the approximating sequences, which will be explained in

details later. We also note that treating — S0 o Sw

X1, [vpl} = max{1, [v,[} =
my+1,...,m leads to the failure of the asymptotic constraint qualification in Assumption 5 because the approxi-
mate subdifferentials of the ADC functions f, and —f, are linearly dependent. This issue can be resolved by

|Vp_fp(x)‘ <

max{1, [v,|} =

¢ and ¢ as two separate constraints for p =

rewriting the constraints in a composite ADC form ¢ and assuming a corresponding version of

Assumption 5. We omit this technical detail because the main focus of this section is to illustrate the practical
implementation of our algorithm.

To verify Assumption 2 that states the existence of a strictly feasible point, we first follow the discussion after
Assumption 2 to construct the quantity ak =0 — Vs +1)L2 /(2 max{1, [v,|}), where L, is the Lipschitz constant of
fp(-,x) for all x € [-1,1]". We can derive the Lipschitz constant L, by characterizing the subdifferential d; f,,( x) for
a fixed x based on Danskin’s Theorem (Clarke [11, theorem 2. 1] and then upper bounding the norm of this sub-
differential over x € [-1,1]". The extra denominator max{1, |v,|} in the expression of a’; is due to the scaling of
the constraints in (43). Then, consider the following problem:

minimize V(x) £ Z max{O [vp fO(x)l - (s - Z &?)max{l lvpl} } (Feas)

xe[-1,1]" p=mi+1 k'=0

£ s, (constant)

where the objective is the sum of the compositions of univariate convex functions (pp(t) =max{0, [v, —t| —sp}
and DC functions fO Notice that Problem (Feas) takes the same form as (23). Thus, we can apply the inner loop
of the prox-ADC method to solve it approximately. If solving this problem gives a solution x” with V(x) =
then

|Vp _f;?(x)l i P (Lp)2

P < — , 44
max{1, val} = " max{1, |v, |} (44)

and 2° is a strictly feasible point satisfying Assumption 2. We emphasize that using the inner loop of the prox-
ADC method for solving Problem (Feas) to obtain a strictly feasible point is merely a heuristic. Although this
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Figure 5. (Color online) Performance of the prox-ADC method for Problem (43) under the Termination Criteria (41) with 77 =
B=2X 1072 and k =5. (a) Using different sequences {y,} for a fixed initial point. (b) Using five initial points uniformly distrib-
uted on [—1,1]" for a fixed sequence {y, =1/(k+ 10)*°}.
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approach works well in our experiments, it is generally not easy to verify Assumption 2. We make a final remark
~ ~ 2
on the role of k. For small values of p and k, it is possible that ¢ < #{)uv\}’ and, from (44), there is no strictly
max{1, v,
feasible point satisfying Assumption 2 for this fixed approximating sequence. Henceforth, the flexibility of the
parameter k is necessary to ensure the validity of Assumption 2.

We implement the above procedure to find an initial point and then apply the prox-ADC method with
€r=0r=1/(k+1)” and A = 5. On most of the randomly generated instances, we observe that the point given
by solving (Feas) is also feasible to the original Problem (43) along the iterations, although this result can-
not be implied by Assumption 2. In Figure 5, we again plot the logarithm of the objective values against
the total number of iterations, using various combination of k and p and various initial points. It is worth
mentioning that for this constrained problem, the random initial point is not directly utilized in the prox-
ADC method. Instead, it is first used in Problem (Feas) to generate a strictly feasible point satisfying
Assumption 2, and the candidate solution for (Feas) then becomes the initial point of the prox-ADC method
for solving (43).
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Appendix A. Proofs of Proposition 2 and Proposition 3
Proof of Proposition 2.

a. We first generalize the convergence result of the classical Moreau envelopes when y, | 0 (see, e.g., Rockafellar and Wets
[30, theorem 1.25]) to the partial Moreau envelopes. Fixing any y, > 0, we consider the function (z,x,7) £ f(z,%) + 0dom £(x) +
P, (z,x,y) with

lz—x[12/2y) if y € (0,7,
Polz,x, ) 24 0 ify=0,z=x,

00 otherwise.

