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1 An Integrated Metric for Rapid and Equitable Emergency Rescue During Extreme Floods in 

2 Urban Environments

3 ABSTRACT

4 After catastrophic flooding, quick and effective rescue operations are crucial to minimizing harm 

5 to vulnerable communities. While much research focused on emergency response and evacuation, few 

6 studies addresses how overhead powerline obstructions impact rescue operations. Additionally, existing 

7 research on vulnerable communities often emphasizes long-term flood mitigation and recovery, but less so 

8 on immediate responses. To ensure rapid and equitable flood rescue operations, this study derives an 

9 integrated metric to quantify rescue demands that incorporate rescue efficiency, community flood severity, 

10 and social vulnerability. In detail, rescue efficiency is calculated by analyzing a network that captures the 

11 geospatial interdependencies between the residential buildings' road networks and overhead power lines; 

12 community flood severity is quantified as the percentage of building damage resulting from flood impacts; 

13 and social vulnerability is an integrated indication of key household composition factors (e.g., elders, single 

14 parents, and minorities). Based on this metric, a systematic step is designed to suggest the sequence of 

15 rescue operations and the strategies for distributing rescue resources. The applicability and feasibility of 

16 the proposed approach were demonstrated using lifeboat rescue operations in Manville, New Jersey during 

17 Hurricane Ida. This study calculates dynamic changes in rescue loads of all emergency facilities and then 

18 finds the optimal strategies for distributing lifeboats. The results highlight the significant impact of 

19 overhead power line obstructions on the optimal rescue resources distribution. Practically, the generated 

20 rescue sequence and rescue resources distribution are expected to help emergency response agencies 

21 perform effective and rapid rescue operations.

22 Keywords: emergency rescue; flood modeling; road network modeling; powerline obstruction; resource 

23 allocation.

24 1. INTRODUCTION

25 Under climate change, the frequency and intensity of extreme precipitation events are increasing 

26 locally, especially in north-eastern areas of United States [1]. Compared with coastal flooding induced by 
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27 storm surge that can often be predicted days in advance, flooding induced by heavy precipitation can 

28 develop within minutes to hours and the exact locations and severity are hard to predict, meaning shorter 

29 response time, smaller spatial scales, and longer lasting time [2][3][4]. Besides, precipitation-induced 

30 flooding could lead to inappropriate self-evacuation due to underestimations of hazards of shallow but 

31 speedy water flow [5][6], which places considerable demands and requests for efficient emergency response. 

32 Unlike rural environments, urban environments are typically featured by dense populations, extensive 

33 infrastructure, and intricate urban topography. These increase the complexity of emergency response efforts 

34 because the large volume of people needing evacuation can lead to traffic congestion and delays; the 

35 interdependent infrastructure systems can cause cascading failure that exacerbates flood impacts; and the 

36 varying ground elevations and land coverages can pose various levels of damage to different communities.

37 Transportation systems act as an essential role for emergency evacuations and search and rescue. 

38 Flood impacts to transportation systems, such as eroded and undermined roadbeds, spawned debris, and 

39 high-water incidents, can lead to highway closure that hinders emergency response and rescue operations. 

40 To address this issue, a vast amount of research has focused on identifying flood damage to transportation 

41 systems and analyzing traffic accessibility caused by the damage. For example, natural language processing 

42 and image processing techniques have been applied to extract flood damage-related information (e.g., 

43 damage severities and damage types) from publicly available image and text information [7][8]. Other 

44 research has modeled the topology of transportation systems to understand infrastructure cascading failures 

45 and identify vulnerable components through network analysis and simulation [9] [10]. To further 

46 understand residents’ traveling patterns during flooding, research studies have used Agent-Based Modeling 

47 (ABM) to simulate residents’ evacuation to identify vulnerable areas [11][12] and used machine learning-

48 based approaches to rapidly predict hurricane evacuation traffic flows [13].

49 While significant research efforts have been taken to support emergency evacuation and rescue, 

50 existing studies have often oversimplified urban environments. Of the most importance are overhead 

51 powerlines, which is a system of electrical wires, supported by poles or towers, used to transmit electrical 

52 power across long distances from power plants to homes, businesses, and other end users. Overhead 
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53 powerlines can complicate emergency evacuations for several reasons. For instance, downed powerlines 

54 can cause electrocution and fire hazards, which makes it dangerous for evacuees and emergency responders 

55 to navigate the area. Fallen powerlines can obstruct roads and pathways, which limits routes for evacuation 

56 and causes traffic congestion and delays in reaching safe areas. During the emergency planning phase, 

57 ignoring the impact of overhead powerlines' obstruction on emergency response activities could lead to 

58 biased decision-making [14], including unreliable estimations of road accessibilities, incorrect assumptions 

59 about the availability of rescue services, and unbalanced allocation of rescue resources.

