

An Integrated Metric for Rapid and Equitable Emergency Rescue During Extreme Floods in Urban Environments

ABSTRACT

4 After catastrophic flooding, quick and effective rescue operations are crucial to minimizing harm
5 to vulnerable communities. While much research focused on emergency response and evacuation, few
6 studies addresses how overhead powerline obstructions impact rescue operations. Additionally, existing
7 research on vulnerable communities often emphasizes long-term flood mitigation and recovery, but less so
8 on immediate responses. To ensure rapid and equitable flood rescue operations, this study derives an
9 integrated metric to quantify rescue demands that incorporate rescue efficiency, community flood severity,
10 and social vulnerability. In detail, rescue efficiency is calculated by analyzing a network that captures the
11 geospatial interdependencies between the residential buildings' road networks and overhead power lines;
12 community flood severity is quantified as the percentage of building damage resulting from flood impacts;
13 and social vulnerability is an integrated indication of key household composition factors (e.g., elders, single
14 parents, and minorities). Based on this metric, a systematic step is designed to suggest the sequence of
15 rescue operations and the strategies for distributing rescue resources. The applicability and feasibility of
16 the proposed approach were demonstrated using lifeboat rescue operations in Manville, New Jersey during
17 Hurricane Ida. This study calculates dynamic changes in rescue loads of all emergency facilities and then
18 finds the optimal strategies for distributing lifeboats. The results highlight the significant impact of
19 overhead power line obstructions on the optimal rescue resources distribution. Practically, the generated
20 rescue sequence and rescue resources distribution are expected to help emergency response agencies
21 perform effective and rapid rescue operations.

22 **Keywords:** emergency rescue; flood modeling; road network modeling; powerline obstruction; resource
23 allocation.

24 1. INTRODUCTION

Under climate change, the frequency and intensity of extreme precipitation events are increasing locally, especially in north-eastern areas of United States [1]. Compared with coastal flooding induced by

27 storm surge that can often be predicted days in advance, flooding induced by heavy precipitation can
28 develop within minutes to hours and the exact locations and severity are hard to predict, meaning shorter
29 response time, smaller spatial scales, and longer lasting time [2][3][4]. Besides, precipitation-induced
30 flooding could lead to inappropriate self-evacuation due to underestimations of hazards of shallow but
31 speedy water flow [5][6], which places considerable demands and requests for efficient emergency response.
32 Unlike rural environments, urban environments are typically featured by dense populations, extensive
33 infrastructure, and intricate urban topography. These increase the complexity of emergency response efforts
34 because the large volume of people needing evacuation can lead to traffic congestion and delays; the
35 interdependent infrastructure systems can cause cascading failure that exacerbates flood impacts; and the
36 varying ground elevations and land coverages can pose various levels of damage to different communities.

37 Transportation systems act as an essential role for emergency evacuations and search and rescue.
38 Flood impacts to transportation systems, such as eroded and undermined roadbeds, spawned debris, and
39 high-water incidents, can lead to highway closure that hinders emergency response and rescue operations.
40 To address this issue, a vast amount of research has focused on identifying flood damage to transportation
41 systems and analyzing traffic accessibility caused by the damage. For example, natural language processing
42 and image processing techniques have been applied to extract flood damage-related information (e.g.,
43 damage severities and damage types) from publicly available image and text information [7][8]. Other
44 research has modeled the topology of transportation systems to understand infrastructure cascading failures
45 and identify vulnerable components through network analysis and simulation [9] [10]. To further
46 understand residents' traveling patterns during flooding, research studies have used Agent-Based Modeling
47 (ABM) to simulate residents' evacuation to identify vulnerable areas [11][12] and used machine learning-
48 based approaches to rapidly predict hurricane evacuation traffic flows [13].

49 While significant research efforts have been taken to support emergency evacuation and rescue,
50 existing studies have often oversimplified urban environments. Of the most importance are overhead
51 powerlines, which is a system of electrical wires, supported by poles or towers, used to transmit electrical
52 power across long distances from power plants to homes, businesses, and other end users. Overhead

53 powerlines can complicate emergency evacuations for several reasons. For instance, downed powerlines
54 can cause electrocution and fire hazards, which makes it dangerous for evacuees and emergency responders
55 to navigate the area. Fallen powerlines can obstruct roads and pathways, which limits routes for evacuation
56 and causes traffic congestion and delays in reaching safe areas. During the emergency planning phase,
57 ignoring the impact of overhead powerlines' obstruction on emergency response activities could lead to
58 biased decision-making [14], including unreliable estimations of road accessibilities, incorrect assumptions
59 about the availability of rescue services, and unbalanced allocation of rescue resources.

60 Besides the availability of emergency services, social equity also plays a crucial role in emergency
61 response activities because socially vulnerable households (e.g., elders and single-family households) are
62 often exposed to greater risks and are less capable to safely evacuate by themselves. For example, elderly
63 individuals and those with chronic health conditions often need specific evacuation assistance and low-
64 income households may lack access to private transportation, making it difficult to evacuate independently.
65 Although the importance of focusing on vulnerable communities during emergency evacuation and rescue
66 is widely aware [15], existing studies that have considered social aspects are more oriented toward long-
67 term flood mitigation, recovery, and rebuilding [16] [17] [4]. A few studies have considered social
68 vulnerability during short-term emergency response; however, these studies have mainly focused on
69 impassible road sections caused by flood and have not integrated the obstruction caused by overhead
70 powerlines [18][19][20].