Notice that f*(x) = 8y, (¥) = Iy, (x) + Odom £(x) = inf21p(z,x, 7). It is easy to verify that ¢ is proper and Isc based on our assump-
tions. Under the assumption that f is bounded from below on dom f X dom f, we can also show by contradiction that i(z,x, )
is level-bounded in z locally uniformly in (x,)). Consequently, it follows from Rockafellar and Wets [30, theorem 1.17] that
f*(x) =inf.¢(z,x,y,) T f(x) for any fixed x and each f kis Isc.

Hence, f* 5 f is a direct consequence of Rockafellar and Wets [30, proposition 7.4(d)] by f*(x) T f(x) for all x and the lower
semicontinuity of f¥. If dom f = R", then fis continuous, and, thus, f* — f by Rockafellar and Wets [30, proposition 7.4(c-d)]. We
then complete the proof of (a).
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b. Forany ¥ € int(dom f),
I f(x)

= U Limsup {dg;, (k) — dhy, ()}

xk—x k—+0c0

U Limsup {—82( f)(zk xk)fy—k

k—+00 Yk k

z —argmm{f(zx)+—||z x ||2}}

T z€R"

(ﬁé) Limsup [d4 f(zk, Ky — (92(—f) (25, 4]

(xk, 25— (%, %) k—+0c0

201 F@0) - (-NE ),
where (i’) follows from the convexity of (ff_')(z,-) for any z € dom f and Danskin’s Theorem (Clarke [11, theorem 2.1]; (ii’)
is due to the optimality condition for z*, and z¥ — ¥ is obtained by similar arguments in the proof of Theorem 1(b), due to
our assumption that f is bounded from below on dom f x dom f; and (iii’) uses the outer semicontinuity of 81]7 and
82(7]‘_') at (x,x¥) (Li and Cui [20, lemma 5]). Therefore, for any ¥ €int(dom f), df(x) C da f(X) C 94 f(f, X)— 32(71?)(7, X).
Moreover, because of the local boundedness of the mappings 81]? and 82(—]?) at (¥,x) (Li and Cui [20, lemma 5], it follows
from Rockafellar and Wets [30, example 4.22] that d3 f(x) = {0}. O

Proof of Proposition 3.

a. Note that for any x € R", CVaR,[ c(x, Z) ] is well-defined and takes finite value due to E[|c(x, Z)|] < +c0. Because c(x, Z) fol-
lows a continuous distribution for any x € R", we know from Rockafellar and Uryasev [29, theorem 1] and Acerbi [1] that CVaR
has the following equivalent representations:

CVaR,[c(x,2)] = }ng{t + ﬁ E[ max{c(x,Z) — ¢, 0}]} = ﬁ/alVaRt[c(x,Z)] dt.

Moreover, CVaR,[c(-,Z)] is convex by the convexity of c(-,z) for any fixed z € R (cf. Rockafellar and Uryasev [29, theorem 2]).
Therefore, both ¢* and /* defined in (7) are convex. By the definitions of ¢* and #*, we have

gk(x) - hk(x) =[k(1 — @) +1]CVaR,_1j[c(x, Z)] — k(1 — @) CVaR,[c(x, Z)]

B _ 1
CKi—a)+1 - / VaR[e(x,2)] dt

= m ail/kvaRt[C(x, Z)] dt —

=k VaRy[c(x, Z)] dt fk/ VaR;[c(x,Z)] dt
a—-1/k

=k VaR;[c(x, Z)] dt
a—1/k

Note that VaR[c(x, Z)] is nondecreasing as a function of ¢ for any fixed x € R". Namely,

/ VaR,_1,lc(x, Z)]dt < / VaR;[c(x,Z)] dt < / VaR,[c(x,Z)] dt
a—1/k a—1/k a—1/k

Thus, VaR,_1 k[ c(x, Z)] < g°(x) — K*(x) < VaR,[ c(x, Z) ] for any x € R” and k > 1/a. Because VaR;[ c(x, Z) ] as a function of t on (0,
1) is left-continuous, it follows that [¢*(x) — F*(x)] T VaR,[c(x, Z) ] for all x. Observe that

{x|VaR,[c(x,Z)] <7} ={x|P(c(x,Z) <) > a}.