60 Besides the availability of emergency services, social equity also plays a crucial role in emergency 

61 response activities because socially vulnerable households (e.g., elders and single-family households) are 

62 often exposed to greater risks and are less capable to safely evacuate by themselves. For example, elderly 

63 individuals and those with chronic health conditions often need specific evacuation assistance and low-

64 income households may lack access to private transportation, making it difficult to evacuate independently. 

65 Although the importance of focusing on vulnerable communities during emergency evacuation and rescue 

66 is widely aware [15], existing studies that have considered social aspects are more oriented toward long-

67 term flood mitigation, recovery, and rebuilding [16] [17] [4].  A few studies have considered social 

68 vulnerability during short-term emergency response; however, these studies have mainly focused on 

69 impassible road sections caused by flood and have not integrated the obstruction caused by overhead 

70 powerlines [18][19][20].

71 To address these research challenges, this study aims to answer one key question: how the 

72 obstruction of overhead powerlines and the consideration of socially vulnerable households impact the 

73 efficiency of emergency response planning and execution. In this study, 'emergency response' refers 

74 specifically to lifeboat-based rescue operations. Considering powerlines' obstruction on emergency 

75 response activities, the overhead powerlines in this manuscript refer to the lowest powerlines and the 

76 communication lines. The present study first employed an emergency response framework [14][21] to 

77 simulate the time-varied rescue routes during flooding expansion. Then an integrated metric considering 

78 flood hazards, rescue efficiency, and household composition is designed to quantify rescue demands for 
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79 rescue operation prioritization at the census block level. Based on this metric, a systematic step is designed 

80 to suggest the sequence of rescue operations and the strategies for distributing rescue resources. To 

81 demonstrate the applicability and feasibility of the proposed approach, a case study in Manville, New Jersey 

82 following the impacts of Hurricane Ida was conducted. Specifically, the rescue demands at each time step 

83 are calculated and comparisons of the overall rescue loads on all emergency response facilities are made.

84 The remaining sections are organized as follows. The methodology section first describes the 

85 compositions of the integrated metric and then explains the mathematical details of the rescue demands 

86 quantification as well as the logic of rescue resource allocations. In the end, a discussion of the study 

87 findings and research contribution and limitations are summarized.

88 2. METHODOLOGY

89 The presented methodology is composed of four parts, data preparation, data pre-processing, 

90 integrated metric calculation, and rescue load calculation. In this section, the calculation of the integrated 

91 metric, which incorporates rescue efficiency, community flood severity, and social vulnerability is first 

92 introduced to quantify rescue demands. Based on this metric, a systematic step is designed to suggest the 

93 sequence of rescue operations and the strategies for distributing rescue resources. An illustration of the 

94 research methodology is shown in Figure 1.

95

96 Figure 1.  Research methodology flow chart.
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97 2.1 Dynamic Rescue Demand Quantification

98 During and immediately after heavy rainfall, water levels rise rapidly, which can cause flash 

99 flooding with little warning. Once the water level remains stable, emergency rescue operations are carried 

100 out. To access the impacted residential buildings, emergency responders will dispatch lifeboats to pass the 

101 flooded road sections and deploy vehicles to pass the unaffected road sections. Considering obstructions of 

102 overhead powerlines, the flooded road sections that have geospatial dependency with powerlines which are 

103 previously passible would become impassible because of the proximity of rising floodwaters to the 

104 overhead powerlines. As water levels gradually recede, the status of road accessibility changes because 

105 some of the road sections that were previously not accessible by rescue boats or cars would become 

106 accessible. As a result, the time-varying characteristics of road accessibility would change and consequently 

107 impact the rescue demands. In this study, an integrated metric is designed to quantify rescue demands at 

108 various time steps for rescue operation prioritization. This metric considers three key aspects: the ability of 

109 responders travelling from emergency facilities to impacted households; the extent to which the buildings 

110 are destroyed by flood impacts; and the ability of households to safely evacuate to essential facilities. These 

111 aspects are indicated using rescue efficiency, community flood severity, and social vulnerability. A detailed 

112 explanation of each of these parts is given below.

113 2.1.1 Rescue efficiency

114 Rescue efficiency is defined as how fast emergency responders can travel from their emergency 

115 facility (i.e., shelters, fire stations, and emergency operation centers) to the flooded residential buildings. 