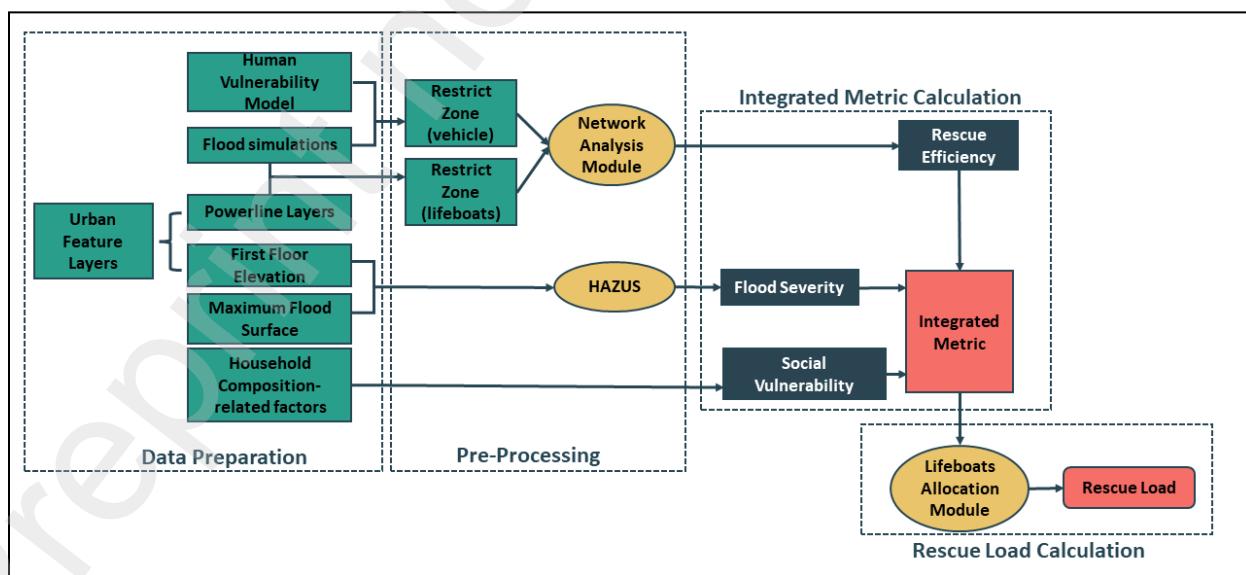
71 To address these research challenges, this study aims to answer one key question: how the
72 obstruction of overhead powerlines and the consideration of socially vulnerable households impact the
73 efficiency of emergency response planning and execution. In this study, 'emergency response' refers
74 specifically to lifeboat-based rescue operations. Considering powerlines' obstruction on emergency
75 response activities, the overhead powerlines in this manuscript refer to the lowest powerlines and the
76 communication lines. The present study first employed an emergency response framework [14][21] to
77 simulate the time-varied rescue routes during flooding expansion. Then an integrated metric considering
78 flood hazards, rescue efficiency, and household composition is designed to quantify rescue demands for

79 rescue operation prioritization at the census block level. Based on this metric, a systematic step is designed
80 to suggest the sequence of rescue operations and the strategies for distributing rescue resources. To
81 demonstrate the applicability and feasibility of the proposed approach, a case study in Manville, New Jersey
82 following the impacts of Hurricane Ida was conducted. Specifically, the rescue demands at each time step
83 are calculated and comparisons of the overall rescue loads on all emergency response facilities are made.

84 The remaining sections are organized as follows. The methodology section first describes the
85 compositions of the integrated metric and then explains the mathematical details of the rescue demands
86 quantification as well as the logic of rescue resource allocations. In the end, a discussion of the study
87 findings and research contribution and limitations are summarized.

88 2. METHODOLOGY

89 The presented methodology is composed of four parts, data preparation, data pre-processing,
90 integrated metric calculation, and rescue load calculation. In this section, the calculation of the integrated
91 metric, which incorporates rescue efficiency, community flood severity, and social vulnerability is first
92 introduced to quantify rescue demands. Based on this metric, a systematic step is designed to suggest the
93 sequence of rescue operations and the strategies for distributing rescue resources. An illustration of the
94 research methodology is shown in Figure 1.



95
96 **Figure 1.** Research methodology flow chart.

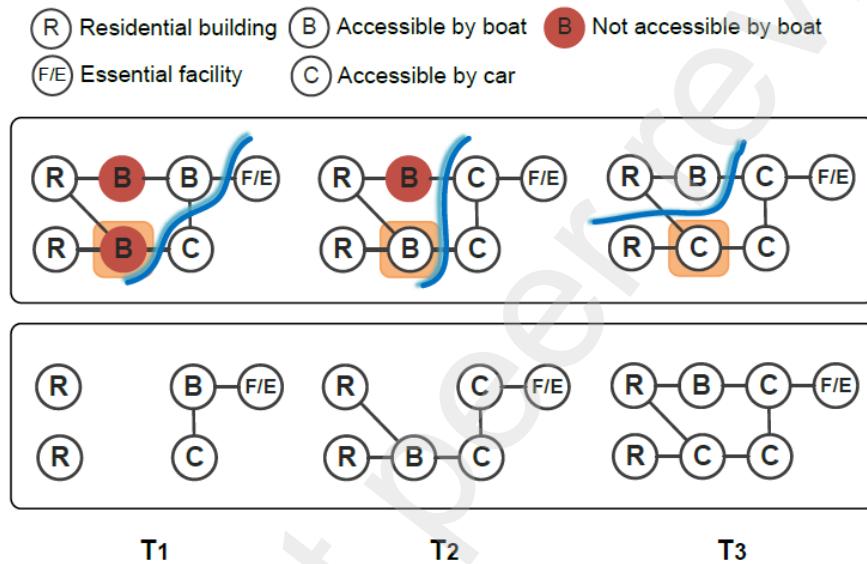
97 **2.1 Dynamic Rescue Demand Quantification**

98 During and immediately after heavy rainfall, water levels rise rapidly, which can cause flash
99 flooding with little warning. Once the water level remains stable, emergency rescue operations are carried
100 out. To access the impacted residential buildings, emergency responders will dispatch lifeboats to pass the
101 flooded road sections and deploy vehicles to pass the unaffected road sections. Considering obstructions of
102 overhead powerlines, the flooded road sections that have geospatial dependency with powerlines which are
103 previously possible would become impossible because of the proximity of rising floodwaters to the
104 overhead powerlines. As water levels gradually recede, the status of road accessibility changes because
105 some of the road sections that were previously not accessible by rescue boats or cars would become
106 accessible. As a result, the time-varying characteristics of road accessibility would change and consequently
107 impact the rescue demands. In this study, an integrated metric is designed to quantify rescue demands at
108 various time steps for rescue operation prioritization. This metric considers three key aspects: the ability of
109 responders travelling from emergency facilities to impacted households; the extent to which the buildings
110 are destroyed by flood impacts; and the ability of households to safely evacuate to essential facilities. These
111 aspects are indicated using rescue efficiency, community flood severity, and social vulnerability. A detailed
112 explanation of each of these parts is given below.

113 ***2.1.1 Rescue efficiency***

114 Rescue efficiency is defined as how fast emergency responders can travel from their emergency
115 facility (i.e., shelters, fire stations, and emergency operation centers) to the flooded residential buildings.
116 To consider the dynamic characteristics of road accessibility, an attributed road network is modeled to
117 calculate rescue efficiency. Specifically, topological road attributes (road sections and road intersections)
118 and building locations (i.e., emergency facilities and residential houses) are used to create an attributed
119 network in which the nodes represent locations of emergency facilities, flooded residential buildings, road
120 sections, and road intersections, and edges represent connections between road sections and connections
121 between buildings and road sections. Three attributes are assigned to road sections and intersections:
122 accessible by cars, accessible by boats, and not accessible by boats. These attributes are dynamically

123 updated considering the flood depth and overhead powerline obstruction. If a road section/intersection
 124 becomes flooded and is not accessible due to overhead powerline obstruction, this node and its adjacent
 125 edges are removed from the network. An illustration of the dynamic process is illustrated in Figure 2. As
 126 flood recedes, the status of the highlighted road section changes (indicated in orange color) from not
 127 accessible by boats to accessible by boats and accessible by cars. The bottom part shows the disrupted road
 128 networks.