Based on our assumptions and van Ackooij [34, proposition 2.2], for any r € R, the probability function x — —P(c(x,Z) <r) is
Isc, which implies the closedness of the level set {x|P(c(x,Z) <r) > a} for any (r,a) € R x (0,1). Hence, VaR,[ c(-, Z)] is Isc for any
given a € (0,1) and is continuous if ¢(-,-) is further assumed to be continuous. Then (a) is a direct consequence of Rockafellar
and Wets [30, proposition 7.4(c-d)] by the monotonicity [¢*(x) — i*(x)] T VaR,[ c(x, Z)] and the continuity of VaR,[ c(-, Z)].

b. We use £1(Q, F, P) to denote the space of all random variables X : QO — R with E[| X(w)|] < +c0. According to Shapiro et al.
[33, example 6.19], the function CVaR, : £1(Q, F,P) — R is subdifferentiable (see Shapiro et al. [33, (9.281)] for the definition).
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Consider any fixed x € R". Given that c(x, Z) is a continuous random variable in £1(Q, F,P), it follows from Shapiro et al. [33,
(6.81)] that the subdifferential of CVaR,[-] at c(x, Z), denoted by d(CVaR,/[ - ])[c(x, Z)], is

Pw)=1-a)" if c(x, Z(w)) > VaRg[c(x, Z)]
P E€L(QF,P)| p(w)e[0,(1—a) '] if c(x, Z(w)) = VaRy[c(x, Z)] ¢- (A1)
P(w) =0 if c(x, Z(w)) < VaR,[c(x, Z)]
We would like to mention that the event {w € Q|c(x,Z(w)) = VaR,[c(x,Z)]} has zero probability and, thus, E[¢]=

(1-a)'-(1-a)=1 for every random variable ¢ € d(CVaR,[-])[c(x,Z)]. Let Pz denote the probability measure associated
with Z. By using Shapiro et al. [33, theorem 6.14], we obtain the subdifferential of the convex function CVaR,[c(-,Z)] at x:

d(CVaR,[c(-, Z) ])(x)

- d( U / 91 ¢(6, Z(@)) () dIP’Z(a)))
¢ed(CVaR,[-])[c(x, 2)]

g ( / I c(x, Z(@)) (w) dIP’Z(w)) V$ € I(CVaRy| - 1) [c(x, 2)]

@ / 91 ¢(x, Z(@) (@) dPs(@) VY €ACVaR[ - 1) [c(x, 2)]. (A2)
To see (iv’), it suffices to show that, for arbitrary two elements ¢, and ¢, in the set d(CVaR,[-])[c(x, Z)], we have

/ 01 (6, Z(@)) &, () dPy(w) = / o1 (¥, Z()) by(@) dP7(w). (A3)

To this end, we take any measurable selection a(x,Z(w)) € dic(x,Z(w)). By the assumption that |c(x,z)—c(x,z)| <
k(z)||x —x’|| for all x,x" € R" and z € R", it holds that ||a(x,Z)|| < x(Z) because subgradients of a convex function are uni-
formly bounded in norm by the Lipschitz constant. Consequently, both a(x, Z(w)) ¢, (w) and a(x, Z(w)) ¢,(w) are integrable
as |9, (w)| <(1 —a)! and |p,(w)| <(1 —a)”! for any w by (A.1) and E[|la(x,Z)||] <E[x(Z)] < +c0 by our assumption.
Observing that a(x, Z(w)) ¢, (w) = a(x, Z(w)) ¢, (w) almost surely, we can conclude from Folland [17, proposition 2.23] that

/a(x,Z(a))) ¢, (w)dPz(w) = /a(x,Z(a))) ¢,(w) dPz(w). This completes the proof of (A.3).