116 To consider the dynamic characteristics of road accessibility, an attributed road network is modeled to 

117 calculate rescue efficiency. Specifically, topological road attributes (road sections and road intersections) 

118 and building locations (i.e., emergency facilities and residential houses) are used to create an attributed 

119 network in which the nodes represent locations of emergency facilities, flooded residential buildings, road 

120 sections, and road intersections, and edges represent connections between road sections and connections 

121 between buildings and road sections. Three attributes are assigned to road sections and intersections: 

122 accessible by cars, accessible by boats, and not accessible by boats. These attributes are dynamically 
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123 updated considering the flood depth and overhead powerline obstruction. If a road section/intersection 

124 becomes flooded and is not accessible due to overhead powerline obstruction, this node and its adjacent 

125 edges are removed from the network. An illustration of the dynamic process is illustrated in Figure 2. As 

126 flood recedes, the status of the highlighted road section changes (indicated in orange color) from not 

127 accessible by boats to accessible by boats and accessible by cars. The bottom part shows the disrupted road 

128 networks.

129

130 Figure 2. Illustration of the dynamic changes of road networks

131 The rescue efficiency (𝑅𝐸) is quantified as the inverse of the shortest path from an emergency facility to a 

132 flooded residential building. Mathematically, given a disrupted network 𝐺𝑡 at timestep t, 𝑅𝐸 is formulated 

133 in Equation 1.

134 𝑅𝐸(𝐺𝑡) =
1
𝑑𝑞𝑛𝑡

  𝑡 ∈ 1,2,…,𝑇 #(1)

135 Where 𝑞 represents the emergency facility, 𝑛 represents the flooded residential building, and 𝑑 represents 

136 the shortest path from the emergency facility to the flooded residential buildings. The greater the rescue 

137 efficiency, the faster the emergency responders can reach the flooded building, and 𝑅𝐸 is dynamically 

138 updated given the latest road conditions.

139 2.1.2 Community flood severity
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140 During emergency rescue, the extent to which a building is damaged influence rescue demands. 

141 The reason is that buildings that are more damaged by floods are at a higher risk of collapse. This poses an 

142 immediate threat to residents still living inside, making it urgent to rescue them before further deterioration 

143 occurs. Considering this effect, community flood severity is quantified as the percentage of flood-induced 

144 building damage. Due to the unique characteristics of building design attributes (e.g., presence of basement, 

145 first floor elevation, and construction materials), even with the same flood elevation, the extent of building 

146 damage would vary significantly. To derive the percentage of building damage, HAZUS—a GIS-based 

147 software developed by the Federal Emergency Management Agency (FEMA) to identify areas with high 

148 risk for natural hazards and estimate the physical, economic, and social impacts of hazards—is employed 

149 [22]. HAZUS can be used to estimate the damage percentage to individual buildings based on building 

150 inventory data and water depths. In detail, HAZUS employs depth-damage curves, which relate the depth 

151 of flooding to the percentage of damage for different types of buildings and are derived based on empirical 

152 data and engineering studies. Given the building design attributes and flood depth near each building, the 

153 percentage of structural damage is estimated based on the building's construction type and flood depth. The 

154 greater the percentage of building damage (𝑃𝐵), the more urgent it is to rescue residents living inside these 

155 buildings. It is worth noting that the depth-damage curve can also be manually specified using historical 

156 data. This often led to a more accurate building damage estimation. However, when such data are not 

157 available, HAZUS can be used as a convenient tool for general estimation. During flood impacts, since a 

158 building is less likely to become restored, the percentage of building damage is computed based on the 

159 maximum simulated flood depth and it is not affected by time.

160 2.1.3 Social vulnerability

161 Focusing on vulnerable households during emergency evacuation and rescue is critical because 

162 these groups are often exposed to greater risks and face more barriers to evacuate to safety. Socially 

163 vulnerable households, such as elders, single parents, and minorities, are less prepared for flood disruptions 

164 and need the most support, as a result, their rescue demands need prioritization. In the context of emergency 

165 evacuation, household composition is a key aspect that influences community evacuation ability. For 
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166 example, households with children, elderly members, or individuals with disabilities have unique needs that 

167 can complicate evacuation. In this study, four household composition-related factors are selected: the 

168 percentage of persons aged 65 and older (𝑃65𝑜𝑙𝑑𝑒𝑟), the percentage of persons aged 18 and younger 