129
 130 **Figure 2.** Illustration of the dynamic changes of road networks

131 The rescue efficiency (RE) is quantified as the inverse of the shortest path from an emergency facility to a
 132 flooded residential building. Mathematically, given a disrupted network G_t at timestep t , RE is formulated
 133 in Equation 1.

134

$$RE(G_t) = \frac{1}{d_{qnt}} \quad t \in 1, 2, \dots, T \quad \#(1)$$

135 Where q represents the emergency facility, n represents the flooded residential building, and d represents
 136 the shortest path from the emergency facility to the flooded residential buildings. The greater the rescue
 137 efficiency, the faster the emergency responders can reach the flooded building, and RE is dynamically
 138 updated given the latest road conditions.

139 **2.1.2 Community flood severity**

140 During emergency rescue, the extent to which a building is damaged influence rescue demands.
141 The reason is that buildings that are more damaged by floods are at a higher risk of collapse. This poses an
142 immediate threat to residents still living inside, making it urgent to rescue them before further deterioration
143 occurs. Considering this effect, community flood severity is quantified as the percentage of flood-induced
144 building damage. Due to the unique characteristics of building design attributes (e.g., presence of basement,
145 first floor elevation, and construction materials), even with the same flood elevation, the extent of building
146 damage would vary significantly. To derive the percentage of building damage, HAZUS—a GIS-based
147 software developed by the Federal Emergency Management Agency (FEMA) to identify areas with high
148 risk for natural hazards and estimate the physical, economic, and social impacts of hazards—is employed
149 [22]. HAZUS can be used to estimate the damage percentage to individual buildings based on building
150 inventory data and water depths. In detail, HAZUS employs depth-damage curves, which relate the depth
151 of flooding to the percentage of damage for different types of buildings and are derived based on empirical
152 data and engineering studies. Given the building design attributes and flood depth near each building, the
153 percentage of structural damage is estimated based on the building's construction type and flood depth. The
154 greater the percentage of building damage (PB), the more urgent it is to rescue residents living inside these
155 buildings. It is worth noting that the depth-damage curve can also be manually specified using historical
156 data. This often led to a more accurate building damage estimation. However, when such data are not
157 available, HAZUS can be used as a convenient tool for general estimation. During flood impacts, since a
158 building is less likely to become restored, the percentage of building damage is computed based on the
159 maximum simulated flood depth and it is not affected by time.

160 **2.1.3 Social vulnerability**

161 Focusing on vulnerable households during emergency evacuation and rescue is critical because
162 these groups are often exposed to greater risks and face more barriers to evacuate to safety. Socially
163 vulnerable households, such as elders, single parents, and minorities, are less prepared for flood disruptions
164 and need the most support, as a result, their rescue demands need prioritization. In the context of emergency
165 evacuation, household composition is a key aspect that influences community evacuation ability. For

166 example, households with children, elderly members, or individuals with disabilities have unique needs that
 167 can complicate evacuation. In this study, four household composition-related factors are selected: the
 168 percentage of persons aged 65 and older ($P_{65older}$), the percentage of persons aged 18 and younger
 169 ($P_{18younger}$), the percentage of minority households ($P_{minority}$), and the percentage of single-family
 170 households ($P_{singlefamily}$). Due to privacy concerns, identifying these four factors at the building level is
 171 not possible. As an alternative, census block data, which is the smallest unit of public data collected by the
 172 U.S. Census Bureau can be used [23]. To integrate the four factors, a percentile ranking approach is used.
 173 Specifically, each of the four variables is first ranked from the highest to lowest across all census blocks in
 174 the investigated community, where a higher ranking indicates a more vulnerable census block. Then, a
 175 percentile rank was calculated for each census block over these variables. In the end, the percentile ranks
 176 were summed to indicate a block's vulnerability to evacuate. By prioritizing census blocks that have higher
 177 rankings, emergency responders can ensure that vulnerable communities are not disproportionately affected
 178 by emergencies and that everyone has the opportunity to evacuate safely and receive the necessary support.

179 **2.1.4 Rescue demands**

180 The rescue demand is defined as a metric that integrates rescue efficiency, community flood
 181 severity, and social vulnerability introduced above, and it is used to inform emergency rescue at the census
 182 block level. Since rescue efficiency and community flood severity are derived at the building level, these
 183 metrics are first averaged at the block level. For a census block k with n number of residential buildings,
 184 the block-level rescue efficiency ($RE_{k,t}$) at a time step t is shown as follows:

$$185 \quad RE_{k,t} = \frac{\sum_{n=1}^n \frac{1}{d_{qn_t}}}{n} \quad k \in 1, 2, \dots, m, t \in 1, 2, \dots, T \#(2)$$

186 The block-level flood severity is calculated as follows:

$$187 \quad FS_k = \frac{\sum_{n=1}^n PB_n}{n} \quad k \in 1, 2, \dots, m \#(3)$$

188 Given the block-level rescue efficiency $RE_{k,t}$, flood severity FS_k , and social vulnerability SV_k , the rescue
 189 demands of a census block k at timestep t is ($RD_{k,t}$) computed by first calculating the percentile rank of

190 each variable across all census blocks in an investigated community. Here, flood severity and social
191 vulnerability are ranked from the highest to the lowest because a higher value indicates a greater demand
192 for rescue. On the contrary, rescue efficiency is ranked from the lowest to highest because a higher
193 efficiency indicates better evacuation ability. In the end, the percentile ranks were summed up to calculate
194 $RD_{k,t}$.

195 **2.2 Rescue Resource Allocations**

196 Lifeboats are commonly used for rescue in inundated areas during flooding and they are the
197 resources that are mainly concerned in this study. During emergency evacuations and rescues, lifeboats are
198 assigned to emergency facilities through a coordinated and systematic approach to ensure efficiency and
199 safety. To evaluate how the obstruction of overhead powerlines and the consideration of socially vulnerable
200 households impact the efficiency of emergency response planning and execution, four different lifeboat
201 allocation strategies are designed for comparison. First, the 'equal plan', which evenly distributes lifeboats
202 among available emergency response facilities. The second one is named as 'fixed plan 1'. It allocates
203 lifeboats based on the ratio calculated by the number of accessible census blocks associated with each
204 emergency facility to the total count of census blocks needing rescue. This means a facility with a higher
205 count of accessible census blocks will be assigned with more lifeboats. This strategy requires a pre-
206 understanding of the accessibility of buildings and blocks, considering overhead powerlines' obstruction.
207 'Fixed plan 2' follows a similar pattern as "Fixed plan 1" but considers the total number of associated blocks
208 per facility regardless of the accessibility and rescue requirements. 'Fixed plan 3' uses the integrated metric,
209 rescue demands, to inform lifeboat allocation. Similarly, a ratio is specified. The difference is that the ratio
210 is calculated through the summation of rescue demands of all associated census blocks of each facility. A
211 higher summation indicates that generally the associated accessible census blocks have higher vulnerability
212 and longer travel distances to the facilities, signifying a greater need for lifeboats. The allocation ratios of
213 four strategies are calculated based on the worst conditions during a flood event and will not change as time
214 goes by.