Next, we will explain wfly the closure can be removed in (A.2). By the convexity of c(-,z) for any fixed z€ R™ and the
existence of a measurable function «, it follows from Clarke [12, theorem 2.7.2] that

[orcta z@) 601 dB2(0) = a( [tz sz«u)) ),

where the right-hand side is the subdifferential of a convex function and, thus, is a closed set. Then, we can omit the clo-
sure to obtain the equation (v’) in (A.2).
Now, we use the expression of d(CVaR,[c(-,Z)])(x) to characterize daVaR,[c(-,Z)](¥). For any k> 1/a, taking any ¢, €
A(CVaR,_1,[-1)[c(x, Z)] and ¢, € I(CVaR,[-])[c(x, Z)], we have
9g*(x) — Ink(x)
= [k(1 —a) +1]dCVaR, 1/lc(-, Z2)](x) — k(1 — @) dCVaR,[c(-, Z)](x)

a2

= / d1c(x, Z(w))([k(1 — a) + 1] ¢5(w) — k(1 — @) p4(w)) dPz(w)

2 [orcts, Zw)otw)drzl),
with
0 if c(x, Z(w)) > VaRu[c(x, Z)] or c(x, Z(w)) < VaR,_1 [c(x, Z)]
P(w) £ L [0,k] if c(x, Z(w)) = VaR,[c(x, Z)] or c(x, Z(w)) = VaR,_1/[c(x, Z)]
k if VaR,_1/[c(x, Z)] < c(x, Z(w)) < VaR,[c(x, Z)].
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Because the event {w € Q|c(x, Z(w)) = VaR,[ c(x, Z)]Jor VaR,_1 [ c(x, Z)]} has zero probability, we have
9g (x) — Ik (x)
= / dic(x, Z(w)) k1{VaR,1/k[c(x, Z)] < c(x, Z) < VaR,[c(x, Z)]} dPz(w)

_ {5 7 1{VaR,_1/[c(x, Z2)] < c(x,Z) < VaR,[c(x, Z)]}
‘_/ 16 @) pR7aR Kle(x, Z)] < c(x,Z) < VaRy[c(x, 2)])
=E[d1c(x, Z) | VaR,_1 k[c(x, Z)] < c(x, Z) < VaRg[c(x, Z)] ].

dPz(w)

By the definition of the approximate subdifferential, the proof is then completed. O

Appendix B. Proof of Proposition 4

We start with the chain rules for d(p o f) and 9™ (¢ o f), where the inner function f is merely Isc. These results are exten-
sions of the nonlinear rescaling (Rockafellar and Wets [30, proposition 10.19(b)]) to the case where ¢ may lack the strictly
increasing property at a given point. One can also derive the same results through a general chain rule of the coderiva-
tive for composite set-valued mappings (Mordukhovich [22, theorem 5.1]. However, to avoid the complicated computa-
tions accompanied by the introduction of the coderivative, we give an alternative proof below that is more
straightforward. To prepare for the chain rules, we need a technical lemma about the proximal normal cone.

Lemma B.1. Let f : R" — R be an Isc function. For @ > f(X), it holds that
N 5,) € Ny (5 ().

Proof of Lemma B.1. For @ > f(x). By Rockafellar and Wets [30, example 6.16], we have
/\/'e’;if(f,ﬁ) ={Al(x,@) — (¥, @)]| (x,@) € R""! such that (¥,a@) € Mepi r(x, ), A 2 0},
where TTep; ¢ : R"™! — epif is the projection operator. For any (x,a) € R"! with (¥,a) € Mepi r(x, ), we have
(x,@) € argmin || (u,t) — (x, @)%,
(u, t)€epi f

which can be equivalently written as

(X fX)e argmin (1) — (v, —T+f(X)I
(u, t+a—f(x))eepi f
Then, restrict the feasible region of the above problem to a subset {(u,t)|(u,t) € epi f}. Because (¥,f(¥)) is still a feasible point
in this subset, we have (X,f(X)) € Ilepif(x,a —@ +f(x)). Hence, (X,@) € Ilepif(x,a) implies (X,f(x)) € Ilepi r(x, @ — @ + f(X)).
Using this result and the expression of /\/'e’i)i f(f, @), we conclude that /\/e’;i f(f, @) C /\/:;i f(?, f(x)) fora>f(x). O
We present the chain rules with a self-contained proof in the following lemma.