169 (𝑃18𝑦𝑜𝑢𝑛𝑔𝑒𝑟), the percentage of minority households (𝑃𝑚𝑖𝑜𝑟𝑖𝑡𝑦), and the percentage of single-family 

170 households (𝑃𝑠𝑖𝑛𝑔𝑙𝑒𝑓𝑎𝑚𝑖𝑙𝑦). Due to privacy concerns, identifying these four factors at the building level is 

171 not possible. As an alternative, census block data, which is the smallest unit of public data collected by the 

172 U.S. Census Bureau can be used [23]. To integrate the four factors, a percentile ranking approach is used. 

173 Specifically, each of the four variables is first ranked from the highest to lowest across all census blocks in 

174 the investigated community, where a higher ranking indicates a more vulnerable census block. Then, a 

175 percentile rank was calculated for each census block over these variables. In the end, the percentile ranks 

176 were summed to indicate a block’s vulnerability to evacuate. By prioritizing census blocks that have higher 

177 rankings, emergency responders can ensure that vulnerable communities are not disproportionately affected 

178 by emergencies and that everyone has the opportunity to evacuate safely and receive the necessary support.

179 2.1.4 Rescue demands

180 The rescue demand is defined as a metric that integrates rescue efficiency, community flood 

181 severity, and social vulnerability introduced above, and it is used to inform emergency rescue at the census 

182 block level. Since rescue efficiency and community flood severity are derived at the building level, these 

183 metrics are first averaged at the blocked level. For a census block 𝑘  with 𝑛  number of residential buildings, 

184 the block-level rescue efficiency (𝑅𝐸𝑘,𝑡) at a time step 𝑡 is shown as follows:

185 𝑅𝐸𝑘,𝑡 =
∑𝑛
𝑁=1

1
𝑑𝑞𝑛𝑡

𝑛  𝑘 ∈ 1,2,…,𝑚, 𝑡 ∈ 1,2,…,𝑇#(2)

186 The block-level flood severity is calculated as follows:

187 𝐹𝑆𝑘 =
∑𝑛
𝑁=1𝑃𝐵𝑛
𝑛   𝑘 ∈ 1,2,…,𝑚 #(3)

188 Given the block-level rescue efficiency 𝑅𝐸𝑘,𝑡, flood severity 𝐹𝑆𝑘, and social vulnerability 𝑆𝑉𝑘, the rescue 

189 demands of a census block 𝑘 at timestep 𝑡 is (𝑅𝐷𝑘,𝑡) computed by first calculating the percentile rank of 
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190 each variable across all census blocks in an investigated community. Here, flood severity and social 

191 vulnerability are ranked from the highest to the lowest because a higher value indicates a greater demand 

192 for rescue. On the contrary, rescue efficiency is ranked from the lowest to highest because a higher 

193 efficiency indicates better evacuation ability. In the end, the percentile ranks were summed up to calculate 

194 𝑅𝐷𝑘,𝑡.

195 2.2 Rescue Resource Allocations

196 Lifeboats are commonly used for rescue in inundated areas during flooding and they are the 

197 resources that are mainly concerned in this study. During emergency evacuations and rescues, lifeboats are 

198 assigned to emergency facilities through a coordinated and systematic approach to ensure efficiency and 

199 safety. To evaluate how the obstruction of overhead powerlines and the consideration of socially vulnerable 

200 households impact the efficiency of emergency response planning and execution, four different lifeboat 

201 allocation strategies are designed for comparison. First, the 'equal plan', which evenly distributes lifeboats 

202 among available emergency response facilities. The second one is named as 'fixed plan 1'. It allocates 

203 lifeboats based on the ratio calculated by the number of accessible census blocks associated with each 

204 emergency facility to the total count of census blocks needing rescue. This means a facility with a higher 

205 count of accessible census blocks will be assigned with more lifeboats. This strategy requires a pre-

206 understanding of the accessibility of buildings and blocks, considering overhead powerlines’ obstruction. 