215 To track rescue progress, two status flags are introduced at each time step: the inherit flag N_1 and
216 the rescue flag N_2 . Initially, for all census blocks that will be flooded, N_1 is set to 1, indicating that none of
217 these blocks have been rescued. At every subsequent time step, N_1 is updated to 0 for blocks that have been
218 rescued and this status is inherited to the next time step. The rescue flag N_2 reflects the accessibility and
219 flood hazards of specific census blocks; it is set to 1 for blocks that will be flooded and are accessible at the
220 current time step, and 0 otherwise. At each time step, a new metric $CM_{k,t}$, calculated based on Equation 4
221 for each census block. It determines the rescue necessity, feasibility and emergency of all census blocks at
222 specific time step t . Then by ranking the metric, the census blocks with top-ranked metric will be rescued
223 at time step t .

224
$$CM_{k,t} = N_{1,k,t} \cdot N_{2,k,t} \cdot RD_{k,t} \quad k \in 1,2,\dots,m, t \in 1,2,\dots,T \#(4)$$

225 Where m is the number of impacted census blocks. The rescue load RL , defined as the sum of the new
226 metric CM of all impacted census blocks during flooding (Equation 5), will be employed here to track the
227 rescue progress of using different allocation strategies.

228
$$RL_t = \sum_k^m CM_{k,t}, \quad k \in 1,2,\dots,m, t \in 1,2,\dots,T \#(5)$$

229 Where T is the number of time steps.

230 **3. CASE STUDY**

231 Hurricane Ida, which made landfall in Louisiana on August 29, 2021, as a category 4 storm, brought
232 extreme rainfall to the greater New York metropolitan area on the night of September 1, 2021. This extreme
233 rainfall triggered numerous flash flooding warnings and emergencies. Manville is a borough in Somerset
234 County located in central New Jersey. It is bounded by the Raritan River in the north, the Millstone River
235 on the east, Royce Brook to the south, and Hillsborough Township on the west. Officials report that
236 recurrent flooding problems are prevalent throughout Manville in areas proximate to the Raritan River and
237 the Millstone River, mainly due to the fluvial or river flooding from the Raritan and Millstone Rivers [24].
238 From September 1st through September 3rd, 2021, Tropical Storm Ida moved through the state of New
239 Jersey, causing high winds and heavy rainfall. The Raritan River crested at about 27.6 feet, the highest ever

240 recorded (the previous highest being Hurricane Floyd with a crest of 27.1 feet in 1999) [25]. Over 100
241 houses in Manville were partially or completely submerged under floodwater.

242 To demonstrate the applicability and feasibility of the proposed approach, the case study analyzes
243 the rescue conditions in Manville Township during Hurricane Ida. This section starts by introducing the
244 details of the flood condition reconstruction and overhead powerline extraction in Manville. Then, steps
245 taken to calculate the dynamic rescue demands are explained. After this, the rescue progresses following
246 the proposed lifeboat allocation strategies are compared and the reasons leading to different patterns are
247 discussed.

248 **3.1 Data Processing**

249 **3.1.1 Flood Reconstruction**

250 The flood conditions for hurricane Ida in this study were reconstructed by a street-scaled 2-
251 dimentional hydrodynamic model [26], validated by measured high water marks. The model domain
252 encompasses the Raritan River Basin area from Branchburg to Bound Brook Township, incorporating three
253 major upstream freshwater inputs. The river bathymetry, integrated into the background terrain used by the
254 model, has been enhanced based on the most recent bathymetry dataset created by Rutgers University [27].
255 Additionally, to accurately capture the impact of buildings on flood spreading, building footprints were
256 converted to a raster dataset with a consistent building height of 10 meters and then merged onto the
257 background terrain. A spatially varied resolution mesh was employed, featuring a 3-meter resolution in
258 flood-prone street areas and a resolution ranging from 10 to 50 meters for the remainder of the domain. The
259 original shallow water equations, Eulerian-Lagrangian Method (SWE-ELM), were employed for
260 performing two-dimensional unsteady flow routing in this case study.

261 **3.1.2 Overhead Powerline Extraction**

262 The methodology for extracting overhead power lines from a citywide point cloud dataset involves
263 several key steps to ensure accurate and useful data. Initially, a point cloud dataset was collected, which
264 includes detailed spatial information of the target area. This dataset is rich with various urban features such
265 as buildings, trees, and overhead power lines. The extraction process begins by digitizing these overhead

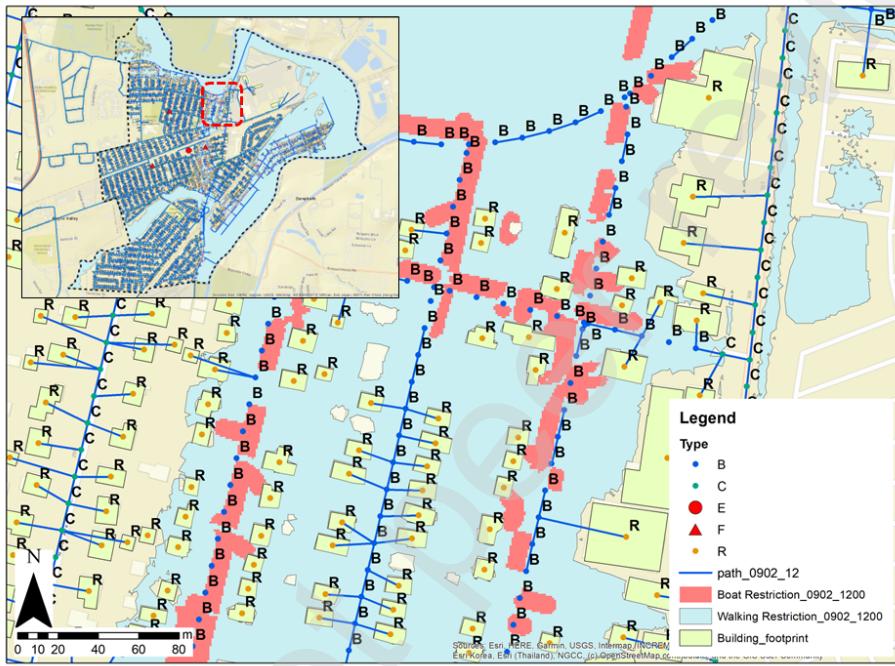
266 power lines into 3D polylines using specialized software like VRMesh V11.8.1 and ArcGIS 10.8.1. In
267 VRMesh, the point cloud data was processed to identify and highlight the power lines. This involves semi-
268 automated procedures to extract the elevation and location information of the power lines. However, due to
269 potential spatial discontinuities caused by obstructions like vegetation, the extracted data may be
270 incomplete. To address this, spatial interpolation techniques in ArcGIS were applied. The digitized
271 polylines were converted into polygons with a buffer distance to facilitate accurate interpolation. This
272 process ensures a continuous and coherent dataset representing the overhead power lines. Finally, the
273 elevation and location information of the extracted power lines were exported as raster layers to assess the
274 clearance distances above potential floodwater levels at each time step, ensuring the safety and effectiveness
275 of rescue operations during flood events [14].