Lemma B.2 (Chain Rules for the Limiting Subdifferential). Let ¢ : R — R be proper, Isc, convex, and nondecreasing with
sup @ =+oo, and f:R"—R be Isc. Consider X €dom/(qo f). If the only scalar y € Lim sup,, % Naome(f(x)) with 0€
yLimsup, - df(x) is y = 0, then "

y € Lim sup (9(p(f(x))} v {(Lim supmaf(x)> \{O}] ,

X2 (pof) *

IpoH® Y {y Limsup of (x)
and

" (po f)x)C [U {y Lim sup Jf (x)

Ve Limsudeomq,(f(x))H v {(Limsup‘”&f(x)) \{0}] .

X (pon ¥

Proof of Lemma B.2. The basic idea is to rewrite @ o f as a parametric minimization problem and apply Rockafellar and
Wets [30, theorem 10.13]. Note that ¢(f(x)) = inf, [g(x, @) £ Oepi s(x,a) + @(a)] for x € dom (¢ o f). Define the corresponding
set of optimal solutions as M(x) for any x € dom (¢ o f). Then, we have f(¥) € M(¥) and @(@) = ¢(f(¥)) for any a € M(¥X). By
our assumptions, it is obvious that dom¢ € {(—o0,b),(—0o0,b]} for some beRU {+co}. Based on our assumption that
supp = +oo and f is Isc, it is easy to verify that g is proper, Isc, and level-bounded in a locally uniformly in x. Then, we
apply Rockafellar and Wets [30, theorem 10.13] to obtain

dpo f)x) c{v](v,0) € g(x,@), @ € M(X)},
7 (po f)(x)c{v](v,0)€d7g(x, @), a e M)} (B.1)
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Step 1: We will show that for any @ € M(x),
Nepi £(,@) N ({0} X [~Neome (@)]) = {0}. (B.2)

We divide the proof of (B.2) into two cases.
Case 1. If M(x) is a singleton {f(x)}, we can characterize N ¢(X,f(X)) by using the result in Rockafellar and Wets [30,
theorem 8.9]. Because df(X) C Limsup, _z9f(x) and Ngome(f(¥)) C Lim sup,, s Ndome(f(x)), it follows from our assump-

tion that either 0 ¢ f(X) or Nyome(f(¥)) = {0}. Hence, based on the characterization of N (¥, (X)), (B.2) is satisfied.
Case 2. Otherwise, there exists @max € (f(X), +o0) such that M(X) = [f(X),0max] because ¢ is Isc, nondecreasing and
sup @ = +oco. Thus, from (B.1),
Ao f)(x) c[{v](v,0) € dg(x,f(x))} U{v| (v,0) € dg(x, @), f(X) <& < Amax}],

(@ o f)x) c[{v](v,0) € d7g(x, f(X)} U{v|(v,0) € I"g(X,a),f(X) <& < Amax}]- (B.3)
Let Mi(X) £ {@ € (f(X), max] | 3x* — X with f(x*) > @} and M(X) £ M(¥)\M;(¥). In the following, we characterize Np; f(X, @)
and verify (B.2) separately for & € M;(x) and a € M(x).
Case 2.1. For any @ € M;(X), we first prove the inclusion:

-/\/epif(yla) c |:{A(U/ _1)

v € Limsup df(x), A > O} v {(U,O)

X—X

v € Lim sup“&f(x)H . (B.4)

x—X
Observe that for any @ € M;(¥), it holds that
Nepi (X, @) € Limsup Ne’;i f(x,a)
(x, a)(cepi f)—(x,a)
. p
c Ln;lsyup ./\/'epif(x,f(x))

C Lim sup Nopi (2, f (%)), (B.5)

where the first inclusion is because any normal vector is a limit of proximal normals at nearby points (Rockafellar and
Wets [30, exercise 6.18]); the second one uses Lemma B.1; the last inclusion follows from the fact that the proximal normal
cone is a subset of the limiting normal cone (Rockafellar and Wets [30, example 6.16]). Based on the result of Rockafellar
and Wets [30, theorem 8.9] that

Nepi £(x,f(x)) = {A(v, =1)|v € If(x),A > 0} U {(v,0)[v € 97f(x)},

we conclude that N f(X,@) CR" X R_ for any @ € M;(X). For any (v, —1) € Nepi (X, @) with @ € M;(X), there exist -
x, oF — v with o € df(x*). Then, v € Limsup,__ Jf(x).