207 'Fixed plan 2' follows a similar pattern as “Fixed plan 1” but considers the total number of associated blocks 

208 per facility regardless of the accessibility and rescue requirements. 'Fixed plan 3' uses the integrated metric, 

209 rescue demands, to inform lifeboat allocation. Similarly, a ratio is specified. The difference is that the ratio 

210 is calculated through the summation of rescue demands of all associated census blocks of each facility. A 

211 higher summation indicates that generally the associated accessible census blocks have higher vulnerability 

212 and longer travel distances to the facilities, signifying a greater need for lifeboats. The allocation ratios of 

213 four strategies are calculated based on the worst conditions during a flood event and will not change as time 

214 goes by.
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215 To track rescue progress, two status flags are introduced at each time step: the inherit flag 𝑁1 and 

216 the rescue flag 𝑁2. Initially, for all census blocks that will be flooded, 𝑁1 is set to 1, indicating that none of 

217 these blocks have been rescued. At every subsequent time step, 𝑁1 is updated to 0 for blocks that have been 

218 rescued and this status is inherited to the next time step. The rescue flag 𝑁2 reflects the accessibility and 

219 flood hazards of specific census blocks; it is set to 1 for blocks that will be flooded and are accessible at the 

220 current time step, and 0 otherwise. At each time step, a new metric 𝐶𝑀𝑘,𝑡, calculated based on Equation 4 

221 for each census block. It determines the rescue necessity, feasibility and emergency of all census blocks at 

222 specific time step t. Then by ranking the metric, the census blocks with top-ranked metric will be rescued 

223 at time step t.

224 𝐶𝑀𝑘,𝑡 = 𝑁1,𝑘,𝑡 ⋅ 𝑁2,𝑘,𝑡 ⋅ 𝑅𝐷𝑘,𝑡    𝑘 ∈ 1,2,….𝑚, 𝑡 ∈ 1,2,…𝑇 #(4)

225 Where 𝑚 is the number of impacted census blocks. The rescue load 𝑅𝐿, defined as the sum of the new 

226 metric 𝐶𝑀 of all impacted census blocks during flooding (Equation 5), will be employed here to track the 

227 rescue progress of using different allocation strategies.

228 𝑅𝐿𝑡 =
𝑚

𝑘
𝐶𝑀𝑘,𝑡 ,    𝑘 ∈ 1,2,…𝑚, 𝑡 ∈ 1,2,…𝑇 #(5)

229 Where T is the number of time steps.

230 3. CASE STUDY

231 Hurricane Ida, which made landfall in Louisiana on August 29, 2021, as a category 4 storm, brought 

232 extreme rainfall to the greater New York metropolitan area on the night of September 1, 2021. This extreme 

233 rainfall triggered numerous flash flooding warnings and emergencies. Manville is a borough in Somerset 

234 County located in central New Jersey. It is bounded by the Raritan River in the north, the Millstone River 

235 on the east, Royce Brook to the south, and Hillsborough Township on the west. Officials report that 

236 recurrent flooding problems are prevalent throughout Manville in areas proximate to the Raritan River and 

237 the Millstone River, mainly due to the fluvial or river flooding from the Raritan and Millstone Rivers [24]. 

238 From September 1st through September 3rd, 2021, Tropical Storm Ida moved through the state of New 

239 Jersey, causing high winds and heavy rainfall. The Raritan River crested at about 27.6 feet, the highest ever 
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240 recorded (the previous highest being Hurricane Floyd with a crest of 27.1 feet in 1999) [25]. Over 100 

241 houses in Manville were partially or completely submerged under floodwater.

242 To demonstrate the applicability and feasibility of the proposed approach, the case study analyzes 

243 the rescue conditions in Manville Township during Hurricane Ida. This section starts by introducing the 

244 details of the flood condition reconstruction and overhead powerline extraction in Manville. Then, steps 

245 taken to calculate the dynamic rescue demands are explained. After this, the rescue progresses following 

246 the proposed lifeboat allocation strategies are compared and the reasons leading to different patterns are 

247 discussed.

248 3.1 Data Processing

249 3.1.1 Flood Reconstruction

250 The flood conditions for hurricane Ida in this study were reconstructed by a street-scaled 2-

251 dimentional hydrodynamic model [26], validated by measured high water marks. The model domain 

252 encompasses the Raritan River Basin area from Branchburg to Bound Brook Township, incorporating three 

253 major upstream freshwater inputs. The river bathymetry, integrated into the background terrain used by the 

254 model, has been enhanced based on the most recent bathymetry dataset created by Rutgers University [27]. 

255 Additionally, to accurately capture the impact of buildings on flood spreading, building footprints were 

256 converted to a raster dataset with a consistent building height of 10 meters and then merged onto the 

257 background terrain. A spatially varied resolution mesh was employed, featuring a 3-meter resolution in 

258 flood-prone street areas and a resolution ranging from 10 to 50 meters for the remainder of the domain. The 

259 original shallow water equations, Eulerian-Lagrangian Method (SWE-ELM), were employed for 

260 performing two-dimensional unsteady flow routing in this case study.