276 ***3.1.3 Rescue Efficiency***

277 Based on the road network (polylines) and building footprints (polygons) in Manville, a citywide
278 network was generated using a series of ArcPy scripts to connect all residents and emergency facilities
279 (Figure 3). Road nodes were created every 13.7 meters (45 feet) along the road segments and assigned the
280 type “C” or “B” to represent the accessibility status of each node. “C” indicates accessible by vehicles,
281 while “B” indicates accessible by lifeboats. All building footprints within the study area were converted to
282 building nodes and assigned the type “R,” “E,” or “F,” “R,” represents normal residential and commercial
283 buildings, “E” represents evacuation centers, and “F” represents fire stations, with both “E” and “F” nodes
284 being emergency response facilities. Each building node was then linked to its nearest road node,
285 representing the connection status between the two nodes in the network.

286 At each time step, the accessibility status of all nodes was adjusted based on flood progression. For
287 example, road nodes in vulnerable areas, identified using the human instability model [28], will change
288 from “C” to “B,” indicating that these nodes are no longer accessible by vehicles. The assumption here is
289 that areas that cannot be accessed by walking also cannot be accessed by vehicles due to higher relative
290 motion speeds and limited flexibility in floodwaters. Additionally, the clearance distance between the water
291 elevation and overhead power lines was calculated at each time step to identify restricted zones for lifeboats

292 due to overhead power line obstructions [14]. Paths within these restricted zones were removed at each step
 293 to indicate inaccessibility. As shown in Figure 3, on September 2nd, 2021, all road nodes in walking-
 294 restricted areas changed from “C” to “B,” and all paths covered by boat-restricted areas were removed.
 295 Three essential facilities are identified in Manville, and the rescue efficiency is determined based on the
 296 closest accessible facilities.



297

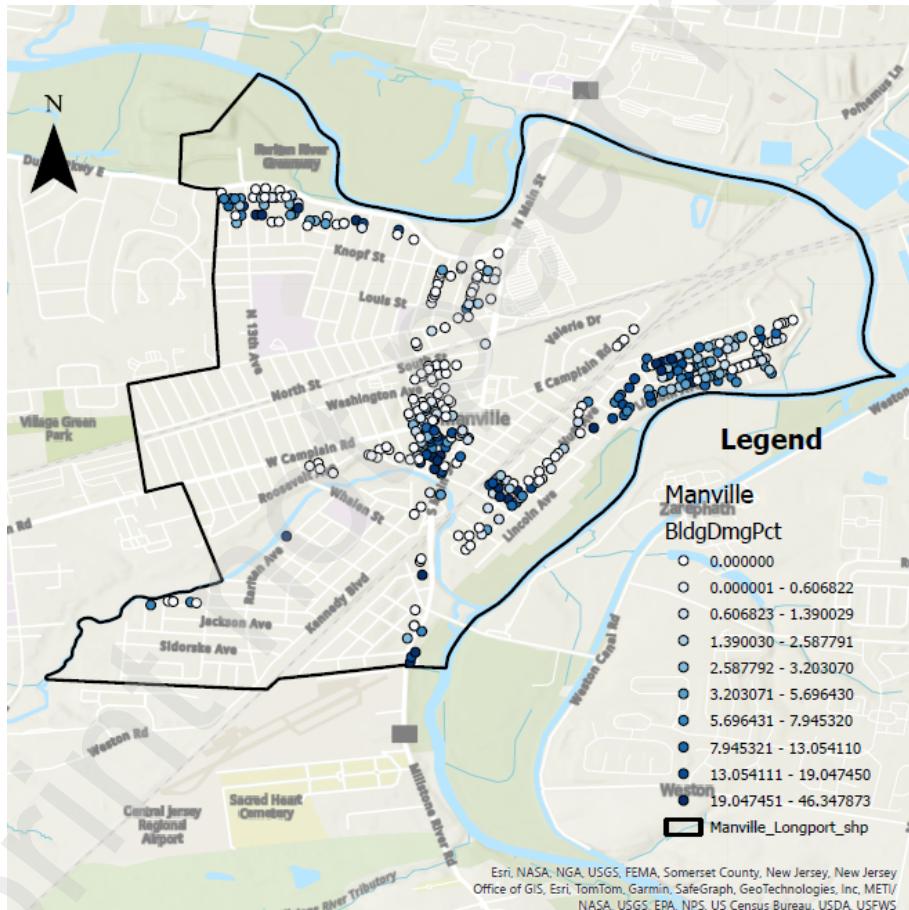
298 **Figure 3.** Example network accessibility on September 2nd, 2021 at 12:00 a.m.

299 Given the generated network at each timestep, the rescue efficiency for each census block at each hour is
 300 calculated following Equations (2).

301 **3.1.4 Community Flood Severity**

302 HAZUS was utilized to estimate the damage percentage to individual buildings using the processed
 303 building inventory data and the maximum water depth obtained from the flood reconstruction step (section
 304 3.1.1). Here the building inventory data, such as the number of stories, roof type, exterior wall covering,
 305 and the presence of a basement, was processed by gathering data from njparcels.com and
 306 njpropertyrecords.com and surveying all the homes using Google Street View (GSV). One of the most
 307 important building attributes, first-floor elevation, a critical factor in determining a building's risk, was

308 extracted from mobile LiDAR data collected by the Rutgers mobile mapping team following Hurricane Ida.
 309 Innovative technology, using Yolo5, a 2D object detector for identifying building components like windows,
 310 doors, and garage doors based on the intensity of the point cloud, is employed to extract the first-floor
 311 elevation [29]. Given the building damage percentage, Equation (3) is used to calculate community flood
 312 severity at each census block. An illustration of the building damage percentage for buildings that have
 313 damage percentages greater than zero is indicated in Figure 4. The graduated colors changing from white
 314 to blue represent the percentage of building damage, where a whiter color shows a low percentage of
 315 damage and darker blue shows a high percentage of damage.



316

317 **Figure 4.** Percentage of building damage at Manville

318 **3.1.5 Social Vulnerability and Integrated Metric**

319 The block-level house composition data (i.e., the percentage of persons aged 65 and older, people
 320 aged 18 and younger in minority households, and single-family households) is obtained from the U.S.

321 Census Bureau [23]. Then following the proposed integrated metric calculation approach, the rescue
322 demands of each census block at each hour were calculated. An illustration of the details of metric
323 calculation process at one time step is shown in Table 1.