To prove (B.4), it remains to show that v € Limsup;’ ; df(x) whenever (v,0) € Npir(x,@). It follows from (B.5) that (v,0)
is a limit of proximal normals of epif at (xf,f(x¥)) for some sequence x* — ¥. (i) First consider the case (v¥,0) — (v,0) with
(7%,0) e/\/e’iDi f(xk,f(xk)). Following the argument in the proof of Rockafellar and Wets [30, theorem 8.9], we can derive
ok € 9 f(xF). Therefore,

v € Limsup 9°f(x*) ¢ Limsup ( U Limsupmt?f(xk’i)) c U Limsup® df (),

k—+0c0 k—+o00 i ooy b i—+0co g JoFe

where the first inclusion is due to the definition of the horizon subdifferential, and the last inclusion follows from a stan-
dard diagonal extraction procedure. (ii) In the other case, we have Ay(vf, —1) — (v,0) with A, | 0 and o* € df(x¥) for all
keN. It is easy to see v € Limsupy® - df(x). So far, we obtain Inclusion (B.4). Because @ € Mi(X), we have Nyomq(@) C
Limsup, , - Niome(f(x)), and our assumption implies that A = 0 is the unique solution satisfying 0 € A - Limsup,_,; df (x)
with A € Ngome(@). Combining this with (B.4), we immediately obtain (B.2).

Case 2.2. For any @ € M,(x), consider any sequence {(xf,a*)} Cepif converging to (x¥,a). Then, of > f(x*) for all suffi-
ciently large k because @ ¢ M;(X). It is easy to see that '/\/Z;)i f(xk,ak) CR" x {0}, which gives us Np; f(xk,ak) CR" x {0} due
to Rockafellar and Wets [30, exercise 6.18]. By following a similar pattern as the final part of Case 2.1, it is not difficult to
obtain, for any @ € M,(X),

-/\/epif(fr a) c {(U, 0)

vE Limsup‘”&f(x)}. (B.6)

xX—X

In this case, (B.2) holds trivially. Hence, we have verified (B.2) for Cases 1 and 2.
Step 2. Based on (B.2) in step 1, we can now apply the sum rule (Rockafellar and Wets [30, corollary 10.9]) for dg(x, @) to obtain

9g(%,@) C Napi (%, @) + {0} X Ip(@), I"g(X, @) C Napi (%, @) + {0} X Ngom o (@) (B7)
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Case 1. For M(%) = {f(%)}, by combining (B.7) with (B.1), we can derive the stated results for d(¢ o f)(X) and 9™ (¢ o f)(X)
based on the observations that do(f(x)) C Lim sup,, @(f(x)) and 9f(X) C Limsup® - 9f(x).
Case 2. Otherwise, by (B.7), we have

{v|(v,0) € 9g(X, @), f(X) < A < Apmax}

(B4) (B.6)
C {U {y Lim sup Jf (x)

x—X

yedp(@),ae Ml(E)H

X—X

U [U {Limsup‘”af(x) 0 € dp(a),f(x) <a < EmaxH

xX—X

C {U {y Lim sup df(x) | y € Lim sup de(f(x)) H v { (Lims_up""&f(x)) \{0}} ,

X (gof) x x—X

where the last inclusion is because 0 will be included in the first set if 0 € dp(@) for some @ € (f(X), Wmax], and the second
set will be empty otherwise. Similarly,

{v](v,0) € 9™ (x, @), f(X) <« < Wmax}

{ {y lesupaf(x)

yelesudeomq,(f(x)) H {(Lims_up""&f(x)) \{0}}.

ge f)'(

We then complete the proof by using the inclusions in (B.3). O
Equipped with the chain rules, we are now ready to prove Proposition 4.

Proof of Proposition 4. Let X be any feasible point—that is, X € N,_; dom F,,. Suppose for contradiction that (15) does not
hold at x. Thus, there exist py € {1,...,m}, {x*} €S, (%), and an index set N €N’ such that 06:9Cf,’,‘1 (x*) and Ndoqum
( (xk)) # {0} for all ke N. Take an arbitrary nonzero scalar y* eNdom% (fy (xk)) for all ke N. Let y be any accumulation
pomt of the unit scalars {y*/|y*|}icy- Then, we have (0#)y €U {Ndom(pm (tp1)|t,,1 €T, (%)} and 0 € con da f, (X), contradict-
ing Assumption 5. This proves Condition (15).