261 3.1.2 Overhead Powerline Extraction 

262 The methodology for extracting overhead power lines from a citywide point cloud dataset involves 

263 several key steps to ensure accurate and useful data. Initially, a point cloud dataset was collected, which 

264 includes detailed spatial information of the target area. This dataset is rich with various urban features such 

265 as buildings, trees, and overhead power lines. The extraction process begins by digitizing these overhead 
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266 power lines into 3D polylines using specialized software like VRMesh V11.8.1 and ArcGIS 10.8.1. In 

267 VRMesh, the point cloud data was processed to identify and highlight the power lines. This involves semi-

268 automated procedures to extract the elevation and location information of the power lines. However, due to 

269 potential spatial discontinuities caused by obstructions like vegetation, the extracted data may be 

270 incomplete. To address this, spatial interpolation techniques in ArcGIS were applied. The digitized 

271 polylines were converted into polygons with a buffer distance to facilitate accurate interpolation. This 

272 process ensures a continuous and coherent dataset representing the overhead power lines. Finally, the 

273 elevation and location information of the extracted power lines were exported as raster layers to assess the 

274 clearance distances above potential floodwater levels at each time step, ensuring the safety and effectiveness 

275 of rescue operations during flood events [14].

276 3.1.3 Rescue Efficiency

277 Based on the road network (polylines) and building footprints (polygons) in Manville, a citywide 

278 network was generated using a series of ArcPy scripts to connect all residents and emergency facilities 

279 (Figure 3). Road nodes were created every 13.7 meters (45 feet) along the road segments and assigned the 

280 type “C” or “B” to represent the accessibility status of each node. “C” indicates accessible by vehicles, 

281 while “B” indicates accessible by lifeboats. All building footprints within the study area were converted to 

282 building nodes and assigned the type “R,” “E,” or “F,” “R,” represents normal residential and commercial 

283 buildings, “E” represents evacuation centers, and “F” represents fire stations, with both “E” and “F” nodes 

284 being emergency response facilities. Each building node was then linked to its nearest road node, 

285 representing the connection status between the two nodes in the network.

286 At each time step, the accessibility status of all nodes was adjusted based on flood progression. For 

287 example, road nodes in vulnerable areas, identified using the human instability model [28], will change 

288 from “C” to “B,” indicating that these nodes are no longer accessible by vehicles. The assumption here is 

289 that areas that cannot be accessed by walking also cannot be accessed by vehicles due to higher relative 

290 motion speeds and limited flexibility in floodwaters. Additionally, the clearance distance between the water 

291 elevation and overhead power lines was calculated at each time step to identify restricted zones for lifeboats 
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292 due to overhead power line obstructions [14]. Paths within these restricted zones were removed at each step 

293 to indicate inaccessibility. As shown in Figure 3, on September 2nd, 2021, all road nodes in walking-

294 restricted areas changed from “C” to “B,” and all paths covered by boat-restricted areas were removed. 

295 Three essential facilities are identified in Manville, and the rescue efficiency is determined based on the 

296 closest accessible facilities.

297

298 Figure 3. Example network accessibility on September 2nd, 2021 at 12:00 a.m. 

299 Given the generated network at each timestep, the rescue efficiency for each census block at each hour is 

300 calculated following Equations (2).

301 3.1.4 Community Flood Severity

302 HAZUS was utilized to estimate the damage percentage to individual buildings using the processed 

303 building inventory data and the maximum water depth obtained from the flood reconstruction step (section 

304 3.1.1). Here the building inventory data, such as the number of stories, roof type, exterior wall covering, 

305 and the presence of a basement, was processed by gathering data from njparcels.com and 

306 njpropertyrecords.com and surveying all the homes using Google Street View (GSV). One of the most 

307 important building attributes, first-floor elevation, a critical factor in determining a building's risk, was 
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308 extracted from mobile LiDAR data collected by the Rutgers mobile mapping team following Hurricane Ida. 

309 Innovative technology, using Yolo5, a 2D object detector for identifying building components like windows, 

310 doors, and garage doors based on the intensity of the point cloud, is employed to extract the first-floor 

311 elevation [29]. Given the building damage percentage, Equation (3) is used to calculate community flood 

312 severity at each census block. An illustration of the building damage percentage for buildings that have 

313 damage percentages greater than zero is indicated in Figure 4. The graduated colors changing from white 

314 to blue represent the percentage of building damage, where a whiter color shows a low percentage of 

315 damage and darker blue shows a high percentage of damage.