324

Block ID	Building Damage Percentage	Efficiency	Building Damage Percentage Percentile	Efficiency Percentile	SVI Percentile	Integrated Metric	Integrated Metric Percentile
1019514	0.095	0.007	0.943	0.912	0.866	0.907	1.000
1003514	0.110	0.009	0.964	0.809	0.892	0.888	0.995
1005514	0.097	0.009	0.948	0.825	0.887	0.887	0.990
1010514	0.052	0.006	0.907	1.000	0.716	0.875	0.985
...
1017515	0.000	0.056	0.327	0.052	0.196	0.192	0.021
2034516	0.000	0.041	0.327	0.108	0.093	0.176	0.015
2027516	0.000	0.100	0.327	0.010	0.098	0.145	0.010

325 **Table 1.** Illustration of the metric calculation process

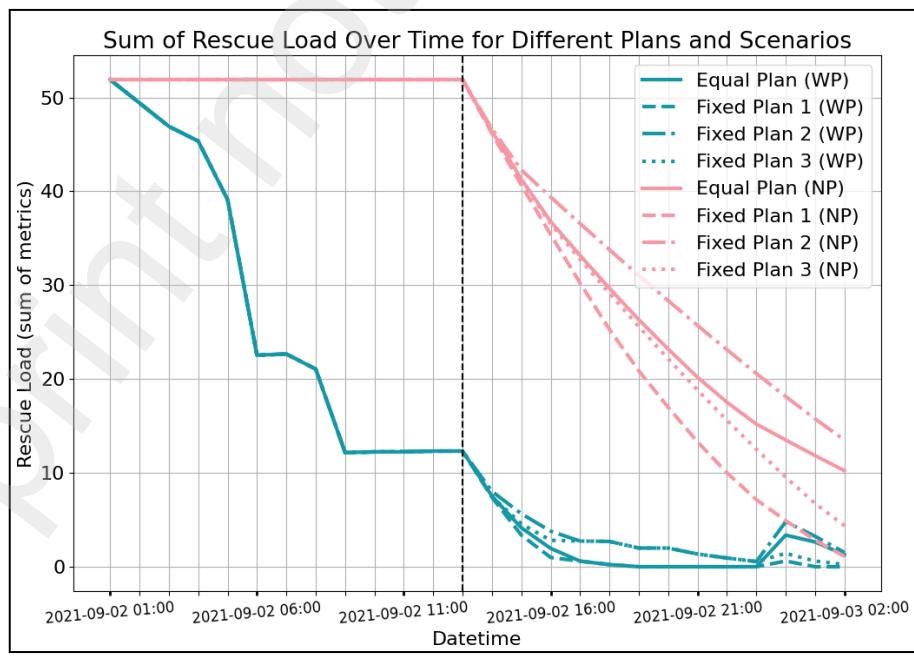
326 The first column in Table 1 shows the block ID. For each block, the second and third columns show
327 the building damage percentage and efficiency (derived in the rescue efficiency and flood severity sections)
328 respectively. The fourth, fifth and sixth columns show the percentile ranks of building damage percentage,
329 rescue efficiency, and social vulnerability index, across all census blocks. The integrated metric is
330 calculated by averaging the three percentiles. In the end, a percentile ranking based on the integrated metric
331 is derived to inform emergency rescue prioritization. At each time step, the percentile ranks are dynamically
332 updated based on the latest road conditions.

333 **3.2 Results**

334 To compare and fully understand the performance of different allocation strategies, the rescue
335 progresses under two scenarios are evaluated. These are rescue operations considering overhead powerline
336 obstructions and neglecting overhead powerline obstructions. In the case study, the allocation ratios of
337 lifeboats for four different allocation strategies were calculated, assuming the total available lifeboats for
338 rescue operations is 6. The allocation ratio for the four strategies is [2,2,2] for the Equal Plan, [1,3,2] for
339 Fixed Plan 1, [3,2,1] for Fixed Plan 2, and [2,3,1] for Fixed Plan 3. The current case study treats these
340 allocation ratios to be constant and does not vary over time.

341 In this study, rescue operations are set to begin at the 13th time step, four hours after the peak level
 342 detected in the nearest river gage, initially under full rescue requirements. This assumption represents the
 343 worst-case scenario because the rescue loads are the highest. The changes in rescue loads under different
 344 scenarios are illustrated in Figure 5. The results found that the lifeboat allocation ('Fixed Plan 1') considering
 345 overhead power lines is the most effective strategy in both scenarios (see Figure 5), as it achieves the largest
 346 decrease rate in rescue load. When social vulnerability is considered ('Fixed Plan 3'), this strategy
 347 outperforms the equal allocation approach in scenarios without powerlines' obstruction in rescue activities,
 348 but it is less effective when powerlines' obstruction is considered. This is because of the imbalance between
 349 the total rescue demands and the number of census blocks with rescue needs, which will be further explained
 350 in the discussion section. The least effective strategy is 'Fixed Plan 2,' which does not account for rescue
 351 requests and accessibility; this outcome is not surprising since this approach is less targeted and lacks
 352 critical considerations. In scenarios where powerlines' obstruction is considered during rescue activities,
 353 the rescue load decreases before the start of rescue activities, as more blocks become inaccessible for
 354 lifeboats due to the proximity of rising floodwaters to the overhead powerlines. The increased rescue load
 355 after September 2nd at 23:00 is due to more blocks becoming accessible again as the water level recedes.

356



357 **Figure 5** The rescue load variation using different lifeboat allocation strategies under two scenarios,
358 rescue operations considering powerline obstruction or neglecting powerline obstruction. The left part of
359 the black dash line indicates the rescue load before rescue activities. NP refers to ‘No Powerlines
360 Consideration Scenario’, and WP refers to ‘With Powerlines Consideration Scenario’

361 **4. DISCUSSION**

362 The allocation strategy based on the rescue requirement and accessibility status, i.e., Fixed Plan 1
363 is the most effective strategy because the distribution of rescue demands among emergency facilities is
364 uneven in reality. Allocation plan without considering this uneven distribution will result in low effective
365 rescue operations. For example, in this case study, facilities with the highest number of associated blocks
366 often have a lower proportion of rescue demands during floods, and most associated census blocks are not
367 impacted by flooding. Similarly, some facilities with fewer associated blocks but have a higher rescue
368 demand because most of the associated census blocks are located in the flood-prone area. Interestingly,
369 ‘Fixed Plan 3’, as a more considerable and targeted strategy, becomes less effective than Fixed Plan 2 no
370 matter if the powerline obstruction is considered or not in rescue operations. ‘Fixed Plan 3’ is a strategy
371 that allocates lifeboats based on the sum of integrated metrics of all associated census blocks to each
372 emergency response facility. This means if the associated buildings are more vulnerable (higher sum of
373 integrated metric), the facility will be assigned more lifeboats. However, being more vulnerable doesn’t
374 mean the number of required lifeboats will be higher. It is possible that the number of census blocks
375 requiring rescue associated with one facility is high but with low social vulnerability in total. This will lead
376 to one limitation of this study, which is the current analysis is based on static instead of dynamic allocation
377 strategy, which means the allocation ratio among facilities will not change as time goes by. Lifeboats
378 assigned to a facility with a higher vulnerable status but a lower number of census blocks that require rescue
379 will be idle in the simulation, leading to a relatively low rescue efficiency overall. The future study will
380 optimize the allocation strategy in a dynamic allocation way to ensure the available resources will be
381 allocated precisely as demands. Additionally, future studies should broaden the study areas to develop a
382 more generalized understanding of optimized allocation strategies taking powerline’s obstruction into

383 account. In particular, a better resource allocation strategy that considers the tradeoff between the block-
384 level rescue demands and the actual number of households that require rescue is needed.