For any fixed p=1,...,m, let y, =0 for any p’ € {1,...,m}\{p} in Assumption 5. Then, the only scalar y, € U {./\fdomq, (tp)
[ty € Ty(x)} with O € yp con d fp(X) is y, = 0, which completes the proof of (16).

To derlve the Constraint Qualification (17), we consider two cases.
Case 1. For pel,, we have ./\/'dom(p (f(x)cu {Ndom¢ (tp)|t, € Ty(x)} due to fk —>fp and d(yf,)(X) Cydc f,(X) Cyconda f,(X)
for any y by Theorem 1(a). Together with Assumptlon 5, we deduce that the only scalar ye]\/dom(p (f,(x)) with 0 €
d(yf,)(¥) is y = 0. From this condition and the local Lipschitz continuity of f, for p € I, we can apply the chain rule (Rock-
afellar and Wets [30, theorem 10.49]) to get

a‘”((pp ofy)(X) C U{y conda f,(X)|y € Ndom%(tp), t, € T,(%)}. (B.8)

Case 2. For pel;, to utilize the chain rules (Lemma B.2) for 8°°((pp of,), we must first confirm the validity of the
condition:

0 €y Limsupdf,(x), y€Lim sup Ndomq) (fpx)| = y=0. (B.9)

x—oX xX—p,X

Indeed, it suffices to consider the case of dom (pT =(—00,1,) or (—oo,r,] for some r, €R, because the statement holds tr1v1—
ally when (pT is real-valued. For any element ¥ € Lim SUp, ., Ndom(p ( fo (x)), there exist (xf,y%)— (x,7) with y*e

Ndom¢ ( fp(xk)) and F (xk) — F,(X). Because ¥ € domF,, we must have x* edomF for all sufficiently large k—that is,
folak )E dom(pT—and { folok )}keN is bounded from above due to clom(pT =(—00,7,) or (—oo,7,]. The sequence {f,(x*)}cy is
also bounded from below because f, is Isc as a consequence of fk —f,. Then, we can assume that the bounded sequence
{0 e converges to some z,. Note that z, € dom(p due to Fp(x) —llmlnfk_>+w({)p( fp(xk)) > ({)p(zp) Thus, by the outer
semicontinuity, y* — ¥ E/\/dom(p (zp). By fk —f,, each fp(x) can be expressed as the limit of a sequence {f’ (¥} ey with
xkt — xF for any fixed k € N. Using a standard diagonal extraction procedure, one can extract a subsequence f;k (x5) >z,
with x¥# — ¥. Hence, z, € T,(¥) and

Limsup Naome, (f5(0)) € (_JtNaome, ()|t € Tp(%)}. (B.10)

X—F, X



Downloaded from informs.org by [128.32.10.230] on 29 March 2025, at 15:27 . For personal use only, all rights reserved.

Li and Cui: Variational Theory for Asymptotically Approachable Problems
34 Mathematics of Operations Research, Articles in Advance, pp. 1-34, © 2025 INFORMS

Using the subdifferentials relationships in Theorem 1 and the outer semicontinuity of da f,, we have

Limsup df,(x) C Limsup da f,(x) = da f,(X). (B.11)

x—X x—X

By (B.10), (B.11), and Assumption 5, we immediately get (B.9). Thus, we can apply the chain rule in Lemma B.2 and use
(B.10), (B.11) again to obtain

I°(@, © £,)X) C (W 9afo(0) |y € Naom, (bp), £ € Ty(x)} U (Lim S_upwﬁfp(x)> \{0}
- U{yaAfp(x) | UAS Ndom(pp(tp)r t, € Tp(f)} U [3ffp(f)\{0} I (B.12)

For the last inclusion, we use Limsup®® _ df,(x) C Limsup®® - da f,(x) C dyf,(X) by Theorem 1(a) and using a standard
diagonal extraction procedure. Combining Inclusions (B.8) and (B.12) for two cases with Assumption 5, we derive (17)
and complete the proof. O
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