316

317 Figure 4. Percentage of building damage at Manville

318 3.1.5 Social Vulnerability and Integrated Metric

319 The block-level house composition data (i.e., the percentage of persons aged 65 and older, people 

320 aged 18 and younger in minority households, and single-family households) is obtained from the U.S. 
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321 Census Bureau [23]. Then following the proposed integrated metric calculation approach, the rescue 

322 demands of each census block at each hour were calculated. An illustration of the details of metric 

323 calculation process at one time step is shown in Table 1.

324

Block 
ID

Building 
Damage 
Percentage

Efficiency Building 
Damage 
Percentage 
Percentile

Efficiency 
Percentile

SVI 
Percentile

Integrated 
Metric

Integrated 
Metric 
Percentile

1019514 0.095 0.007 0.943 0.912 0.866 0.907 1.000
1003514 0.110 0.009 0.964 0.809 0.892 0.888 0.995
1005514 0.097 0.009 0.948 0.825 0.887 0.887 0.990
1010514 0.052 0.006 0.907 1.000 0.716 0.875 0.985
... ... ... ... ... ... ... ...
1017515 0.000 0.056 0.327 0.052 0.196 0.192 0.021
2034516 0.000 0.041 0.327 0.108 0.093 0.176 0.015
2027516 0.000 0.100 0.327 0.010 0.098 0.145 0.010

325 Table 1. Illustration of the metric calculation process

326 The first column in Table 1 shows the block ID. For each block, the second and third columns show 

327 the building damage percentage and efficiency (derived in the rescue efficiency and flood severity sections) 

328 respectively. The fourth, fifth and sixth columns show the percentile ranks of building damage percentage, 

329 rescue efficiency, and social vulnerability index, across all census blocks. The integrated metric is 

330 calculated by averaging the three percentiles. In the end, a percentile ranking based on the integrated metric 

331 is derived to inform emergency rescue prioritization. At each time step, the percentile ranks are dynamically 

332 updated based on the latest road conditions.

333 3.2 Results

334 To compare and fully understand the performance of different allocation strategies, the rescue 

335 progresses under two scenarios are evaluated. These are rescue operations considering overhead powerline 

336 obstructions and neglecting overhead powerline obstructions. In the case study, the allocation ratios of 

337 lifeboats for four different allocation strategies were calculated, assuming the total available lifeboats for 

338 rescue operations is 6. The allocation ratio for the four strategies is [2,2,2] for the Equal Plan. [1,3,2] for 

339 Fixed Plan 1, [3,2,1] for Fixed Plan 2, and [2,3,1] for Fixed Plan 3. The current case study treats these 

340 allocation ratios to be constant and does not vary over time.
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341 In this study, rescue operations are set to begin at the 13th time step, four hours after the peak level 

342 detected in the nearest river gage, initially under full rescue requirements. This assumption represents the 

343 worst-case scenario because the rescue loads are the highest. The changes in rescue loads under different 

344 scenarios are illustrated in Figure 5. The results found that the lifeboat allocation ('Fixed Plan 1') considering 

345 overhead power lines is the most effective strategy in both scenarios (see Figure 5), as it achieves the largest 

346 decrease rate in rescue load. When social vulnerability is considered ('Fixed Plan 3'), this strategy 

347 outperforms the equal allocation approach in scenarios without powerlines’ obstruction in rescue activities, 

348 but it is less effective when powerlines’ obstruction is considered. This is because of the imbalance between 

349 the total rescue demands and the number of census blocks with rescue needs, which will be further explained 

350 in the discussion section. The least effective strategy is 'Fixed Plan 2,' which does not account for rescue 

351 requests and accessibility; this outcome is not surprising since this approach is less targeted and lacks 

352 critical considerations. In scenarios where powerlines’ obstruction is considered during rescue activities, 

353 the rescue load decreases before the start of rescue activities, as more blocks become inaccessible for 

354 lifeboats due to the proximity of rising floodwaters to the overhead powerlines. The increased rescue load 

355 after September 2nd at 23:00 is due to more blocks becoming accessible again as the water level recedes.