385 **5. CONCLUSION**

386 The unpredictable and localized nature of precipitation-induced flooding, together with the
387 obstacles resulted from infrastructure damage and high-speed water flow, make emergency evacuation and
388 rescue challenging. To help emergency responders carry out effective and rapid rescue operations, this
389 research proposed an integrated metric to quantify the rescue demands at the census block level and
390 designed a systematic step to simulate rescue operations using different lifeboat allocation strategies. The
391 integrated metric considers rescue efficiency, community flood severity, and social vulnerability. These are
392 defined as the ability of responders travelling from emergency facilities to impacted households; the extent
393 to which the buildings are destroyed by flood impacts; and the ability of households to safely evacuate to
394 essential facilities. The integrated metric (i.e., rescue demands) provides comprehensive guidance to
395 prioritize rescue operations among census blocks. Following the systematic resource allocation strategies,
396 the allocated lifeboats at emergency response facilities were calculated and then used to derive the rescue
397 loads of the overall emergency rescue operation at each time step.

398 To demonstrate the applicability and feasibility of the proposed approach, a case study in Manville,
399 New Jersey following the impacts of Hurricane Ida was conducted. Using the designed integrated metric
400 and the resource allocation strategies, a comparison of rescue processing between two scenarios,
401 considering or neglecting overhead power line impacts on lifeboat-based rescue operations during extreme
402 flooding, was constructed to evaluate the impacts of overhead power line obstruction on emergency rescues.
403 The results highlighted the significance of powerlines' obstruction should not be neglected for lifeboat
404 allocation. The strategy considering overhead power line obstruction returns the highest decrease rate in
405 rescue load in both scenarios. Furthermore, the differences among the rescue load variations in the two
406 scenarios emphasize the need to account for powerline obstructions in simulations of emergency rescue
407 during extreme flooding in urban environments.

408 Although it is expected that the resource allocation strategy that considers the proposed metric
409 demonstrates the best performance, it is ranked as the second best-performing strategy. One possible reason
410 is that the number of census blocks requiring rescue associated with one emergency facility is low, but the
411 social vulnerability of these census blocks is high. Then the allocated lifeboats will be larger than the actual
412 requirement. And the time-invariant allocation in this study leads to a waste of rescue resources in later
413 periods of rescue. The future study will optimize the allocation strategy in a dynamic allocation way to
414 ensure the available resources will be allocated precisely as demands. Additionally, future studies should
415 broaden the study areas to develop a more generalized understanding of optimized allocation strategies
416 taking powerline's obstruction into account.

417 **ACKNOWLEDGEMENT**

418 This material is based upon work supported by the U.S. National Science Foundation under award 2103754,
419 by FEMA under HMGP DR4488. The views and conclusions contained in this document are those of the
420 authors and should not be interpreted as necessarily representing the official policies, either expressed or
421 implied, of the U.S. National Science Foundation and FEMA. The authors would like to thank Holly Joseph
422 for sharing the building damage percentage data.

423 **REFERENCE**

424 [1] H. Tabari, "Climate change impact on flood and extreme precipitation increases with water
425 availability," *Scientific Reports*, vol. 10, (1), pp. 13768, 2020. Available: <https://doi.org/10.1038/s41598-020-70816-2>. DOI: 10.1038/s41598-020-70816-2.

427 [2] J. Schanze, "Pluvial flood risk management: an evolving and specific field," *J Flood Risk
428 Management*, vol. 11, (3), pp. 227-229, 2018. Available: <https://doi.org/10.1111/jfr3.12487>. DOI:
429 10.1111/jfr3.12487.

430 [3] C. Corral *et al*, "Comparison of two early warning systems for regional flash flood hazard
431 forecasting," *Journal of Hydrology*, vol. 572, pp. 603-619, 2019. Available:
432 <https://www.sciencedirect.com/science/article/pii/S0022169419302665>. DOI:
433 10.1016/j.jhydrol.2019.03.026.

434 [4] Y. Li, F. Zhang and W. Ji, "Integrated Data-Driven and Equity-Centered Framework for Highway
435 Restoration Following Flood Inundation," *Journal of Management in Engineering*, vol. 39, (3), pp.
436 4023012, 2023.

437 [5] M. Shirvani, G. Kesserwani and P. Richmond, "Agent-based modelling of pedestrian responses during
438 flood emergency: mobility behavioural rules and implications for flood risk analysis," *Journal of*
439 *Hydroinformatics*, vol. 22, (5), pp. 1078-1092, 2020. Available: <https://doi.org/10.2166/hydro.2020.031>.
440 DOI: 10.2166/hydro.2020.031.

441 [6] Y. Wang and R. Marsooli, "Physical Instability of Individuals Exposed to Storm-Induced Coastal
442 Flooding: Vulnerability of New Yorkers During Hurricane Sandy," *Water Res.*, vol. 57, (1), pp.
443 e2020WR028616, 2021. Available: <https://doi.org/10.1029/2020WR028616>. DOI:
444 10.1029/2020WR028616.

445 [7] C. Yudi, W. Qi and J. Wenyi, "Rapid Assessment of Disaster Impacts on Highways Using Social
446 Media," *J. Manage. Eng.*, vol. 36, (5), pp. 04020068, 2020. Available:
447 [https://doi.org/10.1061/\(ASCE\)ME.1943-5479.0000836](https://doi.org/10.1061/(ASCE)ME.1943-5479.0000836). DOI: 10.1061/(ASCE)ME.1943-5479.0000836.

448 [8] H. Hao and Y. Wang, "Leveraging multimodal social media data for rapid disaster damage
449 assessment," *International Journal of Disaster Risk Reduction*, vol. 51, pp. 101760, 2020. Available:
450 <https://www.sciencedirect.com/science/article/pii/S2212420920312620>. DOI:
451 10.1016/j.ijdrr.2020.101760.