356
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357 Figure 5 The rescue load variation using different lifeboat allocation strategies under two scenarios, 

358 rescue operations considering powerline obstruction or neglecting powerline obstruction. The left part of 

359 the black dash line indicates the rescue load before rescue activities. NP refers to ‘No Powerlines 

360 Consideration Scenario’, and WP refers to ‘With Powerlines Consideration Scenario’

361 4. DISCUSSION

362 The allocation strategy based on the rescue requirement and accessibility status, i.e., Fixed Plan 1 

363 is the most effective strategy because the distribution of rescue demands among emergency facilities is 

364 uneven in reality. Allocation plan without considering this uneven distribution will result in low effective 

365 rescue operations. For example, in this case study, facilities with the highest number of associated blocks 

366 often have a lower proportion of rescue demands during floods, and most associated census blocks are not 

367 impacted by flooding. Similarly, some facilities with fewer associated blocks but have a higher rescue 

368 demand because most of the associated census blocks are located in the flood-prone area. Interestingly, 

369 ‘Fixed Plan 3’, as a more considerable and targeted strategy, becomes less effective than Fixed Plan 2 no 

370 matter if the powerline obstruction is considered or not in rescue operations. ‘Fixed Plan 3’ is a strategy 

371 that allocates lifeboats based on the sum of integrated metrics of all associated census blocks to each 

372 emergency response facility. This means if the associated buildings are more vulnerable (higher sum of 

373 integrated metric), the facility will be assigned more lifeboats. However, being more vulnerable doesn’t 

374 mean the number of required lifeboats will be higher. It is possible that the number of census blocks 

375 requiring rescue associated with one facility is high but with low social vulnerability in total. This will lead 

376 to one limitation of this study, which is the current analysis is based on static instead of dynamic allocation 

377 strategy, which means the allocation ratio among facilities will not change as time goes by. Lifeboats 

378 assigned to a facility with a higher vulnerable status but a lower number of census blocks that require rescue 

379 will be idle in the simulation, leading to a relatively low rescue efficiency overall.  The future study will 

380 optimize the allocation strategy in a dynamic allocation way to ensure the available resources will be 

381 allocated precisely as demands. Additionally, future studies should broaden the study areas to develop a 

382 more generalized understanding of optimized allocation strategies taking powerline’s obstruction into 
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383 account. In particular, a better resource allocation strategy that considers the tradeoff between the block-

384 level rescue demands and the actual number of households that require rescue is needed.

385 5. CONCLUSION

386 The unpredictable and localized nature of precipitation-induced flooding, together with the 

387 obstacles resulted from infrastructure damage and high-speed water flow, make emergency evacuation and 

388 rescue challenging. To help emergency responders carry out effective and rapid rescue operations, this 

389 research proposed an integrated metric to quantify the rescue demands at the census block level and 

390 designed a systematic step to simulate rescue operations using different lifeboat allocation strategies. The 

391 integrated metric considers rescue efficiency, community flood severity, and social vulnerability. These are 

392 defined as the ability of responders travelling from emergency facilities to impacted households; the extent 

393 to which the buildings are destroyed by flood impacts; and the ability of households to safely evacuate to 

394 essential facilities. The integrated metric (i.e., rescue demands) provides comprehensive guidance to 

395 prioritize rescue operations among census blocks. Following the systematic resource allocation strategies, 

396 the allocated lifeboats at emergency response facilities were calculated and then used to derive the rescue 

397 loads of the overall emergency rescue operation at each time step.

398 To demonstrate the applicability and feasibility of the proposed approach, a case study in Manville, 

399 New Jersey following the impacts of Hurricane Ida was conducted. Using the designed integrated metric 

400 and the resource allocation strategies, a comparison of rescue processing between two scenarios, 

401 considering or neglecting overhead power line impacts on lifeboat-based rescue operations during extreme 

402 flooding, was constructed to evaluate the impacts of overhead power line obstruction on emergency rescues. 

403 The results highlighted the significance of powerlines’ obstruction should not be neglected for lifeboat 

404 allocation. The strategy considering overhead power line obstruction returns the highest decrease rate in 

405 rescue load in both scenarios. Furthermore, the differences among the rescue load variations in the two 

406 scenarios emphasize the need to account for powerline obstructions in simulations of emergency rescue 

407 during extreme flooding in urban environments.
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408 Although it is expected that the resource allocation strategy that considers the proposed metric 

409 demonstrates the best performance, it is ranked as the second best-performing strategy. One possible reason 

410 is that the number of census blocks requiring rescue associated with one emergency facility is low, but the 

411 social vulnerability of these census blocks is high. Then the allocated lifeboats will be larger than the actual 

412 requirement. And the time-invariant allocation in this study leads to a waste of rescue resources in later 

413 periods of rescue. The future study will optimize the allocation strategy in a dynamic allocation way to 

414 ensure the available resources will be allocated precisely as demands. Additionally, future studies should 

415 broaden the study areas to develop a more generalized understanding of optimized allocation strategies 

416 taking powerline’s obstruction into account.
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