452 [9] I. Hernandez-Fajardo and L. Dueñas-Osorio, "Probabilistic study of cascading failures in complex
453 interdependent lifeline systems," *Reliab. Eng. Syst. Saf.*, vol. 111, pp. 260-272, 2013. Available:
454 <https://www.sciencedirect.com/science/article/pii/S0951832012002153>. DOI: 10.1016/j.ress.2012.10.012.

455 [10] Y. Li, F. Zhang and W. Ji, "Automated integration of infrastructure component status for real-time
456 restoration progress control: Case study of highway system in hurricane harvey," in *Proceedings of the*
457 *Winter Simulation Conference*Anonymous 2022, .

458 [11] D. Jing and W. Qi, "Exploring Reciprocal Influence between Individual Shopping Travel and Urban
459 Form: Agent-Based Modeling Approach," *J. Urban Plann. Dev.*, vol. 137, (4), pp. 390-401, 2011.
460 Available: [https://doi.org/10.1061/\(ASCE\)UP.1943-5444.0000084](https://doi.org/10.1061/(ASCE)UP.1943-5444.0000084). DOI: 10.1061/(ASCE)UP.1943-5444.0000084.

462 [12] H. Haiyan, W. Yan and Wang Qi (Ryan), "Simulating Urban Population Activities under Extreme
463 Events with Data-Driven Agent-Based Modeling," *Construction Research Congress 2022*, pp. 1125-
464 1134, 2022. Available: <https://doi.org/10.1061/9780784483961.118>. DOI: 10.1061/9780784483961.118.

465 [13] K. Feng and N. Lin, "Modeling and analyzing the traffic flow during evacuation in Hurricane Irma
466 (2017)," *Transportation Research Part D: Transport and Environment*, vol. 110, pp. 103412, 2022.
467 Available: <https://www.sciencedirect.com/science/article/pii/S1361920922002383>. DOI:
468 10.1016/j.trd.2022.103412.

469 [14] Y. Wang *et al*, "The impact of electrical hazards from overhead power lines on urban search and
470 rescue operations during extreme flood events," *International Journal of Disaster Risk Reduction*, vol.
471 104, pp. 104359, 2024. Available:
472 <https://www.sciencedirect.com/science/article/pii/S2212420924001213>. DOI:
473 10.1016/j.ijdrr.2024.104359.

474 [15] Y. Li and W. Ji, "Bayesian-based forecasting of infrastructure restoration progress following extreme
475 events," *International Journal of Disaster Risk Reduction*, pp. 103519, 2022. Available:

476 <https://www.sciencedirect.com/science/article/pii/S2212420922007385>. DOI:
477 10.1016/j.ijdrr.2022.103519.

478 [16] E. Tate *et al*, "Flood exposure and social vulnerability in the United States," *Nat. Hazards*, vol. 106,
479 (1), pp. 435-457, 2021. Available: <https://doi.org/10.1007/s11069-020-04470-2>. DOI: 10.1007/s11069-020-04470-2.

481 [17] C. T. Emrich *et al*, "Measuring social equity in flood recovery funding," *Environmental Hazards*,
482 vol. 19, (3), pp. 228-250, 2020. Available: <https://doi.org/10.1080/17477891.2019.1675578>. DOI:
483 10.1080/17477891.2019.1675578.

484 [18] S. Dong *et al*, "An integrated physical-social analysis of disrupted access to critical facilities and
485 community service-loss tolerance in urban flooding," *Comput. , Environ. Urban Syst.*, vol. 80, pp.
486 101443, 2020. Available: <https://www.sciencedirect.com/science/article/pii/S019897151930434X>. DOI:
487 10.1016/j.compenvurbssys.2019.101443.

488 [19] A. Ermagun, V. Smith and F. Janatabadi, "High urban flood risk and no shelter access
489 disproportionately impacts vulnerable communities in the USA," *Communications Earth & Environment*,
490 vol. 5, (1), pp. 2, 2024. Available: <https://doi.org/10.1038/s43247-023-01165-x>. DOI: 10.1038/s43247-023-01165-x.

492 [20] Y. Li, C. Yang and W. Ji, "Enhanced prediction of highway flood inundation through Bayesian
493 generalized linear geostatistical models," *Advanced Engineering Informatics*, vol. 61, pp. 102451, 2024.
494 Available: <https://www.sciencedirect.com/science/article/pii/S1474034624000995>. DOI:
495 10.1016/j.aei.2024.102451.

496 [21] Y. Wang *et al*, "A Computational Framework for Identifying Safe Evacuation and Rescue Routes in
497 Catastrophic Urban Flooding Environments," *Computing in Civil Engineering* 2023, pp. 136-143, 2024.
498 Available: DOI: 10.1061/9780784485248.017.

499 [22] FEMA. *Hazus*. Available: <https://www.fema.gov/flood-maps/products-tools/hazus>.

500 [23] United States Census Bureau. *Explore Census Data*. Available: <https://data.census.gov/>.

501 [24] U.S. Army Corps of Engineers, "Millstone river basin, new Jersey Flood risk management feasibility
502 Study Final feasibility report," Nov. 2016.

503 [25] CBS New York. *Nightmare In Manville, NJ As Homes And A Business Explode In Ida's Aftermath; Family Grateful To Be Alive*. Available: <https://www.cbsnews.com/newyork/news/ida-manville-new-jersey-flood/>.

506 [26] Y. Wang, J. Gong and C. Di, "A building-scale hydrodynamic model for extreme urban flash
507 flooding simulation: A Confluence Area in Raritan River Basin during Hurricane Ida," *ESS Open
508 Archive*, 2022. DOI: 10.1002/essoar.10512267.1.

509 [27] E. Hunter, "Rartian River Basin Elevation Data. Rutgers University."

510 [28] Y. Wang and R. Marsooli, "Physical Instability of Individuals Exposed to Storm-Induced Coastal
511 Flooding: Vulnerability of New Yorkers During Hurricane Sandy," *Water Res.*, vol. 57, (1), pp.

512 e2020WR028616, 2021. Available: <https://doi.org/10.1029/2020WR028616>. DOI:
513 10.1029/2020WR028616.

514 [29] J. Xia and J. Gong, "Computer vision based first floor elevation estimation from mobile LiDAR
515 data," *Autom. Constr.*, vol. 159, pp. 105258, 2024. Available:
516 <https://www.sciencedirect.com/science/article/pii/S0926580523005186>. DOI:
517 10.1016/j.autcon.2023.105258.

518
519

**An Integrated Metric for Rapid and Equitable Emergency Rescue During Extreme Floods in
Urban Environments**

Yitong Li^{1*} Yifan Wang^{2*} and Jie Gong³

¹Postdoctoral Associate, Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey; Email: yl2035@soe.rutgers.edu

²Research Associate, Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey; Email: yw922@soe.rutgers.edu

³Associate Professor, Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey; Email: jg931@soe.rutgers.edu (corresponding author)

*These authors contributed equally to this work.